WorldWideScience

Sample records for temporally heterogeneous dynamics

  1. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.

    Science.gov (United States)

    Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan

    2017-09-01

    Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.

  2. The effects of spatial and temporal heterogeneity on the population dynamics of four animal species in a Danish landscape

    Directory of Open Access Journals (Sweden)

    Forchhammer Mads C

    2009-06-01

    Full Text Available Abstract Background Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms

  3. Spatial and temporal dynamics of corticosterone and corticosterone binding globulin are driven by environmental heterogeneity.

    Science.gov (United States)

    Shultz, Michael Todd; Kitaysky, Alexander Stanislav

    2008-02-01

    The question of whether changes in glucocorticoid concentrations reflect consistent changes in physiology associated with transitions between different stages of reproduction, or whether they reflect responses to environmental conditions, is one the central issues in field endocrinology studies. We examined the temporal and spatial dynamics of corticosterone (CORT, baseline, and acute stress-induced) and corticosterone binding globulin (CBG) concentrations in blood of Black-legged Kittiwakes (Rissa tridactyla) breeding at four major colonies in the Bering Sea, Alaska, during 1999-2005. We found that total CORT, free CORT, and CBG capacity varied inconsistently among reproductive stages, colonies, and years. Total CORT levels were positively correlated with CBG capacity. Variation in free CORT was largely driven by variation in total CORT. Results suggest that the adrenocortical function and CBG in breeding kittiwakes do not vary as a consequence of stage-specific modulation associated with a particular reproductive stage as in some short-lived passerine birds. Rather, in accord with predictions for a long-lived species, the lack of consistent colony, year, and reproductive stage patterns in baseline and maximum CORT, and CBG indicates that environmental factors, probably local dynamics of food availability, drive variation in these factors.

  4. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

    Science.gov (United States)

    Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  5. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  6. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Science.gov (United States)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able

  7. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    Science.gov (United States)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  8. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    Science.gov (United States)

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  9. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    Science.gov (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  11. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  12. Individual heterogeneity generating explosive system network dynamics.

    Science.gov (United States)

    Manrique, Pedro D; Johnson, Neil F

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  13. Individual heterogeneity generating explosive system network dynamics

    Science.gov (United States)

    Manrique, Pedro D.; Johnson, Neil F.

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  14. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Directory of Open Access Journals (Sweden)

    Bronwyn Price

    Full Text Available In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha and landscape (100-1000s ha scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  15. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Science.gov (United States)

    Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  16. Temporal dynamics of online petitions.

    Science.gov (United States)

    Böttcher, Lucas; Woolley-Meza, Olivia; Brockmann, Dirk

    2017-01-01

    Online petitions are an important avenue for direct political action, yet the dynamics that determine when a petition will be successful are not well understood. Here we analyze the temporal characteristics of online-petition signing behavior in order to identify systematic differences between popular petitions, which receive a high volume of signatures, and unpopular ones. We find that, in line with other temporal characterizations of human activity, the signing process is typically non-Poissonian and non-homogeneous in time. However, this process exhibits anomalously high memory for human activity, possibly indicating that synchronized external influence or contagion play and important role. More interestingly, we find clear differences in the characteristics of the inter-event time distributions depending on the total number of signatures that petitions receive, independently of the total duration of the petitions. Specifically, popular petitions that attract a large volume of signatures exhibit more variance in the distribution of inter-event times than unpopular petitions with only a few signatures, which could be considered an indication that the former are more bursty. However, petitions with large signature volume are less bursty according to measures that consider the time ordering of inter-event times. Our results, therefore, emphasize the importance of accounting for time ordering to characterize human activity.

  17. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  18. The failure rate dynamics in heterogeneous populations

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2013-01-01

    Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations

  19. Pressure dependence of dynamical heterogeneity in water

    International Nuclear Information System (INIS)

    Teboul, Victor

    2008-01-01

    Using molecular dynamics simulations we investigate the effect of pressure on the dynamical heterogeneity in water. We show that the effect of a pressure variation in water is qualitatively different from the effect of a temperature variation on the dynamical heterogeneity in the liquid. We observe a strong decrease of the aggregation of molecules of low mobility together with a decrease of the characteristic time associated with this aggregation. However, the aggregation of the most mobile molecules and the characteristic time of this aggregation are only slightly affected. In accordance with this result, the non-Gaussian parameter shows an important decrease with pressure while the characteristic time t* of the non-Gaussian parameter is only slightly affected. These results highlight then the importance of pressure variation investigations in low temperature liquids on approach to the glass transition

  20. Population dynamics on heterogeneous bacterial substrates

    Science.gov (United States)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  1. Dynamics of epidemics outbreaks in heterogeneous populations

    Science.gov (United States)

    Brockmann, Dirk; Morales-Gallardo, Alejandro; Geisel, Theo

    2007-03-01

    The dynamics of epidemic outbreaks have been investigated in recent years within two alternative theoretical paradigms. The key parameter of mean field type of models such as the SIR model is the basic reproduction number R0, the average number of secondary infections caused by one infected individual. Recently, scale free network models have received much attention as they account for the high variability in the number of social contacts involved. These models predict an infinite basic reproduction number in some cases. We investigate the impact of heterogeneities of contact rates in a generic model for epidemic outbreaks. We present a system in which both the time periods of being infectious and the time periods between transmissions are Poissonian processes. The heterogeneities are introduced by means of strongly variable contact rates. In contrast to scale free network models we observe a finite basic reproduction number and, counterintuitively a smaller overall epidemic outbreak as compared to the homogeneous system. Our study thus reveals that heterogeneities in contact rates do not necessarily facilitate the spread to infectious disease but may well attenuate it.

  2. The heterogeneous dynamics of economic complexity.

    Science.gov (United States)

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch--Economic Complexity--have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method--the selective predictability scheme--in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries.

  3. The Heterogeneous Dynamics of Economic Complexity

    Science.gov (United States)

    Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano

    2015-01-01

    What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch—Economic Complexity—have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method—the selective predictability scheme—in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries. PMID:25671312

  4. Dynamic contact angle cycling homogenizes heterogeneous surfaces.

    Science.gov (United States)

    Belibel, R; Barbaud, C; Mora, L

    2016-12-01

    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer.

    Science.gov (United States)

    Yang, Fei; Thomas, Maria A; Dehdashti, Farrokh; Grigsby, Perry W

    2013-05-01

    The aim of this pilot study was to explore heterogeneity in the temporal behavior of intratumoral [(18)F]fluorodeoxyglucose (FDG) accumulation at a regional scale in patients with cervical cancer undergoing chemoradiotherapy. Included in the study were 20 patients with FIGO stages IB1 to IVA cervical cancer treated with combined chemoradiotherapy. Patients underwent FDG PET/CT before treatment, during weeks 2 and 4 of treatment, and 12 weeks after completion of therapy. Patients were classified based on response to therapy as showing a complete metabolic response (CMR), a partial metabolic response (PMR), or residual disease and the development of new disease (NEW). Based on the presence of residual primary tumor following therapy, patients were divided into two groups, CMR and PMR/NEW. Temporal profiles of intratumoral FDG heterogeneity as characterized by textural features at a regional scale were assessed and compared with those of the standardized uptake value (SUV) indices (SUVmax and SUVmean) within the context of differentiating response groups. Textural features at a regional scale with emphasis on characterizing contiguous regions of high uptake in tumors decreased significantly with time (P features describing contiguous regions of low uptake along with those measuring the nonuniformity of contiguous isointense regions in tumors exhibited significant temporal changes in the PMR/NEW group (P textural features may provide an adjunctive or alternative option for understanding tumor response to chemoradiotherapy and interpreting FDG accumulation dynamics in patients with malignant cervical tumors during the course of the disease.

  6. The temporal dynamics of speeded decision making

    NARCIS (Netherlands)

    Dutilh, G.

    2012-01-01

    This dissertation sheds light on the temporal dynamics of behavior in speeded decision making. Participants on reaction time (RT) tasks learn, get distracted, speed up, slow down, get confused, get bored, and eventually may start guessing. One can safely say that participants' behavior is dynamic.

  7. Temporal fidelity in dynamic social networks

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sapiezynski, Piotr; Pentland, Alex ‘Sandy’

    2015-01-01

    of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution...

  8. Spatially heterogeneous ages in glassy dynamics

    International Nuclear Information System (INIS)

    Castillo, Horacio E.; Chamon, Claudio Chamon; Cugliandolo, Leticia F.; Iguain, Jose Luis; Kennett, Malcolm P.

    2003-09-01

    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution in these systems: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators obtained for a given noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large size heterogeneities in the age of the system survive in the long-time limit. A symmetry of the underlying theory, namely invariance under reparametrizations of the time coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concreteness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems. (author)

  9. Memory for temporally dynamic scenes.

    Science.gov (United States)

    Ferguson, Ryan; Homa, Donald; Ellis, Derek

    2017-07-01

    Recognition memory was investigated for individual frames extracted from temporally continuous, visually rich film segments of 5-15 min. Participants viewed a short clip from a film in either a coherent or a jumbled order, followed by a recognition test of studied frames. Foils came either from an earlier or a later part of the film (Experiment 1) or from deleted segments selected from random cuts of varying duration (0.5 to 30 s) within the film itself (Experiment 2). When the foils came from an earlier or later part of the film (Experiment 1), recognition was excellent, with the hit rate far exceeding the false-alarm rate (.78 vs. 18). In Experiment 2, recognition was far worse, with the hit rate (.76) exceeding the false-alarm rate only for foils drawn from the longest cuts (15 and 30 s) and matching the false-alarm rate for the 5 s segments. When the foils were drawn from the briefest cuts (0.5 and 1.0 s), the false-alarm rate exceeded the hit rate. Unexpectedly, jumbling had no effect on recognition in either experiment. These results are consistent with the view that memory for complex visually temporal events is excellent, with the integrity unperturbed by disruption of the global structure of the visual stream. Disruption of memory was observed only when foils were drawn from embedded segments of duration less than 5 s, an outcome consistent with the view that memory at these shortest durations are consolidated with expectations drawn from the previous stream.

  10. Dynamic perfusion patterns in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Dupont, Patrick; Paesschen, Wim van; Zaknun, John J.; Maes, Alex; Tepmongkol, Supatporn; Locharernkul, Chaichon; Vasquez, Silvia; Carpintiero, Silvina; Bal, C.S.; Dondi, Maurizio

    2009-01-01

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  11. Dynamic perfusion patterns in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Patrick; Paesschen, Wim van [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); Zaknun, John J. [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Maes, Alex [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); AZ Groeninge, Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn; Locharernkul, Chaichon [Chulalongkorn University, Nuclear Medicine and Neurology, Bangkok (Thailand); Vasquez, Silvia; Carpintiero, Silvina [Fleni Instituto de Investigaciones Neurologicas, Nuclear Medicine, Buenos Aires (Argentina); Bal, C.S. [All India Institute of Medical Sciences, Nuclear Medicine, New Delhi (India); Dondi, Maurizio [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); Ospedale Maggiore, Nuclear Medicine, Bologna (Italy)

    2009-05-15

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  12. Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain

    Science.gov (United States)

    Fournier, B.; Guenat, C.; Bullinger-Weber, G.; Mitchell, E. A. D.

    2013-10-01

    Floodplains have been intensively altered in industrialized countries, but are now increasingly being restored. It is therefore important to assess the effect of these restoration projects on the aquatic and terrestrial components of ecosystems. However, despite being functionally crucial components of terrestrial ecosystems, soils are generally overlooked in floodplain restoration assessments. We studied the spatio-temporal heterogeneity of soil morphology in a restored (riverbed widening) river reach along the River Thur (Switzerland) using three criteria (soil diversity, dynamism and typicality) and their associated indicators. We hypothesized that these criteria would correctly discriminate the post-restoration changes in soil morphology, and that these changes correspond to patterns of vascular plant diversity. Soil diversity and dynamism increased 5 yr after the restoration, but some typical soils of braided rivers were still missing. Soil typicality and dynamism were correlated to vegetation changes. These results suggest a limited success of the project, in agreement with evaluations carried out at the same site using other, more resource-demanding, methods (e.g., soil fauna, fish diversity, ecosystem functioning). Soil morphology provides structural and functional information on floodplain ecosystems. The spatio-temporal heterogeneity of soil morphology represents a cost-efficient ecological indicator that could easily be integrated into rapid assessment protocols of floodplain and river restoration projects. The follow-up assessment after several major floods (≥ HQ20) should take place to allow for testing the longer-term validity of our conclusion for the River Thur site. More generally, it would be useful to apply the soil morphology indicator approach in different settings to test its broader applicability.

  13. Effect of Heterogeneity of Vertex Activation on Epidemic Spreading in Temporal Networks

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available Development of sensor technologies and the prevalence of electronic communication services provide us with a huge amount of data on human communication behavior, including face-to-face conversations, e-mail exchanges, phone calls, message exchanges, and other types of interactions in various online forums. These indirect or direct interactions form potential bridges of the virus spread. For a long time, the study of virus spread is based on the aggregate static network. However, the interaction patterns containing diverse temporal properties may affect dynamic processes as much as the network topology does. Some empirical studies show that the activation time and duration of vertices and links are highly heterogeneous, which means intense activity may be followed by longer intervals of inactivity. We take heterogeneous distribution of the node interactivation time as the research background to build an asynchronous communication model. The two sides of the communication do not have to be active at the same time. One derives the threshold of virus spreading on the communication mode and analyzes the reason the heterogeneous distribution of the vertex interactivation time suppresses the spread of virus. At last, the analysis and results from the model are verified on the BA network.

  14. Exploring the dynamic integration of heterogeneous services

    CSIR Research Space (South Africa)

    Makamba, M

    2016-08-01

    Full Text Available components for communication and collaboration amongst enterprises internally and externally. Since Internet has stimulated the use of services, different services have been developed for different purposes prompting those services to be heterogeneous due...

