WorldWideScience

Sample records for temporarily reduces photosynthesis

  1. PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Donald A. [Pennsylvania State Univ., University Park, PA (United States)

    2002-06-21

    The Gordon Research Conference (GRC) on PHOTOSYNTHESIS was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  2. Photosynthesis

    DEFF Research Database (Denmark)

    Pribil, Mathias; Leister, Dario Michael

    2017-01-01

    on the genetic engineering of developmental or bioenergetic processes, such as photosynthesis. These approaches offer the prospect of a renewal of the Green Revolution, which is urgently required tomeet the continuously increasing demand for superior high-yield crop varieties for human sustenance and industrial...... by exponential population growth and increased demand for crop plants as sources of renewable energy or high-value products. The foreseeable intensification of competition between agronomical and industrial use makes it imperative that the available supply of cropland be used more efficiently. During the Green...... Revolution that began in the 1960s, significant increases in yield could be achieved by more effective farming strategies, innovations in fertilization, and the introduction of dwarfing genes into important crop species like rice (Oryza sativa) and wheat (Triticum aestivum). The last resulted in a shift...

  3. Reduced growth due to belowground sink limitation is not fully explained by reduced photosynthesis.

    Science.gov (United States)

    Campany, Courtney E; Medlyn, Belinda E; Duursma, Remko A

    2017-08-01

    Sink limitation is known to reduce plant growth, but it is not known how plant carbon (C) balance is affected, limiting our ability to predict growth under sink-limited conditions. We manipulated soil volume to impose sink limitation of growth in Eucalyptus tereticornis Sm. seedlings. Seedlings were grown in the field in containers of different sizes and planted flush to the soil alongside freely rooted (Free) seedlings. Container volume negatively affected aboveground growth throughout the experiment, and light saturated rates of leaf photosynthesis were consistently lower in seedlings in containers (-26%) compared with Free seedlings. Significant reductions in photosynthetic capacity in containerized seedlings were related to both reduced leaf nitrogen content and starch accumulation, indicating direct effects of sink limitation on photosynthetic downregulation. After 120 days, harvested biomass of Free seedlings was on average 84% higher than seedlings in containers, but biomass distribution in leaves, stems and roots was not different. However, the reduction in net leaf photosynthesis over the growth period was insufficient to explain the reduction in growth, so that we also observed an apparent reduction in whole-plant C-use efficiency (CUE) between Free seedlings and seedlings in containers. Our results show that sink limitation affects plant growth through feedbacks to both photosynthesis and CUE. Mass balance approaches to predicting plant growth under sink-limited conditions need to incorporate both of these feedbacks. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. In situ measurements of krypton in xenon gas with a quadrupole mass spectrometer following a cold-trap at a temporarily reduced pumping speed

    International Nuclear Information System (INIS)

    Brown, E; Rosendahl, S; Huhmann, C; Weinheimer, C; Kettling, H

    2013-01-01

    A new method for measuring trace amounts of krypton in xenon using a cold trap with a residual gas analyzer has been developed, which achieves an increased sensitivity by temporarily reducing the pumping speed while expending a minimal amount of xenon. By partially closing a custom built butterfly valve between the measurement chamber and the turbomolecular pump, a sensitivity of 40 ppt has been reached. This method has been tested on an ultra-pure gas sample from Air Liquide with an unknown intrinsic krypton concentration, yielding a krypton concentration of 330±200 ppt.

  5. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN

    Science.gov (United States)

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.

    2018-01-01

    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  6. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Salomón, Roberto Luis; De Roo, Linus; Steppe, Kathy

    2017-11-01

    Reassimilation of internal CO 2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE 50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE 50,light-excluded  = -1.00 ± 0.13 MPa; AE 50,control  = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    , nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  8. Lodging markedly reduced the biomass of sweet sorghum via decreasing photosynthesis in saline-alkali field

    Science.gov (United States)

    Guo, Jian Rong; Fan, Hai; Wang, Bao Shan

    2018-06-01

    Lodging is a serious problem in plant growth, especially in crops growth of the natural habitat. In order to determine the influence of lodging on the growth characters of sweet sorghum, plants grown in natural saline-alkali environment were used to investigate the fresh weight, dry weight, sugar content in the stalks and the photosynthesis index of salt tolerant crop sweet sorghum. Results showed that lodging significantly reduced the growth of sweet sorghum, the fresh weight and dry weight was only 28.3% and 22.5% of the normal plants when lodging occurred after 49 days. Lodging also reduced the stalks sugar content of sweet sorghum, the stalk sugar content of lodged plants was only 45.4% of that in the normal plants, when lodging occurred for 49 days. Lodging reduced the growth and sugar content by reducing the photosynthesis parameters of sweet sorghum grown in the saline-alkali field, thus, affected the accumulation of photosynthate. Interestingly, with the extension of the lodging time, lodging led to a decrease in photosynthetic rate of sweet sorghum mainly due to non-stomatal factors.

  9. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  10. In situ measurements of krypton in xenon gas with a quadrupole mass spectrometer following a cold-trap at a temporarily reduced pumping speed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ethan; Rosendahl, Stephan; Huhmann, Christian; Kettling, Hans; Schlak, Martin; Weinheimer, Christian [Muenster Univ. (Germany). Inst. fuer Kernphysik

    2013-07-01

    Liquid xenon detectors have risen to be extremely competitive for dark matter and neutrinoless double-beta decay searches. In order to achieve the required sensitivity, backgrounds must be reduced substantially. One important background is the beta-decay of {sup 85}Kr, which constitutes a uniform internal background in liquid xenon detectors. Cryogenic distillation can be used to reduce the krypton concentration to acceptable levels, but gas diagnostics become incredibly difficult at these ultra-pure levels. A new method for measuring the concentration of krypton in xenon has been developed, expanding on the existing technique of a cold trap and a Residual Gas Analyzer (RGA). By using a liquid nitrogen cold trap, one can take advantage of the difference in vapor pressures of krypton in xenon to freeze most of the xenon gas while allowing the krypton to pass to the measurement chamber. Here, only a few milliliters of xenon is expended in the measurement, while achieving a sensitivity of sub ppb (parts per billion). The key change is the use of a butterfly valve to partially close the opening in front of the turbomolecular pump, thereby reducing the effective pumping speed and enhancing the RGA signal.

  11. Improving Photosynthesis

    Science.gov (United States)

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  12. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  13. Botulinum Toxin A for Oral Cavity Cancer Patients: In Microsurgical Patients BTX Injections in Major Salivary Glands Temporarily Reduce Salivary Production and the Risk of Local Complications Related to Saliva Stagnation

    Directory of Open Access Journals (Sweden)

    Bartolo Corradino

    2012-10-01

    Full Text Available In patients suffering from oral cavity cancer surgical treatment is complex because it is necessary to remove carcinoma and lymph node metastasis (through a radical unilateral or bilateral neck dissection and to reconstruct the affected area by means of free flaps. The saliva stagnation in the post-operative period is a risk factor with regard to local complications. Minor complications related to saliva stagnation (such as tissue maceration and wound dehiscence could become major complications compromising the surgery or the reconstructive outcome. In fact the formation of oro-cutaneous fistula may cause infection, failure of the free flap, or the patient’s death with carotid blow-out syndrome. Botulinum injections in the major salivary glands, four days before surgery, temporarily reduces salivation during the healing stage and thus could reduce the incidence of saliva-related complications. Forty three patients with oral cancer were treated with botulinum toxin A. The saliva quantitative measurement and the sialoscintigraphy were performed before and after infiltrations of botulinum toxin in the major salivary glands. In all cases there was a considerable, but temporary, reduction of salivary secretion. A lower rate of local complications was observed in the post-operative period. The salivary production returned to normal within two months, with minimal side effects and discomfort for the patients. The temporary inhibition of salivary secretion in the post-operative period could enable a reduction in saliva-related local complications, in the incidence of oro-cutaneous fistulas, and improve the outcome of the surgery as well as the quality of residual life in these patients.

  14. Botulinum toxin A for oral cavity cancer patients: in microsurgical patients BTX injections in major salivary glands temporarily reduce salivary production and the risk of local complications related to saliva stagnation.

    Science.gov (United States)

    Corradino, Bartolo; Di Lorenzo, Sara; Moschella, Francesco

    2012-10-24

    In patients suffering from oral cavity cancer surgical treatment is complex because it is necessary to remove carcinoma and lymph node metastasis (through a radical unilateral or bilateral neck dissection) and to reconstruct the affected area by means of free flaps. The saliva stagnation in the post-operative period is a risk factor with regard to local complications. Minor complications related to saliva stagnation (such as tissue maceration and wound dehiscence) could become major complications compromising the surgery or the reconstructive outcome. In fact the formation of oro-cutaneous fistula may cause infection, failure of the free flap, or the patient’s death with carotid blow-out syndrome. Botulinum injections in the major salivary glands, four days before surgery, temporarily reduces salivation during the healing stage and thus could reduce the incidence of saliva-related complications. Forty three patients with oral cancer were treated with botulinum toxin A. The saliva quantitative measurement and the sialoscintigraphy were performed before and after infiltrations of botulinum toxin in the major salivary glands. In all cases there was a considerable, but temporary, reduction of salivary secretion. A lower rate of local complications was observed in the post-operative period. The salivary production returned to normal within two months, with minimal side effects and discomfort for the patients. The temporary inhibition of salivary secretion in the post-operative period could enable a reduction in saliva-related local complications, in the incidence of oro-cutaneous fistulas, and improve the outcome of the surgery as well as the quality of residual life in these patients.

  15. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions

    Science.gov (United States)

    Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed radiation into biomass (ec) and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. Modeling suggests that reducing chl content may also reduce leaf temperat...

  16. Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica. I. Species-specific and community responses to reduced irradiances

    International Nuclear Information System (INIS)

    Rivkin, R.B.; Voytek, M.A.

    1987-01-01

    Irradiance-dependent rates of photosynthesis and photosynthate labeling patterns were measured for phytoplankton in McMurdo Sound, Antarctica. Species-specific and traditional whole-water techniques were used to compare the physiological responses of algae collected in a high light environment at the ice edge and from a low light environment under the annual sea ice. There were differences among species within the same sample, for the same species isolated from high and low light environments, and when species-specific responses were compared with that of the natural assemblage. For algae collected beneath the sea ice, photosynthesis generally saturated at a lower irradiance, and the light-limited region of the P vs. I relationship had a steeper slope than for the same species collected at the ice edge. Low-light-adapted algae incorporated significantly less 14 C into proteins and more into low molecular weight compounds and lipids than the same species isolated from a high light environment. Under conditions where reduced rates of protein synthesis were coupled with high rates of carbon uptake, the measurement of photosynthesis may not accurately reflect the physiological condition of the phytoplankton

  17. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2).

    Science.gov (United States)

    Drake, B; Raschke, K

    1974-06-01

    Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO(2) exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO(2) concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO(2) concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO(2) concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO(2) concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO(2); they responded to changes in CO(2) concentration in the range from 100 to 1000 microliters per liter.

  18. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO21

    Science.gov (United States)

    Drake, B.; Raschke, K.

    1974-01-01

    Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO2 exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO2 concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO2 concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO2 concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO2 concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO2; they responded to changes in CO2 concentration in the range from 100 to 1000 microliters per liter. PMID:16658795

  19. Reintroducing Photosynthesis

    Science.gov (United States)

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  20. The Evolution of Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This Review was written by Engelbert Broda, an Austrian Chemist and Physicist, on February the 10th 1976. The merits of the inductive and the deductive approach in tracing the pathways of evolution are discussed. Using the latter approach, it is concluded that photosynthesis followed fermentation as a method of obtaining energy-rich compounds, especially ATP. Photosynthesis probably arose by utilization of membranes for bioenergetic processes. Originally photosynthesis served photophosphorylation (ATP production), later reducing power was also made, either by open-ended, light-powered, electron flow or driven by ATP; ultimate electron donors were at first hydrogen or sulfur compounds, and later water, the last-named capability Was acquired by prokaryotic algae the earliest plants, similar to the recent blue-greens. When free oxygen entered the atmosphere for the first time, various forms of respiration (oxidative phosphorylation) became possible. Mechanistically, respiration evolved from photosynthesis (‘conversion hypotheses’). Prokaryotic algae are probably the ancestors of the chloroplasts in the eukaryotes, In the evolution of the eukaryotes, not much change in the basic processes of photosynthesis occurred.(author)

  1. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis

    Science.gov (United States)

    Vandoorne, B.; Mathieu, A.-S.; Van den Ende, W.; Vergauwen, R.; Périlleux, C.; Javaux, M.; Lutts, S.

    2012-01-01

    Root chicory (Cichorium intybus var. sativum) is a cash crop cultivated for inulin production in Western Europe. This plant can be exposed to severe water stress during the last 3 months of its 6-month growing period. The aim of this study was to quantify the effect of a progressive decline in water availability on plant growth, photosynthesis, and sugar metabolism and to determine its impact on inulin production. Water stress drastically decreased fresh and dry root weight, leaf number, total leaf area, and stomatal conductance. Stressed plants, however, increased their water-use efficiency and leaf soluble sugar concentration, decreased the shoot-to-root ratio and lowered their osmotic potential. Despite a decrease in photosynthetic pigments, the photosynthesis light phase remained unaffected under water stress. Water stress increased sucrose phosphate synthase activity in the leaves but not in the roots. Water stress inhibited sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1 fructosyltransferase after 19 weeks of culture and slightly increased fructan 1-exohydrolase activity. The root inulin concentration, expressed on a dry-weight basis, and the mean degree of polymerization of the inulin chain remained unaffected by water stress. Root chicory displayed resistance to water stress, but that resistance was obtained at the expense of growth, which in turn led to a significant decrease in inulin production. PMID:22577185

  2. Photosynthesis and Bioconversion

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    This text summarises a talk held by Engelbert Broda at a conference on non-convential energy sources. The talk about photosynthesis and bioconversion is devided in 6 sections: the great physicist and photosynthesis; the influence of photosynthesis on the biosphere (in the past, present and future); the light reactions in photosynthesis; the dark reactions in photosynthesis; bioconversion; respiration and photorespiration. (nowak)

  3. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number

    Directory of Open Access Journals (Sweden)

    Aryo B. Feldman

    2017-11-01

    Full Text Available Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa. A previous high throughput screen identified five mutant rice lines (cv. IR64 with increased vein densities and associated narrower leaf widths (Feldman et al., 2014. Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number is a trait that may confer increased photosynthetic efficiency without increased transpiration.

  4. Climate changes and photosynthesis

    Directory of Open Access Journals (Sweden)

    G.Sh Tkemaladze

    2016-06-01

    Solar energy is environmentally friendly and its conversion to energy of chemical substances is carried out only by photosynthesis – effective mechanism characteristic of plants. However, microorganism photosynthesis occurs more frequently than higher plant photosynthesis. More than half of photosynthesis taking place on the earth surface occurs in single-celled organisms, especially algae, in particular, diatomic organisms.

  5. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    Science.gov (United States)

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  6. Regulation in photosynthesis

    International Nuclear Information System (INIS)

    Heber, U.

    1989-01-01

    This short paper focus on an overall perspective of photosynthesis. The author points out that although much progress has been made into the molecular mechanisms of photosynthesis, the picture is still far from complete. The study of interactions in photosynthesis is important because such a complex process must have regulatory mechanisms. The author also discusses the importance of photosynthesis study in the practical world of survival of man and production of food

  7. Five Lectures on Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    These five lectures were held by E. Broda during the International Symposium on Alternative Energies, in September 1979. Lecture 1 – The Great Physicists and Photosynthesis; Lecture 2 – The Influence of Photosynthesis on the Biosphere. Past, Present and Future; Lecture 3 – The Origin of Photosynthesis; Lecture 4 – The Evolution from Photosynthetic Bacteria to Plants; Lecture 5 – Respiration and Photorespiration. (nowak)

  8. A review of the ecology and management of temporarily open ...

    African Journals Online (AJOL)

    Research in South African temporarily open/closed estuaries that includes studies on the hydrodynamics, sediment dynamics, macronutrients, microalgae, macrophytes, zoobenthos, hyperbenthos, zooplankton, ichthyoplankton, fishes and birds is used as a basis to review the ecology and management of this estuary type ...

  9. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged

    Science.gov (United States)

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.

    2016-01-01

    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  10. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling.

    Science.gov (United States)

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m(-2) s(-1)) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  11. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling

    Directory of Open Access Journals (Sweden)

    Rosana eLópez

    2015-04-01

    Full Text Available The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of ABA found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN and stomatal conductance (gS in the short term, but later (gS below 0.07 mol m-2 s-1 AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM and the operating quantum efficiency of photosystem II (ΦPSII in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  12. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk.

    Science.gov (United States)

    Zhu, Hong; Dardick, Chris D; Beers, Eric P; Callanhan, Ann M; Xia, Rui; Yuan, Rongcai

    2011-10-17

    Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the induction of young fruit

  13. Photosynthesis in high definition

    Science.gov (United States)

    Hilton, Timothy W.

    2018-01-01

    Photosynthesis is the foundation for almost all known life, but quantifying it at scales above a single plant is difficult. A new satellite illuminates plants' molecular machinery at much-improved spatial resolution, taking us one step closer to combined `inside-outside' insights into large-scale photosynthesis.

  14. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    Science.gov (United States)

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference. Copyright © 2010 Wiley-Liss, Inc.

  15. Could photosynthesis function on Proxima Centauri b?

    Science.gov (United States)

    Ritchie, Raymond J.; Larkum, Anthony W. D.; Ribas, Ignasi

    2018-04-01

    Could oxygenic and/or anoxygenic photosynthesis exist on planet Proxima Centauri b? Proxima Centauri (spectral type - M5.5 V, 3050 K) is a red dwarf, whereas the Sun is type G2 V (5780 K). The light regimes on Earth and Proxima Centauri b are compared with estimates of the planet's suitability for Chlorophyll a (Chl a) and Chl d-based oxygenic photosynthesis and for bacteriochlorophyll (BChl)-based anoxygenic photosynthesis. Proxima Centauri b has low irradiance in the oxygenic photosynthesis range (400-749 nm: 64-132 µmol quanta m-2 s-1). Much larger amounts of light would be available for BChl-based anoxygenic photosynthesis (350-1100 nm: 724-1538 µmol quanta m-2 s-1). We estimated primary production under these light regimes. We used the oxygenic algae Synechocystis PCC6803, Prochlorothrix hollandica, Acaryochloris marina, Chlorella vulgaris, Rhodomonas sp. and Phaeodactylum tricornutum and the anoxygenic photosynthetic bacteria Rhodopseudomonas palustris (BChl a), Afifella marina (BChl a), Thermochromatium tepidum (BChl a), Chlorobaculum tepidum (BChl a + c) and Blastochloris viridis (BChl b) as representative photosynthetic organisms. Proxima Centauri b has only ~3% of the PAR (400-700 nm) of Earth irradiance, but we found that potential gross photosynthesis (P g) on Proxima Centauri b could be surprisingly high (oxygenic photosynthesis: earth ~0.8 gC m-2 h-1 Proxima Centauri b ~0.14 gC m-2 h-1). The proportion of PAR irradiance useable by oxygenic photosynthetic organisms (the sum of Blue + Red irradiance) is similar for the Earth and Proxima Centauri b. The oxygenic photic zone would be only ~10 m deep in water compared with ~200 m on Earth. The P g of an anoxic Earth (gC m-2 h-1) is ~0.34-0.59 (land) and could be as high as ~0.29-0.44 on Proxima Centauri b. 1 m of water does not affect oxygenic or anoxygenic photosynthesis on Earth, but on Proxima Centauri b oxygenic P g is reduced by ~50%. Effective elimination of near IR limits P g by photosynthetic

  16. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Science.gov (United States)

    Tuteja, Narendra; Banu, Mst Sufara Akhter; Huda, Kazi Md Kamrul; Gill, Sarvajeet Singh; Jain, Parul; Pham, Xuan Hoi; Tuteja, Renu

    2014-01-01

    The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum) and its novel function in salinity stress tolerance in plant. The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS) accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities. To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  17. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery.

    Directory of Open Access Journals (Sweden)

    Narendra Tuteja

    Full Text Available The DEAD-box helicases are required mostly in all aspects of RNA and DNA metabolism and they play a significant role in various abiotic stresses, including salinity. The p68 is an important member of the DEAD-box proteins family and, in animal system, it is involved in RNA metabolism including pre-RNA processing and splicing. In plant system, it has not been well characterized. Here we report the cloning and characterization of p68 from pea (Pisum sativum and its novel function in salinity stress tolerance in plant.The pea p68 protein self-interacts and is localized in the cytosol as well as the surrounding of cell nucleus. The transcript of pea p68 is upregulated in response to high salinity stress in pea. Overexpression of p68 driven by constitutive cauliflower mosaic virus-35S promoter in tobacco transgenic plants confers enhanced tolerances to salinity stress by improving the growth, photosynthesis and antioxidant machinery. Under stress treatment, pea p68 overexpressing tobacco accumulated higher K+ and lower Na+ level than the wild-type plants. Reactive oxygen species (ROS accumulation was remarkably regulated by the overexpression of pea p68 under salinity stress conditions, as shown from TBARS content, electrolyte leakage, hydrogen peroxide accumulation and 8-OHdG content and antioxidant enzyme activities.To the best of our knowledge this is the first direct report, which provides the novel function of pea p68 helicase in salinity stress tolerance. The results suggest that p68 can also be exploited for engineering abiotic stress tolerance in crop plants of economic importance.

  18. Teaching Photosynthesis with ELL Students

    Science.gov (United States)

    Piper, Susan; Shaw, Edward Lewis, Jr.

    2010-01-01

    Although the teaching of photosynthesis occurs yearly in elementary classrooms, one thing that makes it challenging is the inclusion of English language learners (ELLs). This article presents several activities for teaching and assessing of photosynthesis in a third grade classroom. The activities incorporate the photosynthesis content, teaching…

  19. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  20. New Concept of Photosynthesis

    Directory of Open Access Journals (Sweden)

    Komissarov Gennadiy Germanovich

    2014-12-01

    Full Text Available The history of the formation of a new concept of photosynthesis proposed by the author is considered for the period since 1966 to 2013. Its essence consists in the following facts: the photosynthetic oxygen (hydrogen source is not water, but exo- and endogenous hydrogen peroxide; thermal energy is a necessary part of the photosynthetic process; along with the carbon dioxide the air (oxygen, inert gases is included in the photosynthetic equation. The mechanism of the photovoltaic (Becquerel effect in films of chlorophyll and its synthetic analogue - phthalocyanine are briefly touched upon in the article. The article presents the works on artificial photosynthesis performed in the laboratory of Photobionics of N.N. Semenov Institute of Chemical Physics, RAS.

  1. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  2. Artificial Photosynthesis: Beyond Mimicking Nature

    International Nuclear Information System (INIS)

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-01-01

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on “Artificial Photosynthesis for Sustainable Fuels”. Here, they discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO 2 reduction, and photoelectrochemical systems.

  3. Photosynthesis in the Archean era.

    Science.gov (United States)

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  4. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  5. From Baby Bottle to Cup: Choose Training Cups Carefully, Use Them Temporarily

    Science.gov (United States)

    FOR THE DENTAL PATIENT ... From baby bottle to cup Choose training cups carefully, use them temporarily T ooth decay can ... should encourage their children to drink from a cup by their first birthday. As you make the ...

  6. A multidisciplinary study of a small, temporarily open/closed South ...

    African Journals Online (AJOL)

    In 2005/2006 a multidisciplinary research programme that included studies on the hydrodynamics, sediment dynamics, macronutrients, microalgae, macrophytes, zoobenthos, hyperbenthos, zooplankton, ichthyoplankton, fish and birds of the temporarily open/closed East Kleinemonde Estuary was conducted. Particular ...

  7. Fruit photosynthesis in Satsuma mandarin.

    Science.gov (United States)

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  9. A quantum protective mechanism in photosynthesis

    Science.gov (United States)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  10. Photosynthesis solutions to enhance productivity.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Nixon, Peter J

    2017-09-26

    The concept that photosynthesis is a highly inefficient process in terms of conversion of light energy into biomass is embedded in the literature. It is only in the past decade that the processes limiting photosynthetic efficiency have been understood to an extent that allows a step change in our ability to manipulate light energy assimilation into carbon gain. We can therefore envisage that future increases in the grain yield potential of our major crops may depend largely on increasing the efficiency of photosynthesis. The papers in this issue provide new insights into the nature of current limitations on photosynthesis and identify new targets that can be used for crop improvement, together with information on the impacts of a changing environment on the productivity of photosynthesis on land and in our oceans.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  11. Photosynthesis research in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.O.

    1979-09-27

    Current research programs in photosynthesis in the USSR are described. Some of the programs include: (1) research on hydrogenases; (2) computer facilities (3) photochemical reduction of low potential compounds; (4) hydrogen-producing systems using model pigment systems; (5) stabilization of chloroplast membranes; (6) construction of fuel cells using immobilized enzymes; (7) carbon, hydrogen, and nitrogen metabolism of photosynthetic bacteria; (8) methane producing bacteria; (9) growth of photosynthetic bacteria under dark and light conditions; (10) efficiency of photosynthesis and plant productivity; (11) biomass as a future source of energy; (12) mycology; (13) isolation of photosystems; and (14) factors limiting photosynthesis in the leaf. (DC)

  12. The primary steps of photosynthesis

    International Nuclear Information System (INIS)

    Fleming, G.R.; Van Grondelle, R.

    1996-01-01

    The two important initial steps of photosynthesis-electron transfer and energy transfer occur with great speed and efficiency. New techniques in laser optics and genetic engineering age helping us to understand why. (author). 24 refs. 8 figs

  13. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.

  14. 22 CFR 96.110 - Dissemination and reporting of information about temporarily accredited agencies.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Dissemination and reporting of information... ACT OF 2000 (IAA) Procedures and Standards Relating to Temporary Accreditation § 96.110 Dissemination and reporting of information about temporarily accredited agencies. The accrediting entity must...

  15. Vocalization Subsystem Responses to a Temporarily Induced Unilateral Vocal Fold Paralysis

    Science.gov (United States)

    Croake, Daniel J.; Andreatta, Richard D.; Stemple, Joseph C.

    2018-01-01

    Purpose: The purpose of this study is to quantify the interactions of the 3 vocalization subsystems of respiration, phonation, and resonance before, during, and after a perturbation to the larynx (temporarily induced unilateral vocal fold paralysis) in 10 vocally healthy participants. Using dynamic systems theory as a guide, we hypothesized that…

  16. The Path of Carbon in Photosynthesis XIV.

    Science.gov (United States)

    Calvin, Melvin; Bassham, J. A.; Benson, A. A.; Kawaguchi, S.; Lynch, V. H.; Stepka, W.; Tolbert, N. E.

    1951-06-30

    It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

  17. The Path of Carbon in Photosynthesis. XIV.

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin; Bassham, J.A.; Benson, A.A.; Kawaguchi, S.; Lynch, V.H.; Stepka, W.; Tolbert, N.E.

    1951-06-30

    It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

  18. Techniques in studies of photosynthesis

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.

    1990-01-01

    The use of both stable and radioactive isotopes has led to major advances in the understanding of the basic mechanisms of photosynthesis. An early use of isotopic material in photosynthetic investigations was the demonstration using 18 O, that O 2 evolved in photosynthesis was derived from water rather than from CO 2 . When the long-lived isotope of carbon, 14 C, became available in 1945, its use, coupled with two-dimensional chromatography developed a few years earlier, enabled Calvin and Benson (1948) to devise experiments to elucidate the pathway of photosynthetic 14 CO 2 fixation, 12 refs, 6 figs, 10 tabs

  19. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...

  20. The paleobiological record of photosynthesis.

    Science.gov (United States)

    William Schopf, J

    2011-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth's ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established.

  1. Growth and photosynthesis of lettuce

    NARCIS (Netherlands)

    Holsteijn, van H.M.C.

    1981-01-01

    Butterhead lettuce is an important glass-house crop in the poor light period in The Netherlands. Fundamental data about the influence of temperature, light and CO 2 on growth and photosynthesis are important e.g. to facilitate selection criteria for new cultivars. In

  2. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  3. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  4. 46 CFR 24.15-5 - Canadian pleasure craft temporarily using navigable waters of the United States.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Canadian pleasure craft temporarily using navigable... SECURITY UNINSPECTED VESSELS GENERAL PROVISIONS Equivalents § 24.15-5 Canadian pleasure craft temporarily using navigable waters of the United States. Uninspected Canadian pleasure craft (uninspected vessels...