  15. A Hybrid Method for Interpolating Missing Data in Heterogeneous Spatio-Temporal Datasets

    Directory of Open Access Journals (Sweden)

    Min Deng

    2016-02-01

    Full Text Available Space-time interpolation is widely used to estimate missing or unobserved values in a dataset integrating both spatial and temporal records. Although space-time interpolation plays a key role in space-time modeling, existing methods were mainly developed for space-time processes that exhibit stationarity in space and time. It is still challenging to model heterogeneity of space-time data in the interpolation model. To overcome this limitation, in this study, a novel space-time interpolation method considering both spatial and temporal heterogeneity is developed for estimating missing data in space-time datasets. The interpolation operation is first implemented in spatial and temporal dimensions. Heterogeneous covariance functions are constructed to obtain the best linear unbiased estimates in spatial and temporal dimensions. Spatial and temporal correlations are then considered to combine the interpolation results in spatial and temporal dimensions to estimate the missing data. The proposed method is tested on annual average temperature and precipitation data in China (1984–2009. Experimental results show that, for these datasets, the proposed method outperforms three state-of-the-art methods—e.g., spatio-temporal kriging, spatio-temporal inverse distance weighting, and point estimation model of biased hospitals-based area disease estimation methods.

  16. Dynamic heterogeneity and life history variability in the kittiwake

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Orzack, Steven Hecht

    2010-01-01

    1. Understanding the evolution of life histories requires an assessment of the process that generates variation in life histories. Within-population heterogeneity of life histories can be dynamically generated by stochastic variation of reproduction and survival or be generated by individual...... differences that are fixed at birth. 2. We show for the kittiwake that dynamic heterogeneity is a sufficient explanation of observed variation of life histories. 3. The total heterogeneity in life histories has a small contribution from reproductive stage dynamics and a large contribution from survival...... differences. We quantify the diversity in life histories by metrics computed from the generating stochastic process. 4. We show how dynamic heterogeneity can be used as a null model and also how it can lead to positive associations between reproduction and survival across the life span. 5. We believe our...

  17. Mesoscopic model of temporal and spatial heterogeneity in aging colloids

    DEFF Research Database (Denmark)

    Becker, Nikolaj; Sibani, Paolo; Boettcher, Stefan

    2014-01-01

    We develop a simple and effective description of the dynamics of dense hard sphere colloids in the aging regime deep in the glassy phase. Our description complements the many efforts to understand the onset of jamming in low density colloids, whose dynamics is still time-homogeneous. Based...... scattering function and particle mean-square displacements for jammed colloidal systems, and we predict a growth for the peak of the χ4 mobility correlation function that is logarithmic in waiting-time. At the same time, our model suggests a novel unified description for the irreversible aging dynamics...

  18. Probing spatial heterogeneity in supercooled glycerol and temporal heterogeneity with single-molecule FRET in polyprolines

    NARCIS (Netherlands)

    Xia, Ted

    2010-01-01

    This thesis presents two lines of research. On the one hand, we investigate heterogeneity in supercooled glycerol by means of rheometry, small-angle neutron scattering, and fluorescence imaging. We find from the rheological experiments that supercooled glycerol can behave like weak solids at

  19. Molecular dynamics for reactions of heterogeneous catalysis

    NARCIS (Netherlands)

    Jansen, A.P.J.; Brongersma, H.H.; Santen, van R.A.

    1991-01-01

    An overview is given of Molecular Dynamics, and numerical integration techniques, system initialization, boundary conditions, force representation, statistics, system size, and simulations duration are discussed. Examples from surface science are used to illustrate the pros and cons of the method.

  20. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  1. Temporal and spatial heterogeneity of soil CO2 efflux in a Norway spruce stand

    Czech Academy of Sciences Publication Activity Database

    Kurajdová, Jana; Acosta, Manuel; Pavelka, Marian

    2006-01-01

    Roč. 2006, č. 19 (2006), s. 1 ISSN 1803-1013 R&D Projects: GA MŠk OC 627.001 Institutional research plan: CEZ:AV0Z60870520 Keywords : soil CO2 efflux * Norway spruce stand * temperature * spatial and temporal heterogeneity * stand density Subject RIV: ED - Physiology

  2. Dynamic characteristics of heterogeneous media in vibrational and wave processes

    International Nuclear Information System (INIS)

    Fedotovskij, V.S.; Sinyavskij, V.F.; Terenik, L.V.; Spirov, V.S.; Kokorev, B.V.

    1986-01-01

    The complex mechanic systems involving a great quantity of the same type elements, in particular, the rod systems flowed around by the one- or two-phase flow are considered as the two- or three-phase heterogeneous media with certain effective properties. Some recommendations for calculating effective properties and determining those on a base of the dynamic characteristics of various heterogeneous systems are given. (author)

  3. Temporal dynamics of divided spatial attention.

    Science.gov (United States)

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.

  4. Temporal information encoding in dynamic memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wen; Chen, Lin; Du, Chao; Lu, Wei D., E-mail: wluee@eecs.umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-11-09

    We show temporal and frequency information can be effectively encoded in memristive devices with inherent short-term dynamics. Ag/Ag{sub 2}S/Pd based memristive devices with low programming voltage (∼100 mV) were fabricated and tested. At weak programming conditions, the devices exhibit inherent decay due to spontaneous diffusion of the Ag atoms. When the devices were subjected to pulse train inputs emulating different spiking patterns, the switching probability distribution function diverges from the standard Poisson distribution and evolves according to the input pattern. The experimentally observed switching probability distributions and the associated cumulative probability functions can be well-explained using a model accounting for the short-term decay effects. Such devices offer an intriguing opportunity to directly encode neural signals for neural information storage and analysis.

  5. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  6. Is dynamic heterogeneity of water in presence of a protein ...

    Indian Academy of Sciences (India)

    Abstract. Rotational and translational dynamic heterogeneities (DHs) of ambient aqueous solutions of trimethylamine-N-oxide (TMAO) and tetramethylurea (TMU) at several solute concentrations have been inves- tigated and compared. Motional characteristics of water molecules at solute interfaces and in bulk solutions.

  7. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  8. Characterizing Traffic Conditions from the Perspective of Spatial-Temporal Heterogeneity

    Directory of Open Access Journals (Sweden)

    Peichao Gao

    2016-03-01

    Full Text Available Traffic conditions are usually characterized from the perspective of travel time or the average vehicle speed in the field of transportation, reflecting the congestion degree of a road network. This article provides a method from a new perspective to characterize traffic conditions; the perspective is based on the heterogeneity of vehicle speeds. A novel measurement, the ratio of areas (RA in a rank-size plot, is included in the proposed method to capture the heterogeneity. The proposed method can be performed from the perspective of both spatial heterogeneity and temporal heterogeneity, being able to characterize traffic conditions of not only a road network but also a single road. Compared with methods from the perspective of travel time, the proposed method can characterize traffic conditions at a higher frequency. Compared to methods from the perspective of the average vehicle speed, the proposed method takes account of the heterogeneity of vehicle speeds. The effectiveness of the proposed method has been demonstrated with real-life traffic data of Shenzhen (a coastal urban city in China, and the advantage of the proposed RA has been verified by comparisons to similar measurements such as the ht-index and the CRG index.

  9. Interactive macroeconomics stochastic aggregate dynamics with heterogeneous and interacting agents

    CERN Document Server

    Di Guilmi, Corrado

    2017-01-01

    One of the major problems of macroeconomic theory is the way in which the people exchange goods in decentralized market economies. There are major disagreements among macroeconomists regarding tools to influence required outcomes. Since the mainstream efficient market theory fails to provide an internal coherent framework, there is a need for an alternative theory. The book provides an innovative approach for the analysis of agent based models, populated by the heterogeneous and interacting agents in the field of financial fragility. The text is divided in two parts; the first presents analytical developments of stochastic aggregation and macro-dynamics inference methods. The second part introduces macroeconomic models of financial fragility for complex systems populated by heterogeneous and interacting agents. The concepts of financial fragility and macroeconomic dynamics are explained in detail in separate chapters. The statistical physics approach is applied to explain theories of macroeconomic modelling a...

  10. SIR dynamics in structured populations with heterogeneous connectivity

    OpenAIRE

    Volz, Erik

    2005-01-01

    Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...

  11. Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S.; Dunham, E. M.; Kozdon, J. E.

    2012-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.

  12. Noise-induced temporal dynamics in Turing systems

    KAUST Repository

    Schumacher, Linus J.; Woolley, Thomas E.; Baker, Ruth E.

    2013-01-01

    We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using

  13. Conceptualizing a tool to optimize therapy based on dynamic heterogeneity

    International Nuclear Information System (INIS)

    Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D

    2012-01-01

    Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both ‘large’ and ‘small’ numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. (paper)

  14. Heterogeneous patterns enhancing static and dynamic texture classification

    International Nuclear Information System (INIS)

    Silva, Núbia Rosa da; Martinez Bruno, Odemir

    2013-01-01

    Some mixtures, such as colloids like milk, blood, and gelatin, have homogeneous appearance when viewed with the naked eye, however, to observe them at the nanoscale is possible to understand the heterogeneity of its components. The same phenomenon can occur in pattern recognition in which it is possible to see heterogeneous patterns in texture images. However, current methods of texture analysis can not adequately describe such heterogeneous patterns. Common methods used by researchers analyse the image information in a global way, taking all its features in an integrated manner. Furthermore, multi-scale analysis verifies the patterns at different scales, but still preserving the homogeneous analysis. On the other hand various methods use textons to represent the texture, breaking texture down into its smallest unit. To tackle this problem, we propose a method to identify texture patterns not small as textons at distinct scales enhancing the separability among different types of texture. We find sub patterns of texture according to the scale and then group similar patterns for a more refined analysis. Tests were performed in four static texture databases and one dynamical one. Results show that our method provide better classification rate compared with conventional approaches both in static and in dynamic texture.

  15. Continuous Trading Dynamically Effectively Complete Market with Heterogeneous Beliefs

    DEFF Research Database (Denmark)

    Qin, Zhenjiang

    on the heterogeneous posterior variance of dividend throughout [0; T). The market populated with many time-additive exponential-utility investors is dynamically effectively complete, if investors are allowed to trade in only two long-lived securities continuously. The underlying mechanism is that these assumptions...... imply that the Pareto efficient individual consumption plans are measurable with respect to the aggregate consumption. Hence, I may not need a dynamically complete market to facilitate a Pareto efficient allocation of consumption, the securities only have to facilitate an allocation which is measurable...... a sufficient statistic for computation of the price of redundant dividend derivative and the equilibrium portfolios. The investors form their Pareto optimal trading strategies as if they intend to dynamically endogenously replicate the value of the dividend derivative....

  16. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    Science.gov (United States)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  17. Experimental oligopolies modeling: A dynamic approach based on heterogeneous behaviors

    Science.gov (United States)

    Cerboni Baiardi, Lorenzo; Naimzada, Ahmad K.

    2018-05-01

    In the rank of behavioral rules, imitation-based heuristics has received special attention in economics (see [14] and [12]). In particular, imitative behavior is considered in order to understand the evidences arising in experimental oligopolies which reveal that the Cournot-Nash equilibrium does not emerge as unique outcome and show that an important component of the production at the competitive level is observed (see e.g.[1,3,9] or [7,10]). By considering the pioneering groundbreaking approach of [2], we build a dynamical model of linear oligopolies where heterogeneous decision mechanisms of players are made explicit. In particular, we consider two different types of quantity setting players characterized by different decision mechanisms that coexist and operate simultaneously: agents that adaptively adjust their choices towards the direction that increases their profit are embedded with imitator agents. The latter ones use a particular form of proportional imitation rule that considers the awareness about the presence of strategic interactions. It is noteworthy that the Cournot-Nash outcome is a stationary state of our models. Our thesis is that the chaotic dynamics arousing from a dynamical model, where heterogeneous players are considered, are capable to qualitatively reproduce the outcomes of experimental oligopolies.

  18. Dynamical heterogeneity in a glass-forming ideal gas.

    Science.gov (United States)

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  19. Stability and dynamics of reactors with heterogeneously catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Eigenberger, G [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-12-01

    Our knowledge of causes and consequences of problems arising from instability and dynamic effects in reactors with heterogeneously catalyzed reactions has increased remarkably in recent years. Especially thermal effects, caused by the self-acceleration of an exothermic reaction in combination with heat and mass transport, are now well understood. In addition, kinetic effects, i.e. phenomena which have to be explained by the kinetic peculiarities of surface reactions, have attracted increasing interest. For both cases the state of the art will be reviewed, highlighting the physical and chemical causes of the observed phenomena.

  20. Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities

    International Nuclear Information System (INIS)

    Niedzwiedz, K.; Wischnewski, A.; Monkenbusch, M.; Richter, D.; Strauch, M.; Straube, E.; Genix, A.-C.; Arbe, A.; Colmenero, J.

    2007-01-01

    We present a neutron scattering investigation on a miscible blend of two polymers with greatly different glass-transition temperatures T g . Under such conditions, the nearly frozen high-T g component imposes a random environment on the mobile chain. The results demand the consideration of a distribution of heterogeneous mobilities in the material and demonstrate that the larger scale dynamics of the fast component is not determined by the average local environment alone. This distribution of mobilities can be mapped quantitatively on the spectrum of local relaxation rates measured at high momentum transfers

  1. Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2018-05-01

    Room temperature ionic liquids (RTILs) have been shown to exhibit spatial heterogeneity or structural heterogeneity in the sense that they form hydrophobic and ionic domains. Yet studies of the relationship between this structural heterogeneity and the ˜picosecond motion of the molecular constituents remain limited. In order to obtain insight into the time scales relevant to this structural heterogeneity, we perform molecular dynamics simulations of a series of RTILs. To investigate the relationship between the structures, i.e., the presence of hydrophobic and ionic domains, and the dynamics, we gradually increase the size of the hydrophobic part of the cation from ethylammonium nitrate (EAN), via propylammonium nitrate (PAN), to butylammonium nitrate (BAN). The two ends of the organic cation, namely, the charged Nhead-H group and the hydrophobic Ctail-H group, exhibit rotational dynamics on different time scales, evidencing dynamical heterogeneity. The dynamics of the Nhead-H group is slower because of the strong coulombic interaction with the nitrate counter-ionic anions, while the dynamics of the Ctail-H group is faster because of the weaker van der Waals interaction with the surrounding atoms. In particular, the rotation of the Nhead-H group slows down with increasing cationic chain length, while the rotation of the Ctail-H group shows little dependence on the cationic chain length, manifesting that the dynamical heterogeneity is enhanced with a longer cationic chain. The slowdown of the Nhead-H group with increasing cationic chain length is associated with a lower number of nitrate anions near the Nhead-H group, which presumably results in the increase of the energy barrier for the rotation. The sensitivity of the Nhead-H rotation to the number of surrounding nitrate anions, in conjunction with the varying number of nitrate anions, gives rise to a broad distribution of Nhead-H reorientation times. Our results suggest that the asymmetry of the cations and the

  2. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  3. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

  4. Malaria infection has spatial, temporal, and spatiotemporal heterogeneity in unstable malaria transmission areas in northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Kassahun Alemu

    Full Text Available BACKGROUND: Malaria elimination requires successful nationwide control efforts. Detecting the spatiotemporal distribution and mapping high-risk areas are useful to effectively target pockets of malaria endemic regions for interventions. OBJECTIVE: The aim of the study was to identify patterns of malaria distribution by space and time in unstable malaria transmission areas in northwest Ethiopia. METHODS: Data were retrieved from the monthly reports stored in the district malaria offices for the period between 2003 and 2012. Eighteen districts in the highland and fringe malaria areas were included and geo-coded for the purpose of this study. The spatial data were created in ArcGIS10 for each district. The Poisson model was used by applying Kulldorff methods using the SaTScan™ software to analyze the purely temporal, spatial and space-time clusters of malaria at a district levels. RESULTS: The study revealed that malaria case distribution has spatial, temporal, and spatiotemporal heterogeneity in unstable transmission areas. Most likely spatial malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR =197764.1, p<0.001. Significant spatiotemporal malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR=197764.1, p<0.001 between 2003/1/1 and 2012/12/31. A temporal scan statistics identified two high risk periods from 2009/1/1 to 2010/12/31 (LLR=72490.5, p<0.001 and from 2003/1/1 to 2005/12/31 (LLR=26988.7, p<0.001. CONCLUSION: In unstable malaria transmission areas, detecting and considering the spatiotemporal heterogeneity would be useful to strengthen malaria control efforts and ultimately achieve elimination.

  5. Inverse Transformation: Unleashing Spatially Heterogeneous Dynamics with an Alternative Approach to XPCS Data Analysis.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.

  6. Dynamic Stock Market Participation of Households with Heterogeneous Participation Costs

    DEFF Research Database (Denmark)

    Khorunzhina, Natalia

    This paper develops and estimates a dynamic model of stock market participation, where consumers’ decisions regarding stock market participation are influenced by participation costs. The practical significance of the participation costs is considered as being a channel through which financial...... education programs can affect consumers’ investment decisions. Using household data from the Panel Study of Income Dynamics, I estimate the magnitude of the participation cost, allowing for individual heterogeneity in it. The results show the average stock market participation cost is about 5% of labor...... income; however, it varies substantially over consumers’ life. The model successfully predicts the level of the observed participation rate and the increasing pattern of stock market participation over the consumers’ life cycle....

  7. Identify Dynamic Network Modules with Temporal and Spatial Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J

    2007-09-24

    Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.

  8. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina

    2017-10-26

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  9. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina; Kiani, Narsis A.; Abad, Elena; Martinez-Lapiscina, Elena H.; Andorra, Magi; Zubizarreta, Irati; Pulido-Valdeolivas, Irene; Pertsovskaya, Inna; Alexopoulos, Leonidas G.; Olsson, Tomas; Martin, Roland; Paul, Friedemann; Tegner, Jesper; Garcia-Ojalvo, Jordi; Villoslada, Pablo

    2017-01-01

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  10. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    Science.gov (United States)

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  11. FACILITATING INTEGRATED SPATIO-TEMPORAL VISUALIZATION AND ANALYSIS OF HETEROGENEOUS ARCHAEOLOGICAL AND PALAEOENVIRONMENTAL RESEARCH DATA

    Directory of Open Access Journals (Sweden)

    C. Willmes

    2012-07-01

    Full Text Available In the context of the Collaborative Research Centre 806 "Our way to Europe" (CRC806, a research database is developed for integrating data from the disciplines of archaeology, the geosciences and the cultural sciences to facilitate integrated access to heterogeneous data sources. A practice-oriented data integration concept and its implementation is presented in this contribution. The data integration approach is based on the application of Semantic Web Technology and is applied to the domains of archaeological and palaeoenvironmental data. The aim is to provide integrated spatio-temporal access to an existing wealth of data to facilitate research on the integrated data basis. For the web portal of the CRC806 research database (CRC806-Database, a number of interfaces and applications have been evaluated, developed and implemented for exposing the data to interactive analysis and visualizations.

  12. Temporal dynamics of Bose-condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Martinez, Mauricio

    2014-03-19

    We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

  13. Effects of heterogeneous convergence rate on consensus in opinion dynamics

    Science.gov (United States)

    Huang, Changwei; Dai, Qionglin; Han, Wenchen; Feng, Yuee; Cheng, Hongyan; Li, Haihong

    2018-06-01

    The Deffuant model has attracted much attention in the study of opinion dynamics. Here, we propose a modified version by introducing into the model a heterogeneous convergence rate which is dependent on the opinion difference between interacting agents and a tunable parameter κ. We study the effects of heterogeneous convergence rate on consensus by investigating the probability of complete consensus, the size of the largest opinion cluster, the number of opinion clusters, and the relaxation time. We find that the decrease of the convergence rate is favorable to decreasing the confidence threshold for the population to always reach complete consensus, and there exists optimal κ resulting in the minimal bounded confidence threshold. Moreover, we find that there exists a window before the threshold of confidence in which complete consensus may be reached with a nonzero probability when κ is not too large. We also find that, within a certain confidence range, decreasing the convergence rate will reduce the relaxation time, which is somewhat counterintuitive.

  14. Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids

    Science.gov (United States)

    Breyta, Rachel; Black, Allison; Kaufman, John; Kurath, Gael

    2016-01-01

    The aquatic rhaboviral pathogen infectious hematopoietic necrosis virus (IHNV) causes acute disease in juvenile fish of a number of populations of Pacific salmonid species. Heavily managed in both marine and freshwater environments, these fish species are cultured during the juvenile stage in freshwater conservation hatcheries, where IHNV is one of the top three infectious diseases that cause serious morbidity and mortality. Therefore, a comprehensive study of viral genetic surveillance data representing 2590 field isolates collected between 1958 and 2014 was conducted to determine the spatial and temporal patterns of IHNV in the Pacific Northwest of the contiguous United States. Prevalence of infection varied over time, fluctuating over a rough 5–7 year cycle. The genetic analysis revealed numerous subgroups of IHNV, each of which exhibited spatial heterogeneity. Within all subgroups, dominant genetic types were apparent, though the temporal patterns of emergence of these types varied among subgroups. Finally, the affinity or fidelity of subgroups to specific host species also varied, where UC subgroup viruses exhibited a more generalist profile and all other subgroups exhibited a specialist profile. These complex patterns are likely synergistically driven by numerous ecological, pathobiological, and anthropogenic factors. Since only a few anthropogenic factors are candidates for managed intervention aimed at improving the health of threatened or endangered salmonid fish populations, determining the relative impact of these factors is a high priority for future studies.

  15. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids.

    Science.gov (United States)

    Wang, Lijin; Xu, Ning; Wang, W H; Guan, Pengfei

    2018-03-23

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  16. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids

    Science.gov (United States)

    Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei

    2018-03-01

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  17. Effects of dynamic-range compression on temporal acuity

    DEFF Research Database (Denmark)

    Wiinberg, Alan; Jepsen, Morten Løve; Epp, Bastian

    2016-01-01

    Some of the challenges that hearing-aid listeners experience with speech perception in complex acoustic environments may originate from limitations in the temporal processing of sounds. To systematically investigate the influence of hearing impairment and hearing-aid signal processing on temporal...... processing, temporal modulation transfer functions (TMTFs) and “supra-threshold” modulation-depth discrimination (MDD) thresholds were obtained in normal-hearing (NH) and hearing-impaired (HI) listeners with and without wide-dynamic range compression (WDRC). The TMTFs were obtained using tonal carriers of 1...... with the physical compression of the modulation depth due to the WDRC. Indications of reduced temporal resolution in the HI listeners were observed in the TMTF patterns for the 5 kHz carrier. Significantly higher MDD thresholds were found for the HI group relative to the NH group. No relationship was found between...

  18. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...

  19. Spatial and temporal dynamics of land use pattern response to ...

    African Journals Online (AJOL)

    Urban settlements account for only two percent of the Earth's land surface. However, over half of the world's population resides in cities (United Nations, 2001). The quantitative evidences presented here showed that there were drastic changes in the temporal and spatial dynamics of land use/land cover. As an overall ...

  20. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  1. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Roland F Schwarz

    2015-02-01

    Full Text Available The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease.Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo, censored after 26 October 2013. Outcome measures were overall survival (OS and progression-free survival (PFS. There were marked differences in the degree of clonal expansion (CE between patients (median 0.74, interquartile range 0.66-1.15, and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003. Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy.This study demonstrates that quantitative measures of intra

  2. Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome.

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Lim, Sooa; Marcellin, Esteban; Nielsen, Lars K

    2014-05-01

    Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest ("metabolic switch") preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO(2) enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of

  3. Temporal Dynamics of the Saccharopolyspora erythraea Phosphoproteome*

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Lim, SooA; Marcellin, Esteban; Nielsen, Lars K.

    2014-01-01

    Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest (“metabolic switch”) preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO2 enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of

  4. Dynamics of heterogeneous oscillator ensembles in terms of collective variables

    Science.gov (United States)

    Pikovsky, Arkady; Rosenblum, Michael

    2011-04-01

    We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

  5. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.

    Science.gov (United States)

    Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki

    2017-09-08

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  6. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

    Science.gov (United States)

    Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki

    2017-09-01

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  7. Spatial and temporal distribution of solute leaching in heterogeneous soils: analysis and application to multisampler lysimeter data

    NARCIS (Netherlands)

    Rooij, de G.H.; Stagnitti, F.

    2002-01-01

    Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of

  8. Temporal networks

    CERN Document Server

    Saramäki, Jari

    2013-01-01

    The concept of temporal networks is an extension of complex networks as a modeling framework to include information on when interactions between nodes happen. Many studies of the last decade examine how the static network structure affect dynamic systems on the network. In this traditional approach  the temporal aspects are pre-encoded in the dynamic system model. Temporal-network methods, on the other hand, lift the temporal information from the level of system dynamics to the mathematical representation of the contact network itself. This framework becomes particularly useful for cases where there is a lot of structure and heterogeneity both in the timings of interaction events and the network topology. The advantage compared to common static network approaches is the ability to design more accurate models in order to explain and predict large-scale dynamic phenomena (such as, e.g., epidemic outbreaks and other spreading phenomena). On the other hand, temporal network methods are mathematically and concept...

  9. Numerical investigations of triggering mechanisms of shallow landslides due to heterogeneous spatio-temporal hydrological patterns.

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Denis

    2016-04-01

    Rainfall is one of the major triggering factor of shallow landslide around the world. The increase of soil moisture in the soil influences the stability of a slope through the increase of soil bulk density, the reduction of soil apparent cohesion (due to suction stress), and the increase in pore water pressure.The spatio-temporal transformations of such properties of soil are know to be heterogeneous and under constant change. For instance, there may be a condition where, in cracked clay-soil, water, during a rain event, produces a rapid increase of pore water pressure along preferential flow-paths (crack or roots), while soil moisture and suction within the soil matrix change minimally. An another site in a sandy soil, the situation might be very different where the increase of soil moisture and pore water pressure, and the decrease of soil suction take place more or less simultaneously across the entire soil profile. In both of these cases topography plays a major role in determining the accumulation of water along the slope through different subsurface flows intensities and directions. In many documented cases in the Alps, shallow landslides may also be triggered by the punctual exfiltration of water from bedrock or weathered geological strata. The hydro-geological characteristics of the catchment control this mechanism. These different situations aim to give an idea of the large spectrum of hydrological triggering conditions of shallow landslides. The heterogeneities of these hydrological conditions represent a difficult issue in modeling shallow landslide triggering mechanisms. In the simplest models, hydrology is assumed to influence changes in pore water pressure only, mostly using one dimensional vertical infiltration models. More advanced models consider changes in apparent cohesion due to changes in soil moisture or include more complex hydrological models to simulate water flow and distribution during a rainfall event. However, most models at the

  10. Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2016-11-01

    Full Text Available Urban ecological security is the basic principle of national ecological security. However, analyses of the spatial and temporal dynamics of ecological security remain limited, especially those that consider different scenarios of urban development. In this study, an integrated method is proposed that combines the Conversion of Land Use and its Effects (CLUE-S model with the Pressure–State–Response (P-S-R framework to assess landscape ecological security (LES in Huangshan City, China under two scenarios. Our results suggest the following conclusions: (1 the spatial and temporal dynamics of ecological security are closely related to the urbanization process; (2 although the average values of landscape ecological security are similar under different scenarios, the areas of relatively high security levels vary considerably; and (3 spatial heterogeneity in ecological security exists between different districts and counties, and the city center and its vicinity may face relatively serious declines in ecological security in the future. Overall, the proposed method not only illustrates the spatio-temporal dynamics of landscape ecological security under different scenarios but also reveals the anthropogenic effects on ecosystems by differentiating between causes, effects, and human responses at the landscape scale. This information is of great significance to decision-makers for future urban planning and management.