  5. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  6. Family cohesion and the loneliness of adolescents from temporarily disconnected families due to economic migration

    Directory of Open Access Journals (Sweden)

    Dołęga Zofia

    2015-03-01

    Full Text Available The paper reports the results of a comparative analysis of the two groups students coming from temporarily disconnected families due to foreign work parents (TDF, n = 68; male = 30, female = 38 and teenagers with the same social environment (NDF, n = 179, male = 89, female = 90, but without the experience of separation time (N= 247. The subject of the analysis was: the cohesion of a family from the perspective of the evaluated adolescent and three factors of psychological loneliness: social loneliness (sense of social marginalization and isolation, emotional loneliness (solitude and existential loneliness (sense of self-alienation. The Loneliness Scale (SBS was used based on an original concept of multidimensional sense of loneliness. The questionnaire for the survey of family cohesion (KSR were used too. The age (12-14 and 15-17, gender, family structure and the family lifestyle were controlled. Obtained results revealed significantly lower cohesion and significantly higher existential loneliness in group of teenagers from temporarily disconnected families (TDF. Not confirmed the supposition that made in earlier studies of temporarily disconnected families due to economic migration, that these teenagers suffer from a sense of emotional loneliness There has also confirmed the belief that the level of family cohesion and a sense of loneliness in adolescents is associated with atypical organization of family life associated with the duration of migration of parent/parents, frequency of contact with family members working abroad: mothers, fathers or broth parents, the duration of stays at home

  7. The paleobiological record of photosynthesis

    OpenAIRE

    William Schopf, J.

    2010-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on...

  8. Prokaryotic photosynthesis and phototrophy illuminated

    DEFF Research Database (Denmark)

    Bryant, Donald A; Frigaard, Niels-Ulrik

    2006-01-01

    Genome sequencing projects are revealing new information about the distribution and evolution of photosynthesis and phototrophy. Although coverage of the five phyla containing photosynthetic prokaryotes (Chlorobi, Chloroflexi, Cyanobacteria, Proteobacteria and Firmicutes) is limited and uneven...... components that have not yet been described. Metagenomics has already shown how the relatively simple phototrophy based upon rhodopsins has spread laterally throughout Archaea, Bacteria and eukaryotes. In this review, we present examples that reflect recent advances in phototroph biology as a result...

  9. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  10. Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty.

    Science.gov (United States)

    Zhang, Linda; Weizer, Jennifer S; Musch, David C

    2017-02-23

    Glaucoma is the international leading cause of irreversible blindness. Intraocular pressure (IOP) is the only currently known modifiable risk factor; it can be reduced by medications, incisional surgery, or laser trabeculoplasty (LTP). LTP reduces IOP by 25% to 30% from baseline, but early acute IOP elevation after LTP is a common adverse effect. Most of these IOP elevations are transient, but temporarily elevated IOP may cause further optic nerve damage, worsening of glaucoma requiring additional therapy, and permanent vision loss. Antihypertensive prophylaxis with medications such as acetazolamide, apraclonidine, brimonidine, dipivefrin, pilocarpine, and timolol have been recommended to blunt and treat the postoperative IOP spike and associated pain and discomfort. Conversely, other researchers have observed that early postoperative IOP rise happens regardless of whether people receive perioperative glaucoma medications. It is unclear whether perioperative administration of antiglaucoma medications may be helpful in preventing or reducing the occurrence of postoperative IOP elevation. To assess the effectiveness of medications administered perioperatively to prevent temporarily increased intraocular pressure (IOP) after laser trabeculoplasty (LTP) in people with open-angle glaucoma (OAG). We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 11), MEDLINE Ovid (1946 to 18 November 2016), Embase.com (1947 to 18 November 2016), PubMed (1948 to 18 November 2016), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 18 November 2016), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com); last searched 17 September 2013, ClinicalTrials.gov (www.clinicaltrials.gov); searched 18 November 2016 and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 18 November 2016. We did not use any date or language restrictions. We included

  11. Energetics of bacterial photosynthesis.

    Science.gov (United States)

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  12. Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii

    Science.gov (United States)

    Hamilton, Trinity L; Klatt, Judith M; de Beer, Dirk; Macalady, Jennifer L

    2018-01-01

    We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring—a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions. PMID:29328062

  13. Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii.

    Science.gov (United States)

    Hamilton, Trinity L; Klatt, Judith M; de Beer, Dirk; Macalady, Jennifer L

    2018-02-01

    We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring-a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H 2 S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H 2 S and irradiance; (iii) O 2 production is inhibited by H 2 S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H 2 S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.

  14. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  15. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico.

    Science.gov (United States)

    Hellweger, Ferdi L

    2009-06-01

    Several viruses infecting marine cyanobacteria carry photosynthesis genes (e.g. psbA, hli) that are expressed, yield proteins (D1, HLIP) and help maintain the cell's photosynthesis apparatus during the latent period. This increases energy and speeds up virus production, allowing for a reduced latent period (a fitness benefit), but it also increases the DNA size, which slows down new virus production and reduces burst size (a fitness cost). How do these genes affect the net ecological fitness of the virus? Here, this question is explored using a combined systems biology and systems ecology ('systems bioecology') approach. A novel agent-based model simulates individual cyanobacteria cells and virus particles, each with their own genes, transcripts, proteins and other properties. The effect of D1 and HLIP proteins is explicitly considered using a mechanistic photosynthesis component. The model is calibrated to the available database for Prochlorococcus ecotype MED4 and podovirus P-SSP7. Laboratory- and field-scale in silico survival, competition and evolution (gene packaging error) experiments with wild type and genetically engineered viruses are performed to develop vertical survival and fitness profiles, and to determine the optimal gene content. The results suggest that photosynthesis genes are nonessential, increase fitness in a manner correlated with irradiance, and that the wild type has an optimal gene content.

  16. Microbial photosynthesis in the harnessing of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirt, S J

    1982-01-01

    The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO/sub 2/ through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed. (Refs. 14).

  17. Did Respiration or Photosynthesis Come First

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin ( convers ion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation ("prerespiration"), to terminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow powered by ATP, to make NADH as a reductant for CO2 , and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2 and with participation of the nitrificants, nitrite and nitrate. Thus, prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow. (author)

  18. Physiological and Environmental Aspects of Photosynthesis

    OpenAIRE

    Ricardo Alfredo Kluge; Universidade de São Paulo; Jaqueline V. Tezotto-Uliana; Universidade de São Paulo; Paula P. M. da Silva; Universidade de São Paulo

    2015-01-01

    Undoubtedly, photosynthesis is one of the most important process for the life planet maintenance. The sun releases radiant energy that is able to boost the photosynthetic apparatus of the plants, which produce carbohydrates that will be used in the respiration. Among the most important reactions of photosynthesis is the release of oxygen, essential for respiration, which happens in photosystem II. The products generated in the first phase of photosynthesis or photochemical phase (ATP and NADP...

  19. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  20. Haptoglobin concentrations in free-range and temporarily captive juvenile steller sea lions.

    Science.gov (United States)

    Thomton, Jamie D; Mellish, Jo-Ann E

    2007-04-01

    Haptoglobin (Hp) is an acute-phase protein synthesized in the liver that circulates at elevated concentrations in response to tissue damage caused by inflammation, infection, and trauma. As part of a larger study, sera Hp concentrations were measured in temporarily captive (n = 21) and free-range (n = 38) western stock juvenile Steller sea lions (Eumetopias jubatus) sampled from 2003 to 2006. Baseline Hp concentration at time of capture was 133.3 +/- 17.4 mg/dl. Temporarily captive animals exhibited a 3.2-fold increase in Hp concentrations during the first 4 wk of captivity, followed by a return to entry levels by week 5. Haptoglobin levels were not influenced by age, season, or parasite load. There was a significant positive correlation between Hp concentrations and white blood cell count (P < 0.001) and globulin levels (P < 0.001) and a negative correlation to red blood cell count and hematocrit (P < 0.001 for both). There was no correlation between Hp levels and platelet count (P = 0.095) or hemoglobin (P = 0.457). Routine blubber biopsies collected under gas anesthesia did not produce a measurable Hp response. One animal with a large abscess had an Hp spike of 1,006.0 mg/dl that returned to entry levels after treatment. In conclusion, serum Hp levels correlate to the stable clinical health status observed during captivity, with moderate Hp response during capture and initial acclimation to captivity and acute response to inflammation and infection.

  1. Scientific impact of studies published in temporarily available radiation oncology journals: a citation analysis.

    Science.gov (United States)

    Nieder, Carsten; Geinitz, Hans; Andratschke, Nicolaus H; Grosu, Anca L

    2015-01-01

    The purpose of this study was to review all articles published in two temporarily available radiation oncology journals (Radiation Oncology Investigations, Journal of Radiosurgery) in order to evaluate their scientific impact. From several potential measures of impact and relevance of research, we selected article citation rate because landmark or practice-changing research is likely to be cited frequently. The citation database Scopus was used to analyse number of citations. During the time period 1996-1999 the journal Radiation Oncology Investigations published 205 articles, which achieved a median number of 6 citations (range 0-116). However, the most frequently cited article in the first 4 volumes achieved only 23 citations. The Journal of Radiosurgery published only 31 articles, all in the year 1999, which achieved a median number of 1 citation (range 0-11). No prospective randomized studies or phase I-II collaborative group trials were published in these journals. Apparently, the Journal of Radiosurgery acquired relatively few manuscripts that were interesting and important enough to impact clinical practice. Radiation Oncology Investigations' citation pattern was better and closer related to that reported in several previous studies focusing on the field of radiation oncology. The vast majority of articles published in temporarily available radiation oncology journals had limited clinical impact and achieved few citations. Highly influential research was unlikely to be submitted during the initial phase of establishing new radiation oncology journals.

  2. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  3. Photochemistry and enzymology of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R.

    1979-07-30

    In the first task, a specially designed mass spectrometer system monitors the gas exchange occurring in response to single short flashes of light. This apparatus will be primarily used to study photosystem II donor reactions, such as the photooxidation of hydroxylamine, hydrazine, and hydrogen peroxide. This technique will also be used to study the light-induced exchange of O/sub 2/ and CO/sub 2/ in algae. The second task, biochemical studies, will focus on the role of chloroplast copper in photosynthesis. We propose to isolate, purify, and characterize the chloroplast copper enzyme polyphenol oxidase, and attempt to elucidate its role in photosynthesis. These studies will be integrated with a new program devoted to the biochemical response of the photosynthetic membrane to stress. The third task is a series of studies on the light-harvesting and electron-transport mechanisms of C/sub 4/ plants. This program will address three basic problems: (1) the effect of different preparative procedures on various photosynthetic reactions, with particular emphasis on photosystem II reactions in corn bundle sheath chloroplasts; (2) the development and testing of photosystem II assays; and (3) studies of the stoichiometry of electron carriers in bundle sheath chloroplasts, and whether cyclic phosphorylation could be a major pathway in this tissue.

  4. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    Science.gov (United States)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  5. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  6. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  7. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  8. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  9. Management of recurrent epistaxis in an anticoagulated patient by temporarily closing the nares with sutures.

    Science.gov (United States)

    Eng, Chee-Yean; Yew, Teck-Aun; Ng, Wai-Siene; El-Hawrani, Amged S

    2008-04-01

    We describe an unusual case of recurrent, refractory anterior epistaxis in an 86-year-old man with two mechanical heart valves who was on permanent warfarin therapy. His numerous episodes of epistaxis were incited by chronic nose-picking and strong nose-blowing, practices that he continued to engage in despite repeated medical advice to stop. Stopping his anticoagulation therapy was not considered as a management option because of an unacceptably high risk that this would lead to a thromboembolic event. Eventually, we temporarily sutured his nares closed, and his nosebleeds ceased. The suturing was performed in the ward with local anesthesia. This procedure was simple to perform,fairly well tolerated, easily reversible, and highly effective.

  10. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  11. Photosynthesis of ammonium uranous fluoride

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Zaki, M.R.; Farah, M.Y.

    1975-01-01

    This study pertains to utilisation of solar energy for ethanol photosynthesis of ammonium uranous fluoride, that satisfies nuclear specifications needed for calcio- or magnesiothermy. Insolation in autumn using 4-10% ethanol in 5-20 g uranium/litre at initial pH 3.25 gave practically 99.8% yield in two hours, independant of 1.0 to 2.0 stoichiometric NH 4 F. With ultraviolet light, the yield varied between 30 and 60%, even after four hours irradiation. Stirring and heating to 60 0 C raised the tap density of the dried double fluorides from 1.48 at 30 0 C, to 1.85 g/cm 3 at 60 0 C. The texture increased also in fineness to 100% 50μ aggregates. The powders satisfy nuclear purity specifications. Thermograms indicated preferential decomposition of double fluoride at 375 0 C in controlled atmosphere to obtain nuclear pure anhydrous uranium tetrafluoride

  12. Model systems in photosynthesis research

    International Nuclear Information System (INIS)

    Katz, J.J.; Hindman, J.C.

    1981-01-01

    After a general discussion of model studies in photosynthesis research, three recently developed model systems are described. The current status of covalently linked chlorophyll pairs as models for P700 and P865 is first briefly reviewed. Mg-tris(pyrochlorophyllide)1,1,1-tris(hydroxymethyl) ethane triester in its folded configuration is then discussed as a rudimentary antenna-photoreaction center model. Finally, self-assembled chlorophyll systems that contain a mixture of monomeric, oligomeric and special pair chlorophyll are shown to have fluorescence emission characteristics that resemble thoe of intact Tribonema aequale at room temperature in that both show fluorescence emission at 675 and 695 nm. In the self-assembled systems the wavelength of the emitted fluorescence depends on the wavelength of excitation, arguing that energy transfer between different chlorophyll species in these systems may be more complex than previously suspected

  13. INTERACTIVE ILUSTRATION FOR PHOTOSYNTHESIS TEACHING

    Directory of Open Access Journals (Sweden)

    M.R. Pereira

    2004-05-01

    Full Text Available Computational resources became the major tool in the challenge of making high education moreeasy and motivating. Complex Biochemical pathways can now be presented in interactive and three-dimensional animations. One of the most complex (detailed and interesting metabolic pathway thatstudents must understand in biochemical courses is photosynthesis. The light-dependent reactionsare of special interest since they involve many dierent kinds of mechanisms, as light absorptionby membrane complexes, proteins movement inside membranes, reactions of water hydrolysis, andelectrons ow; making it dicult to understand by static bi-dimensional representations.The resources of animation and ActionScript programming were used to make an interactive ani-mation of photosynthesis, which at some times even simulates three-dimensionality. The animationbegins with a leaf and progressively zooms in, until we have a scheme of a tylakoyd membrane, whereeach of the dierent steps of the pathway can be clicked to reveal a more detailed scheme of it. Whereappropriate, the energy graphs are shown side by side with the reactions. The electron is representedwith a face, so it can be shown to be stressing while going up in the energy graphs. Finally, there isa simplied version of the whole pathway, to illustrate how it all goes together.The objective is to help professors on teaching the subject in regular classes, since currently allthe explanations are omitted. In a future version, texts will be added to each step so it can beself-explicative to the students, helping them even on home or on-line learning.

  14. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  15. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  16. Role of seagrass photosynthesis in root aerobic processes.

    Science.gov (United States)

    Smith, R D; Dennison, W C; Alberte, R S

    1984-04-01

    The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.

  17. Final report, Feedback limitations of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D.

    1999-07-22

    Final report of research on carbon metabolism of photosynthesis. The feedback from carbon metabolism to primary photosynthetic processes is summarized, and a comprehensive list of published scientific papers is provided.

  18. Advantages and disadvantages on photosynthesis measurement ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to ... Measurements of this process are useful in order to understand how it might be controlled ...

  19. A quantum protective mechanism in photosynthesis

    NARCIS (Netherlands)

    Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R.

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product

  20. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.

    Science.gov (United States)

    Yin, Cong; Wei, Kunlin

    2014-08-01

    Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items. Copyright © 2014 the American Physiological Society.

  1. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut.

    Science.gov (United States)

    Wisselink, H J; Cornelissen, J B W J; Mevius, D J; Smits, M A; Smidt, H; Rebel, J M J

    2017-09-01

    Animal health benefits from a stable intestinal homeostasis, for which proper development and functioning of the intestinal microbiota and immune system are essential. It has been established that changes in microbial colonization in early life (the first 2 wk post hatch) impacts the functioning of the adult gut and the associated crosstalk between microbiota and intestinal mucosal cells. The aim of the present study was to study the effect of the administration of antibiotics later in life (d 15 to 20 post hatch) on microbiota and immune parameters. For this purpose, chickens received from 15 d post hatch during 5 d amoxicillin or enrofloxacin through their drinking water. Before and at 6, 16, and 27 d after start of the administration of antibiotics, the composition of the microbiota in the jejunum was determined using a 16S ribosomal RNA gene-targeted DNA microarray, the CHICKChip. At 6 d after the start of the administration of the antibiotics, the composition and diversity of the microbiota were affected significantly (P antibiotic administration, the number of CD4+ T-cells and CD8+ T-cells in the duodenum was lower compared to the control animals; however, this difference was not significant. At some time points, significant differences (P antibiotics only temporarily affect intestinal microbial and immune parameters. © 2017 Poultry Science Association Inc.

  2. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  4. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration...... photorespiration was evident at a range of O2 concentrations, including values below air equilibrium. At a high O2 concentration of 2.2-fold the atmospheric equilibrium concentration, net photosynthesis was reduced substantially and, although it remained positive in leaves containing high malate concentrations...... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...

  5. Evolution of the Z-scheme of photosynthesis: a perspective.

    Science.gov (United States)

    Govindjee; Shevela, Dmitriy; Björn, Lars Olof

    2017-09-01

    The concept of the Z-scheme of oxygenic photosynthesis is in all the textbooks. However, its evolution is not. We focus here mainly on some of the history of its biophysical aspects. We have arbitrarily divided here the 1941-2016 period into three sub-periods: (a) Origin of the concept of two light reactions: first hinted at, in 1941, by James Franck and Karl Herzfeld; described and explained, in 1945, by Eugene Rabinowitch; and a clear hypothesis, given in 1956 by Rabinowitch, of the then available cytochrome experiments: one light oxidizing it and another reducing it; (b) Experimental discovery of the two light reactions and two pigment systems and the Z-scheme of photosynthesis: Robert Emerson's discovery, in 1957, of enhancement in photosynthesis when two light beams (one in the far-red region, and the other of shorter wavelengths) are given together than when given separately; and the 1960 scheme of Robin Hill & Fay Bendall; and (c) Evolution of the many versions of the Z-Scheme: Louis Duysens and Jan Amesz's 1961 experiments on oxidation and reduction of cytochrome f by two different wavelengths of light, followed by the work of many others for more than 50 years.

  6. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  7. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    Science.gov (United States)

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Auxin transport in leafy pea stem cuttings is partially driven by photosynthesis

    International Nuclear Information System (INIS)

    Kumpula, C.L.; Potter, J.R.

    1987-01-01

    When 14 C-IAA was applied to the apex of disbudded leafy pea stem cuttings (15 cm long), the movement of 14 C-IAA to the base of the cuttings after 24 h was influenced by the photosynthetic rate. In the absence of photosynthesis, light did not influence 14 C-IAA movement. Photosynthesis was altered by varying light, CO 2 concentration, or stomatal aperature (blocked with an antitranspirant). Radioactivity (identified by co-chromatography) was 25, 60, and 5% IAA, IAA-aspartate, and indolealdehyde respectively regardless of treatment. Adventitious root formation was reduced 50 to 95% and movement of IAA was inhibited 50 to 70% by decreasing gross photosynthesis 90 to 100%. Apparently, photosynthesis partially drives the movement of IAA from the apex to the base where roots arise. This gives a probably role of photosynthesis in rooting, because in this system virtually no rooting will take place without exogenous auxin and at least a low level of gross photosynthesis

  9. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    Science.gov (United States)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  10. The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary

    Science.gov (United States)

    Lawrie, Robynne A.; Stretch, Derek D.; Perissinotto, Renzo

    2010-04-01

    Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (≳50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m -3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.

  11. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  12. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  13. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  14. Continuing or Temporarily Stopping Prestroke Antihypertensive Medication in Acute Stroke:An Individual Patient Data Meta-Analysis

    OpenAIRE

    Woodhouse, Lisa J.; Manning, Lisa; Potter, John F.; Berge, Eivind; Sprigg, Nikola; Wardlaw, Joanna; Lees, Kennedy R.; Bath, Philip M.; Robinson, Thompson G.; , Blood Pressure in Acute Stroke Collaboration (BASC)

    2017-01-01

    Over 50% of patients are already taking blood pressure-lowering therapy on hospital admission for acute stroke. An individual patient data meta-analysis from randomized controlled trials was undertaken to determine the effect of continuation versus temporarily stopping pre-existing antihypertensive medication in acute stroke. Key databases were searched for trials against the following inclusion criteria: randomized design; stroke onset ≤48 hours; investigating the effect of continuation vers...

  15. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    ). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...... on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B....

  16. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  17. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  18. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  19. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  1. Path of Carbon in Photosynthesis III.

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  2. Inhibition of apparent photosynthesis by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A C; Bennett, J H

    1970-01-01

    The nitrogen oxides (NO/sub 2/ and NO) inhibited apparent photosynthesis of oats and alfalfa at concentrations below those required to cause visible injury. There appeared to be a threshold concentration of about 0.6 ppm for each pollutant. An additive effect in depressing apparent photosynthesis occurred when the plants were exposed to a mixture of NO and NO/sub 2/. Although NO produced a more rapid effect on the plants, lower concentrations of NO/sub 2/ were required to cause a given inhibition after 2 hour of exposure. Inhibition by nitric oxide was more closely related to its partial pressure than was inhibition by NO/sub 2/.

  3. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  4. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  5. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...... at each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  6. Applying photosynthesis research to increase crop yields

    Science.gov (United States)

    Clayton C. Black; Shi-Jean S. Sung; Kristina Toderich; Pavel Yu Voronin

    2010-01-01

    This account is dedicated to Dr. Guivi Sanadze for his career long devotion to science and in recognition of his discovery of isoprene emission by trees during photosynthesis. Investigations on the emission of isoprene and other monoterpenes now have been extended globally to encompass other terrestrial vegetation, algae, waters, and marine life in the world's...

  7. Ecological Understanding 1: Ways of Experiencing Photosynthesis.

    Science.gov (United States)

    Carlsson, Britta

    2002-01-01

    Investigates 10 student teachers' understanding of the different ways in which the function of the ecosystem could be experienced. Explores the functional aspects of the ecosystem using a system approach. Concludes that the idea of transformation is crucial to more complex ways of understanding photosynthesis. (Contains 62 references.) (Author/YDS)

  8. Canopy Photosynthesis: From Basics to Applications

    NARCIS (Netherlands)

    Hikosaka, Kouki; Niinemets, Ülo; Anten, N.P.R.

    2016-01-01

    A plant canopy, a collection of leaves, is an ecosystem-level unit of photosynthesis that assimilates carbon dioxide and exchanges other gases and energy with the atmosphere in a manner highly sensitive to ambient conditions including atmospheric carbon dioxide and water vapor concentrations, light

  9. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  10. Recruitment of pre-existing networks during the evolution of C4 photosynthesis.

    Science.gov (United States)

    Reyna-Llorens, Ivan; Hibberd, Julian M

    2017-09-26

    During C 4 photosynthesis, CO 2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C 4 photosynthesis have evolved independently from their C 3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C 4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C 4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C 3 species show similarities to those of the C 4 bundle sheath in terms of C 4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C 4 photosynthesis function together in gluconeogenesis during early seedling growth of C 3 Arabidopsis thaliana Furthermore, multiple C 4 genes appear to be under control of both light and chloroplast signals in the ancestral C 3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C 4 traits into C 3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  11. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2002-01-01

    concentration. The experiment was conducted during 70 days during the autumn. Our system could not detect any ozone effects on dark respiration, but eventually effects on dark respiration could be masked in signal noise. An inhibition of daily net photosynthesis in ozone treated shoots was apparent......, and it is was found that a mean increase in ozone concentration of 10 nl l(-1) reduced net photosynthesis with 7.4 %. This effect should be related to a pre-exposure during the season of AOT40 12.5 mul l(-1) h....

  12. An Experimental Comparison of Two Methods on Photosynthesis Driving Soil Respiration: Girdling and Defoliation.

    Science.gov (United States)

    Jing, Yanli; Guan, Dexin; Wu, Jiabing; Wang, Anzhi; Jin, Changjie; Yuan, Fenghui

    2015-01-01

    Previous studies with different experimental methods have demonstrated that photosynthesis significantly influences soil respiration (RS). To compare the experimental results of different methods, RS after girdling and defoliation was measured in five-year-old seedlings of Fraxinus mandshurica from June to September. Girdling and defoliation significantly reduced RS by 33% and 25% within 4 days, and 40% and 32% within the entire treatment period, respectively. The differential response of RS to girdling and defoliation was a result of the over-compensation for RS after girdling and redistribution of stored carbon after defoliation. No significant effect on RS was observed between girdling and defoliation treatment, while the soluble sugar content in fine roots was higher in defoliation than in girdling treatment, indicating that defoliation had less compensation effect for RS after interrupting photosynthates supply. We confirm the close coupling of RS with photosynthesis and recommend defoliation for further studies to estimate the effect of photosynthesis on RS.

  13. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-09-01

    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  14. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  15. Incorporation of leaf nitrogen observations for biochemical and environmental modeling of photosynthesis and evapotranspiration

    DEFF Research Database (Denmark)

    Bøgh, E.; Gjettermann, Birgitte; Abrahamsen, Per

    2007-01-01

    . While most canopy photosynthesis models assume an exponential vertical profile of leaf N contents in the canopy, the field measurements showed that well-fertilized fields may have a uniform or exponential profile, and senescent canopies have reduced levels of N contents in upper leaves. The sensitivity...

  16. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light.

    Science.gov (United States)

    Armbruster, Ute; Correa Galvis, Viviana; Kunz, Hans-Henning; Strand, Deserah D

    2017-06-01

    Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Moessbauer spectroscopy in studies of photosynthesis

    International Nuclear Information System (INIS)

    Burda, Kvetoslava

    2008-01-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the 'heart' of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Moessbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  18. Photosynthesis: From De Saussure To Liebig.

    Science.gov (United States)

    Pennazio, Sergio

    2017-01-01

    The dawn of photosynthesis, characterized by the research of Priestley, Ingen- Housz and Senebier, culminated in 1804 with a historical essay of Théodore De Saussure. According to the historians, during the first half of the nineteenth century in which the genesis of the cell theory started off, the research on photosynthesis met a phase of stagnation. Indeed, the literature review of the period does not report particular innovation; however, several scientists (botanists, physiologists, and chemists) supported the thesis of De Saussure with a series of analyses that, in our opinion, deserve to be known. Mirbel, De Candolle, Raspail, Berzelius, Payen, Dutrochet, von Mohl, and other scholars attempted to expand knowledge on photosynthesis but were not able to arrive at a theory that was consistent with a functional mechanism, nor with a suitable chemical model to explain the transformation of the water and carbon dioxide into sugars. A classic case of such inadequacy concerns the discovery of chlorophyll. This compound, isolated in 1818 by Pelletier and Caventou, remained an enigma for many years and was never put in relation with the synthesis of starch. The accurate research of von Mohl led this scientist to believe that the granules of chlorophyll were entirely independent of starch granules, although in many cases these latter were observable inside the granules of chlorophyll. Only in the early forties, Justus von Liebig realized that the assimilation of carbon and hydrogen required a series of chemical reactions that, starting from some organic acids, ended in the formation of sugar. In conclusion, our analysis does not lead to define this period as stagnation but rather as transition, in which the concept of photosynthesis was clear, even though difficult to treat under physiological and chemical views. From the sixties, the researches of Julius von Sachs will open a new road, thanks also to the research carried out in the transition period. Copyright:

  19. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  20. Crown structure, radiation absorption, photosynthesis and transpiration

    OpenAIRE

    Wang, Yingping

    1988-01-01

    A complex simulation model, MAESTRO, has been developed and validated against field measurements in plantation in both Scotland and Australia. It has been shown that MAESTRO can reasonably predict the daily course of PAR (photosynetically active radiation) transmittance at points below the canopies of radiata pine and Sitka spruce plantations. 1. Four structural properties of the Sitka spruce tree crown have been identified and evaluation in relation to PAR absorption, photosynthesis and ...

  1. Automated photosynthesis of 11C-glucose

    International Nuclear Information System (INIS)

    Ishiwata, K.; Monma, M.; Iwata, R.; Ido, T.

    1982-01-01

    Glucose and fructose, labelled with 11 C, were produced by passing 11 CO 2 into an evacuated chamber containing spinach leaves. Photosynthesis was carried out by day light lamp illumination. 75-95% of the 11 CO 2 was absorbed by the leaves and the radioactivity in the leaves was extracted in ethanol as sugars. Radiochemical purity was determined by HPLC. The automated system was controlled by timers. (U.K.)

  2. Effects of high temperature on photosynthesis and related gene expression in poplar

    Science.gov (United States)

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  3. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  4. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    International Nuclear Information System (INIS)

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-01-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni 30 and Ni 200 ). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO 2 ] than in control leaves. However chloroplastic [CO 2 ] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni 0 (control plants); 2 - Ni 200 ; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: → We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. → Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. → Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  5. Photosynthate supply and utilization in alfalfa: a developmental shift from a source to a sink limitation of photosynthesis

    International Nuclear Information System (INIS)

    Baysdorfer, C.; Bassham, J.A.