  11. Temporal patterns and geographic heterogeneity of Zika virus (ZIKV outbreaks in French Polynesia and Central America

    Directory of Open Access Journals (Sweden)

    Ying-Hen Hsieh

    2017-03-01

    Full Text Available Background Zika virus (ZIKV transmission has been reported in 67 countries/territories in the Oceania region and the Americas since 2015, prompting the World Health Organization (WHO to declare ZIKV as a Public Health Emergency of International Concern in February 2016, due to its strong association with medical complications such as microcephaly and Guillain–Barré Syndrome (GBS. However, a substantial gap in knowledge still exists regarding differing temporal pattern and potential of transmission of ZIKV in different regions of the world. Methods We use a phenomenological model to ascertain the temporal patterns and transmission potential of ZIKV in various countries/territories, by fitting the model to Zika case data from Yap Island and French Polynesia in the Oceania region and 11 countries/territories with confirmed case data, namely, Colombia, Ecuador, French Guiana, Guadeloupe, Guatemala, Mexico, Nicaragua, Panama, Puerto Rico, Saint Martin, and Suriname, to pinpoint the waves of infections in each country/territory and to estimate the respective basic reproduction number R0. Results Six of these time series datasets resulted in statistically significant model fit of at least one wave of reported cases, namely that of French Polynesia, Colombia, Puerto Rico, Guatemala, Suriname and Saint Martin. However, only Colombia and Guatemala exhibited two waves of cases while the others had only one wave. Temporal patterns of the second wave in Colombia and the single wave in Suriname are very similar, with the respective turning points separated by merely a week. Moreover, the mean estimates of R0 for Colombia, Guatemala and Suriname, all land-based populations, range between 1.05 and 1.75, while the corresponding mean estimates for R0 of island populations in French Polynesia, Puerto Rico and Saint Martin are significantly lower with a range of 5.70–6.89. We also fit the Richards model to Zika case data from six main archipelagos in French

  12. A temporal interpolation approach for dynamic reconstruction in perfusion CT

    International Nuclear Information System (INIS)

    Montes, Pau; Lauritsch, Guenter

    2007-01-01

    This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes

  13. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    Science.gov (United States)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  14. Temporal dynamics of ikaite in experimental sea ice

    OpenAIRE

    S. Rysgaard; F. Wang; R. J. Galley; R. Grimm; D. Notz; M. Lemes; N.-X. Geilfus; A. Chaulk; A. A. Hare; O. Crabeck; B. G. T. Else; K. Campbell; L. L. Sørensen; J. Sievers; T. Papakyriakou

    2014-01-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution i...

  15. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  16. Iterative analysis of cerebrovascular reactivity dynamic response by temporal decomposition.

    Science.gov (United States)

    van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Bozinov, Oliver; Pangalu, Athina; Fisher, Joseph A; Valavanis, Antonios; Luft, Andreas R; Weller, Michael; Regli, Luca; Fierstra, Jorn

    2017-09-01

    To improve quantitative cerebrovascular reactivity (CVR) measurements and CO 2 arrival times, we present an iterative analysis capable of decomposing different temporal components of the dynamic carbon dioxide- Blood Oxygen-Level Dependent (CO 2 -BOLD) relationship. Decomposition of the dynamic parameters included a redefinition of the voxel-wise CO 2 arrival time, and a separation from the vascular response to a stepwise increase in CO 2 (Delay to signal Plateau - DTP) and a decrease in CO 2 (Delay to signal Baseline -DTB). Twenty-five (normal) datasets, obtained from BOLD MRI combined with a standardized pseudo-square wave CO 2 change, were co-registered to generate reference atlases for the aforementioned dynamic processes to score the voxel-by-voxel deviation probability from normal range. This analysis is further illustrated in two subjects with unilateral carotid artery occlusion using these reference atlases. We have found that our redefined CO 2 arrival time resulted in the best data fit. Additionally, excluding both dynamic BOLD phases (DTP and DTB) resulted in a static CVR, that is maximal response, defined as CVR calculated only over a normocapnic and hypercapnic calibrated plateau. Decomposition and novel iterative modeling of different temporal components of the dynamic CO 2 -BOLD relationship improves quantitative CVR measurements.

  17. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data.

    Science.gov (United States)

    Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P

    2018-01-01

    Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise

  18. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  19. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  20. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  1. Temporal dynamics and transcriptional control using single-cell gene expression analysis.

    Science.gov (United States)

    Kouno, Tsukasa; de Hoon, Michiel; Mar, Jessica C; Tomaru, Yasuhiro; Kawano, Mitsuoki; Carninci, Piero; Suzuki, Harukazu; Hayashizaki, Yoshihide; Shin, Jay W

    2013-01-01

    Changes in environmental conditions lead to expression variation that manifest at the level of gene regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed and utilized by cells transitioning through a key developmental event. Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points, and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both the pro- and anti-differentiation pathways. Compared to averaged cell populations, temporal single-cell expression profiling provides a much more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.

  2. Ananke: temporal clustering reveals ecological dynamics of microbial communities

    Directory of Open Access Journals (Sweden)

    Michael W. Hall

    2017-09-01

    Full Text Available Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke.

  3. Collective motion of macroscopic spheres floating on capillary ripples: dynamic heterogeneity and dynamic criticality.

    Science.gov (United States)

    Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj

    2014-09-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.

  4. Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation.

    Science.gov (United States)

    Jablonski, Piotr; Poe, Gina; Zochowski, Michal

    2007-03-01

    The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.

  5. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  6. Effects of Heterogeneous Social Interactions on Flocking Dynamics

    Science.gov (United States)

    Miguel, M. Carmen; Parley, Jack T.; Pastor-Satorras, Romualdo

    2018-02-01

    Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the static Vicsek model and the equilibrium X Y model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.

  7. Spatio-temporal diffusion of dynamic PET images

    International Nuclear Information System (INIS)

    Tauber, C; Chalon, S; Guilloteau, D; Stute, S; Buvat, I; Chau, M; Spiteri, P

    2011-01-01

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  8. Multisite tumor sampling enhances the detection of intratumor heterogeneity at all different temporal stages of tumor evolution.

    Science.gov (United States)

    Erramuzpe, Asier; Cortés, Jesús M; López, José I

    2018-02-01

    Intratumor heterogeneity (ITH) is an inherent process of tumor development that has received much attention in previous years, as it has become a major obstacle for the success of targeted therapies. ITH is also temporally unpredictable across tumor evolution, which makes its precise characterization even more problematic since detection success depends on the precise temporal snapshot at which ITH is analyzed. New and more efficient strategies for tumor sampling are needed to overcome these difficulties which currently rely entirely on the pathologist's interpretation. Recently, we showed that a new strategy, the multisite tumor sampling, works better than the routine sampling protocol for the ITH detection when the tumor time evolution was not taken into consideration. Here, we extend this work and compare the ITH detections of multisite tumor sampling and routine sampling protocols across tumor time evolution, and in particular, we provide in silico analyses of both strategies at early and late temporal stages for four different models of tumor evolution (linear, branched, neutral, and punctuated). Our results indicate that multisite tumor sampling outperforms routine protocols in detecting ITH at all different temporal stages of tumor evolution. We conclude that multisite tumor sampling is more advantageous than routine protocols in detecting intratumor heterogeneity.

  9. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    Science.gov (United States)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  10. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    Directory of Open Access Journals (Sweden)

    Erica N Spotswood

    Full Text Available Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species, temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  11. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    Science.gov (United States)

    Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  12. Research on the Effects of Heterogeneity on Pedestrian Dynamics in Walkway of Subway Station

    Directory of Open Access Journals (Sweden)

    Haoling Wu

    2016-01-01

    Full Text Available The major objective of this paper is to study the effects of heterogeneity on pedestrian dynamics in walkway of subway station. We analyze the observed data of the selected facility and find that walking speed and occupied space were varied in the population. In reality, pedestrians are heterogeneous individuals with different attributes. However, the research on how the heterogeneity affects the pedestrian dynamics in facilities of subway stations is insufficient. The improved floor field model is therefore presented to explore the effects of heterogeneity. Pedestrians are classified into pedestrians walking in pairs, fast pedestrians, and ordinary pedestrians. For convenience, they are denoted as P-pedestrians, F-pedestrians, and O-pedestrians, respectively. The proposed model is validated under homogeneous and heterogeneous conditions. Three pedestrian compositions are simulated to analyze the effects of heterogeneity on pedestrian dynamics. The results show that P-pedestrians have negative effect and F-pedestrians have positive effect. All of the results in this paper indicate that the capacity of walkway is not a constant value. It changes with different component proportions of heterogeneous pedestrians. The heterogeneity of pedestrian has an important influence on the pedestrian dynamics in the walkway of the subway station.

  13. A Simple Method for Dynamic Scheduling in a Heterogeneous Computing System

    OpenAIRE

    Žumer, Viljem; Brest, Janez

    2002-01-01

    A simple method for the dynamic scheduling on a heterogeneous computing system is proposed in this paper. It was implemented to minimize the parallel program execution time. The proposed method decomposes the program workload into computationally homogeneous subtasks, which may be of the different size, depending on the current load of each machine in a heterogeneous computing system.

  14. An investigation of temporal regularization techniques for dynamic PET reconstructions using temporal splines

    International Nuclear Information System (INIS)

    Verhaeghe, Jeroen; D'Asseler, Yves; Vandenberghe, Stefaan; Staelens, Steven; Lemahieu, Ignace

    2007-01-01

    The use of a temporal B-spline basis for the reconstruction of dynamic positron emission tomography data was investigated. Maximum likelihood (ML) reconstructions using an expectation maximization framework and maximum A-posteriori (MAP) reconstructions using the generalized expectation maximization framework were evaluated. Different parameters of the B-spline basis of such as order, number of basis functions and knot placing were investigated in a reconstruction task using simulated dynamic list-mode data. We found that a higher order basis reduced both the bias and variance. Using a higher number of basis functions in the modeling of the time activity curves (TACs) allowed the algorithm to model faster changes of the TACs, however, the TACs became noisier. We have compared ML, Gaussian postsmoothed ML and MAP reconstructions. The noise level in the ML reconstructions was controlled by varying the number of basis functions. The MAP algorithm penalized the integrated squared curvature of the reconstructed TAC. The postsmoothed ML was always outperformed in terms of bias and variance properties by the MAP and ML reconstructions. A simple adaptive knot placing strategy was also developed and evaluated. It is based on an arc length redistribution scheme during the reconstruction. The free knot reconstruction allowed a more accurate reconstruction while reducing the noise level especially for fast changing TACs such as blood input functions. Limiting the number of temporal basis functions combined with the adaptive knot placing strategy is in this case advantageous for regularization purposes when compared to the other regularization techniques

  15. Temporal dynamics of ikaite in experimental sea ice

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Wang, F.; Galley, R.J.

    2014-01-01

    Ikaite (CaCO3·6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice......-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During...... the experiment, ikaite precipitated in sea ice when temperatures were below −4 C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of > 2000 μmol kg−1, (2) an internal layer...

  16. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

    Science.gov (United States)

    Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L

    2018-05-24

    Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  18. Lateralization for dynamic facial expressions in human superior temporal sulcus.

    Science.gov (United States)

    De Winter, François-Laurent; Zhu, Qi; Van den Stock, Jan; Nelissen, Koen; Peeters, Ronald; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2015-02-01

    Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing processing strategies in the right hemisphere or that alternatively left sided specialization for language in humans could be the driving force behind this phenomenon. We aimed to address both issues by studying lateralization for dynamic facial expressions in monkeys and humans. Therefore, we conducted an event-related fMRI experiment in three macaques and twenty right handed humans. We presented human and monkey dynamic facial expressions (chewing and fear) as well as scrambled versions to both species. We studied lateralization in independently defined face-responsive and face-selective regions by calculating a weighted lateralization index (LIwm) using a bootstrapping method. In order to examine if lateralization in humans is related to language, we performed a separate fMRI experiment in ten human volunteers including a 'speech' expression (one syllable non-word) and its scrambled version. Both within face-responsive and selective regions, we found consistent lateralization for dynamic faces (chewing and fear) versus scrambled versions in the right human posterior superior temporal sulcus (pSTS), but not in FFA nor in ventral temporal cortex. Conversely, in monkeys no consistent pattern of lateralization for dynamic facial expressions was observed. Finally, LIwms based on the contrast between different types of dynamic facial expressions (relative to scrambled versions) revealed left-sided lateralization in human pSTS for speech-related expressions compared to chewing and emotional expressions. To conclude, we found consistent laterality effects in human posterior STS but not

  19. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Science.gov (United States)

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  20. Leveraging Mechanism Simplicity and Strategic Averaging to Identify Signals from Highly Heterogeneous Spatial and Temporal Ozone Data

    Science.gov (United States)

    Brown-Steiner, B.; Selin, N. E.; Prinn, R. G.; Monier, E.; Garcia-Menendez, F.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Cameron-Smith, P. J.

    2017-12-01

    We summarize two methods to aid in the identification of ozone signals from underlying spatially and temporally heterogeneous data in order to help research communities avoid the sometimes burdensome computational costs of high-resolution high-complexity models. The first method utilizes simplified chemical mechanisms (a Reduced Hydrocarbon Mechanism and a Superfast Mechanism) alongside a more complex mechanism (MOZART-4) within CESM CAM-Chem to extend the number of simulated meteorological years (or add additional members to an ensemble) for a given modeling problem. The Reduced Hydrocarbon mechanism is twice as fast, and the Superfast mechanism is three times faster than the MOZART-4 mechanism. We show that simplified chemical mechanisms are largely capable of simulating surface ozone across the globe as well as the more complex chemical mechanisms, and where they are not capable, a simple standardized anomaly emulation approach can correct for their inadequacies. The second method uses strategic averaging over both temporal and spatial scales to filter out the highly heterogeneous noise that underlies ozone observations and simulations. This method allows for a selection of temporal and spatial averaging scales that match a particular signal strength (between 0.5 and 5 ppbv), and enables the identification of regions where an ozone signal can rise above the ozone noise over a given region and a given period of time. In conjunction, these two methods can be used to "scale down" chemical mechanism complexity and quantitatively determine spatial and temporal scales that could enable research communities to utilize simplified representations of atmospheric chemistry and thereby maximize their productivity and efficiency given computational constraints. While this framework is here applied to ozone data, it could also be applied to a broad range of geospatial data sets (observed or modeled) that have spatial and temporal coverage.

  1. Spatial and temporal dynamics of the genetic organization of small mammal populations

    International Nuclear Information System (INIS)

    Smith, M.H.; Manlove, M.N.; Joule, J.

    1978-01-01

    A functional population is a group of organisms and their offspring that contributes to a common gene pool within a certain area and time period. It is also the unit of evolution and should be viewed both in quantitative and qualitative terms. Selection, drift, dispersal, and mutation can alter the composition of populations. Spatial heterogeneity in allele frequencies argues for a conceptual model that has a series of relatively small populations semi-isolated from one another. Because of the relatively high levels of genetic variability characteristic of most mammalian species, significant amounts of gene flow between these spatially subdivided populations must occur when longer time periods are considered. Fluctuations in the genetic structure of populations seem to be important in altering the fitness of the individuals within the populations. The interaction of populations through gene flow is important in changing the levels of intrapopulational genetic variability. Populations can be characterized as existing on a continuum from relatively stable to unstable numbers and by other associated changes in their characteristics. Temporal changes in allele frequency occur in a variety of mammals. Conceptually, a species can be viewed as a series of dynamic populations that vary in numbers and quality in both a spatial and temporal context even over short distances and time periods. Short term changes in the quality of individuals in a population can be important in altering the short term dynamics of a population

  2. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  3. Dynamics of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution

    Directory of Open Access Journals (Sweden)

    Ashley M. Laughney

    2015-08-01

    Full Text Available Numerical chromosomal instability is a ubiquitous feature of human neoplasms. Due to experimental limitations, fundamental characteristics of karyotypic changes in cancer are poorly understood. Using an experimentally inspired stochastic model, based on the potency and chromosomal distribution of oncogenes and tumor suppressor genes, we show that cancer cells have evolved to exist within a narrow range of chromosome missegregation rates that optimizes phenotypic heterogeneity and clonal survival. Departure from this range reduces clonal fitness and limits subclonal diversity. Mapping of the aneuploid fitness landscape reveals a highly favorable, commonly observed, near-triploid state onto which evolving diploid- and tetraploid-derived populations spontaneously converge, albeit at a much lower fitness cost for the latter. Finally, by analyzing 1,368 chromosomal translocation events in five human cancers, we find that karyotypic evolution also shapes chromosomal translocation patterns by selecting for more oncogenic derivative chromosomes. Thus, chromosomal instability can generate the heterogeneity required for Darwinian tumor evolution.

  4. Dynamic effects of increasing heterogeneity in financial markets

    International Nuclear Information System (INIS)

    Naimzada, Ahmad K.; Ricchiuti, Giorgio

    2009-01-01

    Despite canonical behavioural financial market models [Day R, Huang W. Bulls, bears and market sheep. J Econ Behav Org 1990;14:299-329], that use different types of agents (i.e., fundamentalist vs. chartists), we develop a model in which the source of instability is the interaction of groups that are homogeneous in the strategy they use, but have heterogeneous beliefs about the fundamental value of the asset. Specifically, heterogeneity arises among two groups of fundamentalists that follow gurus. We show that an increasing distance between beliefs (the degree of heterogeneity), leads first (i) to a pitchfork bifurcation to arise secondly (ii) it generates, together with a larger reaction to misalignment of both market maker and agents, the appearance of a periodic, or even, chaotic, price fluctuation; (iii) finally a homoclinic bifurcation [Dieci R, Bischi GI, Gardini L. From bi-stability to chaotic oscillations in a macroeconomic model. Chaos, Solitons and Fractals 2001;12:805-22] transforms a two piece chaotic set into a one piece chaotic set that generates bull and bear markets.

  5. High resolution field study of sediment dynamics on a strongly heterogeneous bed

    Science.gov (United States)

    Bailly Du Bois, P.; Blanpain, O.; Lafite, R.; Cugier, P.; Lunven, M.

    2010-12-01

    Extensive field measurements have been carried out at several stations in a macrotidal inner continental shelf in the English Channel (around 25 m depth) during spring tide period. The strong tidal current measured (up to 1.6 m.s-1) allowed sediment dynamics on a bed characterised by a mixture of size with coarse grains to be dominant. Data acquired in such hydro-sedimentary conditions are scarce. A new instrument, the DYnamic Sediment Profile Imagery (DySPI) system, was specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected covered: 1) grain size range (side scan sonar, video observations, Shipeck grab samples, DySPI images) and vertical sorting (stratigraphic sampling by divers) of sediment cover, 2) hydrodynamic features (acoustic Doppler velocimeter, acoustic Doppler profiler), 3) suspended load nature and dynamics (optical backscatter, chlorophyll fluorometer, particle size analyser, Niskin bottles, scanning electron microscopy), 4) sand and gravel bedload transport estimates (DySPI image processing), 5) transfer dynamics of fine grains within a coarse matrix and their depth of penetration (radionuclides measurements in stratigraphic samples). The four stations present different grain size vertical sorting from a quasi-permanent armouring to a homogenous distribution. The sediment cover condition is directly linked to hydrodynamic capacity and sediment availability. Fine grain ratio within deep sediment layers (up to 10 cm) is higher when the bed armouring is durable. However, fine sediments are not permanently depth trapped: deep layers are composed of few years-old radionuclide tracers fixed on fine grains and a vertical mixing coefficient has been evaluated for each sediment cover. Fine grain dynamics within a coarse matrix is inversely proportional to the robustness of the armour layer. For current

  6. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.

    Science.gov (United States)

    Kranstauber, Bart; Kays, Roland; Lapoint, Scott D; Wikelski, Martin; Safi, Kamran

    2012-07-01

    1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  7. Spatio-temporal dynamics of the tropical rain forest

    Energy Technology Data Exchange (ETDEWEB)

    Chave, J. [CEN Saclay, Gif-sur-Yvette (France). Service de Physique de l' Etat Condense

    2000-07-01

    Mechanisms which drive the dynamics of forest ecosystems are complex, from seedling establishment to pollination, and seed dispersal by animals, running water or wind. These processes are more complex when the ecosystem shelters a large number of species and of vegetative forms, as it is the case in the tropical rainforest. To take them into account, we must develop and use models. I present a review of the fundamental mechanisms for the of a natural forest dynamics - photosynthesis, tree growth, recruitment and mortality - as well as a description of the past and of the present of tropical rainforests. This information is used to develop a spatially-explicit and individual-based forest model. Simplified models are deduced from it, and they serve to address more specific issues, such as the resilience of the forest to climate disturbances, or savanna-forest dynamics. The last topic is related to the spatio-temporal description of tropical plant biodiversity. A detailed introduction to the problem is provided, and models accounting for the maintenance of diversity are compared. These models include non spatial as well a spatial approaches (branching anihilating random walks and voter model with mutation). (orig.)

  8. Temporal dynamics of glyoxalase 1 in secondary neuronal injury.

    Directory of Open Access Journals (Sweden)

    Philipp Pieroh

    Full Text Available BACKGROUND: Enhanced glycolysis leads to elevated levels of the toxic metabolite methylglyoxal which contributes to loss of protein-function, metabolic imbalance and cell death. Neurons were shown being highly susceptible to methylglyoxal toxicity. Glyoxalase 1 as an ubiquitous enzyme reflects the main detoxifying enzyme of methylglyoxal and underlies changes during aging and neurodegeneration. However, little is known about dynamics of Glyoxalase 1 following neuronal lesions so far. METHODS: To determine a possible involvement of Glyoxalase 1 in acute brain injury, we analysed the temporal dynamics of Glyoxalase 1 distribution and expression by immunohistochemistry and Western Blot analysis. Organotypic hippocampal slice cultures were excitotoxically (N-methyl-D-aspartate, 50 µM for 4 hours lesioned in vitro (5 minutes to 72 hours. Additionally, permanent middle cerebral artery occlusion was performed (75 minutes to 60 days. RESULTS: We found (i a predominant localisation of Glyoxalase 1 in endothelial cells in non-lesioned brains (ii a time-dependent up-regulation and re-distribution of Glyoxalase 1 in neurons and astrocytes and (iii a strong increase in Glyoxalase 1 dimers after neuronal injury (24 hours to 72 hours when compared to monomers of the protein. CONCLUSIONS: The high dynamics of Glyoxalase 1 expression and distribution following neuronal injury may indicate a novel role of Glyoxalase 1.

  9. Temporal languages for simulation and analysis of the dynamics within an organisation.

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.

    2002-01-01

    In this paper a modelling approach to the dynamics within a multi- agent organisation is presented. A declarative, executable temporal modelling language for organisation dynamics is proposed as a basis for simulation. Moreover, to be able to specify and analyse dynamic properties, another temporal

  10. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    Science.gov (United States)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  11. Noise-induced temporal dynamics in Turing systems

    KAUST Repository

    Schumacher, Linus J.

    2013-04-25

    We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using stochastic simulations at a wide range of points in parameter space and compare with analytical approximations. Specifically, we investigate whether polarity switching of stochastic patterns occurs at a defined frequency. We find that it can do so in individual realizations of a stochastic simulation, but that the frequency is not defined consistently across realizations in our samples of parameter space. Further, we examine the effect of noise on deterministically predicted traveling waves and find them increased in amplitude and decreased in speed. © 2013 American Physical Society.

  12. Heterogeneous beliefs and routes to complex dynamics in asset pricing models with price contingent contracts

    NARCIS (Netherlands)

    Brock, W.A.; Hommes, C.H.

    2001-01-01

    This paper discusses dynamic evolutionary multi-agent systems, as introduced by Brock and Hommes (1997). In particular the heterogeneous agent dynamic asset pricing model of Brock and Hommes (1998) is extended by introducing derivative securities by means of price contingent contracts. Numerical

  13. Chaotic dynamics in nonlinear duopoly Stackelberg game with heterogeneous players

    Science.gov (United States)

    Xiao, Yue; Peng, Yu; Lu, Qian; Wu, Xue

    2018-02-01

    In this paper, a nonlinear duopoly Stackelberg game of competition on output is concerned. In consideration of the effects of difference between plan products and actual products, the two heterogeneous players always adopt suitable strategies which can improve their benefits most. In general, status of each firm is unequal. As the firms take strategies sequentially and produce simultaneously, complex behaviors are brought about. Numerical simulation presents period doubling bifurcation, maximal Lyapunov exponent and chaos. Moreover, an appropriate method of chaos controlling is applied and fractal dimension is analyzed as well.

  14. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    Directory of Open Access Journals (Sweden)

    Shi Chen

    Full Text Available Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density, subgroup clustering (modularity, triadic property (transitivity, and dyadic interactions (correlation coefficient from a quadratic assignment procedure at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level or temporal (aggregated at daily level resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc. also changed substantially at different time and locations. There were certain time (feeding and location (hay that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect disease transmission pathways.

  15. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  16. Learning predictive statistics from temporal sequences: Dynamics and strategies.

    Science.gov (United States)

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-10-01

    Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics-that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments.

  17. Brazilian Amazon Roads and Parks: Temporal & Spatial Deforestation Dynamics

    Science.gov (United States)

    Pfaff, A.; Robalino, J.

    2011-12-01

    Heterogeneous Forest Impacts of Transport Infrastructure: spatial frontier dynamics & impacts of Brazilian Amazon road changes Prior research on road impacts has almost completely ignored heterogeneity of impacts and as a result both empirically understated potential impact and missed policy potential. We note von Thunen's model suggests not only heterogeneity with distance from market but also specifically road impacts rising then falling with distance ('non-monoThunicity') Endogenous development and partial adjustment dynamics support this for the short run. Causal effects result from studying Brazilian Amazon deforestation (1976-87, 2000-04) using matching for short-run responses to lagged new roads changes (1968-75, 1985-00). We show the critical role of prior development, proxied by 1968 and 1985 road distances, for which exact matching addresses development trends and transforms impact estimates. Splitting the sample on this measure finds confirmation of the nonmonotonic predictions: new road impacts are relatively low if a prior road was close, such that prior transport access and endogenous development dynamics compete with the new road for influence, but also if a prior road was far, since first-decade adjustment in pristine areas is limited; yet in between these bounds, investments immediately raise deforestation significantly. This pattern helps to explain lower estimates within research on a single average impact. It suggests potential for REDD if a country chooses to shift its spatial transport networks. Protected Areas & Brazilian Amazon Deforestation: modeling and testing the impacts of varied PA strategies We model and then estimate the impacts of multiple types of protected areas upon 2000 - 2004 deforestation in the Brazilian Amazon. Our modeling starts with federal versus state objectives and predicts differences in both choice and implementation of each PA strategy that we examine. Our empirical examination brings not only breakdowns sufficient

  18. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  19. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    Science.gov (United States)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present

  20. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    Science.gov (United States)

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation

  1. Mapping and monitoring heterogeneous landscapes: spatial, spectral and temporal unmixing of MERIS data

    NARCIS (Netherlands)

    Zurita Milla, R.