    1985-01-01

    Long-term carbon dioxide enrichment, 14 CO 2 feeding, and partial defoliation were employed as probes to investigate source/sink limitations of photosynthesis during the development of symbiotically grown alfalfa. In the mature crop, long-term CO 2 enrichment does not affect the rates of net photosynthesis, relative growth, 14 C export to nonphotosynthetic organs, or the rates of 14 C label incorporation into leaf sucrose, starch, or malate. The rate of glycolate labeling is, however, substantially reduced under these conditions. When the mature crop was partially defoliated, a considerable increase in net photosynthesis occurred in the remaining leaves. In the seedling crop, long-term CO 2 enrichment increased dry matter accumulation, primarily as a result of increases in leaf starch content. Although the higher rates of starch synthesis are not maintained, the growth enhancement of the enriched plants persisted throughout the experimental period. These results imply a source limitation of seedling photosynthesis and a sink limitation of photosynthesis in more mature plants. Consequently, both the supply and the utilization of photosynthate may limit seasonal photosynthesis in alfalfa

  6. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  7. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L.

    Science.gov (United States)

    Mott, K A; Jensen, R G; O'leary, J W; Berry, J A

    1984-12-01

    The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity.

  8. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L. 1

    Science.gov (United States)

    Mott, Keith A.; Jensen, Richard G.; O'Leary, James W.; Berry, Joseph A.

    1984-01-01

    The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity. PMID:16663982

  9. Using the solar energy by technical photosynthesis

    International Nuclear Information System (INIS)

    Radebold, R.

    1975-01-01

    A system is decribed which makes it possible to copy some of the basic features of photosynthesis with technical means which are available to-day. Hydrazine and hydrogen peroxide are used as energy carrier, whereby hydrazine acts a propellant and hydrogen peroxide as oxidator. The synthesis of the two media is based on nitrogen and water which can, in principle, be taken from the air; nitrogen and water are also the products of the reactions. Liquid alcali metals are the donators of electrons for the synthesis which occurs, as in nature, by the intermediate action of electric energy. (orig.) [de

  10. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  11. Comparative sensitivity of photosynthesis and translocation to sulfur dioxide damage in Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Noyes, R.D.

    1978-01-01

    The inhibiting effect of sulfur dioxide on photosynthesis in a mature bean leaf and, simultaneously, on the rate of carbohydrate translocation from this same leaf has been examined. The results show a reduction of 0, 13, and 73% in net photosynthesis and 39, 44, and 69% in translocation, at concentrations of 0.1, 1, and 3 ppm sulfur dioxide, respectively. The inhibition of translocation at 0.1 ppm sulfur dioxide without any accompanying inhibition of net photosynthesis indicates that translocation is considerably more sensitive to sulfur dioxide damage. The mechanism of translocation inhibition at 1 ppm sulfur dioxide or less is shown to be independent of photosynthetic inhibition. Whereas, it is suggested that at higher concentrations significant inhibition of photosynthesis causes an additive reduction of translocation due to reduced levels of transport sugars. Autoradiograms of 14 C-labeled source leaves indicate that one possible mechanism of sulfur dioxide damage to translocation is the inhibition of sieve-tube loading. Inhibition of phloem translocation at common ambient levels (0.1 ppm) of sulfur dioxide is important to the overall growth and yield of major agricultural crops sensitive to sulfur dioxide

  12. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  13. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  14. Experimental study on tunnel lining joints temporarily strengthened by SMA bolts

    International Nuclear Information System (INIS)

    Wu, Bo; Ou, Yunlong

    2014-01-01

    Shield tunnels have been widely used in city metros all over the world. During the long-term period of the metro operation, the joints of shield tunnel’s neighboring segments may degrade due to some environmental factors, leading to the increasing of the joint opening and some resulting adverse consequences. In this paper, a temporary strengthening method by using shape memory alloy (SMA) bolts is proposed and experimentally studied for the joints of neighboring segments, and a revised electric heating method which suits with the strengthening method is presented and experimentally validated for the SMA bolts. The purpose of the proposed temporary strengthening method is to create favorable conditions for the following permanent strengthening. Test results show that: (a) for the joints of shield tunnel’s neighboring segments, the strengthening method can effectively reduce the joint opening, joint deflection, concrete strain in joint’s compression zone, and strain of joint’s steel bolts; (b) the revised electric heating method can be used to heat the SMA rod to a temperature higher than the SMA’s austenite finish temperature quickly, and the average heating rate related to Type 2 inner resistance element is larger than that related to Type 1 inner resistance element; and (c) the reduction percentages of the joint opening increment, joint deflection, concrete strain in joint’s compression zone, and strain of joint’s steel bolts for Specimen I are all larger than those for Specimen II, implying that the less the joint opening is, the more significant the strengthening effect is. (paper)

  15. ;Evolution of Photosynthesis' (1970), re-examined thirty years later.

    Science.gov (United States)

    Olson, J M

    2001-01-01

    I have re-examined my 1970 article 'Evolution of Photosynthesis' (Olson JM, Science 168: 438-446) to see whether any of my original proposals still survive. My original conviction that the evolution of photosynthesis was intimately connected with the origin of life has been replaced with the realization that photosynthesis may have been invented by the Bacteria after their divergence from the Archea. The common ancestor of all extant photosynthetic bacteria and cyanobacteria probably contained bacteriochlorophyll a, rather than chlorophyll a as originally proposed, and may have carried out CO(2) fixation instead of photoassimilation. The first electron donors were probably reduced sulfur compounds and later ferrous iron. The common ancestor of all extant reaction centers was probably similar to the homodimeric RC1 of present-day green sulfur bacteria (Chlorobiaceae) and heliobacteria. In the common ancestor of proteobacteria and cyanobacteria, the gene for the primordial RC1 was apparently duplicated and one copy split into two genes, one for RC2 and the other for a chlorophyll protein similar to CP43 and CP47 in extant cyanobacteria and chloroplasts. Homodimeric RC1 and homodimeric RC2 functioned in series as in the Z-scheme to deliver electrons from Fe(OH)(+) to NADP(+), while RC1 and/or RC2 separately drove cyclic electron flow for the production of ATP. In the line of evolution leading to proteobacteria, RC1 and the chlorophyll protein were lost, but RC2 was retained and became heterodimeric. In the line leading to cyanobacteria, both RC1 and RC2 replaced bacteriochlorophyll a with chlorophyll a and became heterodimeric. Heterodimeric RC2 further coevolved with a Mn-containing complex to utilize water as the electron donor for CO(2) fixation. The chlorophyll-protein was also retained and evolved into CP43 and CP47. Heliobacteria are the nearest photosynthetic relatives of cyanobacteria. The branching order of photosynthetic genes appears to be (1

  16. The Path of Carbon in Photosynthesis

    Science.gov (United States)

    Bassham, J. A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  17. THE PATH OF CARBON IN PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J.A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  18. Physical stage of photosynthesis charge separation

    Science.gov (United States)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  19. Carbon dioxide fixation by artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, Takashi; Koike, Kazuhide; Ishitani, Osamu [National Inst. for Resources and Environment, AIST, MITI, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Green plants can absorb atmospheric CO{sub 2} and transform it to sugars, carbohydrates through their photosynthetic systems, but they become the source of CO{sub 2} when they are dead. This is the reason why artificial leaves which can be alive forever should be developed to meet with global warming due to the increase of CO{sub 2} concentration. The goal of artificial photosynthesis is not to construct the same system as the photosynthetic one, but to mimic the ability of green plants to utilize solar energy to make high energy chemicals. Needless to say, the artificial photosynthetic system is desired to be as simple as possible and to be as efficient as possible. From the knowledge on photosynthesis and the results of previous investigations, the critical components of artificial photosynthetic system are understood as follows: (1) light harvesting chromophore, (2) a center for electron transfer and charge separation, (3) catalytic sites for converting small molecules like water and CO{sub 2} (mutilelectron reactions) which are schematically described.

  20. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

    International Nuclear Information System (INIS)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V.; Grace, John

    2014-01-01

    It has been suggested that atmospheric CO 2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO 2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO 2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO 2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO 2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. -- Highlights: • Sky conditions affect the relative impact of elevated CO 2 on photosynthesis. • Cloudy skies reduce light use efficiency and carbon gain when CO 2 is elevated. • Stimulation of photosynthesis by high CO 2 may decline with increasing cloud cover. • High CO 2 leads to marked afternoon photosynthesis depression in sun-adapted leaves. -- The stimulatory effect of elevated CO 2 concentration on photosynthetic carbon assimilation can be expected to diminish as cloud cover increases

  1. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    Science.gov (United States)

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on

  2. On the relation between phototaxis and photosynthesis in Rhodospirillum Rubrum

    NARCIS (Netherlands)

    Thomas, J.B.; Nijenhuis, L.E.

    1950-01-01

    The relation between phototaxis and photosynthesis in Rhodospirillum rubrum has been studied. The light intensity at which saturation is reached in photosynthesis proved to coincide with that at which the contrast sensitivity starts to decrease. Potassium cyanide, which preferably inhibits the

  3. Secondary Students' Interpretations of Photosynthesis and Plant Nutrition.

    Science.gov (United States)

    Ozay, Esra; Oztas, Haydar

    2003-01-01

    Studies misconceptions held by grade 9 students (14-15-years old) in Turkey about photosynthesis and plant nutrition. Uses a questionnaire to test students' conceptions and reports conflicting and often incorrect ideas about photosynthesis, respiration, and energy flow in plants. Suggests that there are difficulties in changing students' prior…

  4. Modelling C₃ photosynthesis from the chloroplast to the ecosystem.

    Science.gov (United States)

    Bernacchi, Carl J; Bagley, Justin E; Serbin, Shawn P; Ruiz-Vera, Ursula M; Rosenthal, David M; Vanloocke, Andy

    2013-09-01

    Globally, photosynthesis accounts for the largest flux of CO₂ from the atmosphere into ecosystems and is the driving process for terrestrial ecosystem function. The importance of accurate predictions of photosynthesis over a range of plant growth conditions led to the development of a C₃ photosynthesis model by Farquhar, von Caemmerer & Berry that has become increasingly important as society places greater pressures on vegetation. The photosynthesis model has played a major role in defining the path towards scientific understanding of photosynthetic carbon uptake and the role of photosynthesis on regulating the earth's climate and biogeochemical systems. In this review, we summarize the photosynthesis model, including its continued development and applications. We also review the implications these developments have on quantifying photosynthesis at a wide range of spatial and temporal scales, and discuss the model's role in determining photosynthetic responses to changes in environmental conditions. Finally, the review includes a discussion of the larger-scale modelling and remote-sensing applications that rely on the leaf photosynthesis model and are likely to open new scientific avenues to address the increasing challenges to plant productivity over the next century. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    Science.gov (United States)

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  6. The influence of temperature on photosynthesis of different tomato genotypes

    NARCIS (Netherlands)

    Gosiewski, W.; Nilwik, H.J.M.; Bierhuizen, J.F.

    1982-01-01

    Net photosynthesis and dark respiration from whole plants of various tomato genotypes were measured in a closed system. At low irradiance (27 W m−2) and low external CO2 concentration (550 mg m−3), net photosynthesis of 10 genotypes was found to vary between 0.122 and 0.209 mg CO2 m−2 s−1.

  7. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    Science.gov (United States)

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  8. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  9. Daily xanthophyll cycle photoprotection in developing leaves prior to photosynthesis

    Science.gov (United States)

    M.N. Angelov; Shi-Jean S. Sung; C.C. Black

    1995-01-01

    There is widespread agreement that the xanthophyll cycle provides a major photoprotection system for photosynthesis in green leaves.Indeed this type of photoprotection seem to be ubiquitous for photosynthetic organisms. Photoprotection is provided via a rapid, near 10-13 sec, ability of zeaxanthin (Z) to dissipate excess light energy from photosynthesis because the...

  10. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    Science.gov (United States)

    Yue, Xu; Keenan, Trevor F; Munger, William; Unger, Nadine

    2016-11-01

    Ozone (O 3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O 3 concentrations ([O 3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O 3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O 3 ] as a predictor was slight, and independent of O 3 concentrations, which suggests limited high-frequency O 3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O 3 inhibition of 10.4% for 1992-2011. A decline of [O 3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m -2  s -1  yr -1 , which is negligible relative to the total observed GPP trend of 0.41 μmol C m -2  s -1  yr -1 . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O 3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O 3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O 3 ], thus helping to buffer the changes of total photosynthesis due to varied [O 3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems. © 2016 John Wiley & Sons Ltd.

  11. Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses. III. Canopy photosynthesis, individual leaf photosynthesis and the distribution of current assimilate

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, J E

    1977-01-01

    The rates of canopy and individual leaf photosynthesis and /sup 14/C distribution for three temperate forage grasses Lolium perenne cv. S24, L. perenne cv. Reveille and Festuca arundinacea cv. S170 were determined in the field during a summer growth period. Canopy photosynthesis declined as the growth period progressed, reflecting a decline in the photosynthetic capacity of successive youngest fully expanded leaves. The decline in the maximum photosynthetic capacity of the canopies was correlated with a decline in their quantum efficiencies at low irradiance. Changes in canopy structure resulted in changes in canopy net photosynthesis and dark respiration. No clear relationships between changes in the environment and changes in canopy net photosynthesis and dark respiration were established. The relative distributions of /sup 14/C in the shoots of the varieties gave a good indication of the amount of dry matter per ground area in the varieties. 21 references, 4 figures, 1 table.

  12. A model for the origin of photosynthesis

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Raudino, A.; Mauzerall, D.C.

    1985-01-01

    The photochemical ramifications of the high ultraviolet flux on the primordial earth prior to the formation of the ozone layer have been considered in a study of the ultraviolet photochemistry of uroporphyrinogen (urohexahydroporphyrin), a colorless compound which absorbs strongly at wavelengths less than 220 nm. Urohexahydroporphyrin was investigated since it is the first macrocycle formed on the biosynthetic pathway of chlorophyll and can be used to test the hypothesis that the biosynthetic pathway to chlorophyll recapitulates the evolutionary history of photosynthesis. When urohexahydroporphyrin is illuminated in aqueous anaerobic solution, hydrogen gas is produced. More hydrogen gas is produced in the presence of a colloidal platinum catalyst. The products of the photooxidation of urohexahydroporphyrin are urotetrahydroporphyrin (uroporphomethene) and uroporphyrin. This research shows how the oxidation of uroporphyrinogen to uroporphyrin, the first biogenetic porphyrin, could have occurred anaerobically and abiotically on the primordial earth. (author)

  13. ENERGY RECEPTION AND TRANSFER IN PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1958-09-23

    The basic information about the path of carbon in photosynthesis is reviewed together with the methods that were used to discover it. This has led to the knowledge of what is required of the photochemical reaction in the form of chemical species. Attention is then directed to the structure of the photochemical apparatus itself insofar as it is viewable by electron microscopy, and some principoles of ordered structure are devised for the types of molecules to be found in the chloroplasts. From the combination of these, a structure for the grana lamella is suggested and a mode of function proposed. Experimental test for this mode of function is underway; one method is to examine photoproduced unpaired electrons. This is discussed.

  14. Recruitment of ichthyoplankton and macrozooplankton during overtopping events into a temporarily open/closed southern African estuary

    Science.gov (United States)

    Kemp, J. O. G.; Froneman, P. W.

    2004-11-01

    The composition and short-term temporal variation in the ichthyofauna and macrozooplankton entering the temporarily open/closed (TOC) West Kleinemond estuary (33°33'S, 27°02'E) during 7 overtopping events were investigated in June 2003. A total of 84 fish representing 7 taxa from 6 families and 456 macrozooplankton representing at least 16 species was collected from water overtopping the sandbar using a custom-built funnel trap (150 μm mesh). Larvae of estuarine dependant marine species, especially the sparid, Rhabdosargus holubi, which contributed 54% to the total fish catch, dominated the ichthyofauna. Also well represented among the ichthyofauna were Monodactylus falciformis and Mugilidae spp., which together accounted for a further 40% of the total fish catch. Among the macrozooplankton, larvae of Palaemon peringueyi and the mysid Mesopodopsis wooldridgei dominated numerically and by biomass. Numerical analyses using multidimensional scaling (MDS) revealed variability in the overtopping community on a diel scale. It is suggested that recruitment through overtopping is essentially a passive process governed by the physical environment with the composition of the recruiting community being a function of the patchy dynamics of surf zone plankton. Preliminary estimates indicate that an hour-long period of overtopping over spring high tide is capable of introducing between 8000 and 33 500 individuals of R. holubi into the TOC West Kleinemond estuary. The advantages and disadvantages of recruitment using overtopping events as well as impacts on the estuarine foodweb are discussed.

  15. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of shading on photosynthesis, plant organic nitrogen uptake and root fungal colonization in a subarctic mire ecosystem

    DEFF Research Database (Denmark)

    Olsrud, Hanna Maria Kerstin; Michelsen, Anders

    2009-01-01

    Arctic dwarf shrub ecosystems are predicted to be exposed to lower light intensity in a changing climate where mountain birch forests are expanding. We investigated how shading at 0%, 65%, and 97% affects photosynthesis, organic N uptake, C and N allocation patterns in plants, and root fungal...... ecosystems are capable of taking up organic N as intact glycine both under high irradiance levels and under shaded conditions when photosynthesis is strongly reduced. The allocation of 15N to green leaves of Rubus chamaemorus L. increased with shading, whereas the allocation of 13C to leaves of both...

  17. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  18. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  19. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  20. Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, S.K.; Waaland, J.R.

    1988-01-01

    Gametophytes of two species of Porphyra collected around San Juan Island, Washington in 1986 and acclimated to low light conditions in culture showed different resistances to photoinhibition of photosynthesis. The intertidal species P. perforata J. Agardh exhibited photoinhibition at onethird the rate exhibited by the subtidal species P. nereocystis Anderson following treatments at 2000 ..mu..mol photons m/sup -2/ s/sup -1/ under conditions of full hydration and optimal temperature. The greater resistance of P. perforata to photoinhibition could not be attributed to reduced photosynthetic pigment concentration, higher photosynthetic capacity, avoidance of light by chloroplast movement or to enhanced rates of photorespiration. Total carotenoid concentrations were similar in the two species. It is probable that the mechanisms of this resistance are operating at the level of the thylakoid membranes. Resistance to photoinhibition represents an adaption of photosynthesis in P. perforata which may contribute to its persistance in the extreme environment of its intertidal habitat.

  1. Photosynthesis and chloroplast genes are involved in water-use efficiency in common bean.

    Science.gov (United States)

    Ruiz-Nieto, Jorge E; Aguirre-Mancilla, César L; Acosta-Gallegos, Jorge A; Raya-Pérez, Juan C; Piedra-Ibarra, Elías; Vázquez-Medrano, Josefina; Montero-Tavera, Victor

    2015-01-01

    A recent proposal to mitigate the effects of climatic change and reduce water consumption in agriculture is to develop cultivars with high water-use efficiency. The aims of this study were to characterize this trait as a differential response mechanism to water-limitation in two bean cultivars contrasting in their water stress tolerance, to isolate and identify gene fragments related to this response in a model cultivar, as well as to evaluate transcription levels of genes previously identified. Keeping CO2 assimilation through a high photosynthesis rate under limited conditions was the physiological response which allowed the cultivar model to maintain its growth and seed production with less water. Chloroplast genes stood out among identified genetic elements, which confirmed the importance of photosynthesis in such response. ndhK, rpoC2, rps19, rrn16, ycf1 and ycf2 genes were expressed only in response to limited water availability. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    Energy Technology Data Exchange (ETDEWEB)

    Albert, K.R.; Ro-Poulsen, H. (Univ. of Copenhagen, Dept. of Terrestrial Ecology, Copenhagen (DK)); Mikkelsen, T.N. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Biosystems Dept., Roskilde (DK))

    2008-06-15

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B. (au)

  3. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.

    Science.gov (United States)

    Albert, Kristian R; Mikkelsen, Teis N; Ro-Poulsen, Helge

    2008-06-01

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B.

  4. The Effect of Novel Research Activities on Long-term Survival of Temporarily Captive Steller Sea Lions (Eumetopias jubatus.

    Directory of Open Access Journals (Sweden)

    Courtney Shuert

    Full Text Available Two novel research approaches were developed to facilitate controlled access to, and long-term monitoring of, juvenile Steller sea lions for periods longer than typically afforded by traditional fieldwork. The Transient Juvenile Steller sea lion Project at the Alaska SeaLife Center facilitated nutritional, physiological, and behavioral studies on the platform of temporary captivity. Temporarily captive sea lions (TJs, n = 35 were studied, and were intraperitoneally implanted with Life History Transmitters (LHX tags to determine causes of mortality post-release. Our goal was to evaluate the potential for long-term impacts of temporary captivity and telemetry implants on the survival of study individuals. A simple open-population Cormack-Jolly-Seber mark-recapture model was built in program MARK, incorporating resightings of uniquely branded study individuals gathered by several contributing institutions. A priori models were developed to weigh the evidence of effects of experimental treatment on survival with covariates of sex, age, capture age, cohort, and age class. We compared survival of experimental treatment to a control group of n = 27 free-ranging animals (FRs that were sampled during capture events and immediately released. Sex has previously been show to differentially affect juvenile survival in Steller sea lions. Therefore, sex was included in all models to account for unbalanced sex ratios within the experimental group. Considerable support was identified for the effects of sex, accounting for over 71% of total weight for all a priori models with delta AICc <5, and over 91% of model weight after removal of pretending variables. Overall, most support was found for the most parsimonious model based on sex and excluding experimental treatment. Models including experimental treatment were not supported after post-hoc considerations of model selection criteria. However, given the limited sample size, alternate models including effects of

  5. Oxygenic photosynthesis: translation to solar fuel technologies

    Directory of Open Access Journals (Sweden)

    Julian David Janna Olmos

    2014-12-01

    Full Text Available Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar

  6. Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state

    NARCIS (Netherlands)

    Kaiser, Elias; Zhou, Dianfan; Heuvelink, Ep; Harbinson, Jeremy; Morales Sierra, A.; Marcelis, Leo F.M.

    2017-01-01

    Leaves are often exposed to fluctuating irradiance, which limits assimilation. Elevated CO2 enhances dynamic photosynthesis (i.e. photosynthesis in fluctuating irradiance) beyond its effects on steady-state photosynthesis rates. Studying the role of CO2 in dynamic photosynthesis is important for

  7. significance of rice sheath photosynthesis: yield determination by c ...

    African Journals Online (AJOL)

    ACSS

    1State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China. 2School of ... for contribution rates of sheath photosynthesis to economical yield. ..... related processes during ripening in rice plants.

  8. Plants growth, water relations and photosynthesis of two bean ...

    African Journals Online (AJOL)

    ... almost all physiological activities were suppressed. The superiority of the genotype Tema against Djadida genotype was attributed to quantitative rather than qualitative physiological response differences. Keywords: Salinity, fluridone, bean, growth, photosynthesis, stomatal conductance. African Journal of Biotechnology ...

  9. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  10. Box photosynthesis modeling results for WRF/CMAQ LSM

    Data.gov (United States)

    U.S. Environmental Protection Agency — Box Photosynthesis model simulations for latent heat and ozone at 6 different FLUXNET sites. This dataset is associated with the following publication: Ran, L., J....

  11. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  12. From molecules to materials pathways to artificial photosynthesis

    CERN Document Server

    Rozhkova, Elena A

    2015-01-01

    This interdisciplinary book focuses on the various aspects transformation of the energy from sunlight into the chemical bonds of a fuel, known as the artificial photosynthesis, and addresses the emergent challenges connected with growing societal demands for clean and sustainable energy technologies. The editors assemble the research of world-recognized experts in the field of both molecular and materials artificial systems for energy production. Contributors cover the full scope of research on photosynthesis and related energy processes.

  13. Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva

    OpenAIRE

    Giraud, Eric; Hannibal, Laure; Fardoux, Joël; Verméglio, A.; Dreyfus, Bernard

    2000-01-01

    Some leguminous species of the genus #Aeschynomene$ are specifically stem-nodulated by photosynthetic bradyrhizobia. To study the effect of bacterial photosynthesis during symbiosis, we generated a photosynthesis-negative mutant of the #Bradyrhizobium$ sp. strain ORS278 symbiont of #Aeschynomene sensitiva$. The presence of a functional photosynthetic unit in bacterioids and the high expression of the photosynthetic genes observed in stem nodules demonstrate that the bacteria are photosyntheti...

  14. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.

    Science.gov (United States)

    Wilde, Annegret; Hihara, Yukako

    2016-03-01

    Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Manganese and the II system in photosynthesis

    International Nuclear Information System (INIS)

    Joyard, Jacques

    1971-01-01

    The evolution during greening of some components of system II of photosynthesis has been followed in plastids extracted from Zea mays grown in the dark. Manganese studies were done by means of neutron activation, electron spin resonance (ESR) was also used in some experiments. Oxygen evolution of isolated plastids was followed by polarography (with a membrane electrode). The evolution of manganese/carotenoids ratio can be divided in three parts. During the first hour of greening, the increase shows an input of Mn in the plastids; then, whereas carotenoids content of those plastids presents no changes, Mn is released in the medium; at last, carotenoids synthesis is parallel to Mn fixation in the plastids, the ratio being constant after 24 hours of greening. From various measurements on chloroplastic manganese, it is shown that the development of system II can be divided in two main phases: during the first one (that is during the first day of light) the components are not yet bound together but the relations become more and more strong. Then, during the last period of the development, the organisation of system II is complete and the transformations of the plastids are parallel to the raise of their activity. (author) [fr

  16. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda

    2017-09-01

    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  17. Adsorption of Nanoplastics on Algal Photosynthesis

    Science.gov (United States)

    Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun

    2010-03-01

    The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.

  18. Interactions of photosynthesis with genome size and function

    Science.gov (United States)

    Raven, John A.; Beardall, John; Larkum, Anthony W. D.; Sánchez-Baracaldo, Patricia

    2013-01-01

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements PMID:23754816

  19. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; hide

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  20. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  1. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  2. Effects of ultraviolet light on photosynthesis and pigments of Antarctic marine phytoplankton

    International Nuclear Information System (INIS)

    Stephens, F.C.

    1989-01-01

    This field study was conducted at Palmer Station, Anvers Island, Antarctica, during November-December, 1987. The main objectives were to quantify the effects on photosynthetic rates and pigmentation of short-term and long-term exposures of Antarctic phytoplankton to different levels of UV radiation. Phytoplankton and ice algae were exposed to four levels of UV radiation in outdoor incubation chambers: near ambient UV; UV enhanced by approximately 5% over ambient levels; reduced UV-B; and essentially no UV. Results of 4-hour studies showed that rates of phytoplankton photosynthesis were generally inversely related to UV exposure. Higher photosynthetic rates were maintained over a greater range of irradiance levels when UV was removed in photosynthesis-irradiance studies. Photosynthetic pigments did not change with variations in either visible or UV light. After adaptation for 24 hours, photosynthetic rate measured under conditions of essentially no UV was approximately twice that measured under near ambient UV conditions. Results of photosynthesis-irradiance experiments indicate that photosynthetic efficiencies (α), maximum photosynthetic rates (P max ) and the index of inhibition (I b ) were inversely related to UV levels, probably due at least in part to the loss of chlorophyll a

  3. Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G.; Kontoyannis, Christos G.; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I.; Karabourniotis, George

    2016-01-01

    ABSTRACT Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path “alarm photosynthesis.” The so-far “enigmatic,” but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants. PMID:27471886

  4. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN

    Science.gov (United States)

    Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica

    2016-01-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  5. Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought

    Science.gov (United States)

    Li, Xing; Xiao, Jingfeng; He, Binbin

    2018-04-01

    Amazon forests play an important role in the global carbon cycle and Earth’s climate. The vulnerability of Amazon forests to drought remains highly controversial. Here we examine the impacts of the 2015 drought on the photosynthesis of Amazon forests to understand how solar radiation and precipitation jointly control forest photosynthesis during the severe drought. We use a variety of gridded vegetation and climate datasets, including solar-induced chlorophyll fluorescence (SIF), photosynthetic active radiation (PAR), the fraction of absorbed PAR (APAR), leaf area index (LAI), precipitation, soil moisture, cloud cover, and vapor pressure deficit (VPD) in our analysis. Satellite-derived SIF observations provide a direct diagnosis of plant photosynthesis from space. The decomposition of SIF to SIF yield (SIFyield) and APAR (the product of PAR and fPAR) reveals the relative effects of precipitation and solar radiation on photosynthesis. We found that the drought significantly reduced SIFyield, the emitted SIF per photon absorbed. The higher APAR resulting from lower cloud cover and higher LAI partly offset the negative effects of water stress on the photosynthesis of Amazon forests, leading to a smaller reduction in SIF than in SIFyield and precipitation. We further found that SIFyield anomalies were more sensitive to precipitation and VPD anomalies in the southern regions of the Amazon than in the central and northern regions. Our findings shed light on the relative and combined effects of precipitation and solar radiation on photosynthesis, and can improve our understanding of the responses of Amazon forests to drought.