    2008-01-01

    Our environment is continuously undergoing change. This change takes place at several spatial and temporal scales and it is largely driven by anthropogenic activities. In order to protect our environment and to ensure a sustainable use of natural resources, a wide variety of national and

  2. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    Science.gov (United States)

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  3. Spatial and temporal heterogeneity in a subtropical reservoir and their effects over the benthic macroinvertebrate community

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme de Souza Beghelli

    2014-09-01

    Full Text Available AIM: The objective of the present study was to demonstrate the influences of the environment spatial heterogeneity on benthic macroinvertebrates considering transverse and longitudinal gradients as also seasonality. METHODS: Four samplings were performed: two in the wet and two in the dry season in the riverine, transitional and lacustrine zones in the littoral and profundal regions of Itupararanga reservoir, SP, Brazil. Abiotic characterization of the water and of the sediment was performed. The biotic characterization was based on richness, dominance, diversity, and density of organisms, as well as on the relative abundance of predominant taxa. Two-way ANOSIM analyses were performed for both biotic and abiotic components, in order to test the significance of the differences in the longitudinal and transverse directions as well as of the differences between seasons. RESULTS: Compartmentalization was present in both directions, longitudinal and transverse. In a general way, the littoral region presented higher diversity values when compared with the profundal region, and the riverine zone presented high densities and high percentage of taxons, which usually indicate organic pollution. The differentiation between the transitional and lacustrine zones was determined mainly by taxonomic composition. Seasonality was also observed and the transportation of small particles, the entrance of nutrients, and the presence of macrophytes were considered as determinants for differentiation. CONCLUSIONS: Together, these results demonstrate the responses of benthic macroinvertebrate communities considering distinct sources of variation: longitudinal heterogeneity, determined by the increasing distance from the forming rivers that leads to a gradient of physical and chemical conditions; transverse heterogeneity, determined by the proximity with the land environment and depth differences. Seasonal heterogeneity was recorded during the period of this research and

  4. Adaptive spectrum decision framework for heterogeneous dynamic spectrum access networks

    CSIR Research Space (South Africa)

    Masonta, M

    2015-09-01

    Full Text Available Spectrum decision is the ability of a cognitive radio (CR) system to select the best available spectrum band to satisfy dynamic spectrum access network (DSAN) users¿ quality of service (QoS) requirements without causing harmful interference...

  5. Dynamical heterogeneity in a glass-forming ideal gas

    NARCIS (Netherlands)

    Charbonneau, P.; Das, C.; Frenkel, D.

    2008-01-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel et al., Phys. Rev. Lett. 94, 135703 (2005)] we

  6. Quality of a fished resource: Assessing spatial and temporal dynamics.

    Directory of Open Access Journals (Sweden)

    Sarah J Teck

    Full Text Available Understanding spatio-temporal variability in the demography of harvested species is essential to improve sustainability, especially if there is large geographic variation in demography. Reproductive patterns commonly vary spatially, which is particularly important for management of "roe"-based fisheries, since profits depend on both the number and reproductive condition of individuals. The red sea urchin, Mesocentrotus franciscanus, is harvested in California for its roe (gonad, which is sold to domestic and international sushi markets. The primary driver of price within this multi-million-dollar industry is gonad quality. A relatively simple measure of the fraction of the body mass that is gonad, the gonadosomatic index (GSI, provides important insight into the ecological and environmental factors associated with variability in reproductive quality, and hence value within the industry. We identified the seasonality of the reproductive cycle and determined whether it varied within a heavily fished region. We found that fishermen were predictable both temporally and spatially in collecting urchins according to the reproductive dynamics of urchins. We demonstrated the use of red sea urchin GSI as a simple, quantitative tool to predict quality, effort, landings, price, and value of the fishery. We found that current management is not effectively realizing some objectives for the southern California fishery, since the reproductive cycle does not match the cycle in northern California, where these management guidelines were originally shaped. Although regulations may not be meeting initial management goals, the scheme may in fact provide conservation benefits by curtailing effort during part of the high-quality fishing season right before spawning.

  7. Avalanche dynamics for active matter in heterogeneous media

    Science.gov (United States)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-02-01

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent of β =1.46. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.

  8. Dynamics of heterogeneous liners with prolonged plasma creation

    International Nuclear Information System (INIS)

    Aleksandrov, V.V.; Branitskii, A.V.; Volkov, G.S.; Grabovskii, E.V.; Zurin, M.V.; Nedoseev, S.L.; Oleinik, G.M.; Samokhin, A.A.; Smirnov, V.P.; Fedulov, M.V.; Frolov, I.N.; Sasorov, P.V.

    2001-01-01

    Prolonged plasma creation in heterogeneous liners, in which the liner substance is separated into two phase states (a hot plasma and a cold skeleton), is investigated both experimentally and theoretically. This situation is typical of multiwire, foam, and even gas liners in high-current high-voltage facilities. The main mechanisms governing the rate at which the plasma is created are investigated, and the simplest estimates of the creation rate are presented. It is found that, during prolonged plasma creation, the electric current flows through the entire cross section of the produced plasma shell, whose thickness is comparable with the liner radius; in other words, a current skin layer does not form. During compression, such a shell is fairly stable because of its relatively high resilience. It is shown that, under certain conditions, even a thick plasma shell can be highly compressed toward the discharge axis. A simplified numerical simulation of the compression of a plasma shell in a liner with prolonged plasma creation is employed in order to determine the conditions for achieving regimes of fairly compact and relatively stable radial compression of the shell

  9. Temporal dynamics of ikaite in experimental sea ice

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  10. Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil

    Science.gov (United States)

    Lewnard, Joseph A.; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R.; Glesby, Marshall J.; Ko, Albert I.; Carvalho, Edgar M.; Schriefer, Albert; Weinberger, Daniel M.

    2014-01-01

    Introduction Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. Methodology/Principal Findings We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. Significance These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets. PMID:25356734

  11. Temporal dynamics of top predators interactions in the Barents Sea.

    Science.gov (United States)

    Durant, Joël M; Skern-Mauritzen, Mette; Krasnov, Yuri V; Nikolaeva, Natalia G; Lindstrøm, Ulf; Dolgov, Andrey

    2014-01-01

    The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.

  12. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  13. Temporal dynamics of access to consciousness in the attentional blink.

    Science.gov (United States)

    Kranczioch, Cornelia; Debener, Stefan; Maye, Alexander; Engel, Andreas K

    2007-09-01

    Presentation of two targets in close temporal succession often results in an impairment of conscious perception for the second stimulus. Previous studies have identified several electrophysiological correlates for this so-called 'attentional blink'. Components of the event-related potential (ERP) such as the N2 and the P3, but also oscillatory brain signals have been shown to distinguish between detected and missed stimuli, and thus, conscious perception. Here we investigate oscillatory responses that specifically relate to conscious stimulus processing together with potential ERP predictors. Our results show that successful target detection is associated with enhanced coherence in the low beta frequency range, but a decrease in alpha coherence before and during target presentation. In addition, we find an inverse relation between the P3 amplitudes associated with the first and second target. We conclude that the resources allocated to first and second target processing are directly mirrored by the P3 component and, moreover, that brain states before and during stimulus presentation, as reflected by oscillatory brain activity, strongly determine the access to consciousness. Thus, becoming aware of a stimulus seems to depend on the dynamic interaction between a number of widely distributed neural processes, rather than on the modulation of one single process or component.

  14. A dynamic neural field model of temporal order judgments.

    Science.gov (United States)

    Hecht, Lauren N; Spencer, John P; Vecera, Shaun P

    2015-12-01

    Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).

  15. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    Science.gov (United States)

    Suzzi, Stefano; Vargas-Caballero, Mariana; Fransen, Nina L.; Al-Malki, Hussain; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose Manuel; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases. PMID:24941947

  16. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Science.gov (United States)

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  17. Dynamic and heterogeneous effects of sibling death on children's outcomes.

    Science.gov (United States)

    Fletcher, Jason; Vidal-Fernandez, Marian; Wolfe, Barbara

    2018-01-02

    This paper explores the effects of experiencing the death of a sibling on children's developmental outcomes. Recent work has shown that experiencing a sibling death is common and long-term effects are large. We extend understanding of these effects by estimating dynamic effects on surviving siblings' cognitive and socioemotional outcomes, as well as emotional and cognitive support by parents. Using the Children of the National Longitudinal Survey of Youth 1979 (CNLSY79), we find large initial effects on cognitive and noncognitive outcomes that decline over time. We also provide evidence that the effects are larger if the surviving child is older and less prominent if the deceased child was either disabled or an infant, suggesting sensitive periods of exposure. Auxiliary results show that parental investments in the emotional support of surviving children decline following the death of their child.

  18. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions.

    Science.gov (United States)

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-02-05

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  19. Convergence and Heterogeneity in Euro Based Economies: Stability and Dynamics

    Directory of Open Access Journals (Sweden)

    Philip Haynes

    2016-08-01

    Full Text Available Cluster analysis is used to explore the performance of key macroeconomic variables in European countries that share the euro, from the inception of the currency in 2002 through to 2013. An original applied statistical approach searches for a pattern synthesis across a matrix of macroeconomic data to examine if there is evidence for country clusters and whether there is convergence of the cluster patterns over time. A number of different clusters appear and these change over time as the economies of the member states dynamically interact. This includes some new countries joining the currency during the period of examination. As found in previous research, Southern European countries tend to remain separate from other countries. The new methods used, however, add to an understanding of some differences between Southern European countries, in addition to replicating their broad similarities. Hypotheses are formed about the country clusters existing in 2002, 2006 and 2013, at key points in time of the euro integration process. These hypotheses are tested using the rigour of a bivariate analysis and the multivariate method of Qualitative Comparative Analysis (QCA. The results confirm the hypotheses of cluster memberships in all three periods. The confirmation analysis provides evidence about which variables are most influencing cluster memberships at each time point. In 2002 and 2006, differences between countries are influenced by their different Harmonised Index of Consumer Prices (HICP and labour productivity scores. In 2013, after the crisis, there is a noticeable change. Long term interest rates and gross government debt become key determinants of differences, in addition to the continuing influence of labour productivity. The paper concludes that in the last decade the convergence of countries sharing the euro has been limited, by the joining of new countries and the circumstances of the global economic crisis. The financial crisis has driven

  20. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid

    Science.gov (United States)

    Puosi, F.; Jakse, N.; Pasturel, A.

    2018-04-01

    As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.

  1. Temporal variability and social heterogeneity in disease transmission: the case of SARS in Hong Kong.

    Directory of Open Access Journals (Sweden)

    Anne Cori

    2009-08-01

    Full Text Available The extent to which self-adopted or intervention-related changes in behaviors affect the course of epidemics remains a key issue for outbreak control. This study attempted to quantify the effect of such changes on the risk of infection in different settings, i.e., the community and hospitals. The 2002-2003 severe acute respiratory syndrome (SARS outbreak in Hong Kong, where 27% of cases were healthcare workers, was used as an example. A stochastic compartmental SEIR (susceptible-exposed-infectious-removed model was used: the population was split into healthcare workers, hospitalized people and general population. Super spreading events (SSEs were taken into account in the model. The temporal evolutions of the daily effective contact rates in the community and hospitals were modeled with smooth functions. Data augmentation techniques and Markov chain Monte Carlo (MCMC methods were applied to estimate SARS epidemiological parameters. In particular, estimates of daily reproduction numbers were provided for each subpopulation. The average duration of the SARS infectious period was estimated to be 9.3 days (+/-0.3 days. The model was able to disentangle the impact of the two SSEs from background transmission rates. The effective contact rates, which were estimated on a daily basis, decreased with time, reaching zero inside hospitals. This observation suggests that public health measures and possible changes in individual behaviors effectively reduced transmission, especially in hospitals. The temporal patterns of reproduction numbers were similar for healthcare workers and the general population, indicating that on average, an infectious healthcare worker did not infect more people than any other infectious person. We provide a general method to estimate time dependence of parameters in structured epidemic models, which enables investigation of the impact of control measures and behavioral changes in different settings.

  2. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    Directory of Open Access Journals (Sweden)

    T. Blume

    2009-07-01

    Full Text Available Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale and binary indicator maps (for the long-term and hillslope scale. Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to

  3. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  4. Dynamic encoding of speech sequence probability in human temporal cortex.

    Science.gov (United States)

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-06

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. Copyright © 2015 the authors 0270-6474/15/357203-12$15.00/0.

  5. Temporal dynamics of blue and green virtual water trade networks

    Science.gov (United States)

    Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2012-12-01

    Global food security increasingly relies on the trade of food commodities. Freshwater resources are essential to agricultural production and are thus embodied in the trade of food commodities, referred to as "virtual water trade." Agricultural production predominantly relies on rainwater (i.e., "green water"), though irrigation (i.e., "blue water") does play an important role. These different sources of water have distinctly different opportunity costs, which may be reflected in the way these resources are traded. Thus, the temporal dynamics of the virtual water trade networks from these distinct water sources require characterization. We find that 42 × 109 m3 blue and 310 × 109 m3 green water was traded in 1986, growing to 78 × 109 m3 blue and 594 × 109 m3 green water traded in 2008. Three nations dominate the export of green water resources: the USA, Argentina, and Brazil. As a country increases its export trade partners it tends to export relatively more blue water. However, as a country increases its import trade partners it does not preferentially import water from a specific source. The amount of virtual water that a country imports by increasing its import trade partners has been decreasing over time, with the exception of the soy trade. Both blue and green virtual water networks are efficient: 119 × 109 m3 blue and 105 × 109 m3 green water were saved in 2008. Importantly, trade has been increasingly saving water over time, due to the intensification of crop trade on more water-efficient links.