  6. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  7. Photosynthesis energy factory: analysis, synthesis, and demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This quantitative assessment of the potential of a combined dry-land Energy Plantation, wood-fired power plant, and algae wastewater treatment system demonstrates the cost-effectiveness of recycling certain by-products and effluents from one subsystem to another. Designed to produce algae up to the limit of the amount of carbon in municipal wastewater, the algae pond provides a positive cash credit, resulting mainly from the wastewater treatment credit, which may be used to reduce the cost of the Photosynthesis Energy Factory (PEF)-generated electricity. The algae pond also produces fertilizer, which reduces the cost of the biomass produced on the Energy Plantation, and some gas. The cost of electricity was as low as 35 mills per kilowatt-hour for a typical municipally-owned PEF consisting of a 65-MWe power plant, a 144-acre algae pond, and a 33,000-acre Energy Plantation. Using only conventional or near-term technology, the most cost-effective algae pond for a PEF is the carbon-limited secondary treatment system. This system does not recycle CO/sub 2/ from the flue gas. Analysis of the Energy Plantation subsystem at 15 sites revealed that plantations of 24,000 to 36,000 acres produce biomass at the lowest cost per ton. The following sites are recommended for more detailed evaluation as potential demonstration sites: Pensacola, Florida; Jamestown, New York; Knoxville, Tennessee; Martinsville, Virginia, and Greenwood, South Carolina. A major possible extension of the PEF concept is to include the possibility for irrigation.

  8. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  9. Photosynthesis 2008 Gordon Research Conferences - June 22-27, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Willem Vermaas

    2009-08-28

    Photosynthesis is the most prevalent, natural way to convert solar energy to chemical energy in living systems, and is a major mechanism to ameliorate rising CO2 levels in the atmosphere and to contribute to sustainable biofuels production. Photosynthesis is a particularly interdisciplinary field of research, with contributions from plant and microbial physiology, biochemistry, spectroscopy, etc. The Photosynthesis GRC is a venue by which scientists with expertise in complementary approaches such as solar energy conversion, molecular mechanisms of electron transfer, and 'systems biology' (molecular physiology) of photosynthetic organisms come together to exchange data and ideas and to forge new collaborations. The 2008 Photosynthesis GRC will focus on important new findings related to, for example: (1) function, structure, assembly, degradation, motility and regulation of photosynthetic complexes; (2) energy and electron transfer in photosynthetic systems; regulation and rate limitations; (3) synthesis, degradation and regulation of cofactors (pigments, etc.); (4) functional, structural and regulatory interactions between photosynthesis and the physiology of the organism; (5) organisms with unusual photosynthetic properties, and insights from metagenomics and evolution; and (6) bioenergy strategies involving solar energy conversion, and practical applications for photosynthetic organisms.

  10. Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A.

    Science.gov (United States)

    Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-11-01

    Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (P n ) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the P n by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the P n by promoting stomatal factors while high-dose BPA decreased the P n by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Path of Carbon in Photosynthesis XVI. Kinetic Relationships of the Intermediates in Steady State Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Kawaguchi, S.; Hayes, P.; Calvin, M.

    1952-06-05

    A kinetic study of the accumulation of C{sup 14} in the intermediates of steady state photosynthesis in C{sup 14}O{sub 2} provides information regarding the sequence of reactions involved. The work described applied the radio-chromatographic technique for analysis of the labeled early products. The simultaneous carboxylation reaction resulting in malic acid as well as phosphoglycerate is demonstrated in experiments at high light intensity. A comparison of radioactivities in a number of phosphorylated sugars as a function of time reveals concurrent synthesis of fructose and sedoheptulose phosphates followed by that of ribulose phosphates and later by that of glucose phosphates. The possibility that the cleavage of C{sub 4} compounds to C{sub 2} carbon dioxide acceptors may involve C{sub 7} and C{sub 5} sugars and evidence for this mechanism is presented.

  12. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    Science.gov (United States)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible

  13. Observed and predicted measurements of photosynthesis in a phytoplankton culture exposed to natural irradiance

    International Nuclear Information System (INIS)

    Marra, J.; Heinemann, K.; Landriau, G. Jr.

    1985-01-01

    Photosynthesis-irradiance (P-I) curves were produced (using artificial illumination) from samples taken at one or more times per day from a continuous culture illuminated with sunlight. The continuous culture housed an oxygen electrode used to measure photosynthesis semi-continuously. Rates of photosynthesis predicted from P-I curves agreed with photosynthesis observed in the culture only for days of low irradiance. For sunny days or for days of variable irradiance, P-I curves predicted neither the morning photosynthesis maximum nor the afternoon depression. Daily integrals of predicted and observed photosynthesis, however, were probably within the possible errors of measurement. (orig.)

  14. Evaluation of Photosynthesis Capacity of Some Winter Wheat Genotypes in Transylvanian Plain Conditions

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2018-05-01

    Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.

  15. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  16. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  17. The Productivity of Oxygenic Photosynthesis around Cool, M Dwarf Stars

    Science.gov (United States)

    Lehmer, Owen R.; Catling, David C.; Parenteau, Mary N.; Hoehler, Tori M.

    2018-06-01

    In the search for life around cool stars, the presence of atmospheric oxygen is a prominent biosignature, as it may indicate oxygenic photosynthesis (OP) on the planetary surface. On Earth, most oxygenic photosynthesizing organisms (OPOs) use photons between 400 and 750 nm, which have sufficient energy to drive the photosynthetic reaction that generates O2 from H2O and CO2. OPOs around cool stars may evolve similar biological machinery capable of producing oxygen from water. However, in the habitable zones (HZs) of the coolest M dwarf stars, the flux of 400–750 nm photons may be just a few percent that of Earth’s. We show that the reduced flux of 400–750 nm photons around M dwarf stars could result in Earth-like planets being growth limited by light, unlike the terrestrial biosphere, which is limited by nutrient availability. We consider stars with photospheric temperatures between 2300 and 4200 K and show that such light-limited worlds could occur at the outer edge of the HZ around TRAPPIST-1-like stars. We find that even if OP can use photons longer than 750 nm, there would still be insufficient energy to sustain the Earth’s extant biosphere throughout the HZ of the coolest stars. This is because such stars emit largely in the infrared and near-infrared, which provide sufficient energy to make the planet habitable, but limits the energy available for OP. TRAPPIST-1f and g may fall into this category. Biospheres on such planets, potentially limited by photon availability, may generate small biogenic signals, which could be difficult for future observations to detect.

  18. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO(sub 2) from fossil-fired power plants by growing organisms capable of converting CO(sub 2) to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO(sub 2) from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO(sub 2) concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO(sub 2) levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  19. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  20. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars.

    Science.gov (United States)

    Liu, Houjun; Zhang, Chengxin; Wang, Junmei; Zhou, Chongjun; Feng, Huan; Mahajan, Manoj D; Han, Xiaori

    2017-03-01

    In this study, a soil pot experiment was conducted to investigate the changes in photosynthesis and antioxidative enzymes in two rice varieties (Shendao 6 and Shennong 265) supplied with iron (Fe), cadmium (Cd), and Fe and Cd together. The concentrations of Fe and Cd in the soil were 0, 1.0 g Fe·kg -1 and 0, 2.0 mg Cd·kg -1 , respectively. Photosynthetic indices and antioxidative enzyme activities were recorded at different rice growth stages. At the early stage, Cd showed a transient stimulatory effect on the photosynthetic rate of Shennong 265. For Shendao 6, however, Cd showed a transient stimulatory effect on photosynthetic rate, intercellular CO 2 concentration, stomatal conductance and transpiration efficiency. In addition, the results show that Cd can also enhance the superoxide dismutase (SOD) and peroxidase (POD) activities, but reduce the malondialdehyde (MDA) and soluble protein contents in the two rice cultivars. Subsequently, Cd starts to inhibit photosynthesis and SOD activity until the ripening stage, causing the lowest photosynthetic rate and SOD activity at this stage. In contrast, Fe alleviates the Cd-induced changes at earlier or later growth stage. Notably at the later growth stage, the results show that the interaction between Fe and Cd increases the SOD and catalase (CAT) activities, while decreasing the lipid peroxidation and promoting photosynthesis. As a result, it ultimately increases the biomass. The results from this study suggest that Fe (as Fe fertilizer) is a promising alternative for agricultural use to enhance the plant development and, simultaneously, to reduce Cd toxicity in extensively polluted soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  2. Relationships Between Nitrogen Metabolism and Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics; Larsen, Peder O. [Royal Veterinary and Agricultural Univ., Copenhagen (Denmark). Chemistry Dept.; Lawyer, Arthur L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics; Cornwell, Karen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics

    1981-01-01

    Photosynthetic green cells generate reducing power from the oxidation of water to O2, and use the reducing power for the reduction of CO2, nitrate and sulfate. Finally, the principal products of green cells then are oxygen, sucrose and other carbon compounds, amino groups of amino acids, and sulfhydryl groups of amino acids.

  3. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    Science.gov (United States)

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  4. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  5. Investigation of grapevine photosynthesis using hyperspectral techniques and development of hyperspectral band ratio indices sensitive to photosynthesis.

    Science.gov (United States)

    Ozelkan, Emre; Karaman, Muhittin; Candar, Serkan; Coskun, Zafer; Ormeci, Cankut

    2015-01-01

    The photosynthetic rate of 9 different grapevines were analyzed with simultaneous photosynthesis and spectroradiometric measurements on 08.08.2012 (veraison) and 06.09.2012 (harvest). The wavelengths and spectral regions, which most properly express photosynthetic rate, were determined using correlation and regression analysis. In addition, hyperspectral band ratio (BR) indices sensitive to photosynthesis were developed using optimum band ratio (OBRA) method. The relation of BR results with photosynthesis values are presented with the correlation matrix maps created in this study. The examinations were performed for both specific dates (i.e., veraison and harvest) and also in aggregate (i.e., correlation between total spectra and photosynthesis data). For specific dates wavelength based analysis, the photosynthesis were best determined with -0.929 correlation coefficient (r) 609 nm of yellow region at veraison stage, and -0.870 at 641 nm of red region at harvest stage. For wavelength based aggregate analysis, 640 nm of red region was found to be correlated with 0.921 and -0.867 r values respectively and red edge (RE) (695 nm) was found to be correlated with -0.922 and -0.860 r values, respectively. When BR indices results were analyzed with photosynthetic values for specific dates, -0.987 r with R8../R, at veraison stage and -0.911 r with R696/R944 at harvest stage were found most correlated. For aggregate analysis of BR, common BR presenting great correlation with photosynthesis for both measurements was found to be R632/R971 with -0.974, -0.881 r values, respectively and other R610/R760 with -0.976, -0.879 r values. The final results of this study indicate that the proportion of RE region to a region with direct or indirect correlation with photosynthetic provides information about rate of photosynthesis. With the indices created in this study, the photosynthesis rate of vineyards can be determined using in-situ hyperspectral remote sensing. The findings of this

  6. A review of the ecology and management of temporarily open/closed estuaries in South Africa, with particular emphasis on river flow and mouth state as primary drivers of these systems

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2012-06-01

    Full Text Available Research in South African temporarily open/closed estuaries that includes studies on the hydrodynamics, sediment dynamics, acronutrients, microalgae, macrophytes, zoobenthos, hyperbenthos, zooplankton, ichthyoplankton, fishes and birds is used as a...

  7. Songs about Cancer, Gene Expression, and the Biochemistry of Photosynthesis

    Science.gov (United States)

    Heineman, Richard H.

    2018-01-01

    These three biology songs can be used for educational purposes to teach about biochemical concepts. They touch on three different topics: (1) cancer progression and germ cells, (2) gene expression, promoters, and repressors, and (3) electronegativity and the biochemical basis of photosynthesis.

  8. Effects of proline on photosynthesis, root reactive oxygen species ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Hoagland's nutrient solution (pH 6.3 to 6.5, EC 2.0 to 2.2 dS m-1). The nutrient .... photosynthesis system (LI-6400, LI-COR, Lincoln, NE, USA). The ..... Duan JJ, Li J, Guo SR, Kang YY (2008). ... Foster JG, Hess JL (1980).

  9. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    AJL

    2012-04-26

    Apr 26, 2012 ... oxygen and carbohydrates. In photosynthesis, a series of redox reactions occur in the electron transport system present in the chloroplast thylakoid membranes. Oxi- dation of water is catalyzed by photosystem II (PSII), a multi-subunit pigment protein complex located in the thylakoid membrane (Hillier and ...

  10. Bibliography of reviews and methods of photosynthesis - 88

    Czech Academy of Sciences Publication Activity Database

    Šesták, Zdeněk; Čatský, Jiří

    2004-01-01

    Roč. 42, č. 4 (2004), s. 619-640 ISSN 0300-3604 R&D Projects: GA ČR GA206/97/0120 Institutional research plan: CEZ:AV0Z5038910 Keywords : Bibliographic survey * processes of photosynthesis * accumulation of energy Subject RIV: EF - Botanics Impact factor: 0.734, year: 2004

  11. Future Elementary School Teachers' Conceptual Change Concerning Photosynthesis

    Science.gov (United States)

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Anto, Erkki; Penttinen, Marjaana

    2011-01-01

    The purpose of this study was to examine conceptual change among future elementary school teachers while studying a scientific text concerning photosynthesis. Students' learning goals in relation to their learning outcomes were also examined. The participants were future elementary school teachers. The design consisted of pre- and post-tests. The…

  12. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  13. Photosynthesis versus irradiance relationships in the Atlantic sector ...

    African Journals Online (AJOL)

    The results show substantial variability in the photosynthesis–irradiance (P vs E) parameters, with phytoplankton communities at stations that were considered iron (Fe)-limited showing low maximum photosynthetic capacity (PBmax) and low quantum efficiency of photosynthesis (αB) for ρNO3, but high PBmax and αB for ...

  14. Effects of enhances ultra violet irradiation on photosynthesis in ...

    African Journals Online (AJOL)

    Effects of enhances ultra violet irradiation on photosynthesis in anabaena variabilis and phormidium uncinatum. VA Donkor. Abstract. No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.16-23. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. Significance of rice sheath photosynthesis: Yield determination by ...

    African Journals Online (AJOL)

    Using high-yielding hybrid rice Liangyopeijiu (LYP9), its male parent 9311 and hybrid rice Shanyou 63 (SY63) as the experimental materials, the photosynthesis of rice sheath was studied by 14C radio-autography. The results showed that rice sheath could trap sunlight and produce photosynthates, and these ...

  16. Effect of traffic pollution on photosynthesis | Durrani | Journal of ...

    African Journals Online (AJOL)

    Vehicular exhaust is considered as one of the worst form of environmental pollution. To assess the effect of traffic pollution on photosynthesis, leaf samples of four different types of plants at different distances from the busy traffic road were collected from Wah. The samples consisted of sunny, shady and semi shady leaves of ...

  17. Model for expressing leaf photosynthesis in terms of weather variables

    African Journals Online (AJOL)

    A theoretical mathematical model for describing photosynthesis in individual leaves in terms of weather variables is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of potential photosynthetic rate permitted by the different environmental elements. These parameters are useful ...

  18. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    2009-11-14

    With LI-6400 portable photosynthesis system, the photosynthetic characteristics of artificially cultured Eichhornia crassipes in Jiangsu, China, were monitored from June 1 to November 14, 2009. Both the net photosynthetic rate (Pn) in different positions and light and temperature-response curves of the top fourth leaf were ...

  19. Global artificial photosynthesis project: a scientific and legal introduction.

    Science.gov (United States)

    Faunce, Thomas

    2011-12-01

    With the global human population set to exceed 10 billion by 2050, its collective energy consumption to rise from 400 to over 500 EJ/yr and with the natural environment under increasing pressure from these sources as well as from anthropogenic climate change, political solutions such as the creation of an efficient carbon price and trading scheme may arrive too late. In this context, the scientific community is exploring technological remedies. Central to these options is artificial photosynthesis--the creation, particularly through nanotechnology, of devices capable to doing what plants have done for millions of years - transforming sunlight, water and carbon dioxide into food and fuel. This article argues that a Global Artificial Photosynthesis (GAP) project can raise the public profile and encourage the pace, complexity and funding of scientific collaborations in artificial photosynthesis research. The legal structure of a GAP project will be critical to prevent issues such as state sovereignty over energy and food resources and corporate intellectual monopoly privileges unduly inhibiting the important contribution of artificial photosynthesis to global public health and environmental sustainability. The article presents an introduction to the scientific and legal concepts behind a GAP project.

  20. Artificial photosynthesis: from basic biology to industrial application

    National Research Council Canada - National Science Library

    Collings, Anthony F; Critchley, Christa

    2005-01-01

    ... some of the same outcomes at rates and scales that far exceed those found in nature. In this field the ubiquitous process is photosynthesis - an ancient process inherent to almost all plants and many prokaryotes on the planet that ultimately enabled the development of earth's animal kingdom. From a practical perspective, the natural process of photosynth...

  1. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  2. Selective effects of H2O2 on cyanobacterial photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Drábková, Michaela; Matthijs, H. C. P.; Admiraal, W.; Maršálek, Blahoslav

    2007-01-01

    Roč. 45, č. 3 (2007), s. 363-369 ISSN 0300-3604 Grant - others:-(XE) EVK2-CT-2002-57004 Institutional research plan: CEZ:AV0Z60050516 Keywords : hydrogen peroxide * cyanobacteria * photosynthesis Subject RIV: EF - Botanics Impact factor: 0.976, year: 2007

  3. Bibliography of reviews and methods of photosynthesis-85

    Czech Academy of Sciences Publication Activity Database

    Šesták, Zdeněk; Čatský, Jiří

    2002-01-01

    Roč. 39, č. 4 (2002), s. 615-640 ISSN 0300-3604 R&D Projects: GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5038910 Keywords : methods of photosynthesis Subject RIV: EF - Botanics Impact factor: 0.773, year: 2002

  4. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    Science.gov (United States)

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  5. 2009 Photosynthesis to be held June 28 - July 3, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Doug Bruce

    2009-07-06

    The capture of solar energy by photosynthesis has had a most profound influence on the development and sustenance of life on earth. It is the engine that has driven the proliferation of life and, as the source of both energy and oxygen, has had a major hand in shaping the forms that life has taken. Both ancient and present day photosynthetic carbon fixation is intimately tied to issues of immediate human concern, global energy and global warming. Decreasing our reliance on fossil fuels by tapping photosynthesis in a more direct way is an attractive goal for sustainable energy. Meeting this challenge means understanding photosynthetic energy conversion at a molecular level, a task requiring perspectives ranging through all disciplines of science. Researchers in photosynthesis have a strong history of working across conventional boundaries and engaging in multidisciplinary collaborations. The Gordon conference in photosynthesis has been a key focal point for the dissemination of new results and the establishment of powerful research collaborations. In this spirit the 2009 Gordon conference on biophysical aspects of photosynthesis will bring together top international researchers from diverse and complementary disciplines, all working towards understanding how photosynthesis converts light into the stable chemical energy that powers so much of our world. Focal points for talks and discussions will include: (1) Watersplitting, structure and function of the oxygen evolving complex; (2) Antenna, the diversity, optimization and regulation of energy capture and transfer; (3) Reaction center structure and function, including functional roles for the protein; (4) Electron transport, proton transport and energy coupling; (5) Photoprotection mechanisms, including secondary electron transport pathways; (6) Biofuels, hydrogen production; and (7) Artificial photosynthesis and solar energy conversion strategies. The 2009 conference will have a close eye on practical applications

  6. Insensitivity of soybean photosynthesis to ultraviolet-B radiation under phosphorus deficiency

    International Nuclear Information System (INIS)

    Murali, N.S.; Teramura, A.H.

    1987-01-01

    Soybean [Glycinemax (L.) Merr. cv Essex] was grown in sand in a greenhouse under 2 levels of biologically effective ultraviolet‐B radiation (effective daily dose: 0 and 11.5 kJ/m UV‐BBE and 2 levels of P (6.5 and 52 μM). Plants were grown in each treatment combination up to the fifth trifoliolate stage. UV‐B radiation had no affect on plant growth and net photosynthesis at 6.5 μM P supply but decreased both these parameters when grown in the higher P concentration. Reductions in net photosynthesis were apparently due to direct effects on the photosynthetic machinery, since chlorophyll concentration and stanatal conductance were unaffected by UV‐B radiation. Both UV‐B radiation and reduced P supply increased the level of UV‐B absorbing compounds in leaf tissues and their effects were additive. The reduced sensitivity of P deficient plants to UV‐B radiation may be the result of this increase in UV absorbing compounds and possibly uv protective mechanisms associated with growth inhibition

  7. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    Science.gov (United States)

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  8. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    Science.gov (United States)

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  9. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-01-01

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O 3 ), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O 3 (AA + 60 ppb O 3 , E-O 3 ) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O 3 exposure. Results indicated that E-O 3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O 3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O 3 risk on evergreen woody species. -- Highlights: • Response of evergreen Cyclobalanopsis glauca to O 3 was investigated. • Elevated O 3 significantly reduced photosynthesis of current-year leaves. • Previous-year leaves showed little response to O 3 . • Stomatal conductance contributes to the response difference to O 3 among leaf ages. -- Impacts of elevated O 3 on photosynthesis of evergreen woody species depend on leaf ages

  10. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress

    International Nuclear Information System (INIS)

    Silva, Evandro N.; Ribeiro, Rafael V.; Ferreira-Silva, Sérgio L.; Vieira, Suyanne A.; Ponte, Luiz F.A.; Silveira, Joaquim A.G.

    2012-01-01

    The aim of this study was to assess the relationships between photosynthesis, sugars and photo-oxidative protection mechanisms in Jatropha curcas under drought stress. Leaf CO 2 assimilation rate (P N ) and instantaneous carboxylation efficiency decreased progressively as the water deficit increased. The sucrose and reducing sugar concentrations were negatively and highly correlated with photosynthesis indicating a modulation by negative feedback mechanism. The alternative electron sinks (ETR s '/P N ), relative excess of light energy (EXC) and non-photochemical quenching were strongly increased by drought, indicating effective mechanisms of energy excess dissipation. The photochemistry data indicate partial preservation of photosystem II integrity and function even under severe drought. EXC was positively correlated with superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities evidencing an effective role of these enzymes in the oxidative protection against excess of reactive oxygen species in chloroplasts. Leaf H 2 O 2 content and lipid peroxidation were inversely and highly correlated with catalase (CAT) activity indicating that drought-induced inhibition of this enzyme might have allowed oxidative damage. Our data suggest that drought triggers a coordinate down-regulation in photosynthesis through sucrose and reducing sugar accumulation and an energy excess dissipation at PSII level by non-photochemical mechanisms associate with enhancement in photorespiration, restricting photo-damages. In parallel, drought up-regulates SOD and APX activities avoiding accumulation of reactive oxygen species, while CAT activity is not able to avoid H 2 O 2 accumulation in drought-stressed J. curcas leaves. -- Highlights: ► Drought triggers a down-regulation in photosynthesis by sucrose and reducing sugar. ► Drought induces energy dissipation at PSII level and increase in photorespiration. ► Drought up-regulates SOD and APX activities avoiding accumulation of

  12. Plant mineral nutrition, gas exchange and photosynthesis in space: A review

    Science.gov (United States)

    Wolff, S. A.; Coelho, L. H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.-I.

    2013-02-01

    Successful growth and development of higher plants in space rely on adequate availability and uptake of water and nutrients, and efficient energy distribution through photosynthesis and gas exchange. In the present review, literature has been reviewed to assemble the relevant knowledge within space plant research for future planetary missions. Focus has been on fractional gravity, space radiation, magnetic fields and ultimately a combined effect of these factors on gas exchange, photosynthesis and transport of water and solutes. Reduced gravity prevents buoyancy driven thermal convection in the physical environment around the plant and alters transport and exchange of gases and liquids between the plant and its surroundings. In space experiments, indications of root zone hypoxia have frequently been reported, but studies on the influences of the space environment on plant nutrition and water transport are limited or inconclusive. Some studies indicate that uptake of potassium is elevated when plants are grown under microgravity conditions. Based on the current knowledge, gas exchange, metabolism and photosynthesis seem to work properly in space when plants are provided with a well stirred atmosphere and grown at moderate light levels. Effects of space radiation on plant metabolism, however, have not been studied so far in orbit. Ground experiments indicated that shielding from the Earth's magnetic field alters plant gas exchange and metabolism, though more studies are required to understand the effects of magnetic fields on plant growth. It has been shown that plants can grow and reproduce in the space environment and adapt to space conditions. However, the influences of the space environment may result in a long term effect over multiple generations or have an impact on the plants' role as food and part of a regenerative life support system. Suggestions for future plant biology research in space are discussed.

  13. Far-red light is needed for efficient photochemistry and photosynthesis.

    Science.gov (United States)

    Zhen, Shuyang; van Iersel, Marc W

    2017-02-01

    The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa). Adding far-red light immediately increased quantum yield of photosystem II (Φ PSII ) of lettuce by an average of 6.5 and 3.6% under red/blue and warm-white light, respectively. Similar or greater increases in Φ PSII were observed after 20min of exposure to far-red light. This longer-term effect of far-red light on Φ PSII was accompanied by a reduction in non-photochemical quenching of fluorescence (NPQ), indicating that far-red light reduced the dissipation of absorbed light as heat. The increase in Φ PSII and complementary decrease in NPQ is presumably due to preferential excitation of photosystem I (PSI) by far-red light, which leads to faster re-oxidization of the plastoquinone pool. This facilitates reopening of PSII reaction centers, enabling them to use absorbed photons more efficiently. The increase in Φ PSII by far-red light was associated with an increase in net photosynthesis (P n ). The stimulatory effect of far-red light increased asymptotically with increasing amounts of far-red. Overall, our results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.

    Science.gov (United States)

    DePaoli, Henrique C; Borland, Anne M; Tuskan, Gerald A; Cushman, John C; Yang, Xiaohan

    2014-07-01

    To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  16. Invitation to the 17th international congress on photosynthesis research in 2016 : photosynthesis in a changing world

    NARCIS (Netherlands)

    van Amerongen, Herbert; Croce, Roberta

    2016-01-01

    The 17th International Congress on Photosynthesis will be held from August 7 to 12, 2016 in Maastricht, The Netherlands. The congress will include an opening reception, 15 plenary lectures, 28 scientific symposia, many poster sessions, displays by scientific companies, excursions, congress dinner,

  17. Foliar application of processed calcite particles improves leaf photosynthesis of potted Vitis vinifera L. (var. ‘Cot’ grown under water deficit

    Directory of Open Access Journals (Sweden)

    Faouzi Attia

    2014-12-01

    Significance and impact of the study: In the context of climate change, grapevine will most likely experience long periods of drought during its seasonal cycle. Foliar application of processed mineral particles is widely used to reduce heat stress in perennial fruit crops. Here, the micronized calcite Megagreen® does improve photosynthesis of water stressed grapevines.

  18. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhong, Chu; Cao, Xiaochuang; Bai, Zhigang; Zhang, Junhua; Zhu, Lianfeng; Huang, Jianliang; Jin, Qianyu

    2018-04-01

    Nitrogen metabolism is as sensitive to water stress as photosynthesis, but its role in plant under soil drying is not well understood. We hypothesized that the alterations in N metabolism could be related to the acclimation of photosynthesis to water stress. The features of photosynthesis and N metabolism in a japonica rice 'Jiayou 5' and an indica rice 'Zhongzheyou 1' were investigated under mild and moderate soil drying with a pot experiment. Soil drying increased non-photochemical quenching (NPQ) and reduced photon quantum efficiency of PSII and CO 2 fixation in 'Zhongzheyou 1', whereas the effect was much slighter in 'Jiayou 5'. Nevertheless, the photosynthetic rate of the two cultivars showed no significant difference between control and water stress. Soil drying increased nitrate reducing in leaves of 'Zhongzheyou 1', characterized by enhanced nitrate reductase (NR) activity and lowered nitrate content; whereas glutamate dehydrogenase (GDH), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were relative slightly affected. 'Jiayou 5' plants increased the accumulation of nitrate under soil drying, although its NR activity was increased. In addition, the activities of GDH, GOT and GPT were typically increased under soil drying. Besides, amino acids and soluble sugar were significantly increased under mild and moderate soil drying, respectively. The accumulation of nitrate, amino acid and sugar could serve as osmotica in 'Jiayou 5'. The results reveal that N metabolism plays diverse roles in the photosynthetic acclimation of rice plants to soil drying. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Mutagentic effects of aerospace on Poa pratensis L.. Pt.2: Photosynthesis characters and chlorophyll contents

    International Nuclear Information System (INIS)

    Han Lei; Sun Zhenyuan; Ju Guansheng; Qian Yongqiang; Li Yinfeng; Peng Zhenhua

    2005-01-01

    The dry seeds of Poa pratensis L. 'Nassau' were carried by 'Shenzhou No.3' and three mutants were screened based on presentational characters from the treated plants and asexual reproduced them as PM 1 , PM 2 and PM 3 . The effects of the space environment on the photosynthesis characters and the contents of chlorophyll of the plants were investigated. Compared to CK, the contents of the chlorophyll a and b were reduced both in PM 1 and PM 3 , and the photosynthetic ability also decreased. The content of the chlorophyll in PM 2 increased greatly, but the ratio of the chlorophyll a/b was reduced, and the apparent quantum efficiency and the photosynthetic ability also decreased. The approximately CO 2 saturation point of the three mutants were higher than CK, but the CO 2 compensation points showed no difference between the mutants and CK. The carboxylation efficiency was PM 2 3 1 . (authors)

  1. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  2. Shedding light on the role of photosynthesis in pathogen colonization and host defense

    KAUST Repository

    Garavaglia, Betiana S.; Thomas, Ludivine; Gottig, Natalia; Zimaro, Tamara; Garofalo, Cecilia G.; Gehring, Christoph A; Ottado, Jorgelina

    2010-01-01

    The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.

  3. Shedding light on the role of photosynthesis in pathogen colonization and host defense

    KAUST Repository

    Garavaglia, Betiana S.

    2010-09-01

    The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.

  4. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    Science.gov (United States)

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Mössbauer spectroscopy in studies of photosynthesis

    Science.gov (United States)

    Burda, Květoslava

    2008-02-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the “heart” of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Mössbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  6. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    Science.gov (United States)

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    Science.gov (United States)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  8. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  9. Regressive Evolution of Photosynthesis in the Roseobacter Clade

    Czech Academy of Sciences Publication Activity Database

    Koblížek, Michal; Zeng, Yonghui; Horák, A.; Oborník, Miroslav

    2013-01-01

    Roč. 66, č. 2013 (2013), s. 385-405 ISSN 0065-2296 R&D Projects: GA ČR GAP501/10/0221; GA ČR GBP501/12/G055; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : roseobacter clade * photosynthesis * marine microbial communities Subject RIV: EE - Microbiology, Virology Impact factor: 1.740, year: 2013

  10. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  11. The Path of Carbon in Photosynthesis XV. Ribulose and Sedoheptulose

    Science.gov (United States)

    Benson, A. A.; Bassham, J. A.; Calvin, M.; Hall, A. G.; Hirsch, H.; Kawaguchi, S.; Lynch, V.; Tolbert, N. E.

    1952-01-01

    The intermediates of carbon dioxide reduction by plants include phosphorylated derivatives of hydroxy acids and sugars. Their identification became possible when the use of labeled carbon dioxide permitted discrimination between the earliest products and the many other components of photosynthetic tissues. A number of compounds were identified by virtue of the chemical and physical properties of the radioactive compounds in tracer amounts and by direct comparison of these properties with those of suspected known metabolic intermediates. It became apparent that several labeled compounds found in short exposures to radioactive carbon dioxide were not substances previously identified as metabolic intermediates. Two phosphate esters in particular were observed in the products of the first few seconds of steady-state photosynthesis by all the photosynthetic microorganisms and higher plants examined in this laboratory. These esters have been isolated by paper chromatography in tracer quantities and enzymatically hydrolyzed to give two sugars, ribulose and sedoheptulose. This paper contains a description of the chemical identification of these sugars and some observations and suggestions regarding the function of their esters. The general importance of these compounds in photosynthesis was summarized before their identification. The products of photosynthesis with C{sup 14}O{sub 2} by each plant included phosphate esters of the same two then unknown compounds in addition to those of the expected glucose, fructose, dihydroxyacetone and glyceric acid. As the time of steady-state photosynthesis in C{sup 14}O{sub 2} decreased, the fractions of total fixed radiocarbon in the esters of the two unidentified compounds increased.

  12. Understanding of photosynthesis among pupils of technical secondary schools

    OpenAIRE

    Pavić, Petra

    2014-01-01

    The goal of our research was to examine the knowledge on photosynthesis of the students of the Secondary Technical schools, and their attitude towards it, and whether they have misconceptions about it. The research was conducted on a sample of 466 students in Vegova Secondary Technical and Grammar School of Electrical Engineering and Computer Science in Ljubljana in the first, second and third year of electrical engineering and computer science programme. The test contained 27 closed-ended qu...

  13. The Transient Intermediate Plexiform Layer, a Plexiform Layer-like Structure Temporarily Existing in the Inner Nuclear Layer in Developing Rat Retina.

    Science.gov (United States)

    Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom

    2018-02-01

    The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.

  14. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans.

    Science.gov (United States)

    Kasalický, Vojtěch; Zeng, Yonghui; Piwosz, Kasia; Šimek, Karel; Kratochvilová, Hana; Koblížek, Michal

    2018-01-01

    The genus Limnohabitans ( Comamonadaceae , Betaproteobacteria ) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5 T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization. IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans , indicating that they may have a novel role in freshwater habitats. Copyright © 2017 American Society for Microbiology.

  15. PHOTOSYNTHESIS AT THE FOREFRONT OF A SUSTAINABLE LIFE

    Directory of Open Access Journals (Sweden)

    Paul J.D. Janssen

    2014-06-01

    Full Text Available The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.

  16. The social acceptance of artificial photosynthesis: towards a conceptual framework

    Science.gov (United States)

    Sovacool, Benjamin K.; Gross, Allan

    2015-01-01

    Advancements in artificial photosynthesis have the potential to radically transform how societies convert and use energy. Their successful development, however, hinges not only on technical breakthroughs, but also acceptance and adoption by energy users. This article introduces a conceptual framework enabling analysts, planners and even investors to determine environments where artificial photosynthesis may thrive, and those where it may struggle. Drawn from work looking at the barriers and acceptance of solar photovoltaic and wind energy systems, the article proposes that social acceptance has multiple dimensions—socio-political, community and market—that must be met holistically in order for investors and users to embrace new technologies. The article argues that any future market acceptance for artificial photosynthesis will depend upon the prevalence of nine factors, which create conducive environments; the lack of the conditions engenders environments where they will likely be rejected. The conditions are (i) strong institutional capacity; (ii) political commitment; (iii) favourable legal and regulatory frameworks; (iv) competitive installation and/or production costs; (v) mechanisms for information and feedback; (vi) access to financing; (vii) prolific community and/or individual ownership and use; (viii) participatory project siting; and (ix) recognition of externalities or positive public image. PMID:26052424

  17. Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.

    Science.gov (United States)

    Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.

  18. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  19. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  20. Amelioration of ultraviolet-B-induced down-regulation of mRNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis

    International Nuclear Information System (INIS)

    Mackerness, S.A. H.; Butt, P.J.; Jordan, B.R.; Thomas, B.

    1996-01-01

    The mechanism by which increasing photosynthetically active radiation (PAR) reduces the sensitivity of RNA transcripts to UV-B radiation was studied in pea (Pisum sativum L.). mRNA transcript levels for rbc S, rbc L, cab and psb A were measured over an 8 d experimental period in pea, plants supplemented with UV-B radiation under a range of conditions. Under low light (150 mu-mol m -2 s -1 ), UV-B resulted in a significant decline in the levels of transcripts for all four genes which was prevented by increasing the background irradiance to 350 mu-mol m -2 s -1 (high light) with white light from fluorescent lamps. Increasing CO 2 levels to give photosynthesis rates equivalent to the high light treatment partially protected rbc S and cab transcripts and fully protected rbc L transcripts but did not prevent visible injury. Increasing light with low pressure sodium lamps, which increase photosynthesis but are not effective for activation of the DNA repair enzyme, photolyase, gave results which were not significantly different from white fluorescent high light treatments. Protection by high light was lost in the presence of the photosynthesis inhibitors CCCP and DCMU. The UV-B induced increase in the expression of chalcone synthase (chs) genes was delayed by the treatments which increased photosynthesis rates and conferred protection. The results indicate that photosynthesis plays a key role in the amelioration of UV-B induced decline in mRNA levels for proteins. The minimal role of DNA repair by photolyase indicates that reduction in photosynthesis gene transcripts in response to UV-B represents a specific regulation rather than being a consequence of DNA damage. (author)

  1. Changes in photosynthesis, mesophyll conductance to CO{sub 2}, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Violeta, E-mail: violet@obzor.bio21.bas.bg [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Tsonev, Tsonko [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Loreto, Francesco [Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Centritto, Mauro [Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, 00015 Monterotondo Scalo (RM) (Italy)

    2011-05-15

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 {mu}M Ni (Ni{sub 30} and Ni{sub 200}). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO{sub 2}] than in control leaves. However chloroplastic [CO{sub 2}] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-{beta}-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni{sub 0} (control plants); 2 - Ni{sub 200}; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: > We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. > Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. > Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  2. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43 Is Required for Chloroplast Development and Photosynthesis.

    Directory of Open Access Journals (Sweden)

    Xiang-guang Lv

    Full Text Available A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS-induced IR64 (Oryza sativa L. ssp. indica mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43 with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43 was required for the normal development of chloroplasts and photosynthesis in rice.

  3. Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. I. Growth can occur without photosynthesis

    Science.gov (United States)

    Van Volkenburgh, E.; Cleland, R. E.

    1990-01-01

    Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.

  4. [Ecological Effects of Algae Blooms Cluster: The Impact on Chlorophyll and Photosynthesis of the Water Hyacinth].

    Science.gov (United States)

    Liu, Guo-feng; He, Jun; Yang, Yi-zhong; Han, Shi-qun

    2015-08-01

    The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious environment caused by the algae blooms together was the main reason of the death of aquatic plants during the summer. So in the practice of ecological restoration, it should avoid the

  5. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  6. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C - assimilates in bean plants

    International Nuclear Information System (INIS)

    Starck, Z.; Karwowska, R.

    1978-01-01

    The experiments were carried out to study the effect of salt-stresses and ABA on the growth photosynthesis and translocation of assimilates in bean plants. It was planned to reduce the content of GA 3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution), reduces all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14 C-translocation of 14 C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient solution. In the case of seriously stressed plants GA 3 and cytokinins (more effectively) reversed the negative effect of stress conditions both on the photosynthesis and on the 14 C-translocation. On the basis of the obtained results, it seems that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and translocation of assimilates. (author)

  7. Effect of synthetic and natural water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality of potato in a semi-arid region.

    Science.gov (United States)

    Xu, Shengtao; Zhang, Lei; McLaughlin, Neil B; Mi, Junzhen; Chen, Qin; Liu, Jinghui

    2016-02-01

    The effect of water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality was investigated in a field experiment in a semi-arid region in northern China in 2010-2012. Treatments included two synthetic water-absorbing amendments, potassium polyacrylate (PAA) and polyacrylamide (PAM), and one natural amendment, humic acid (HA), both as single amendments and compound amendments (HA combined with PAA or PAM), and a no amendment control. Soil amendments had a highly significant effect (P ≤ 0.01) on photosynthesis characteristics, dry biomass, crop root/shoot (R/S) ratio and tuber nutritional quality. They improved both dry biomass above ground and dry biomass underground in the whole growing season by 4.6-31.2 and 1.1-83.1% respectively in all three years. Crop R/S ratio was reduced in the early growing season by 2.0-29.4% and increased in the later growing season by 2.3-32.6%. Soil amendments improved leaf soil plant analysis development value, net photosynthesis rate, stomatal conductance and transpiration rate by 1.4-17.0, 5.1-45.9, 2.4-90.6 and 2.0-22.6% respectively and reduced intercellular CO2 concentration by 2.1-19.5% in all three years. Amendment treatment with PAM + HA always had the greatest effect on photosynthesis characteristics and tuber nutritional quality among all amendment treatments and thus merits further research. © 2015 Society of Chemical Industry.

  8. Effect of salt-stresses on the hormonal regulation of growth, photosynthesis and distribution of 14C-assimilates in bean plants

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The experiments were carried out to study the effect of salt-stresses and ABA on the growth, photosynthesis and translocation of assimilates in bean plants. It was planed to reduce the content of GA3 and cytokinins and increase ABA content in salinized plants. The results show that salt-stress (NaCl and concentrated nutrient solution, reduce all the investigated processes in a different degree. NaCl-stress retarded most seriously growth of apical part and blades in contrast to 7-times concentrated nutrient solution decreasing mainly the rate of root and blade growth. Photosynthesis and 14C-translocation of 14C-assimilates were retarded more seriously by NaCl than by 7-times concentrated nutrient. solution. In the case of seriously stressed plants GA3 and cytokinins (more effectively reversed the ,negative effect of stress conditions both on the photosynthesis and on the 14C-tramslocation. On the basis of the obtained results, it seemes that changes in the rate of investigated processes in salinized plants are due to hormonal disturbances which cause directly or indirectly retardation of photosynthesis and trans-location of assimilates.

  9. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    Science.gov (United States)

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  10. Rising CO2 widens the transpiration-photosynthesis optimality space

    Science.gov (United States)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype

  11. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  12. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions.

    Science.gov (United States)

    Ogawa, Takako; Misumi, Masahiro; Sonoike, Kintake

    2017-09-01

    Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v /F m , some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

  13. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  14. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    Science.gov (United States)

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  15. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  16. Selective pressures on C4 photosynthesis evolution in grasses through the lens of optimality

    OpenAIRE

    Akcay, Erol; Zhou, Haoran; Helliker, Brent

    2016-01-01

    CO2, temperature, water availability and light intensity were potential selective pressures to propel the initial evolution and global expansion of C4 photosynthesis in grasses. To tease apart the primary selective pressures along the evolutionary trajectory, we coupled photosynthesis and hydraulics models and optimized photosynthesis over stomatal resistance and leaf/fine-root allocation. We also examined the importance of nitrogen reallocation from the dark to the light reactions. Our resul...

  17. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  18. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  19. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    Science.gov (United States)

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  20. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    Science.gov (United States)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  1. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    International Nuclear Information System (INIS)

    Hirose, K; Takai, Y; Sato, M; Hatayama, Y; Kawaguchi, H; Aoki, M; Akimoto, H; Komai, F; Souma, M; Obara, H; Suzuki, M

    2016-01-01

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostate at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by

  2. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takai, Y [Hirosaki University, Hirosaki (Japan); Southern Tohoku BNCT Research Center, Koriyama (Japan); Sato, M; Hatayama, Y; Kawaguchi, H; Aoki, M; Akimoto, H [Hirosaki University, Hirosaki (Japan); Komai, F; Souma, M; Obara, H; Suzuki, M [Hirosaki University Hospital, Hirosaki (Japan)

    2016-06-15

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostate at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by

  3. The potential feasibility of chlorinic photosynthesis on exoplanets.

    Science.gov (United States)

    Haas, Johnson R

    2010-11-01

    The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.

  4. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC and organic carbon (DOC concentrations due to ocean acidification (OA and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm and DOC (added as 833 μmol L-1 of glucose on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected

  5. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Science.gov (United States)

    Meyer, Friedrich W; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana

    2016-01-01

    Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future

  6. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected......Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat...

  7. Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation

    International Nuclear Information System (INIS)

    Johnson, G.A.; Day, T.A.

    2002-01-01

    We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO 2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV-induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut-offs from 280 to 382 nm, against a background of non-saturating visible light. When the abaxial surface was irradiated, P n averaged 4.6% higher with the UV supplement that cut-off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV-induced blue fluorescence, we measured the UV-induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut-off filter, thereby estimating the potential contribution of UV-induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non

  8. Artificial Leaf Based on Artificial Photosynthesis for Solar Fuel Production

    Science.gov (United States)

    2017-06-30

    collect light energy and separate charge for developing new types of nanobiodevices to construct ”artificial leaf” from solar to fuel. or Concept of...AFRL-AFOSR-JP-TR-2017-0054 Artificial Leaf Based on Artificial Photosynthesis for Solar Fuel Production Mamoru Nango NAGOYA INSTITUTE OF TECHNOLOGY...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      30-06-2017 2

  9. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    International Nuclear Information System (INIS)

    Audouze, J.; Lindley, D.; Silk, J.; and Laboratoire Rene Bernas, Orsay, France)

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements ( 2 H, 3 He, 4 He, and 7 Li) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate 4 He (formed in the standard hot big bang) to produce 2 H and 3 He. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that 4 He is synthesized by a later generation of massive stars

  10. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    Science.gov (United States)

    Audouze, J.; Lindley, D.; Silk, J.

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.

  11. Photosynthesis-related quantities for education and modeling.

    Science.gov (United States)

    Antal, Taras K; Kovalenko, Ilya B; Rubin, Andrew B; Tyystjärvi, Esa

    2013-11-01

    A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.

  12. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    Science.gov (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  13. Design of concrete waste basin in Integrated Temporarily Sanitary Landfill (ITSL) in Siosar, Karo Regency, Indonesia on supporting clean environment and sustainable fertilizers for farmers

    Science.gov (United States)

    Ginting, N.; Siahaan, J.; Tarigan, A. P.

    2018-03-01

    A new settlement in Siosar village of Karo Regency has been developed for people whose villages have been completely destroyed by the prolong eruptions of Sinabung. An integrated temporarily sanitary landfill (ITSL) was built there to support the new living environment. The objective of this study is to investigate the organic waste decomposing in order to improve the design of the conventional concrete waste basin installed in the ITSL. The study was last from May until August 2016. The used design was Completely Randomized Design (CRD) in which organic waste was treated using decomposer with five replications in three composter bins. Decomposting process lasted for three weeks. Research parameters were pH, temperature, waste reduction in weight, C/N, and organic fertilizer production(%). The results of waste compost as follows : pH was 9.45, ultimate temperature was 31.6°C, C/N was in the range of 10.5-12.4, waste reduction was 53% and organic fertilizer production was 47%. Based on the decomposting process and the analysis, it is recommended that the conventional concrete waste basin should be divided into three colums and each column would be filled with waste when previous column is fulled. It is predicted that when the third column is fully occupied then the waste in the first column already become a sustainable fertilizer.

  14. Estimation of Maize photosynthesis Efficiency Under Deficit Irrigation and Mulch

    International Nuclear Information System (INIS)

    Al-Hadithi, S.

    2004-01-01

    This research aims at estimating maize photosynthesis efficiency under deficit irrigation and soil mulching. A split-split plot design experiment was conducted with three replicates during the fall season 2000 and spring season 2001 at the experimental Station of Soil Dept./ Iraq Atomic Energy Commission. The main plots were assigned to full and deficit irrigation treatments: (C) control. The deficit irrigation treatment included the omission of one irrigation at establishment (S1, 15 days), vegetation (S2, 35 days), flowering (S3, 40 days) and yield formation (S4, 30 days) stages. The sub-plots were allocated for the two varieties, Synthetic 5012 (V1) and Haybrid 2052 (V2). The sub-sub-plots were assigned to mulch (M1) with wheat straw and no mulch (M0). Results showed that the deficit irrigation did not affect photosynthesis efficiency in both seasons, which ranged between 1.90 to 2.15% in fall season and between 1.18 and 1.45% in spring season. The hybrid variety was superior 9.39 and 9.15% over synthetic variety in fall and spring seasons, respectively. Deficit irrigation, varieties and mulch had no significant effects on harvest index in both seasons. This indicates that the two varieties were stable in their partitioning efficiency of nutrient matter between plant organ and grains under the condition of this experiment. (Author) 21 refs., 3 figs., 6 tabs

  15. Aquatic CAM photosynthesis: a brief history of its discovery

    Science.gov (United States)

    Keeley, Jon E.

    2014-01-01

    Aquatic CAM (Crassulacean Acid Metabolism) photosynthesis was discovered while investigating an unrelated biochemical pathway concerned with anaerobic metabolism. George Bowes was a significant contributor to this project early in its infancy. Not only did he provide me with some valuable perspectives on peer review rejections, but by working with his gas exchange system I was able to take our initial observations of diel fluctuations in malic acid to the next level, showing this aquatic plant exhibited dark CO2 uptake. CAM is universal in all aquatic species of the worldwide Lycophyta genus Isoetes and non-existent in terrestrial Isoetes. Outside of this genus aquatic CAM has a limited occurrence in three other families, including the Crassulaceae. This discovery led to fascinating adventures in the highlands of the Peruvian Andes in search of Stylites, a terrestrial relative of Isoetes. Stylites is a plant that is hermetically sealed from the atmosphere and obtains all of its carbon from terrestrial sources and recycles carbon through CAM. Considering the Mesozoic origin of Isoetes in shallow pools, coupled with the fact that aquatic Isoetes universally possess CAM, suggests the earliest evolution of CAM photosynthesis was most likely not in terrestrial plants.

  16. A photosynthesis-based two-leaf canopy stomatal ...

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  17. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  18. Effects of ammonia from livestock farming on lichen photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paoli, Luca [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pirintsos, Stergios Arg.; Kotzabasis, Kiriakos [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pisani, Tommaso [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Navakoudis, Eleni [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Loppi, Stefano, E-mail: loppi@unisi.i [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy)

    2010-06-15

    This study investigated if atmospheric ammonia (NH{sub 3}) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 mug/m{sup 3} (at a sheep farm), ca. 15 mug/m{sup 3} (60 m from the sheep farm) and ca. 2 mug/m{sup 3} (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH{sub 3} is susceptible to this pollutant in the gas-phase. The parameter PI{sub ABS}, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH{sub 3} than the F{sub V}/F{sub M} ratio, one of the most commonly used stress indicators. - Ammonia from livestock farming affects lichen photosynthesis.

  19. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age

    Science.gov (United States)

    Johnston, D. T.; Wolfe-Simon, F.; Pearson, A.; Knoll, A. H.

    2009-01-01

    Molecular oxygen (O2) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580–550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O2 production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O2 budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe2+ rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms. PMID:19805080

  20. Effects of light and temperature on duckweed photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wedge, R M; Burris, J E

    1982-06-01

    Rates of photosynthesis of Lemna minor L. and Spirodela punctata, two aquatic angiosperms, were measured at different temperatures and light intensities. Photosynthesis was measured both as oxygen evolution and /sup 14/CO/sub 2/ fixation. At temperatures ranging from 15 to 35/sup 0/C, light saturation of photosynthetic O/sub 2/ evolution of Lemna occured from 300-600 ..mu..E m/sup -2/ s/sup -1/, while in Spirodela photosynthetic O/sub 2/ evolution was light saturated at 5600-1200 ..mu..E m/sup -2/ s/sup -1/. Photosynthetic O/sub 2/ evolution of both species was photoinhibited at light intensities greater than 1200 ..mu..E m/sup -2/ s/sup -1/. The optimal temperature for Lemna photosynthetic O/sub 2/ evolution was 30/sup 0/C, while the optimal temperatures for /sup 14/CO/sub 2/ fixation were from 20 to 30/sup 0/C. For Spirodela maximum photosynthetic O/sub 2/, evolution occurred at 35/sup 0/C, while maximum /sup 14/CO/sub 2/ fixation was at 30/sup 0/C.

  1. The pineapple genome and the evolution of CAM photosynthesis.

    Science.gov (United States)

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C; Bowers, John E; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C; Priest, Henry D; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J; Harkess, Alex; McKain, Michael R; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G; Wright, Chris L; Bulone, Vincent; Tuskan, Gerald A; Heath, Katy; Zee, Francis; Moore, Paul H; Sunkar, Ramanjulu; Leebens-Mack, James H; Mockler, Todd; Bennetzen, Jeffrey L; Freeling, Michael; Sankoff, David; Paterson, Andrew H; Zhu, Xinguang; Yang, Xiaohan; Smith, J Andrew C; Cushman, John C; Paull, Robert E; Yu, Qingyi

    2015-12-01

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.

  2. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

    Science.gov (United States)

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y; Rentzepis, Peter M; Yuan, Joshua S

    2016-12-13

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

  3. Diurnal photosynthesis and stomatal resistance in field-grown soybeans

    International Nuclear Information System (INIS)

    Miller, J.E.; Muller, R.N.; Seegers, P.

    1976-01-01

    The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature

  4. Biocatalytic photosynthesis with water as an electron donor.

    Science.gov (United States)

    Ryu, Jungki; Nam, Dong Heon; Lee, Sahng Ha; Park, Chan Beum

    2014-09-15

    Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3](2+). Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  6. Do plastic particles affect microalgal photosynthesis and growth?

    Science.gov (United States)

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata.

    Science.gov (United States)

    Tetteh, Rashied; Yamaguchi, Masahiro; Wada, Yoshiharu; Funada, Ryo; Izuta, Takeshi

    2015-01-01

    To assess the effects of O(3)on growth, net photosynthesis and yield of two African varieties of cowpea(Vigna unguiculata L.), Blackeye and Asontem were exposed as potted plants to air that was either filtered to remove O(3) (FA), non-filtered air (NF), non-filtered with added O3 of approximately 50 nL L(-1) (ppb) from 11:00 to 16:00 (NF + O(3)) for 88 days in open-top chambers. The mean O(3) concentration (11:00-16:00) during the exposure period had a range from 16 ppb in the FA treatment to 118 ppb in the NF + O(3) treatment. Net photosynthetic rate and leaf area per plant were significantly reduced by exposure to O(3), reducing the growth of both varieties. Exposure to O(3) significantly reduced the 100-seed weight and number of seeds per pod. As a result, cowpea yield was significantly reduced by long-term exposure to O(3), with no difference in sensitivity between the varieties.

  8. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging.

    Science.gov (United States)

    Yan, Kun; Zhao, Shijie; Cui, Mingxing; Han, Guangxuan; Wen, Pei

    2018-04-01

    Jerusalem artichoke (Helianthus tuberosus L.) is an important energy crop for utilizing coastal marginal land. This study was to investigate waterlogging tolerance of Jerusalem artichoke through photosynthetic diagnose with emphasis on photosystem II (PSII) and photosystem I (PSI) performance. Potted plants were subjected to severe (liquid level 5 cm above vermiculite surface) and moderate (liquid level 5 cm below vermiculite surface) waterlogging for 9 days. Large decreased photosynthetic rate suggested photosynthesis vulnerability upon waterlogging. After 7 days of severe waterlogging, PSII and PSI photoinhibition arose, indicated by significant decrease in the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR 0 ), and PSI seemed more vulnerable because of greater decrease in △MR/MR 0 than Fv/Fm. In line with decreased △MR/MR 0 and unchanged Fv/Fm after 9 days of moderate waterlogging, the amount of PSI reaction center protein rather than PSII reaction center protein was lowered, confirming greater PSI vulnerability. According to positive correlation between △MR/MR 0 and efficiency that an electron moves beyond primary quinone and negative correlation between △MR/MR 0 and PSII excitation pressure, PSI inactivation elevated PSII excitation pressure by depressing electron transport at PSII acceptor side. Thus, PSI vulnerability induced PSII photoinhibition and endangered the stability of whole photosynthetic apparatus under waterlogging. In agreement with photosystems photoinhibition, elevated H 2 O 2 concentration and lipid peroxidation in the leaves corroborated waterlogging-induced oxidative stress. In conclusion, Jerusalem artichoke is a waterlogging sensitive species in terms of photosynthesis and PSI vulnerability. Consistently, tuber yield was tremendously reduced by waterlogging, confirming waterlogging sensitivity of Jerusalem artichoke. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  10. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  11. Quantum design of photosynthesis for bio-inspired solar-energy conversion

    NARCIS (Netherlands)

    Romero, Elisabet; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-01-01

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is

  12. A Forgotten Application of the Starch Test: C[subscript 4] Photosynthesis

    Science.gov (United States)

    Harley, Suzanne M.

    2013-01-01

    In many labs on photosynthesis, the presence of starch in leaves is used as an indirect indicator of photosynthetic activity. Students do starch tests on leaves from plants that have been kept under a variety of conditions in order to check parameters for photosynthesis. The starch test can also be used to enable students to discover differences…

  13. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. An apparatus for field measurement of photosynthesis activity in plants using radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Varshney, O.P.

    1994-01-01

    An apparatus was designed for rapid and accurate determination of photosynthesis rates in the field. It was standardised with respect to exposure time during which maize leaf was exposed to 14 CO 2 labelled air and the photosynthesis rates were measured

  15. Promoting the Understanding of Photosynthesis among Elementary School Student Teachers through Text Design

    Science.gov (United States)

    Södervik, Ilona; Mikkilä-Erdmann, Mirjamaija; Vilppu, Henna

    2014-01-01

    The purpose of this study was to investigate elementary school pre-service teachers' understanding of photosynthesis and to examine if a refutational text can support understanding of photosynthesis better than a non-refutational text. A total of 91 elementary school pre-service teachers read either a refutational or a non-refutational text…

  16. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    NARCIS (Netherlands)

    Chen, T.W.; Henke, M.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Wiechers, D.; Kahlen, K.; Stützel, H.

    2014-01-01

    Background and Aims Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different

  17. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Science.gov (United States)

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  18. Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae)

    NARCIS (Netherlands)

    van Oijen, T; van Leeuwe, MA; Gieskes, WWC; de Baar, HJW

    Iron, one of the structural elements of organic components that play an essential role in photosynthesis and nitrogen assimilation of plants, is available at extremely low concentrations in large parts of the Southern Ocean's surface waters. We tested the hypothesis that photosynthesis is the

  19. Phenotypic engineering of photosynthesis related traits in Arabidopsis thaliana using genome interrogation

    NARCIS (Netherlands)

    Tol, Niels van

    2016-01-01

    Photosynthesis is the process that harvests energy from light, and fixes it as chemical energy. It is performed by cyanobacteria, algae, and plants. The overall solar energy to biomass conversion efficiency of plant photosynthesis is widely considered to be very low. Recent models have indicated

  20. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa

    Science.gov (United States)

    Sandoval-Gil, José M.; Marín-Guirao, Lázaro; Ruiz, Juan M.