  6. Spatial and temporal heterogeneities of Aedes albopictus density in La Reunion Island: rise and weakness of entomological indices.

    Science.gov (United States)

    Boyer, Sebastien; Foray, Coralie; Dehecq, Jean-Sebastien

    2014-01-01

    Following the 2006 Chikungunya disease in La Reunion, questions were raised concerning the monitoring survey of Aedes albopictus populations and the entomological indexes used to evaluate population abundance. The objectives of the present study were to determine reliable productivity indexes using a quantitative method to improve entomological surveys and mosquito control measures on Aedes albopictus. Between 2007 and 2011, 4 intervention districts, 24 cities, 990 areas and over 850,000 houses were used to fulfil those objectives. Four indexes including the classical Stegomyia index (House Index, Container Index, Breteau Index) plus an Infested Receptacle Index were studied in order to determine whether temporal (year, month, week) and/or spatial (districts, cities, areas) heterogeneities existed. Temporal variations have been observed with an increase of Ae. albopictus population density over the years, and a seasonality effect with a highest population during the hot and wet season. Spatial clustering was observed at several scales with an important autocorrelation at the area scale. Moreover, the combination among these results and the breeding site productivity obtained during these 5 years allowed us to propose recommendations to monitor Aedes albopictus by eliminating not the most finding sites but the most productive ones. As the other strategies failed in La Reunion, this new approach should should work better.

  7. Spatial and temporal heterogeneities of Aedes albopictus density in La Reunion Island: rise and weakness of entomological indices.

    Directory of Open Access Journals (Sweden)

    Sebastien Boyer

    Full Text Available Following the 2006 Chikungunya disease in La Reunion, questions were raised concerning the monitoring survey of Aedes albopictus populations and the entomological indexes used to evaluate population abundance. The objectives of the present study were to determine reliable productivity indexes using a quantitative method to improve entomological surveys and mosquito control measures on Aedes albopictus. Between 2007 and 2011, 4 intervention districts, 24 cities, 990 areas and over 850,000 houses were used to fulfil those objectives. Four indexes including the classical Stegomyia index (House Index, Container Index, Breteau Index plus an Infested Receptacle Index were studied in order to determine whether temporal (year, month, week and/or spatial (districts, cities, areas heterogeneities existed. Temporal variations have been observed with an increase of Ae. albopictus population density over the years, and a seasonality effect with a highest population during the hot and wet season. Spatial clustering was observed at several scales with an important autocorrelation at the area scale. Moreover, the combination among these results and the breeding site productivity obtained during these 5 years allowed us to propose recommendations to monitor Aedes albopictus by eliminating not the most finding sites but the most productive ones. As the other strategies failed in La Reunion, this new approach should should work better.

  8. Multilevel Methodology for Simulation of Spatio-Temporal Systems with Heterogeneous Activity; Application to Spread of Valley Fever Fungus

    Science.gov (United States)

    Jammalamadaka, Rajanikanth

    2009-01-01

    This report consists of a dissertation submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Graduate College, The University of Arizona, 2008. Spatio-temporal systems with heterogeneity in their structure and behavior have two major problems associated with them. The first one is that such complex real world systems extend over very large spatial and temporal domains and consume so many computational resources to simulate that they are infeasible to study with current computational platforms. The second one is that the data available for understanding such systems is limited because they are spread over space and time making it hard to obtain micro and macro measurements. This also makes it difficult to get the data for validation of their constituent processes while simultaneously considering their global behavior. For example, the valley fever fungus considered in this dissertation is spread over a large spatial grid in the arid Southwest and typically needs to be simulated over several decades of time to obtain useful information. It is also hard to get the temperature and moisture data (which are two critical factors on which the survival of the valley fever fungus depends) at every grid point of the spatial domain over the region of study. In order to address the first problem, we develop a method based on the discrete event system specification which exploits the heterogeneity in the activity of the spatio-temporal system and which has been shown to be effective in solving relatively simple partial differential equation systems. The benefit of addressing the first problem is that it now makes it feasible to address the second problem. We address the second problem by making use of a multilevel methodology based on modeling and simulation and systems theory. This methodology helps us in the construction of models with different resolutions (base and

  9. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    International Nuclear Information System (INIS)

    Koperwas, K.; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.

    2015-01-01

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition

  10. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Koperwas, K., E-mail: kkoperwas@us.edu.pl; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland)

    2015-07-14

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.

  11. Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature.

    Science.gov (United States)

    Kaznatcheev, Artem; Vander Velde, Robert; Scott, Jacob G; Basanta, David

    2017-03-14

    Tumours are diverse ecosystems with persistent heterogeneity in various cancer hallmarks like self-sufficiency of growth factor production for angiogenesis and reprogramming of energy metabolism for aerobic glycolysis. This heterogeneity has consequences for diagnosis, treatment and disease progression. We introduce the double goods game to study the dynamics of these traits using evolutionary game theory. We model glycolytic acid production as a public good for all tumour cells and oxygen from vascularisation via vascular endothelial growth factor production as a club good benefiting non-glycolytic tumour cells. This results in three viable phenotypic strategies: glycolytic, angiogenic and aerobic non-angiogenic. We classify the dynamics into three qualitatively distinct regimes: (1) fully glycolytic; (2) fully angiogenic; or (3) polyclonal in all three cell types. The third regime allows for dynamic heterogeneity even with linear goods, something that was not possible in prior public good models that considered glycolysis or growth factor production in isolation. The cyclic dynamics of the polyclonal regime stress the importance of timing for anti-glycolysis treatments like lonidamine. The existence of qualitatively different dynamic regimes highlights the order effects of treatments. In particular, we consider the potential of vascular normalisation as a neoadjuvant therapy before follow-up with interventions like buffer therapy.

  12. The finite state projection approach to analyze dynamics of heterogeneous populations

    Science.gov (United States)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  13. A Modified SPH Method for Dynamic Failure Simulation of Heterogeneous Material

    Directory of Open Access Journals (Sweden)

    G. W. Ma

    2014-01-01

    Full Text Available A modified smoothed particle hydrodynamics (SPH method is applied to simulate the failure process of heterogeneous materials. An elastoplastic damage model based on an extension form of the unified twin shear strength (UTSS criterion is adopted. Polycrystalline modeling is introduced to generate the artificial microstructure of specimen for the dynamic simulation of Brazilian splitting test and uniaxial compression test. The strain rate effect on the predicted dynamic tensile and compressive strength is discussed. The final failure patterns and the dynamic strength increments demonstrate good agreements with experimental results. It is illustrated that the polycrystalline modeling approach combined with the SPH method is promising to simulate more complex failure process of heterogeneous materials.

  14. Developing Baltic cod recruitment models I : Resolving spatial and temporal dynamics of spawning stock and recruitment for cod, herring, and sprat

    DEFF Research Database (Denmark)

    Köster, Fritz; Möllmann, C.; Neuenfeldt, Stefan

    2001-01-01

    The Baltic Sea comprises a heterogeneous oceanographic environment influencing the spatial and temporal potential for reproductive success of cod (Gadus morhua) and sprat (Sprattus sprattus) in the different spawning basins. Hence, to quantify stock and recruitment dynamics, it is necessary......-disaggregated multispecies virtual population analyses (MSVPA) were performed for interacting species cod, herring (Clupea harengus), and sprat in the different subdivisions of the Central Baltic. The MSVPA runs revealed distinct spatial trends in population abundance, spawning biomass, recruitment, and predation...

  15. Temporal and spatial moments for solute transport in heterogeneous porous media

    International Nuclear Information System (INIS)

    Naff, R.L.

    1990-01-01

    Variation in the velocity field results in dispersion of a tracer cloud relative to the mean advective transport of the tracer. A major cause of variation in the velocity field is variation in the hydraulic conductivity field in clastic aquifers is stratification, whereby the rate of change in the hydraulic conductivity is much greater in the vertical direction than in the horizontal direction. Dispersion, under these circumstances, is not governed strictly by a Fickian flux, but by a more complicated integral expression involving the gradient of the mean concentration. Because a pulse input of conservative tracer is assumed in the investigations summarized in this paper, it is possible to derive both spatial and temporal moments; these moments are compared with those from a classical Fickian flux where a macrodispersivity has been adopted. By numerical Laplace inversion, it also is possible to obtain concentration profiles of the mean tracer as it moves downgradient through an imperfectly stratified aquifer. These results generally indicate that a classical Fickian flux provides a good simulation of the mean concentration after the center of mass of the cloud has moved at least 20 length scales from the point of injection. (Author) (10 refs., 2 tabs., 10 figs.)

  16. The effect of heterogeneous dynamics of online users on information filtering

    International Nuclear Information System (INIS)

    Chen, Bo-Lun; Zeng, An; Chen, Ling

    2015-01-01

    The rapid expansion of the Internet requires effective information filtering techniques to extract the most essential and relevant information for online users. Many recommendation algorithms have been proposed to predict the future items that a given user might be interested in. However, there is an important issue that has always been ignored so far in related works, namely the heterogeneous dynamics of online users. The interest of active users changes more often than that of less active users, which asks for different update frequency of their recommendation lists. In this paper, we develop a framework to study the effect of heterogeneous dynamics of users on the recommendation performance. We find that the personalized application of recommendation algorithms results in remarkable improvement in the recommendation accuracy and diversity. Our findings may help online retailers make better use of the existing recommendation methods. - Highlights: • We study the effect of heterogeneous dynamics of users on recommendation. • Due to the user heterogeneity, their amount of links in the probe set is different. • The personalized algorithm implementation improves the recommendation performance. • Our results suggest different update frequency for users – recommendation list.

  17. The effect of heterogeneous dynamics of online users on information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bo-Lun [Department of Computer Science, Yangzhou University of China, Yangzhou 225127 (China); Department of Computer Science, Nanjing University of Aeronautics and Astronautics of China, Nanjing 210016 (China); Department of Physics, University of Fribourg, Chemin du Musee 3, CH-1700 Fribourg (Switzerland); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, Beijing 100875 (China); Chen, Ling [Department of Computer Science, Yangzhou University of China, Yangzhou 225127 (China); Department of Computer Science, Nanjing University of Aeronautics and Astronautics of China, Nanjing 210016 (China)

    2015-11-06

    The rapid expansion of the Internet requires effective information filtering techniques to extract the most essential and relevant information for online users. Many recommendation algorithms have been proposed to predict the future items that a given user might be interested in. However, there is an important issue that has always been ignored so far in related works, namely the heterogeneous dynamics of online users. The interest of active users changes more often than that of less active users, which asks for different update frequency of their recommendation lists. In this paper, we develop a framework to study the effect of heterogeneous dynamics of users on the recommendation performance. We find that the personalized application of recommendation algorithms results in remarkable improvement in the recommendation accuracy and diversity. Our findings may help online retailers make better use of the existing recommendation methods. - Highlights: • We study the effect of heterogeneous dynamics of users on recommendation. • Due to the user heterogeneity, their amount of links in the probe set is different. • The personalized algorithm implementation improves the recommendation performance. • Our results suggest different update frequency for users – recommendation list.

  18. Dynamic behavior of homogeneous and heterogeneous LMFBR core-design concepts

    International Nuclear Information System (INIS)

    Chang, Y.I.; Henryson, H. II; Orechwa, Y.; Su, S.F.; Greenman, G.; Blomquist, R.

    1981-01-01

    The emphasis is placed on obtaining an understanding of the inherent difference between homogeneous and heterogeneous core configurations regarding neutronic characteristics related to the dynamic behavior. The space-time neutronic and thermal-hydraulic behavior was analyzed in detail for various core configurations by using the FX2-TH, a two-dimensional kinetics code with thermal-hydraulic feedback. In addition, the relationship between the flux tilt and the fundamental-to-first harmonic eigenvalue separation, and the sodium void reactivity in heterogeneous cores were also sutdied

  19. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  20. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters

    International Nuclear Information System (INIS)

    Appignanesi, G A; Rodriguez Fris, J A

    2009-01-01

    In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)

  1. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence

    Science.gov (United States)

    Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian

    2018-01-01

    mantle. The similarity between the distribution of large-scale and small-scale mantle structures suggests a dynamic connection across scales, whereby mantle heterogeneities of all sizes may be directed in similar ways by large-scale convective currents.

  2. Temporally Dynamic, Spatially Static, Cobble Bedforms In Reversing Subtidal Currents

    Science.gov (United States)

    Abdulkade, Akirat; Carling, Paul; Zong, Quanli; Leyland, Julian; Thompson, Charlie

    2016-04-01

    Cobble bedforms, transverse to the reversing tidal currents, are exposed at extreme low-water Spring tides on an inter-tidal bedrock shelf in the macro-tidal Severn Estuary, UK. Near-bed flow velocities during Spring tides can exceed 1.5m/s, with water depths varying from zero to in excess of 10m. During neap tides the bedforms are not exposed, and sediment is expected to be of limited mobility. When exposed, the bedform geometry tends to be asymmetric; orientated down estuary with the ebb current. During Spring tides, vigorous bedload transport of gravel (including large cobbles) occurs during both flood and ebb over the crests and yet, despite this temporal dynamism, the bedforms remain spatially static over long time periods or show weak down-estuary migration. Stasis implies that the tidal bedload transport vectors are essentially in balance. Near-bed shear stress and bed roughness values vary systematically with the Spring-tide current speeds and the predicted grain-size of the bed load using the Shields criterion is in accord with observed coarser grain-sizes in transport. These hydrodynamic data, delimited by estimates of the threshold of motion, and integrated over either flood or ebb tides are being used to explain the apparent stability of the bedforms. The bulk hydraulic data are supplemented by particle tracer studies and laser-scanning of bed configurations between tides. The high-energy environment results in two forms of armouring. Pronounced steep imbrication of platy-cobbles visible on the exposed up-estuary side of dunes is probably disrupted during flood tides leading to rapid reworking of the toe deposits facing up-estuary. In contrast, some crest and leeside locations have been stable for prolonged periods such that closely-fitted fabrics result; these portions of the bedforms are static and effectively are 'armour-plated'. Ebb-tide deposits of finer, ephemeral sandy-units occur on the down estuary side of the bedforms. Sandy-units (although

  3. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue.