    2012-12-01

    There are major concerns in the Mediterranean Sea over the effects of hypersaline effluents from seawater desalination plants on seagrass communities. However, knowledge concerning the specific physiological capacities of seagrasses to tolerate or resist salinity increases is still limited. In this study, changes in the photosynthetic characteristics, pigment content, leaf light absorption, growth and survival of the seagrass Cymodocea nodosa were examined across a range of simulated hypersaline conditions. To this end, large plant fragments were maintained under salinities of 37 (control ambient salinity), 39, 41 and 43 (practical salinity scale) in a laboratory mesocosm system for 47 days. At the end of the experimental period, net photosynthesis exhibited a modest, but significant, decline (12-17%) in all tested hypersaline conditions (39-43). At intermediate salinity levels (39-41), the decline in photosynthetic rates was mainly accounted for by substantial increases in respiratory losses (approximately 98% of the control), the negative effects of which on leaf carbon balance were offset by an improved capacity and efficiency of leaves to absorb light, mainly through changes in accessory pigments, but also in optical properties related to leaf anatomy. Conversely, inhibition of gross photosynthesis (by 19.6% compared to the control mean) in the most severe hypersaline conditions (43) reduced net photosynthesis. In this treatment, the respiration rate was limited in order to facilitate a positive carbon balance (similar to that of the control plants) and shoot survival, although vitality would probably be reduced if such metabolic alterations persisted. These results are consistent with the ecology of Mediterranean C. nodosa populations, which are considered to have high morphological and physiological plasticity and a capacity to grow in a wide variety of coastal environments with varying salinity levels. The results from this study support the premise that C

  1. The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions.

    NARCIS (Netherlands)

    Schutter, M.; Velthoven, van B.; Janse, M.; Osinga, R.; Janssen, M.G.J.; Wijffels, R.H.; Verreth, J.A.J.

    2008-01-01

    The relation between irradiance, skeletal growth and net photosynthesis was studied for the scleractinian coral Galaxea fascicularis to provide experimental evidence for mediation of light-enhanced calcification through photosynthesis. The hypothesis was tested that skeletal growth and

  2. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    Science.gov (United States)

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C4 Photosynthesis.

    Science.gov (United States)

    Ishikawa, Noriko; Takabayashi, Atsushi; Noguchi, Ko; Tazoe, Youshi; Yamamoto, Hiroshi; von Caemmerer, Susanne; Sato, Fumihiko; Endo, Tsuyoshi

    2016-10-01

    C 4 photosynthesis exhibits efficient CO 2 assimilation in ambient air by concentrating CO 2 around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) through a metabolic pathway called the C 4 cycle. It has been suggested that cyclic electron flow (CEF) around PSI mediated by chloroplast NADH dehydrogenase-like complex (NDH), an alternative pathway of photosynthetic electron transport (PET), plays a crucial role in C 4 photosynthesis, although the contribution of NDH-mediated CEF is small in C 3 photosynthesis. Here, we generated NDH-suppressed transformants of a C 4 plant, Flaveria bidentis, and showed that the NDH-suppressed plants grow poorly, especially under low-light conditions. CO 2 assimilation rates were consistently decreased in the NDH-suppressed plants under low and medium light intensities. Measurements of non-photochemical quenching (NPQ) of Chl fluorescence, the oxidation state of the reaction center of PSI (P700) and the electrochromic shift (ECS) of pigment absorbance indicated that proton translocation across the thylakoid membrane is impaired in the NDH-suppressed plants. Since proton translocation across the thylakoid membrane induces ATP production, these results suggest that NDH-mediated CEF plays a role in the supply of ATP which is required for C 4 photosynthesis. Such a role is more crucial when the light that is available for photosynthesis is limited and the energy production by PET becomes rate-determining for C 4 photosynthesis. Our results demonstrate that the physiological contribution of NDH-mediated CEF is greater in C 4 photosynthesis than in C 3 photosynthesis, suggesting that the mechanism of PET in C 4 photosynthesis has changed from that in C 3 photosynthesis accompanying the changes in the mechanism of CO 2 assimilation. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. 2011 Photosynthesis Gordon Research Conference & Seminar (June 11-17, 2011, Davidson College, Davidson, North Carolina)

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Krishna Niyogi

    2011-06-17

    Photosynthesis is the biological process that converts solar energy into chemical energy. Elucidation of the mechanisms of photosynthetic energy conversion at a molecular level is fundamentally important for understanding the biology of photosynthetic organisms, for optimizing biological solar fuels production, and for developing biologically inspired approaches to solar energy conversion. The 2011 Gordon Conference on Photosynthesis will present cutting-edge research focusing on the biochemical aspects of photosynthesis, including: (1) structure, assembly, and function of photosynthetic complexes; (2) the mechanism of water splitting by PSII; (3) light harvesting and quenching; (4) alternative electron transport pathways; (5) biosynthesis of pigments and cofactors; and (6) improvement of photosynthesis for bioenergy and food production. Reflecting the interdisciplinary nature of photosynthesis research, a diverse group of invited speakers will represent a variety of scientific approaches to investigate photosynthesis, such as biochemistry, molecular genetics, structural biology, systems biology, and spectroscopy. Highly interactive poster sessions provide opportunities for graduate students and postdocs to present their work and exchange ideas with leaders in the field. One of the highlights of the Conference is a session featuring short talks by junior investigators selected from the poster presentations. The collegial atmosphere of the Photosynthesis GRC, with programmed discussion sessions as well as informal gatherings in the afternoons and evenings, enables participants to brainstorm, exchange ideas, and forge new collaborations. For the second time, this Conference will be immediately preceded by a Gordon Research Seminar on Photosynthesis (June 11-12, 2011, at the same location), with a focus on 'Photosynthesis, Bioenergy, and the Environment.' The GRS provides an additional opportunity for graduate students and postdocs to present their research

  5. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis.

    Science.gov (United States)

    Wali, Mariem; Gunsè, Benet; Llugany, Mercè; Corrales, Isabel; Abdelly, Chedly; Poschenrieder, Charlotte; Ghnaya, Tahar

    2016-08-01

    NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA

  6. The Energy Budget of Steady-State Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, David

    2007-06-30

    Our work developed a unique set of in vivo spectroscopic tools that have allowed us to probe the importance of 1) The effects of storage of proton motive force (pmf ) in the form of both electric field (Δψ) and pH difference (ΔpH); 2) alteration in the stoichiometry of proton pumping to electron transfer at key steps; 3) the influence of changes in the conductivity for proton efflux from the thylakoid of the ATP synthase; 4) the mechanisms of steps of the electron transfer process that pump protons; and 5) the mechanisms by which reactive O{sub 2} is generated as a side reaction to photosynthesis, and how these processes are minimized.

  7. Generalized formulation of free energy and application to photosynthesis

    Science.gov (United States)

    Zhang, Hwe Ik; Choi, M. Y.

    2018-03-01

    The origin of free energy on the earth is solar radiation. However, the amount of free energy it contains has seldom been investigated, because the free energy concept was believed to be inappropriate for a system of photons. Instead, the origin of free energy has been sought in the process of photosynthesis, imposing a limit of conversion given by the Carnot efficiency. Here we present a general formulation, capable of not only assessing accurately the available amount of free energy in the photon gas but also explaining the primary photosynthetic process more succinctly. In this formulation, the problem of "photosynthetic conversion of the internal energy of photons into the free energy of chlorophyll" is replaced by simple "free energy transduction" between the photons and chlorophyll. An analytic expression for the photosynthetic efficiency is derived and shown to deviate from the Carnot efficiency. Some predictions verifiable possibly by observation are also suggested.

  8. Photosynthesis and water relations of mature and resprout chaparral vegetation

    International Nuclear Information System (INIS)

    Hastings, S.J.; Oechel, W.C.

    1982-01-01

    Photosynthesis, leaf conductance, and water potential were measured in the field over time, on mature (ca. 34 years) and resprouts of Arctostaphylos glandulosa Eastw., Quercus dumosa nutt., and Adenostoma fasciculatum H and A. The experimental site is within the US Forest Service's Laguna-Morena Demonstration area of the Cleveland National Forest in southern California. It is characterized as a mixed chaparral community located on an east-facing slope at ca. 1400-meter elevation. Plots of the mature vegetation were marked off (250 meters wide, 675 meters long) and the aboveground biomass removed by either handclearing or controlled burning. Measurements were typically made from sunrise to sunset. A null balance porometer, Sholander pressure bomb, and carbon-14 dioxide were utilized to measure leaf conductance, water potential, and carbon dioxide uptake, respectively

  9. Photosynthesis in chlorolichens: the influence of the habitat light regime.

    Science.gov (United States)

    Piccotto, Massimo; Tretiach, Mauro

    2010-11-01

    The hypothesis that CO(2) gas exchange and chlorophyll a fluorescence (ChlaF) of lichens vary according to the light regimes of their original habitat, as observed in vascular plants, was tested by analysing the photosynthetic performance of 12 populations of seven dorsoventral, foliose lichens collected from open, south-exposed rocks to densely shaded forests. Light response curves were induced at optimum thallus water content and ChlaF emission curves at the species-specific photon flux at which the quantum yield of CO(2) assimilation is the highest and is saturating the photosynthetic process. Photosynthetic pigments were quantified in crude extracts. The results confirm that the maximum rate of gross photosynthesis is correlated with the chlorophyll content of lichens, which is influenced by light as well as by nitrogen availability. Like leaves, shade tolerant lichens emit more ChlaF than sun-loving ones, whereas the photosynthetic quantum conversion is higher in the latter.

  10. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    Science.gov (United States)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  11. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  12. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  13. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    Science.gov (United States)

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  14. [Photosynthesis and transpiration characteristics of female and male Trichosanthes kirilowii Maxim individuals].

    Science.gov (United States)

    Liu, Yun; Zhong, Zhang-cheng; Wang, Xiao-xue; Xie, Jun; Yang, Wen-ying

    2011-03-01

    A field research was conducted on the photosynthesis and transpiration characteristics of dioecious Trichosanthes kirilowii individuals at four key development stages. At vegetative growth stage, the photosynthesis rate, transpiration rate, stomatal conductance, and water use efficiency of male individuals were higher than those of female individuals, and hence, male individuals entered into reproductive growth stage 22 days earlier than female individuals. After entering into reproductive growth stage, male individuals had higher photosynthesis rate, transpiration rate, and stomatal conductance, but slightly lower water use efficiency than female individuals. As the female individuals started to reproductive growth, their photosynthesis rate and water use efficiency were significantly lower, while the transpiration rate and stomatal conductance were higher than those of the male individuals. The effects of climate factors on the growth and development of T. kirilowii mainly occurred at its vegetative growth and early reproductive growth stages, and weakened at later reproductive growth stages. Higher temperature and lower relative humidity benefited the growth and development of T. kirilowii, and illumination could enhance the photosynthesis rate of T. kirilowii, especially its male individuals. After entering into reproductive growth stage, the photosynthesis rate of male individuals increased significantly with increasing illumination, but that of female individuals only had a slight increase, and the transpiration rate of male individuals as well as the photosynthesis rate of female individuals all increased significantly with increasing temperature.

  15. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    Science.gov (United States)

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  16. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  17. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilek Killi

    2017-10-01

    Full Text Available Quinoa (Chenopodium quinoa Willd. has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution.

  18. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment.

    Science.gov (United States)

    Hui, Dafeng; Yu, Chih-Li; Deng, Qi; Dzantor, E Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L; Fay, Philip A; Shen, Weijun; Luo, Yiqi

    2018-01-01

    Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo's growth and biomass, and that high precipitation stimulates its photosynthesis and growth.

  19. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress

    Science.gov (United States)

    Killi, Dilek; Haworth, Matthew

    2017-01-01

    Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. PMID:29039809

  1. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  2. Radio photosynthesis of some 14 C-labelled sugars using the unicellular green alga scenedesmus ACUTUS

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T.; El-Fouly, M.M.; El-Baz, F.K.

    1993-01-01

    Radiosynthesis has been carried out using the unicellular green alga scenedesmus acutus together with Na H 14 CO 3 solution as a carbon-14 source, in an ordinary photosynthesis chamber. The process is more easier and less laborious than the techniques involving the use of gaseous 14 CO 2 in a tight photosynthesis chamber. Uniformly labelled 14 C-glucose, 14 C-fructose and 14 C-sucrose have been prepared with specific activities of several micro curies per milli mole. The specific activity of the products was found to increase on increasing the photosynthesis time or the initial activity of the Na H 14 CO 3 solution used. 3 tabs

  3. Conference Support, 23rd Western Photosynthesis Conference 2014, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, Rebekka [Arizona State Univ., Tempe, AZ (United States)

    2015-01-12

    The Western Photosynthesis Conference is a regional conference that is held on an annual basis to bring together researchers primarily from the Western United States to share their newest research advances on photosynthetic processes. The 23rd conference was focused on both fundamental and more applied research on the biological conversion of solar energy to various energy storage forms. Several particular areas of solar energy conversion were emphasized in this conference (see below). Some of these topics, such as carbon limitations on photosynthesis, biomimicry and phenotyping, have traditionally not been incorporated extensively in the Western Photosynthesis Conference. We found that these topics have substantially broadened of the scope of this meeting.

  4. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  5. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  6. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  7. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    Science.gov (United States)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron

  8. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.

    Science.gov (United States)

    Duan, Zhipeng; Tan, Xiao; Li, Niegui

    2017-10-01

    Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged Q A , a tightly bound one-electron acceptor, and blocked electron flow at Q B , a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm 3 ). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RC si s), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RC si occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.

  9. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    Science.gov (United States)

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  10. Can net photosynthesis and water relations provide a clue on the ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... cuvette of the Licor-6400 portable photosynthesis system (Licor,. Lincoln, NE, USA). The leaf ... We would like to thank KOICA for the financial supoort. We thank the KOTUCOP (Korea-Tunisian Coperation. Project) research ...

  11. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    Science.gov (United States)

    Asko Noormets; Olevi Kull; Anu Sober; Mark E. Kubiske; David F. Karnosky

    2010-01-01

    The effect of elevated CO2 and O3 on apparent quantum yield (ø), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus...

  12. Pattern of photosynthesis in saline indica var. of rice Kala Rata

    International Nuclear Information System (INIS)

    Hegde, B.A.; Joshi, G.V.

    1975-01-01

    The present investigation on Kala Rata deals with the pattern of photosynthesis and the salt stress effect on the photosynthetic efficiency in rice. It is evident from the investigation that chlorophyll synthesis is enhanced with the increasing concentration of NaCl in the bathing medium. However, the efficiency of photosynthesis does not increase with increased chlorophyll production. All ions in leaves can stimulate CO 2 incorporation but inhibit at higher concentration. Analysis of short term products of photosynthesis revealed that aspartate is the major product to be heavily labelled which is evident from autoradiogram. PGA has also appreciable label, where as, malate has the least. It appears therefore, that in rice, both, Calvin as well as C 4 type of pathways are operating. 'Aspartate former' type of rice does not seem to be efficient in photosynthesis as it has C 3 pathway also in operation. (author)

  13. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. UV-B sensitivity of plant photosynthesis as influenced by visible irradiation

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Warner, C.W.

    1982-01-01

    Experiments were made to separate the effects of preconditioning and concomitant visible irradiation and to investigate this with respect to both light-limited and light-saturated photosynthesis. (orig./AJ)

  15. Photosynthesis tests as an alternative to growth tests for hazard assessment of toxicant

    DEFF Research Database (Denmark)

    Petersen, S.; Kusk, Kresten Ole

    2000-01-01

    Acute (3- and 6-h) toxic responses toward Cu, linear alkylbenzene sulfonate (LAS), and tributyltin (TBT) of lightsaturated and unsaturated photosynthesis were investigated for Rhodomonas salina and Skeletonema costatum obtained from exponentially growing batch cultures and from chemostat cultures...

  16. Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern Sweden

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Jonasson, S.

    2007-01-01

    While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ...... ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially, increased frequency of freeze-thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R-2-values ranging from 0.81 to 0.......85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold...

  17. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    Science.gov (United States)

    Chen, Tsu-Wei; Henke, Michael; de Visser, Pieter H B; Buck-Sorlin, Gerhard; Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2014-09-01

    Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (S(L)), mesophyll (M(L)), biochemical (B(L)) and light (L(L)) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. In the virtual cucumber canopy, B(L) and L(L) were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (S(L) + M(L)) contributed Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55%. Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to

  18. Inhibition of photosynthesis by carbon monoxide and suspension of the carbon monoxide inhibition by light

    Energy Technology Data Exchange (ETDEWEB)

    Gewitz, H S; Voelker, W

    1963-08-01

    The experimental subject was the autotroph Chlorella pyrenoidosa. It was found that growth conditions determine whether the alga is inhibited by carbon monoxide or not. Respiration and photosynthesis are inhibited by carbon monoxide if the cells have grown rapidly under high light intensities. The inhibition of respiration and photosynthesis found in such cells is completely reversible. The inhibition depends not only on carbon monoxide pressure, but also on the oxygen pressure prevailing at the same time. 5 references, 1 figure, 3 tables.

  19. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  20. Understanding of photosynthesis among students of biology and non-biology programmes of study

    OpenAIRE

    Lekan, Erika

    2016-01-01

    Photosynthesis is one of the most important processes on Earth, thus knowing at least its basic principles is essential. In Slovenia, the students become acquainted with these principles in the fifth form of elementary school. Due to the complexity of the photosynthesis process, the students hold misconceptions about it since the very beginning of the learning process. Due to several factors and reasons, these misconceptions persist throughout the secondary school and university studies. ...

  1. Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis.

    Directory of Open Access Journals (Sweden)

    Tanai Cardona

    Full Text Available Photosynthesis originated in the domain Bacteria billions of years ago; however, the identity of the last common ancestor to all phototrophic bacteria remains undetermined and speculative. Here I present the evolution of BchF or 3-vinyl-bacteriochlorophyll hydratase, an enzyme exclusively found in bacteria capable of synthetizing bacteriochlorophyll a. I show that BchF exists in two forms originating from an early divergence, one found in the phylum Chlorobi, including its paralogue BchV, and a second form that was ancestral to the enzyme found in the remaining anoxygenic phototrophic bacteria. The phylogeny of BchF is consistent with bacteriochlorophyll a evolving in an ancestral phototrophic bacterium that lived before the radiation event that gave rise to the phylum Chloroflexi, Chlorobi, Acidobacteria, Proteobacteria, and Gemmatimonadetes, but only after the divergence of Type I and Type II reaction centers. Consequently, it is suggested that the lack of phototrophy in many groups of extant bacteria is a derived trait.

  2. The Effects of Cold Stress on Photosynthesis in Hibiscus Plants

    Science.gov (United States)

    Paredes, Miriam; Quiles, María José

    2015-01-01

    The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII. PMID:26360248

  3. Redesigning photosynthesis to sustainably meet global food and bioenergy demand

    Science.gov (United States)

    Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean; Barkan, Alice; Blankenship, Robert E.; Bock, Ralph; Croce, Roberta; Hanson, Maureen R.; Hibberd, Julian M.; Long, Stephen P.; Moore, Thomas A.; Moroney, James; Niyogi, Krishna K.; Parry, Martin A. J.; Peralta-Yahya, Pamela P.; Prince, Roger C.; Redding, Kevin E.; Spalding, Martin H.; van Wijk, Klaas J.; Vermaas, Wim F. J.; von Caemmerer, Susanne; Weber, Andreas P. M.; Yeates, Todd O.; Yuan, Joshua S.; Zhu, Xin Guang

    2015-01-01

    The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. PMID:26124102

  4. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  5. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  6. Overview: early history of crop growth and photosynthesis modeling.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2011-02-01

    As in industrial and engineering systems, there is a need to quantitatively study and analyze the many constituents of complex natural biological systems as well as agro-ecosystems via research-based mechanistic modeling. This objective is normally addressed by developing mathematically built descriptions of multilevel biological processes to provide biologists a means to integrate quantitatively experimental research findings that might lead to a better understanding of the whole systems and their interactions with surrounding environments. Aided with the power of computational capacities associated with computer technology then available, pioneering cropping systems simulations took place in the second half of the 20th century by several research groups across continents. This overview summarizes that initial pioneering effort made to simulate plant growth and photosynthesis of crop canopies, focusing on the discovery of gaps that exist in the current scientific knowledge. Examples are given for those gaps where experimental research was needed to improve the validity and application of the constructed models, so that their benefit to mankind was enhanced. Such research necessitates close collaboration among experimentalists and model builders while adopting a multidisciplinary/inter-institutional approach. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  8. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi.

    Science.gov (United States)

    Ben-Haim, Y; Banim, E; Kushmaro, A; Loya, Y; Rosenberg, E

    1999-06-01

    Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.

  9. O2-insensitive photosynthesis in C3 plants: its occurrence and a possible explanation

    International Nuclear Information System (INIS)

    Sharkey, T.D.

    1985-01-01

    Leaves of C 3 plants which exhibit a normal O 2 inhibition of CO 2 fixation at less than saturating light intensity were found to exhibit O 2 -insensitive photosynthesis at high light. This behavior was observed in Phaseolus vulgaris L., Xanthium strumarium L., and Scrophularia desertorum (Shaw.) Munz. O 2 -insensitive photosynthesis has been reported in nine other C 3 species and usually occurred when the intercellular CO 2 pressure was about double the normal pressure. A lack of O 2 inhibition of photosynthesis was always accompanied by a failure of increased CO 2 pressure to stimulate photosynthesis to the expected degree. O 2 -insensitive photosynthesis also occurred after plants had been water stressed. Under such conditions, however, photosynthesis became O 2 and CO 2 insensitive at physiological CO 2 pressures. Postillumination CO 2 exchange kinetics showed that O 2 and CO 2 insensitivity was not the result of elimination of photorespiration. It is proposed that O 2 and CO 2 insensitivity occurs when the concentration of phosphate in the chloroplast stroma cannot be both high enough to allow photophosphorylation and low enough to allow starch and sucrose synthesis at the rates required by the rest of the photosynthetic component processes. Under these conditions, the energy diverted to photorespiration does not adversely affect the potential for CO 2 assimilation

  10. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  11. Measurement of solar spectra relating to photosynthesis and solar cells: an inquiry lab for secondary science.

    Science.gov (United States)

    Ruggirello, Rachel M; Balcerzak, Phyllis; May, Victoria L; Blankenship, Robert E

    2012-07-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar cells. This laboratory was used with high-school science teachers who then took this experience back to their classrooms. During this exercise, teachers used an economical spectroradiometer to measure the solar spectrum and relate this to photosynthetic light absorption by determining the quality of light beneath trees. Following this investigation, teachers learned about the plant-inspired dye-sensitized solar cells and constructed one. To connect their light quality investigation to the efficiency of photosynthesis and solar cells, teachers then collected data at locations with varying quality and intensity of light. In sum, this investigation provides a crucial connection between photosynthesis and cutting edge research on solar energy technologies. Our learning experience provides a new instructional model for understanding a little investigated aspect of photosynthesis and connects to authentic scientific research. Copyright © 2012 Wiley Periodicals, Inc.

  12. Photosynthesis and metabolite responses of Isatis indigotica Fortune to elevated [CO2

    Institute of Scientific and Technical Information of China (English)

    Ping Li; Hongying Li; Yuzheng Zong; Frank Yonghong Li; Yuanhuai Han; Xingyu Hao

    2017-01-01

    Climate change is affecting global crop productivity, food quality, and security. However, few studies have addressed the mechanism by which elevated CO2 may affect the growth of medicinal plants. Isatis indigotica Fortune is a widely used Chinese medicinal herb with multiple pharmacological properties. To investigate the physiological mechanism of I. indigotica response to elevated [CO2], plants were grown at either ambient [CO2] (385μmol mol?1) or elevated [CO2] (590μmol mol?1) in an open-top chamber (OTC) experimental facility in North China. A significant reduction in transpiration rate (Tr) and stomatal conductance (gs) and a large increase in water-use efficiency contributed to an increase in net photosynthetic rate (Pn) under elevated [CO2] 76 days after sowing. Leaf non-photochemical quenching (NPQ) was decreased, so that more energy was used in effective quantum yield of PSII photochemistry (ΦPSI ) under elevated [CO2]. High ΦPSI , meaning high electron transfer efficiency, also increased Pn. The [CO2]-induced increase in photosynthesis significantly increased biomass by 36.8%. Amounts of metabolic compounds involved in sucrose metabolism, pyrimidine metabolism, flavonoid biosynthesis, and other processes in leaves were reduced under elevated [CO2]. These results showed that the fertilization effect of elevated [CO2] is conducive to increasing dry weight but not secondary metabolism in I. indigotica.

  13. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization

    Directory of Open Access Journals (Sweden)

    Elcio Ferreira dos Santos

    2013-10-01

    Full Text Available Few studies in Brazil have addressed the need for micronutrients of physic nut focusing on physiological responses, especially in terms of photosynthesis. The objective of this study was to evaluate the effects of omission of boron (B, copper (Cu, iron (Fe, manganese (Mn and zinc (Zn on Jatropha curcas L.. The experimental design was a randomized block with four replications. The treatments were complete solution (control and solution without B, Cu, Fe, Mn, and Zn. We evaluated the chlorophyll content (SPAD units, photosynthetic rate, dry matter production and accumulation of micronutrients in plants, resulting from different treatments. The first signs of deficiency were observed for Fe and B, followed by Mn and Zn, while no symptoms were observed for Cu deficiency. The micronutrient omission reduced the dry matter yield, chlorophyll content and photosynthetic rate of the plants differently for each omitted nutrient. It was, however, the omission of Fe that most affected the development of this species in all parameters evaluated. The treatments negatively affected the chlorophyll content, evaluated in SPAD units, and the photosynthetic rate, except for the omission of B. However this result was probably due to the concentration effect, since there was a significant reduction in the dry matter production of B-deficient plants.

  14. Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest.

    Science.gov (United States)

    Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen

    2017-07-01

    Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.

  15. An insect countermeasure impacts plant physiology: midrib vein cutting, defoliation and leaf photosynthesis.

    Science.gov (United States)

    Delaney, Kevin J; Higley, Leon G

    2006-07-01

    One type of specialised herbivory receiving little study even though its importance has frequently been mentioned is vein cutting. We examined how injury to a leaf's midrib vein impairs gas exchange, whether impairment occurs downstream or upstream from injury, duration of impairment, compared the severity of midrib injury with non-midrib defoliation, and modelled how these two leaf injuries affect whole-leaf photosynthesis. Leaf gas exchange response to midrib injury was measured in five Asclepiadaceae (milkweed), one Apocynaceae (dogbane), one Polygonaceae and one Fabaceae species, which have been observed or reported to have midrib vein cutting injury in their habitats. Midrib vein injury impaired several leaf gas exchange parameters, but only downstream (distal) from the injury location. The degree of gas exchange impairment from midrib injury was usually more severe than from manually imposed and actual insect defoliation (non-midrib), where partial recovery occurred after 28 d in one milkweed species. Non-midrib tissue defoliation reduced whole-leaf photosynthetic activity mostly by removing photosynthetically active tissue, while midrib injury was most severe as the injury location came closer to the petiole. Midrib vein cutting has been suggested to have evolved as a countermeasure to deactivate induced leaf latex or cardenolide defences of milkweeds and dogbanes, yet vein cutting effects on leaf physiology seem more severe than the non-midrib defoliation the defences evolved to deter.

  16. Physiological and photosynthesis response of popcorn inbred seedings to waterlogging stress

    International Nuclear Information System (INIS)

    Zhu, M.; Wang, J.; Li, F.; Shi, Z.

    2015-01-01

    Waterlogging is one of the most severe global problems, which affects crop growth and yield worldwide, especially in the low-lying rainfed areas, and irrigated and heavy rainfall environment. Our objective was to study the physiological and photosynthetic characteristics of two popcorn genotypes under waterlogging conditions. The experiment was carried out in pots with two contrasting inbred lines differing in waterlogging tolerance: Q5 (tolerant) and Q10 (sensitive). Leaf gas exchange, oxidative stress, and chlorophyll (Chl) fluorescence were measured at 0, 2, 4, and 6d in the control and waterlogged plants. A decrease in net photosynthesis, stomatal conductance, and transpiration was observed in both genotypes. The waterlogging-sensitive plants showed reduced chlorophyll fluorescence, chlorophyll content and increased activity of peroxidase and polyphenol oxidase. Response curves for the relationship between photosynthetically active radiation (PAR) and net photosynthetic rate (P /subN/ ) for waterlogged plants were similar in both genotypes. The different physiological and photosynthetic response in the two popcorn inbred lines might be responsible for higher tolerance of Q5 than Q10. These results suggest that Q5 popcorn inbred lines are a source of genetic diversity for important traits such as P /subN/ and WUE. (author)

  17. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni

    International Nuclear Information System (INIS)

    Macinnis-Ng, Catriona M.O.; Ralph, Peter J.

    2003-01-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil + dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil + 0.05% dispersant and 0.1% oil + 0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and ΔF/Fm ' respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil + dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil + dispersant mixture. Despite an initial decline in ΔF/Fm ' , in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis

  18. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.

    Science.gov (United States)

    Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter

    2006-01-01

    The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.

  19. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni.

    Science.gov (United States)

    Macinnis-Ng, Catriona M O; Ralph, Peter J

    2003-11-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil+dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil+0.05% dispersant and 0.1% oil+0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and DeltaF/Fm' respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil+dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil+dispersant mixture. Despite an initial decline in DeltaF/Fm', in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis.

  20. Misconception of biology education student of teacher training and education of Sriwijaya University to the concept of photosynthesis and respiration

    Science.gov (United States)

    Susanti, Rahmi

    2018-05-01

    This study aimed to gain an overview of misconceptions on the concept of photosynthesis and respiration. The study involved 58 students from Biology Education of Sriwijaya University. Collecting data used written test of 16 questions, which are 10 questions of multiple choice and 6 of choice with reason. The results showed that:photosynthesis occurs continuously (37.9%), energy used for photosynthesis are light and heat energy (34.5%), plants take CO2to respiration (47%), plants carry on respiration in the absence of light for photosynthesis (22.4%), respiration in plants occurs only in leaf cells (76.4%), and only animals that take O2 of photosynthesis to respiration (68.9%). The conclusion: 1) on the concept of photosynthesis is still prevailing misconceptions about the concept of the place and time of the occurrence of photosynthesis in plants, the role of the sun in photosynthesis, energy is required in the form of photosynthesis, and the role of photosynthesis for the plant. 2) on the concept of respiration is still prevailing misconceptions about the place of the respiration in plants, gas necessary for respiration of plants, and the plants perform respiration time, as well as the cycle of CO2 and O2 that occurs in nature.

  1. Determination of carbon-reduction-cycle intermediates in leaves of Arbutus unedo L. suffering depressions in photosynthesis after application of abscisic acid or exposure to dry air.

    Science.gov (United States)

    Loske, D; Raschke, K

    1988-02-01

    Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the "midday depression" of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air.

  2. Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of exitation energy after mild heat treatment of barley leaves

    International Nuclear Information System (INIS)

    Bukhov, N.G.; Boucher, N.; Carpentier, R.

    1998-01-01

    The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (F m - F o )/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat-treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH-dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far-red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non-photochemical quenching of excitation energy. (author)

  3. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    Science.gov (United States)

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  4. The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Tang, Jennie Y; Zielinski, Raymond E; Zangerl, Arthur R; Crofts, Antony R; Berenbaum, May R; Delucia, Evan H

    2006-01-01

    The effect of different feeding behaviours of 1st and 4th instar Trichoplusia ni on photosynthesis of Arabidopsis thaliana var. Columbia was characterized using spatially resolved measurements of fluorescence and leaf temperature, as well as leaf gas exchange,. First instars made small holes with a large perimeter-to-area ratio and avoided veins, while 4th instars made large holes with a low perimeter-to-area ratio and consumed veins. Herbivory by 1st instars reduced photosynthesis more strongly in the remaining leaf tissue than that by 4th instars. Photosystem II operating efficiency (PhiPSII) was correlated with the rate of CO2 exchange, and reductions in PhiPSII in areas around the missing tissues contributed to a 15.6% reduction in CO2 assimilation on the first day following removal of 1st instars. The corresponding increases in non-photochemical quenching and greater rates of non-stomatal water loss from these regions, as well as the partial reversal of low PhiPSII by increasing the ambient CO2 concentration, suggests that localized water stress and reduced stomatal conductance contributed to the inhibition of photosynthesis. Damage by 1st but not 4th instars reduced the maximum quantum efficiency of photosystem II photochemistry (Fv/Fm) by 4-8%. While herbivory by both 1st and 4th instars increased dark respiration rates, the rates were too low to have contributed to the observed reductions in CO2 exchange. The small holes produced by 1st instars may have isolated patches of tissue from the vascular system thereby contributing to localized water stress. Since neither 1st nor 4th instar herbivory had a detectable effect on the expression of the Rubisco small subunit gene, the observed differences cannot be attributed to changes in expression of this gene. The mode of feeding by different instars of T. ni determined the photosynthetic response to herbivory, which appeared to be mediated by the level of water stress associated with herbivore damage.

  5. A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field

    International Nuclear Information System (INIS)

    Allen, D.J.; Nogues, S.; Morison, J.I.L.; Greenslade, P.D.; McLeod, A.R.; Baker, N.R.

    1999-01-01

    It has been suggested that field experiments which increase UV-B irradiation by a fixed amount irrespective of ambient light conditions (‘square-wave’), may overestimate the response of photosynthesis to UV-B irradiation. In this study, pea (Pisum sativum L.) plants were grown in the field and subjected to a modulated 30% increase in ambient UK summer UV-B radiation (weighted with an erythemal action spectrum) and a mild drought treatment. UV-A and ambient UV control treatments were also studied. There were no significant effects of the UV-B treatment on the in situ CO 2 assimilation rate throughout the day or on the light-saturated steady-state photosynthesis. This was confirmed by an absence of UV-B effects on the major components contributing to CO 2 assimilation; photosystem II electron transport, ribulose 1,5-bisphosphate regeneration, ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation, and stomatal conductance. In addition to the absence of an effect on photosynthetic activities, UV-B had no significant impact on plant biomass, leaf area or partitioning. UV-B exposure increased leaf flavonoid content. The UV-A treatment had no observable effect on photosynthesis or productivity. Mild drought resulted in reduced biomass, a change in partitioning away from shoots to roots whilst maintaining leaf area, but had no observable effect on photosynthetic competence. No UV-B and drought treatment interactions were observed on photosynthesis or plant biomass. In conclusion, a 30% increase in UV-B had no effects on photosynthetic performance or productivity in well-watered or droughted pea plants in the field. (author)

  6. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees

    Directory of Open Access Journals (Sweden)

    Alberto eGonzález

    2014-10-01

    Full Text Available In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control, with OC kappa at 1 mg mL-1, or treated with inhibitors of NAD(PH, ascorbate (ASC and glutathione (GSH syntheses and thioredoxin reductase (TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS, adenosine 5´-phosphosulfate reductase (APR, involved in C, N and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism and growth in Eucalyptus trees.

  7. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Moenne, Fabiola; Gómez, Melissa; Sáez, Claudio A; Contreras, Rodrigo A; Moenne, Alejandra

    2014-01-01

    In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.

  8. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    Science.gov (United States)

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Photosynthesis efficiency for different wavelengths; Fotosynthese-efficiency bij verschillende golflengten

    Energy Technology Data Exchange (ETDEWEB)

    Snel, J.F.H.; Meinen, E.; Bruins, M.A.; Van Ieperen, W.; Hogewoning, S.W.; Marcelis, L.F.M. [Wageningen UR Glastuinbouw, Wageningen (Netherlands)

    2012-04-15

    LED lighting has recently been introduced into Dutch horticulture. LED development so far indicates that in the near future LED's will be more energy efficient than high pressure sodium lamps. Crop light interception and photosynthesis efficiency are wavelength dependent. Therefore, LED colours for maximum crop photosynthesis, growth and development should be identified. Wageningen UR has investigated light interception and photosynthesis at different wavelengths for tomato, cucumber and rose. Measuring protocols and equipment were developed for leaf photosynthesis measurements in the laboratory and in greenhouses. A crop simulation model was used for up-scaling the leaf level results to crop level photosynthesis. For the vegetable crops the photosynthesis spectra are very similar to the generalised photosynthesis spectrum. Red light is most efficient for leaf photosynthesis. Light from red (ca. 645nm) LED's was maximally 13% more efficient than High Pressure Sodium light. For reddish leaves of the rose cultivar Prestige, red LED light was up to 35% more efficient. These figures apply to the momentary efficiency of leaf photosynthesis at 100 {mu}mol.m{sup -2}.s{sup -1} (PAR) and suggest that use of red light can lead to higher photosynthesis, especially for certain rose cultivars [Dutch] LED verlichting heeft zijn intrede gedaan in de Nederlandse glastuinbouw. De LED ontwikkeling laat zien dat in de nabije toekomst LED's efficiënter zijn dan SON-T verlichting. Lichtonderschepping en fotosynthese efficiëntie zijn afhankelijk van de kleur van het licht. Voor optimale fotosynthese, groei en ontwikkeling zouden de beste LED kleuren uitgezocht moeten worden. Wageningen UR heeft lichtonderschepping en fotosynthese bij verschillende lichtkleuren onderzocht bij tomaat, komkommer en roos. Protocollen en apparatuur werden ontwikkeld voor meting van bladfotosynthese en lichtonderschepping in het laboratorium en in de kas. Met een gewassimulatiemodel werd de

  10. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    Science.gov (United States)

    Johnson, J. E.; Webb, S.; Thomas, K. S.; Ono, S.; Kirschvink, J. L.; Fischer, W. W.

    2012-12-01

    The evolution of oxygenic photosynthesis was a singularity that fundamentally transformed our planet's core biogeochemical cycles and changed the redox structure of Earth's surface, crust, and mantle. To date, understanding the evolution of this molecular machinery has largely been derived from comparative biology. Several biochemical innovations enabled water-splitting, including a central photosynthetic pigment with a higher redox potential and coupled photosystems. However the critical photochemical invention was the water oxidizing complex (WOC) of photosystem II, a cubane cluster of four redox-active Mn atoms and a Ca atom bound by oxo bridges, that couple the single electron photochemistry of the photosystem to the four-electron oxidation of water to O2. Transitional forms of the WOC have been postulated, including an Mn-containing catalase-like peptide using an H2O2 donor, or uptake and integration of environmental Mn-oxides. One attractive hypothesis from the perspective of modern photo-assembly of the WOC posits an initial Mn(II)-oxidizing photosystem as a precursor to the WOC (Zubay, 1996; Allen and Martin, 2007). To test these hypotheses, we studied the behavior of the ancient Mn cycle captured by 2415 ± 6 Ma scientific drill cores retrieved by the Agouron Drilling Project through the Koegas Subgroup in Griqualand West, South Africa. This succession contains substantial Mn-enrichments (up to 17 wt.% in bulk). To better understand the petrogenesis and textural context of these deposits, we employed a novel X-ray absorption spectroscopy microprobe to make redox maps of ultra-thin sample sections at a 2μm scale. Coupled to light and electron microscopy and C isotopic measurements, we observe that all of the Mn is present as Mn(II), contained within carbonate minerals produced from early diagenetic reduction of Mn-oxide phases with organic matter. To assay the environmental oxidant responsible for the production of the Mn-oxides we examined two independent

  11. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2018-01-01

    Full Text Available Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead

  12. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  13. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  14. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K + . Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na + and K + , and the expression of several genes associated with photosynthesis ( RppsbA, RppsbD, RprbcL , and RprbcS ) and genes coding for aquaporins or membrane transport proteins involved in K + and/or Na + uptake, translocation, or compartmentalization homeostasis ( RpSOS1, RpHKT1, RpNHX1 , and RpSKOR ) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K + content in plants, but evidently reduced the Na + content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na + in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes ( RppsbA, RppsbD , and RprbcL ) in leaves, and three genes ( RpSOS1, RpHKT1 , and RpSKOR ) encoding membrane transport proteins involved in K + /Na + homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial

  15. Dorsoventral variations in dark chilling effects on photosynthesis and stomatal function in Paspalum dilatatum leaves.

    Science.gov (United States)

    Soares-Cordeiro, Ana Sofia; Driscoll, Simon P; Arrabaça, Maria Celeste; Foyer, Christine H

    2011-01-01

    The effects of dark chilling on the leaf-side-specific regulation of photosynthesis were characterized in the C(4) grass Paspalum dilatatum. CO(2)- and light-response curves for photosynthesis and associated parameters were measured on whole leaves and on each leaf side independently under adaxial and abaxial illumination before and after plants were exposed to dark chilling for one or two consecutive nights. The stomata closed on the adaxial sides of the leaves under abaxial illumination and no CO(2) uptake could be detected on this surface. However, high rates of whole leaf photosynthesis were still observed because CO(2) assimilation rates were increased on the abaxial sides of the leaves under abaxial illumination. Under adaxial illumination both leaf surfaces contributed to the inhibition of whole leaf photosynthesis observed after one night of chilling. After two nights of chilling photosynthesis remained inhibited on the abaxial side of the leaf but the adaxial side had recovered, an effect related to increased maximal ribulose-1,5-bisphosphate carboxylation rates (V(cmax)) and enhanced maximal electron transport rates (J(max)). Under abaxial illumination, whole leaf photosynthesis was decreased only after the second night of chilling. The chilling-dependent inhibition of photosynthesis was located largely on the abaxial side of the leaf and was related to decreased V(cmax) and J(max), but not to the maximal phosphoenolpyruvate carboxylase carboxylation rate (V(pmax)). Each side of the leaf therefore exhibits a unique sensitivity to stress and recovery. Side-specific responses to stress are related to differences in the control of enzyme and photosynthetic electron transport activities.

  16. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.

    Science.gov (United States)

    Reed, Charlotte C; Loik, Michael E

    2016-05-01

    Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.

  17. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  18. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    Science.gov (United States)

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low

  19. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.

    Science.gov (United States)

    Boesgaard, Kristine S; Albert, Kristian R; Ro-Poulsen, Helge; Michelsen, Anders; Mikkelsen, Teis N; Schmidt, Niels M

    2012-08-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic. Copyright © Physiologia Plantarum 2011.

  20. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    Science.gov (United States)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  1. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    International Nuclear Information System (INIS)

    Kawai, H; Yasui, S; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO 2 is changed to O 2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  2. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency.

    Science.gov (United States)

    Jákli, Bálint; Tavakol, Ershad; Tränkner, Merle; Senbayram, Mehmet; Dittert, Klaus

    2017-02-01

    Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO 2 assimilation (A N ) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO 2 fixation or from a limitation to CO 2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L.) under K deficiency and PEG- induced water deficit were quantified and their implications on plant- and leaf-scale WUE (WUE P , WUE L ) were evaluated. Results show that neither maximum quantum use efficiency (F v /F m ) nor in-vivo RubisCo activity were directly affected by K deficiency and that the observed impairment of A N was primarily due to decreased CO 2 mesophyll conductance (g m ). K deficiency additionally impaired leaf area development which, together with reduced A N , resulted in inhibition of plant growth and a reduction of WUE P . Contrastingly, WUE L was not affected by K supply which indicated no inhibition of stomatal control. PEG-stress further impeded A N by stomatal closure and resulted in enhanced WUE L and high oxidative stress. It can be concluded from this study that reduction of g m is a major response of leaves to K deficiency, possibly due to changes in leaf anatomy, which negatively affects A N and contributes to the typical symptoms like oxidative stress, growth inhibition and reduced WUE P . Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Interspecific Interactions and the Scope for Parent-Offspring Conflict: High Mite Density Temporarily Changes the Trade-Off between Offspring Size and Number in the Burying Beetle, Nicrophorus vespilloides.

    Directory of Open Access Journals (Sweden)

    Ornela De Gasperin

    Full Text Available Parents have a limited amount of resources to invest in reproduction and commonly trade-off how much they invest in offspring size (or quality versus brood size. A negative relationship between offspring size and number has been shown in numerous taxa and it underpins evolutionary conflicts of interest between parents and their young. For example, previous work on vertebrates shows that selection favours mothers that produce more offspring, at the expense of individual offspring size, yet favours offspring that have relatively few siblings and therefore attain a greater size at independence. Here we analyse how this trade-off is temporarily affected by stochastic variation in the intensity of interspecific interactions. We examined the effect of the mite Poecilochirus carabi on the relationship between offspring size and number in the burying beetle, Nicrophorus vespilloides. We manipulated the initial number of mites in the reproductive event (by introducing either no mites, 4 mites, 10 mites, or 16 mites, and assessed the effect on the brood. We found a similar trade-off between offspring size and number in all treatments, except in the '16 mite' treatment where the correlation between offspring number and size flattened considerably. This effect arose because larvae in small broods failed to attain a high mass by dispersal. Our results show that variation in the intensity of interspecific interactions can temporarily change the strength of the trade-off between offspring size and number. In this study, high densities of mites prevented individual offspring from attaining their optimal weight, thus potentially temporarily biasing the outcome of parent-offspring conflict in favour of parents.

  4. Interspecific Interactions and the Scope for Parent-Offspring Conflict: High Mite Density Temporarily Changes the Trade-Off between Offspring Size and Number in the Burying Beetle, Nicrophorus vespilloides.

    Science.gov (United States)

    De Gasperin, Ornela; Kilner, Rebecca M

    2016-01-01

    Parents have a limited amount of resources to invest in reproduction and commonly trade-off how much they invest in offspring size (or quality) versus brood size. A negative relationship between offspring size and number has been shown in numerous taxa and it underpins evolutionary conflicts of interest between parents and their young. For example, previous work on vertebrates shows that selection favours mothers that produce more offspring, at the expense of individual offspring size, yet favours offspring that have relatively few siblings and therefore attain a greater size at independence. Here we analyse how this trade-off is temporarily affected by stochastic variation in the intensity of interspecific interactions. We examined the effect of the mite Poecilochirus carabi on the relationship between offspring size and number in the burying beetle, Nicrophorus vespilloides. We manipulated the initial number of mites in the reproductive event (by introducing either no mites, 4 mites, 10 mites, or 16 mites), and assessed the effect on the brood. We found a similar trade-off between offspring size and number in all treatments, except in the '16 mite' treatment where the correlation between offspring number and size flattened considerably. This effect arose because larvae in small broods failed to attain a high mass by dispersal. Our results show that variation in the intensity of interspecific interactions can temporarily change the strength of the trade-off between offspring size and number. In this study, high densities of mites prevented individual offspring from attaining their optimal weight, thus potentially temporarily biasing the outcome of parent-offspring conflict in favour of parents.

  5. The Effect of Phase-to-earth Faults on the Operating Conditions of a Separated 110 kV Grid Normally Operated with Effectively Earthed Neutral, and Temporarily Supplied from a Compensated 110 kV Grid

    Directory of Open Access Journals (Sweden)

    Wilhelm Rojewski

    2015-06-01

    Full Text Available The paper discusses the interoperability of the German compensated 110 kV grid and the Polish effectively earthed 110 kV grid. It is assumed that an area of one grid, separated from its power system, will be temporarily supplied from the other grid in its normal regime. Reference is made to the risks associated with phase-to-earth faults in grids so interconnected. Particular attention is paid to the working conditions of surge arresters and voltage transformers in the Polish 110 kV grid deprived of its neutral earthing when supplied from the German grid.

  6. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  7. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas P M; Westhoff, Peter; Gowik, Udo

    2014-06-16

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.

  8. Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis

    International Nuclear Information System (INIS)

    Jensen, Poul Erik; Leister, Dario

    2014-01-01

    One of the fascinating characteristics of photosynthesis is its capacity for repair, self-renewal, and energy storage within chemical bonds. Given the evolutionary history of plant photosynthesis and the patchwork nature of many of its components, it is safe to assume that the light reactions of plant photosynthesis can be improved by genetic engineering (Leister, 2012). The evolutionary precursor of chloroplasts was a microorganism whose biochemistry was very similar to that of present-day cyanobacteria. Many cyanobacterial species are easy to manipulate genetically and grow robustly in liquid cultures that can be easily scaled up into photobioreactors. Therefore, cyanobacteria such as Synechocystis sp. PCC 6803 (hereafter “Synechocystis”) have widely been used for decades as model systems to study the principles of photosynthesis (Table 1). Indeed, genetic engineering based on homologous recombination is well-established in Synechocystis. Moreover, new genetic engineering toolkits, including marker-less gene deletion and replacement strategies needing only a single transformation step (Viola et al., 2014) and novel approaches for chromosomal integration and expression of synthetic gene operons (Bentley et al., 2014), allow for large-scale replacement and/or integration of dozens of genes in reasonable time frames. This makes Synechocystis a very attractive basis for the experimental modification of important processes like photosynthesis, and it also suggests innovative ways of improving modules of related eukaryotic pathways, among them the combination of cyanobacterial and eukaryotic elements using the tools of synthetic biology.

  9. NO MECHANISTIC DEPENDENCE OF PHOTOSYNTHESIS ON CALCIFICATION IN THE COCCOLITHOPHORID EMILIANIA HUXLEYI (HAPTOPHYTA)(1).

    Science.gov (United States)

    Leonardos, Nikos; Read, Betsy; Thake, Brenda; Young, Jeremy R

    2009-10-01

    There is still considerable uncertainty about the relationship between calcification and photosynthesis. It has been suggested that since calcification in coccolithophorids is an intracellular process that releases CO2 , it enhances photosynthesis in a manner analogous to a carbon-concentrating mechanism (CCM). The ubiquitous, bloom-forming, and numerically abundant coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler was studied in nutrient-replete, pH and [CO2 ] controlled, continuous cultures (turbidostats) under a range of [Ca(2+) ] from 0 to 9 mM. We examined the long-term, fully acclimated photosynthesis-light responses and analyzed the crystalline structure of the coccoliths using SEM. The E. huxleyi cells completely lost their coccosphere when grown in 0 [Ca(2+) ], while thin, undercalcified and brittle coccoliths were evident at 1 mM [Ca(2+) ]. Coccoliths showed increasing levels of calcification with increasing [Ca(2+) ]. More robust coccoliths were noted, with no discernable differences in coccolith morphology when the cells were grown in either 5 or 9 mM (ambient seawater) [Ca(2+) ]. In contrast to calcification, photosynthesis was not affected by the [Ca(2+) ] in the media. Cells showed no correlation of their light-dependent O2 evolution with [Ca(2+) ], and in all [Ca(2+) ]-containing turbidostats, there were no significant differences in growth rate. The results show unequivocally that as a process, photosynthesis in E. huxleyi is mechanistically independent from calcification. © 2009 Phycological Society of America.

  10. Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.

    Science.gov (United States)

    Chu, Shanshan; Li, Hongyan; Zhang, Xiangqian; Yu, Kaiye; Chao, Maoni; Han, Suoyi; Zhang, Dan

    2018-06-06

    Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf mesophyll and chloroplast were severely damaged after low-P stress. Approximately 55 protein spots showed changes under low-P condition by mass spectrometry, of which 17 were involved in various photosynthetic processes. Further analysis revealed the depression of photosynthesis caused by low-P stress mainly involves the regulation of leaf structure, adenosine triphosphate (ATP) synthesis, absorption and transportation of CO₂, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. In summary, our findings indicated that the existence of a stringent relationship between P supply and the genomic control of photosynthesis in soybean. As an important strategy to protect soybean photosynthesis, P could maintain the stability of cell structure, up-regulate the enzymes’ activities, recover the process of photosystem II (PSII), and induce the expression of low-P responsive genes and proteins.

  11. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  12. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas PM; Westhoff, Peter; Gowik, Udo

    2014-01-01

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3–C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect. DOI: http://dx.doi.org/10.7554/eLife.02478.001 PMID:24935935

  13. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis.

    Science.gov (United States)

    Prins, Anneke; Orr, Douglas J; Andralojc, P John; Reynolds, Matthew P; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-03-01

    Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis-Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis.

    Science.gov (United States)

    Munekage, Yuri Nakajima; Taniguchi, Yukimi Y

    2016-05-01

    C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  16. Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Poul Erik [Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen (Denmark); Leister, Dario, E-mail: leister@lmu.de [Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen (Denmark); Plant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-University Munich, Munich (Germany)

    2014-04-21

    One of the fascinating characteristics of photosynthesis is its capacity for repair, self-renewal, and energy storage within chemical bonds. Given the evolutionary history of plant photosynthesis and the patchwork nature of many of its components, it is safe to assume that the light reactions of plant photosynthesis can be improved by genetic engineering (Leister, 2012). The evolutionary precursor of chloroplasts was a microorganism whose biochemistry was very similar to that of present-day cyanobacteria. Many cyanobacterial species are easy to manipulate genetically and grow robustly in liquid cultures that can be easily scaled up into photobioreactors. Therefore, cyanobacteria such as Synechocystis sp. PCC 6803 (hereafter “Synechocystis”) have widely been used for decades as model systems to study the principles of photosynthesis (Table 1). Indeed, genetic engineering based on homologous recombination is well-established in Synechocystis. Moreover, new genetic engineering toolkits, including marker-less gene deletion and replacement strategies needing only a single transformation step (Viola et al., 2014) and novel approaches for chromosomal integration and expression of synthetic gene operons (Bentley et al., 2014), allow for large-scale replacement and/or integration of dozens of genes in reasonable time frames. This makes Synechocystis a very attractive basis for the experimental modification of important processes like photosynthesis, and it also suggests innovative ways of improving modules of related eukaryotic pathways, among them the combination of cyanobacterial and eukaryotic elements using the tools of synthetic biology.

  17. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. THE GENESIS OF PHOTOSYNTHESIS TYPES AS THE BASIS OF ECOLOGICAL EXPANSION OF HALOPHYTIC PLANTS

    Directory of Open Access Journals (Sweden)

    Pyurko O.Ye.

    2011-12-01

    Full Text Available The C3, C4, and CAM photosynthesis types are considerably differed by CO2 absorption intensity, its biochemistry, saturation level, water productivity, biological productivity, and other different features, which secure the plants survival at stress and extreme conditions. The aim of current research was to discover the photosynthesis peculiarities at halophytic plants species (Salicornia europaea L., Halimione pedunculata, Artemisia santonica L., Plantago lanceolata L. by salinity at model and natural conditions, and to generalize data in historical aspect. It was constituted that S. europaea L. was characterized by C3 photosynthesis passage which was switched on CAM CO2 fixation under soil salinity conditions till 4-4,5 %, but glycophyte A.santonica was immanent C4assimilation way of aspartate type.Analysis of literature data and own research allows to find out that in majority the C3photosynthesis dependence from environmental factors described by determinate curve with matched mathematical expression. It was suggested to generalize the data by Lagrange polynomial. The obtained results proved that the pattern of photosynthesis evolution is: C3 → C4 → CAM with commute possibilities: C3 → CAM; C4 → CAM.

  19. Effects of light intensity on the morphology and CAM photosynthesis of Vanilla planifolia Andrews

    Directory of Open Access Journals (Sweden)

    María Claudia Díez

    2017-01-01

    Full Text Available Vanilla planifolia is a neotropical orchid, whose fruits produce the natural vanilla, a fundamental ingredient for the food and cosmetic industry. Because of its importance in the world market, it is cultivated in many tropical countries and recently its cultivation has started in Colombia. This species requires shade for its development; however, the optimal of light conditions are unknown. This work evaluates the effect of different light intensities on CAM photosynthesis, physiology, morphology, and growth of this species. For this, vanilla seedlings were subjected to four treatments of relative illumination (RI (T1=8%, T2=17%, T3=31% and T4=67%. Most CO2 assimilation occurred along night in all treatments, which confirms that vanilla is a strong CAM species. Plants grown under high lighting (67% RI had almost half of the photosynthesis in treatments of intermediate lighting (17 and 31%, which is consistent with the lower nocturnal acid accumulation in that treatment. Likewise, the photochemical efficiency of photosystem II (Fv / Fm showed that in plants of the 67% RI occurred high radiation stress. On the other hand, vanilla plants reached greater length, leaf area, and total biomass when grown under intermediate radiation (17 and 31% RI. These results suggest that high radiation alters the functioning of vanilla plants, inhibiting photosynthesis and growth, and that highly shaded environments not significantly affected the CAM photosynthesis of vanilla; however, in the long-term this species showed higher photosynthesis and growth under intermediate levels of radiation

  20. Photosynthesis: an interactive didactic model’s use to the learning and teaching process

    Directory of Open Access Journals (Sweden)

    Vanessa Liesenfeld

    2015-06-01

    Full Text Available Photosynthesis is a complex process that involves the implementation of several reactions which, many times, makes this content difficult for students to understand. The objective of this study was to investigate if an interactive didactic model, crafted with simple materials, could facilitate the understanding and learning of students on photosynthesis. Initially students of first year high school class from a public school Western of Paraná were asked to diagram what they knew about photosynthesis and respond to a questionnaire. It was concluded that many of the students’ prior concepts were general or inaccurate, such as the idea of photosynthesis being the process of respiration in plants, and O2 coming from the CO2, not from the photo-oxidation of water. These prior conceptions were important for planning the approach to the subject. The process of photosynthesis was then covered in lecture and dialogued, using the interactive didactic model to highlight the explanations. A new questionnaire was completed by the students, and concluded that the use of the interactive didactic model was efficient, since it helped to consolidate correct concepts and simultaneously, introduced new ones as well it shook the equivocal relations.

  1. Effects of CO[sub 2] concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nederhoff, E.M.

    1994-10-25

    The effect of the CO[sub 2] concentration of the greenhouse air (C) in the range 200 to 1100 [mu]mol mol[sup -1] was investigated in tomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativus L.), sweet pepper (Capsicum annuum L.) and eggplant (Solanum melongena L.), grown in greenhouses. The effect of C on canopy net photosynthetic CO[sub 2] assimilation rate (or photosynthesis, P) was expressed by a set of regression equations, relating P to PAR, C and LAI. A rule of thumb ('CO[sub 2]-rule') was derived, approximating the relative increase of P caused by additional CO[sub 2] at a certain C. This CO[sub 2]-rule is: X = (1000/C)[sup 2] * 1.5 (X in % per 100 [mu]mol[sup -1], and C in [mu]mol mol[sup -1]). Two models for canopy photosynthesis were examined by comparing them with the experimental photosynthesis data. No 'midday depression' in P was observed. The effects of C on leaf conductance (g) and on rate of crop transpiration (E) were investigated. An increase of 100 I[mu]mol mol[sup -1] ' in C reduced g by about 3-4% in sweet pepper, tomato and cucumber and by about 11% in eggplant. The effect of C on E was analyzed by combining the regression equation for g with the Penman-Monteith equation for E. C had only a relatively small effect on E, owing to thermal and hydrological feedback effects. The decoupling of g and E was quantified. No time-dependent variation or 'midday depression' in E was observed, and no significant effect of C on average leaf temperature was established. In five experiments, the effect of C on growth and production and on specific features were analyzed; fruit production (dry weight) was most affected by C in sweet pepper; fresh weight fruit production per unit CO[sub 2] was highest in cucumber; fruit quality was not influenced by C. High C promoted the 'short leaves syndrome' in tomato and 'leaf tip chlorosis' in eggplant, probably related to calcium and boron translocation

  2. Phytoremediation capacity of poplar (Populus spp. and willow (Salix spp. clonesin relation to photosynthesis

    Directory of Open Access Journals (Sweden)

    Pajević Slobodanka

    2009-01-01

    Full Text Available Good photosynthetic features and a favorable water regimes of woody plants improve their survival and remediation potential under unfavorable ecological conditions. Accordingly, we here present results of testing plant tolerance of Pb, Cd, Ni, and diesel fuel based on gas exchange parameters and WUE of four poplar and two willow clones grown in a greenhouse on soil culture. Photosynthesis and transpiration of plants grown on soils with individually applied heavy metals decreased significantly, but this was less obvious in the case of Cd treatment. A heavy metal mixture in the soil induced significant reduction in photosynthesis (by more than 50%. Diesel fuel as the only pollutant in soil caused very strong and significant inhibition of photosynthesis and transpiration of willow clones. The results indicate genotypic specificity of all investigated physiological parameters and mark poplar clones as very useful in phytoextraction technology for the bio-cleaning of chemically polluted soils.

  3. Effects of space environment on chlorophyll fluorescence and photosynthesis characteristics of wheat

    International Nuclear Information System (INIS)

    Lu Li; Lv Jinyin; Gong Qingzhu; Gao Junfeng

    2006-01-01

    The effects of the space environment on the chlorophyll fluorescence parameters and photosynthesis characteristics of wheat cultivars, Xinong 1043 M1 and Shaan253 M 1 , were studied. The results showed that the decrement of contents of PS II primary photochemical efficiency (F v /F m ), potential activity (F v /F 0 ), photochemical quenching coefficient (qP) and photosynthesis rate (Pn) were less than that of control, increment of non-photochemical quenching coefficient (qN) were more than that of control. The results suggested that photosynthetic apparatus were damaged, photosynthetic electron transport, photosynthetic primary reaction were inhibited, rate of photosynthesis decreased and growth of M 1 plant were retarded, which leading to thousand kernel weights decreased. (authors)

  4. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  5. Manganese-based Materials Inspired by Photosynthesis for Water-Splitting

    Directory of Open Access Journals (Sweden)

    Harvey J.M. Hou

    2011-09-01

    Full Text Available In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renewable solar energy into our energy systems. In this review, inspired by photosynthesis robust photo water-splitting systems using manganese-containing materials including Mn-terpy dimer/titanium oxide, Mn-oxo tetramer/Nafion, and Mn-terpy oligomer/tungsten oxide, in solar fuel production are summarized and evaluated. Potential problems and future endeavors are also discussed.

  6. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities

    DEFF Research Database (Denmark)

    Hancke, Kasper; Glud, R.N.

    2004-01-01

    ABSTRACT: Short-term temperature effects on respiration and photosynthesis were investigated in intact diatom-dominated benthic communities, collected at 2 temperate and 1 high-arctic subtidal sites. Areal rates of total (TOE) and diffusive (DOE) O2 exchange were determined from O2-microsensor....... This can be ascribed to changes in physical and biological controls during resuspension. Gross photosynthesis was measured with the light-dark shift method at the 2 temperate sites. Both areal (Pgross) and volumetric (Pgross,vol) rates increased with temperature to an optimum temperature at 12 and 15°C......, with a Q10 for Pgross of 2.2 and 2.6 for the 2 sites, respectively. The gross photosynthesis response could be categorised as psychrotrophic for both sites and no temperature adaptation was observed between the 2 sites. Our measurements document that temperature stimulates heterotrophic activity more than...

  7. A roadmap for improving the representation of photosynthesis in Earth system models.

    Science.gov (United States)

    Rogers, Alistair; Medlyn, Belinda E; Dukes, Jeffrey S; Bonan, Gordon; von Caemmerer, Susanne; Dietze, Michael C; Kattge, Jens; Leakey, Andrew D B; Mercado, Lina M; Niinemets, Ülo; Prentice, I Colin; Serbin, Shawn P; Sitch, Stephen; Way, Danielle A; Zaehle, Sönke

    2017-01-01

    Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO 2 assimilation (A) to key environmental variables: light, temperature, CO 2 concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models. No claim to original US Government works New Phytologist © 2016 New Phytologist Trust.

  8. Botulinum Toxin A for Oral Cavity Cancer Patients: In Microsurgical Patients BTX Injections in Major Salivary Glands Temporarily Reduce Salivary Production and the Risk of Local Complications Related to Saliva Stagnation

    OpenAIRE

    Corradino, Bartolo; Lorenzo, Sara Di; Moschella, Francesco

    2012-01-01

    In patients suffering from oral cavity cancer surgical treatment is complex because it is necessary to remove carcinoma and lymph node metastasis (through a radical unilateral or bilateral neck dissection) and to reconstruct the affected area by means of free flaps. The saliva stagnation in the post-operative period is a risk factor with regard to local complications. Minor complications related to saliva stagnation (such as tissue maceration and wound dehiscence) could become major complicat...

  9. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams.

    Science.gov (United States)

    Sand-Jensen, Kaj; Frost-Christensen, Henning

    1998-11-01

    Small unshaded streams in lowland regions receive drainage water with high concentrations of free␣CO 2 , and they support an abundant growth of amphibious and obligately submerged plants. Our first objective was to measure the CO 2 regime during summer in a wide range of small alkaline Danish streams subject to wide variation in temperature, O 2 and CO 2 during the day. The second objective was to determine the effect of these variations on daily changes in light-saturated photosynthesis in water of a homophyllous and a heterophyllous amphibious species that only used CO 2 , and an obligately submerged species capable of using both HCO - 3 and CO 2 . We found that the median CO 2 concentrations of the streams were 11 and 6 times above air saturation in the morning and the afternoon, respectively, but stream sites with dense plant growth had CO 2 concentrations approaching air saturation in the afternoon. In contrast, outlets from lakes had low CO 2 concentrations close to, or below, air saturation. The amphibious species showed a reduction of photosynthesis in water from morning to afternoon along with the decline in CO 2 concentrations, while increasing temperature and O 2 had little effect on photosynthesis. Photosynthesis of the obligately submerged species varied little with the change of CO 2 because of HCO 3 - - use, and variations were mostly due to changes in O 2 concentration. Independent measurements showed that changes in temperature, O 2 and CO 2 could account for the daily variability of photosynthesis of all three species in water. The results imply that CO 2 supersaturation in small lowland streams is important for the rich representation of amphibious species and their contribution to system photosynthesis.

  10. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Science.gov (United States)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  11. Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Lindsay [Australian Institute of Marine Science, Townsville, QLD 4810 (Australia) and James Cook University, Townsville, QLD 4811 (Australia)]. E-mail: l.harrington@aims.gov.au; Fabricius, Katharina [Australian Institute of Marine Science, Townsville, QLD 4810 (Australia)]. E-mail: k.fabricius@aims.gov.au; Eaglesham, Geoff [Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains 4108 (Australia); Negri, Andrew [Australian Institute of Marine Science, Townsville, QLD 4810 (Australia)

    2005-07-01

    Effects of short-term exposure to sedimentation and diuron, separately and in combination, on the photophysiology and survival of crustose coralline algae (CCA) were examined in controlled time-course experiments, using pulse-amplitude modulation (PAM) chlorophyll fluorometry. These experiments indicated that the effects of sediments and diuron, when applied in isolation, were often reversible, with recovery time dependant upon sediment type and diuron concentration. Exposure to fine (<63 {mu}m grain size), nutrient-rich estuarine sediments reduced effective quantum yields ({delta}F/F {sub m'}) of photosystem II in CCA species more than exposure to the same amount of fine (<63 {mu}m grain size) calcareous sediments. Significant inhibition of photosynthesis ({delta}F/F {sub m'}) was also observed at diuron concentrations 2.9 {mu}g L{sup -1}. Fine estuarine sediments in combination with 0.79 {mu}g L{sup -1} dissolved diuron, caused yields ({delta}F/F {sub m'}) to drop by 60% compared with controls after 24 h. The combined exposure to sediments and diuron also retarded recovery, thus {delta}F/F {sub m'} values were still only 60% of the controls after 9 days recovery in clean seawater. Mortality of CCA was observed in some fragments treated with combinations of sediment and diuron. Our results suggest that sediment deposition and exposure to diuron can negatively affect the photosynthetic activity of CCA, with sedimentation stress being significantly enhanced by the presence of trace concentrations of diuron.

  12. The growth and photosynthesis of Typha in oil sands process affected material and water

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    Aquatic plants such as cattail contribute substantially to the energy flow in wetlands. Since Typha (cattail) plants acquire and cycle carbon and nutrients through wetlands, their growth and recycling of captured nutrients are an important part of natural, healthy wetland ecosystems. Cattail are pervasive and satisfy many of the criteria to be used as indicators of wetland integrity. This study investigated if cattail growth and carbon accrual were influenced by oil sands process materials (OSPM) such as consolidated tailings (CT). The purpose was to facilitate land reclamation initiatives by evaluating the impact that constituents of oil sands process material have on aquatic plant growth. The study was conducted at Suncor's experimental trenches. Six lined basins were used, of which 3 were filled with natural water and 3 were filled with trench water. Cattail were planted in different growth medium combinations, including CT over CT; soil over soil; soil over CT; and soil over sterilized sand. All leaf lengths and widths were measured along with the photosynthesis of the leaves and root and plant biomass at planting and after 2-years growth. A larger leaf area was observed under oil sands process influence, which may indicate increased carbon accrual above ground. Leaf area data suggested that CT affected plants are quite productive. The study also indicated that oil sands affected water may reduce plant fitness, and therefore could influence the overall oil sands reclamation timelines. Conversely, cattail grown in soil capped process affected material had a much larger leaf area compared to those grown in soil capped sand, most likely due to the higher levels of ammonia in process affected material.

  13. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat.

    Science.gov (United States)

    Haas, Sebastian; de Beer, Dirk; Klatt, Judith M; Fink, Artur; Rench, Rebecca McCauley; Hamilton, Trinity L; Meyer, Volker; Kakuk, Brian; Macalady, Jennifer L

    2018-01-01

    We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m -2 s -1 , and UV light (97% sequence identity) of clones affiliated with Prosthecochloris , a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 μmol L -1 ) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm -3 d -1 ). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 μmol L -1 ). High concentrations of pyrite (FeS 2 ; 1-47 μmol cm -3 ) together with low microbial process rates (sulfate reduction, CO 2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 μmol cm -3 ) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

  14. Teaching the Z-Scheme of electron transport in photosynthesis: a perspective.

    Science.gov (United States)

    Mohapatra, Pradipta Kumar; Singh, Nihar Ranjan

    2015-01-01

    This paper deals with how Govindjee taught the Z-Scheme of electron transport in oxygenic photosynthesis at Ravenshaw University, Cuttack, Odisha, India, in 2014, in a unique and highly effective fashion-using students to act as molecules, representing the entire electron transport chain from water to nicotinamide adenine dinucleotide phosphate (NADP(+)). It culminated in a show by B.Sc. students in the garden of the Department of Botany, Ravenshaw University. The first author (PKM) personally acted as Ferredoxin NADP Reductase (FNR) catalyzing the reduction of NADP(+) to NADPH, taking electrons from reduced ferredoxin at the end of Photosystem I. On the other hand, the Q-cycle was played by M.Sc. students, who acted as molecules running this ingenious cycle that produces extra protons. An interesting event was when a student, acting as a herbicide, who was dressed like a devil (fierce looking, in black clothes with a sword; "Yamaraj: The God of Death", as he called himself), stopped all reactions by throwing out QB, the second plastoquinone molecule of Photosystem II, and that too aggressively, taking its position instead. The second author was the major organizer of the Z-scheme show. We provide here a basic background on the process, a bit on Govindjee's teaching, and some selected pictures from the drama played in March, 2014 at Ravenshaw University. Here, we also recognize the teacher Govindjee for his ingenious and fun-filled teaching methods that touched the hearts and the souls of the students as well as the teachers of Ravenshaw University. He was rated as one of the most-admired teachers of plant biology at our university.

  15. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev

    2014-08-01

    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.

  16. Photosynthesis in Norway spruce seedlings infected by the needle rust Chrysomyxa rhododendri.

    Science.gov (United States)

    Bauer, Helmut; Plattner, Karin; Volgger, Waltraud

    2000-02-01

    Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.

  17. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni

    Energy Technology Data Exchange (ETDEWEB)

    Macinnis-Ng, Catriona M.O.; Ralph, Peter J

    2003-11-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil + dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil + 0.05% dispersant and 0.1% oil + 0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and {delta}F/Fm{sup '} respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil + dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil + dispersant mixture. Despite an initial decline in {delta}F/Fm{sup '}, in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis.

  18. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Directory of Open Access Journals (Sweden)

    S. Strada

    2016-04-01

    Full Text Available A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse by  ∼ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources enhance GPP by +5–8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2–5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5–8 %. The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of −2 to −12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  19. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    Science.gov (United States)

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  20. Cadmium against higher plant photosynthesis - a variety of effects and where do they possibly come from?

    International Nuclear Information System (INIS)

    Krupa, Z.

    1999-01-01

    The complexity of in vivo toxic effects of Cd on higher plants makes almost impossible an accurate distinction between direct and indirect mechanisms of its action on the photosynthetic apparatus. We, therefore, postulate that multiple Cd effects on plant physiological and metabolic processes may finally be focused on photosynthesis. This would also explain the phenomenon that only a small fraction of Cd entering chloroplasts may cause such disastrous changes in their structure and function. In return, the inhibition of photosynthesis affects numerous metabolic pathways dependent on the primary carbon metabolism. (orig.)

  1. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe and Their Effects on Photosynthesis Rate

    Directory of Open Access Journals (Sweden)

    Asmah Rahmat

    2010-11-01

    Full Text Available The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 µmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5% when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 µmol CO2 m−2s−1 in Halia Bara and plant biomass (79.47 g in Halia Bentong were observed at 790 µmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight was found in Halia Bara leaves grown under 310 µmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight was detected in Halia Bara leaves exposed under 790 µmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 µmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.

  2. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  3. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe) and Their Effects on Photosynthesis Rate

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah

    2010-01-01

    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO2 m−2s−1 in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds. PMID:21151455

  4. DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T

    OpenAIRE

    Choudhary, M.; Kaplan, Samuel

    2000-01-01

    This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T. The photosynthesis gene cluster is located within a ~73 kb AseI genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The da...

  5. Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs

    DEFF Research Database (Denmark)

    Larkum, Anthony W.D.; Koch, Eva-Maria W.; Kühl, Michael

    2003-01-01

    The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations......: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 µm under moderate flow (~0.08 m s-1...

  6. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  7. Estimation of effects of photosynthesis response functions on rice yields and seasonal variation of CO2 fixation using a photosynthesis-sterility type of crop yield model

    International Nuclear Information System (INIS)

    Kaneko, D.; Moriwaki, Y.

    2008-01-01

    This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global

  8. Combined effects of enhanced UV-B radiation and nitrogen deficiency on the growth, composition and photosynthesis of rye (Secale cereale)

    International Nuclear Information System (INIS)

    Deckmyn, G.; Impens, I.

    1997-01-01

    The interactive effects of N-deficiency and enhanced UV-B radiation on growth, photosynthesis and pigmentation of rye were studied. The plants were grown for 5 weeks in growth chambers with high (700 μmol m -2 s -2 ) irradiance levels. A 30% difference in UV-B at plant level was achieved by using different thicknesses of UV-B transparent Plexiglass. One half of the plants received optimal N nutrition, while the other received half of this dose. Both enhanced UV-B and N deficiency strongly decreased production (from 24–33%). The combined effect was additive (no interaction) on most parameters, including total dry weight production which was 52% lower than in the control series. Significant interaction was found on the root/shoot ratio. While reduced N supply induced an increase in the ratio at normal UV-B irradiation, under the increased UV-B, N deficiency had no effect on the root/shoot ratio. The reduced biomass due to UV-B was clearly correlated to a reduction in photosynthesis. At optimal N supply the plants increased the production of protective pigments in response to UV-B, but at reduced N supply this response was lacking. The increased N content of the high UV-B/high N plants could be a result of increased flavonoid production as well as changes in light penetration in the canopy. (author)

  9. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Science.gov (United States)

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  10. Redox Signaling and CBF-Responsive Pathway are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    2016-10-01

    Full Text Available Salicylic acid (SA plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus. Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-ɑ-aminooxy-β-phenylpropionic acid (AOPP increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon.

  11. How to misinterpret photosynthesis measurements and develop incorrect ecosystem models

    Science.gov (United States)

    Prentice, Iain Colin

    2017-04-01

    It is becoming widely accepted than current land ecosystem models (dynamic global vegetation models and land-surface models) rest on shaky foundations and are in need of rebuilding, taking advantage of huge data resources that were hardly conceivable when these models were first developed. It has also become almost a truism that next-generation model development should involve observationalists, experimentalists and modellers working more closely together. What is currently lacking, however, is open discussion of specific problems in the structure of current models, and how they might have arisen. Such a discussion is important if the same mistakes are not to be perpetuated in a new generation of models. I will focus on the central processes governing leaf-level gas exchange, which powers the land carbon and water cycles. I will show that a broad area of confusion exists - as much in the empirical ecophysiological literature as in modelling research - concerning the interpretation of gas-exchange measurements and (especially) their scaling up from the narrow temporal and spatial scales of laboratory measurements to the broad-scale research questions linked to global environmental change. In particular, I will provide examples (drawing on a variety of published and unpublished observations) that illustrate the benefits of taking a "plant-centred" view, showing how consideration of optimal acclimation challenges many (often untstated) assumptions about the relationship of plant and ecosystem processes to environmental variation. (1) Photosynthesis is usually measured at light saturation (implying Rubisco limitation), leading to temperature and CO2 responses that are completely different from those of gross primary production (GPP) under field conditions. (2) The actual rate of electron transport under field conditions depends strongly on the intrinsic quantum efficiency, which is temperature-independent (within a broad range) and unrelated to the maximum electron

  12. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient

    Science.gov (United States)

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canop...

  13. Metabolic flux ratio analysis and cell staining suggest the existence of C4 photosynthesis in Phaeodactylum tricornutum.

    Science.gov (United States)

    Huang, A; Liu, L; Zhao, P; Yang, C; Wang, G C

    2016-03-01

    Mechanisms for carbon fixation via photosynthesis in the diatom Phaeodactylum tricornutum Bohlin were studied recently but there remains a long-standing debate concerning the occurrence of C4 photosynthesis in this species. A thorough investigation of carbon metabolism and the evidence for C4 photosynthesis based on organelle partitioning was needed. In this study, we identified the flux ratios between C3 and C4 compounds in P. tricornutum using (13)C-labelling metabolic flux ratio analysis, and stained cells with various cell-permeant fluorescent probes to investigate the likely organelle partitioning required for single-cell C4 photosynthesis. Metabolic flux ratio analysis indicated the C3/C4 exchange ratios were high. Cell staining indicated organelle partitioning required for single-cell C4 photosynthesis might exist in P. tricornutum. The results of (13)C-labelling metabolic flux ratio analysis and cell staining suggest single-cell C4 photosynthesis exists in P. tricornutum. This study provides insights into photosynthesis patterns of P. tricornutum and the evidence for C4 photosynthesis based on (13)C-labelling metabolic flux ratio analysis and organelle partitioning. © 2015 The Society for Applied Microbiology.

  14. Toxic effects of chlorinated organic compounds and potassium dichromate on growth rate and photosynthesis of marine phytoplankton

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Nyholm, Niels

    1992-01-01

    The toxic effects of potassium dichromate (K2Cr2O7), 3,4-dichloroaniline (DCA) and 2,4-dichlorophenol (DCP) on the photosynthesis of natural marine phytoplankton and five species of marine microalgae were investigated. Effect concentrations corresponding to a 50 % depression of photosynthesis (6h...

  15. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves

    NARCIS (Netherlands)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N.C.; Struik, Paul C.; Nicolaï, Bart M.

    2016-01-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model

  16. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics.

    Science.gov (United States)

    Mishra, A K; Tiwari, H S; Bhatt, R K

    2010-11-01

    The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.

  17. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  18. Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat and maize to heat and water deficit: implications for modeling photosynthesis

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Perdomo

    2016-11-01

    Full Text Available The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa, and a high temperature (HT, 38°C, VPD 3.5 kPa, both under well-watered (WW and water deficit (WD conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species.

  19. Can the responses of photosynthesis and stomatal conductance to water and nitrogen stress combinations be modeled using a single set of parameters?

    NARCIS (Netherlands)

    Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou

    2017-01-01

    Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental

  20. Modeling photosynthesis of Spartina alterniflora (smooth cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference

    International Nuclear Information System (INIS)

    Wu Wei; Biber, Patrick D; Peterson, Mark S; Gong Chongfeng

    2012-01-01

    To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010–2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale. (letter)

  1. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional–structural plant model

    Science.gov (United States)

    Sarlikioti, V.; de Visser, P. H. B.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Methods Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Key Results Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Conclusions Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical

  2. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.

    Science.gov (United States)

    Sarlikioti, V; de Visser, P H B; Marcelis, L F M

    2011-04-01

    At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the

  3. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

    International Nuclear Information System (INIS)

    Grodzinski, B.; Jiao, J.; Leonardos, E.D.

    1998-01-01

    The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 micromole C m-2 s-1, respectively, and 20 to 30 and 15 to 22 micromole C m-2 s-1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated

  4. Light distribution in leaf chambers and its consequences for photosynthesis measurements

    NARCIS (Netherlands)

    Hogewoning, S.W.; Trouwborst, G.; Harbinson, J.; Ieperen, van W.

    2010-01-01

    The impact of a heterogeneous distribution of actinic light within a leaf chamber for photosynthetic measurements by gas exchange on the photosynthesis-irradiance relationship was investigated. High-resolution light distributions were measured over the area of a commercially available clamp-on leaf

  5. Photosynthesis in a different light : Spectro-microscopy for in vivo characterization of chloroplasts

    NARCIS (Netherlands)

    Peter, Sébastien; Zell, Martina B.; Blum, Christian; Stuhl, Alexander; Elgass, Kirstin; Sackrow, Marcus; Subramaniam, Vinod; Meixner, Alfred J.; Harter, Klaus; Maurino, Veronica G.; Schleifenbaum, Frank E.

    2014-01-01

    During photosynthesis, energy conversion at the two photosystems is controlled by highly complex and dynamic adaptation processes triggered by external factors such as light quality, intensity, and duration, or internal cues such as carbon availability. These dynamics have remained largely concealed

  6. Twenty-five years of artificial photosynthesis research at Ernest Orlando Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Otvos, J.W.; Calvin, M.

    1996-02-01

    This report summarizes the research done on artificial photosynthesis by the Calvin Group between 1970 and 1995 when the program was terminated. It contains a compilation of the personnel involved as well as a bibliography of publications supported by the project.

  7. Solar fuels via artificial photosynthesis: From homogeneous photocatalysis in solution to a photoelectrochemical cell

    NARCIS (Netherlands)

    Chen, H.-C.

    2016-01-01

    The conversion and storage of solar energy into fuels provides a valuable solution for the future energy demand of our society. Making fuels via artificial photosynthesis, the so-called solar-to-fuel approach, is viewed as one of the most promising ways to produce clean and renewable energy.

  8. Electromagnetic Radiation Disturbed the Photosynthesis of Microcystis aeruginosa at the Proteomics Level.

    Science.gov (United States)

    Tang, Chao; Yang, Chuanjun; Yu, Hui; Tian, Shen; Huang, Xiaomei; Wang, Weiyi; Cai, Peng

    2018-01-11

    Photosynthesis of Microcystis aeruginosa under Electromagnetic Radiation (1.8 GHz, 40 V/m) was studied by using the proteomics. A total of 30 differentially expressed proteins, including 15 up-regulated and 15 down-regulated proteins, were obtained in this study. The differentially expressed proteins were significantly enriched in the photosynthesis pathway, in which the protein expression levels of photosystems II cytochrome b559 α subunit, cytochrome C550, PsbY, and F-type ATP synthase (a, b) decreased. Our results indicated that electromagnetic radiation altered the photosynthesis-related protein expression levels, and aimed at the function of photosynthetic pigments, photosystems II potential activity, photosynthetic electron transport process, and photosynthetic phosphorylation process of M. aeruginosa. Based on the above evidence, that photoreaction system may be deduced as a target of electromagnetic radiation on the photosynthesis in cyanobacteria; the photoreaction system of cyanobacteria is a hypothetical "shared target effector" that responds to light and electromagnetic radiation; moreover, electromagnetic radiation does not act on the functional proteins themselves but their expression processes.

  9. Estimating Net Photosynthesis of Biological Soil Crusts in the Atacama Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lukas W. Lehnert

    2018-06-01

    Full Text Available Biological soil crusts (BSC encompassing green algae, cyanobacteria, lichens, bryophytes, heterotrophic bacteria and microfungi are keystone species in arid environments because of their role in nitrogen- and carbon-fixation, weathering and soil stabilization, all depending on the photosynthesis of the BSC. Despite their importance, little is known about the BSCs of the Atacama Desert, although especially crustose chlorolichens account for a large proportion of biomass in the arid coastal zone, where photosynthesis is mainly limited due to low water availability. Here, we present the first hyperspectral reflectance data for the most wide-spread BSC species of the southern Atacama Desert. Combining laboratory and field measurements, we establish transfer functions that allow us to estimate net photosynthesis rates for the most common BSC species. We found that spectral differences among species are high, and differences between the background soil and the BSC at inactive stages are low. Additionally, we found that the water absorption feature at 1420 nm is a more robust indicator for photosynthetic activity than the chlorophyll absorption bands. Therefore, we conclude that common vegetation indices must be taken with care to analyze the photosynthesis of BSC with multispectral data.

  10. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    Science.gov (United States)

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  11. Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration

    Science.gov (United States)

    Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.

    2009-01-01

    The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…

  12. An Analysis of Students' Misconceptions Concerning Photosynthesis and Respiration in Plants.

    Science.gov (United States)

    Capa, Yesim; Yildirim, Ali; Ozden, M. Yasar

    The aims of this study were to diagnose students' misconceptions concerning photosynthesis and respiration in plants, and to investigate reasons behind these misconceptions. The subjects were 45 ninth grade high school students and 11 high school teachers. Data were collected by interview technique. All of the interviews were audiotaped and…

  13. Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    NARCIS (Netherlands)

    Driever, Steven M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  14. Nutrient enrichment effects on photosynthesis in the wetland plants Typha orientalis and Phormium tenax

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Tanner, Chris

    -growing species raupo (Typha orientalis) and slower-growing flax (Phormium tenax). Photosynthesis was compared between 9 field locations differing in nutrient availability where the two species co-existed, and in an outdoor growth experiment. Raupo accumulated higher concentrations of nitrogen (N) and especially...

  15. Influence of Content Knowledge on Pedagogical Content Knowledge: The Case of Teaching Photosynthesis and Plant Growth

    Science.gov (United States)

    Kapyla, Markku; Heikkinen, Jussi-Pekka; Asunta, Tuula

    2009-01-01

    The aim of the research was to investigate the effect of the amount and quality of content knowledge on pedagogical content knowledge (PCK). The biological content photosynthesis and plant growth was used as an example. The research sample consisted of 10 primary and 10 secondary (biology) teacher students. Questionnaires, lesson preparation task…

  16. An Action-Research Programme with Secondary Education Teachers on Teaching and Learning Photosynthesis

    Science.gov (United States)

    Domingos-Grilo, Paula; Reis-Grilo, Carlos; Ruiz, Constantino; Mellado, Vicente

    2012-01-01

    We describe part of an action-research programme in Spain which was based on metacognitive reflection. The participants were four science teachers in a secondary school during the 2004-05 and 2005-06 academic years. During the study, they each analysed their own pupils' alternative ideas on photosynthesis and their teaching methods as recorded in…

  17. Isotopically nonstationary metabolic flux analysis (INST-MFA) of photosynthesis and photorespiration in plants

    Science.gov (United States)

    Photorespiration is a central component of photosynthesis; however to better understand its role it should be viewed in the context of an integrated metabolic network rather than a series of individual reactions that operate independently. Isotopically nonstationary 13C metabolic flux analysis (INST...

  18. Insistence on Teaching about Photosynthesis of Plants by Their Green Colour

    Science.gov (United States)

    Çeken, Ramazan

    2014-01-01

    "Green" has a common use among the public. Both natural and social environment have an important effect on this expression. People tend to explain the scientific concepts using well-known situations which they intensively see around the living area. In this sense, photosynthesis is one of the most important biological concepts including…

  19. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.

    Science.gov (United States)

    Challabathula, Dinakar; Puthur, Jos T; Bartels, Dorothea

    2016-02-01

    Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration. © 2015 New York Academy of Sciences.

  20. Tracking diurnal changes of photosynthesis and evapotranspiration using fluorescence, gas exchange and hyperspectral remote sensing measurements

    Science.gov (United States)

    Wang, S.; Zhang, L.; Guanter, L.; Huang, C.

    2017-12-01

    Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.