    Science.gov (United States)

    Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V

    2013-12-01

    In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.

  4. Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media

    Science.gov (United States)

    Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.

    2013-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several

  5. A dynamic texture based approach to recognition of facial actions and their temporal models

    NARCIS (Netherlands)

    Koelstra, Sander; Pantic, Maja; Patras, Ioannis (Yannis)

    2010-01-01

    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the

  6. Temporal and spatial dynamics of mineral levels of forage, soil and ...

    African Journals Online (AJOL)

    Temporal and spatial dynamics of mineral levels of forage, soil and cattle blood ... In the plain lands, local variations occurred for soil phosphorus and magnesium. ... Rangeland improvement and supplementation strategies are suggested to ...

  7. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  8. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  9. Distributed Circumnavigation Control with Dynamic Spacings for a Heterogeneous Multi-robot System

    OpenAIRE

    Yao, Weijia; Luo, Sha; Lu, Huimin; Xiao, Junhao

    2018-01-01

    Circumnavigation control is useful in real-world applications such as entrapping a hostile target. In this paper, we consider a heterogeneous multi-robot system where robots have different physical properties, such as maximum movement speeds. Instead of equal-spacings, dynamic spacings according to robots' properties, which are termed utilities in this paper, will be more desirable in a scenario such as target entrapment. A distributed circumnavigation control algorithm based on utilities is ...

  10. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Madilyn Fletcher

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  11. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component. Final report

    International Nuclear Information System (INIS)

    Cushman, J.H.

    2000-01-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  12. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.

  13. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    Science.gov (United States)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  14. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    International Nuclear Information System (INIS)

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

  15. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    DEFF Research Database (Denmark)

    Frelat, Romain; Lindegren, Martin; Dencker, Tim Spaanheden

    2017-01-01

    it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered...... by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii...

  16. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids.

    Science.gov (United States)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2016-12-01

    We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.

  17. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks

    Science.gov (United States)

    Ma, Xiaoke; Sun, Penggang; Wang, Yu

    2018-04-01

    Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T + 1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.

  18. Dynamic interactions between hydrogeological and exposure parameters in daily dose prediction under uncertainty and temporal variability

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vikas, E-mail: vikas.kumar@urv.cat [Department of Chemical Engineering, Rovira i Virgili University, Tarragona 43007 (Spain); Barros, Felipe P.J. de [Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles 90089, CA (United States); Schuhmacher, Marta [Department of Chemical Engineering, Rovira i Virgili University, Tarragona 43007 (Spain); Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier [Hydrogeology Group, Department of Geotechnical Engineering and Geosciences, University Politècnica de Catalunya-BarcelonaTech, Barcelona 08034 (Spain)

    2013-12-15

    Highlights: • Dynamic parametric interaction in daily dose prediction under uncertainty. • Importance of temporal dynamics associated with the dose. • Different dose experienced by different population cohorts as a function of time. • Relevance of uncertainty reduction in the input parameters shows temporal dynamism. -- Abstract: We study the time dependent interaction between hydrogeological and exposure parameters in daily dose predictions due to exposure of humans to groundwater contamination. Dose predictions are treated stochastically to account for an incomplete hydrogeological and geochemical field characterization, and an incomplete knowledge of the physiological response. We used a nested Monte Carlo framework to account for uncertainty and variability arising from both hydrogeological and exposure variables. Our interest is in the temporal dynamics of the total dose and their effects on parametric uncertainty reduction. We illustrate the approach to a HCH (lindane) pollution problem at the Ebro River, Spain. The temporal distribution of lindane in the river water can have a strong impact in the evaluation of risk. The total dose displays a non-linear effect on different population cohorts, indicating the need to account for population variability. We then expand the concept of Comparative Information Yield Curves developed earlier (see de Barros et al. [29]) to evaluate parametric uncertainty reduction under temporally variable exposure dose. Results show that the importance of parametric uncertainty reduction varies according to the temporal dynamics of the lindane plume. The approach could be used for any chemical to aid decision makers to better allocate resources towards reducing uncertainty.

  19. A dynamic appearance descriptor approach to facial actions temporal modeling

    NARCIS (Netherlands)

    Jiang, Bihan; Valstar, Michel; Martinez, Brais; Pantic, Maja

    Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behavior. Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account, or focus only on prototypic facial

  20. Local-heterogeneous responses and transient dynamics of cage breaking and formation in colloidal fluids.

    Science.gov (United States)

    Nag, Preetom; Teramoto, Hiroshi; Li, Chun-Biu; Terdik, Joseph Z; Scherer, Norbert F; Komatsuzaki, Tamiki

    2014-09-14

    Quantifying the interactions in dense colloidal fluids requires a properly designed order parameter. We present a modified bond-orientational order parameter, ψ̄6, to avoid problems of the original definition of bond-orientational order parameter. The original bond-orientational order parameter can change discontinuously in time but our modified order parameter is free from the discontinuity and, thus, it is a suitable measure to quantify the dynamics of the bond-orientational ordering of the local surroundings. Here we analyze ψ̄6 in a dense driven monodisperse quasi-two-dimensional colloidal fluids where a single particle is optically trapped at the center. The perturbation by the trapped and driven particle alters the structure and dynamics of the neighboring particles. This perturbation disturbs the flow and causes spatial and temporal distortion of the bond-orientational configuration surrounding each particle. We investigate spatio-temporal behavior of ψ̄6 by a Wavelet transform that provides a time-frequency representation of the time series of ψ̄6. It is found that particles that have high power in frequencies corresponding to the inverse of the timescale of perturbation undergo distortions of their packing configurations that result in cage breaking and formation dynamics. To gain insight into the dynamic structure of cage breaking and formation of bond-orientational ordering, we compare the cage breaking and formation dynamics with the underlying dynamical structure identified by Lagrangian Coherent Structures (LCSs) estimated from the finite-time Lyapunov exponent (FTLE) field. The LCSs are moving separatrices that effectively divide the flow into distinct regions with different dynamical behavior. It is shown that the spatial distribution of the FTLE field and the power of particles in the wavelet transform have positive correlation, implying that LCSs provide a dynamic structure that dominates the dynamics of cage breaking and formation of the

  1. Temporal dynamics of figure-ground segregation in human vision.

    Science.gov (United States)

    Neri, Peter; Levi, Dennis M

    2007-01-01

    The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.

  2. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    Science.gov (United States)

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  3. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    Science.gov (United States)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  4. Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010

    Science.gov (United States)

    J. M. Tucker Lima; C. L. Staudhammer; T. J. Brandeis; F. J. Escobedo; W. Zipperer

    2013-01-01

    Several studies report urban tree growth and mortality rates as well as species composition, structural dynamics, and other characteristics of urban forests in mostly temperate, inland urban areas. Temporal dynamics of urban forests in subtropical and tropical forest regions are, until now, little explored and represent a new and important direction for study and...

  5. Atomic-scale structural signature of dynamic heterogeneities in metallic liquids

    Science.gov (United States)

    Pasturel, Alain; Jakse, Noel

    2017-08-01

    With sufficiently high cooling rates, liquids will cross their equilibrium melting temperatures and can be maintained in a metastable undercooled state before solidifying. Studies of undercooled liquids reveal several intriguing dynamic phenomena and because explicit connections between liquid structure and liquids dynamics are difficult to identify, it remains a major challenge to capture the underlying structural link to these phenomena. Ab initio molecular dynamics (AIMD) simulations are yet especially powerful in providing atomic-scale details otherwise not accessible in experiments. Through the AIMD-based study of Cr additions in Al-based liquids, we evidence for the first time a close relationship between the decoupling of component diffusion and the emergence of dynamic heterogeneities in the undercooling regime. In addition, we demonstrate that the origin of both phenomena is related to a structural heterogeneity caused by a strong interplay between chemical short-range order (CSRO) and local fivefold topology (ISRO) at the short-range scale in the liquid phase that develops into an icosahedral-based medium-range order (IMRO) upon undercooling. Finally, our findings reveal that this structural signature is also captured in the temperature dependence of partial pair-distribution functions which opens up the route to more elaborated experimental studies.

  6. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  7. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    Science.gov (United States)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  8. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    Science.gov (United States)

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  9. Spatio-temporal cell dynamics in tumour spheroid irradiation

    International Nuclear Information System (INIS)

    Kempf, H.; Bleicher, M.; Meyer-Hermann, M.; Kempf, H.; Bleicher, M.; Kempf, H.; Meyer-Hermann, M.

    2010-01-01

    Multicellular tumour spheroids are realistic in vitro systems in radiation research that integrate cell-cell interaction and cell cycle control by factors in the medium. The dynamic reaction inside a tumour spheroid triggered by radiation is not well understood. Of special interest is the amount of cell cycle synchronization which could be triggered by irradiation, since this would allow follow-up irradiations to exploit the increased sensitivity of certain cell cycle phases. In order to investigate these questions we need to support irradiation experiments with mathematical models. In this article a new model is introduced combining the dynamics of tumour growth and irradiation treatments. The tumour spheroid growth is modelled using an agent-based Delaunay/Voronoi hybrid model in which the cells are represented by weighted dynamic vertices. Cell properties like full cell cycle dynamics are included. In order to be able to distinguish between different cell reactions in response to irradiation quality we introduce a probabilistic model for damage dynamics. The overall cell survival from this model is in agreement with predictions from the linear-quadratic model. Our model can describe the growth of avascular tumour spheroids in agreement to experimental results. Using the probabilistic model for irradiation damage dynamics the classic 'four Rs' of radiotherapy can be studied in silico. We found a pronounced reactivation of the tumour spheroid in response to irradiation. A majority of the surviving cells is synchronized in their cell cycle progression after irradiation. The cell synchronization could be actively triggered and should be exploited in an advanced fractionation scheme. Thus it has been demonstrated that our model could be used to understand the dynamics of tumour growth after irradiation and to propose optimized fractionation schemes in cooperation with experimental investigations. (authors)

  10. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.

    Science.gov (United States)

    Byrne, Michael E; Clint McCoy, J; Hinton, Joseph W; Chamberlain, Michael J; Collier, Bret A

    2014-09-01

    Accurately describing animal space use is vital to understanding how wildlife use habitat. Improvements in GPS technology continue to facilitate collection of telemetry data at high spatial and temporal resolutions. Application of the recently introduced dynamic Brownian bridge movement model (dBBMM) to such data is promising as the method explicitly incorporates the behavioural heterogeneity of a movement path into the estimated utilization distribution (UD). Utilization distributions defining space use are normally estimated for time-scales ranging from weeks to months, obscuring much of the fine-scale information available from high-volume GPS data sets. By accounting for movement heterogeneity, the dBBMM provides a rigorous, behaviourally based estimate of space use between each set of relocations. Focusing on UDs generated between individual sets of locations allows us to quantify fine-scale circadian variation in habitat use. We used the dBBMM to estimate UDs bounding individual time steps for three terrestrial species with different life histories to illustrate how the method can be used to identify fine-scale variations in habitat use. We also demonstrate how dBBMMs can be used to characterize circadian patterns of habitat selection and link fine-scale patterns of habitat use to behaviour. We observed circadian patterns of habitat use that varied seasonally for a white-tailed deer (Odocoileus virginianus) and coyote (Canis latrans). We found seasonal patterns in selection by the white-tailed deer and were able to link use of conifer forests and agricultural fields to behavioural state of the coyote. Additionally, we were able to quantify the date in which a Rio Grande wild turkey (Meleagris gallopavo intermedia) initiated laying as well as when during the day, she was most likely to visit the nest site to deposit eggs. The ability to quantify circadian patterns of habitat use may have important implications for research and management of wildlife

  11. Modeling the heterogeneity of human dynamics based on the measurements of influential users in Sina Microblog

    Science.gov (United States)

    Wang, Chenxu; Guan, Xiaohong; Qin, Tao; Yang, Tao

    2015-06-01

    Online social network has become an indispensable communication tool in the information age. The development of microblog also provides us a great opportunity to study human dynamics that play a crucial role in the design of efficient communication systems. In this paper we study the characteristics of the tweeting behavior based on the data collected from Sina Microblog. The user activity level is measured to characterize how often a user posts a tweet. We find that the user activity level follows a bimodal distribution. That is, the microblog users tend to be either active or inactive. The inter-tweeting time distribution is then measured at both the aggregate and individual levels. We find that the inter-tweeting time follows a piecewise power law distribution of two tails. Furthermore, the exponents of the two tails have different correlations with the user activity level. These findings demonstrate that the dynamics of the tweeting behavior are heterogeneous in different time scales. We then develop a dynamic model co-driven by the memory and the interest mechanism to characterize the heterogeneity. The numerical simulations validate the model and verify that the short time interval tweeting behavior is driven by the memory mechanism while the long time interval behavior by the interest mechanism.

  12. Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.

    Science.gov (United States)

    Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M

    2006-04-01

    Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.

  13. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    Science.gov (United States)

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  14. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century.

    Science.gov (United States)

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-25

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.

  15. A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves

    Science.gov (United States)

    Pecora, Nicolò; Sodini, Mauro

    2018-05-01

    This article considers a Cournot duopoly model in a continuous-time framework and analyze its dynamic behavior when the competitors are heterogeneous in determining their output decision. Specifically the model is expressed in the form of differential equations with discrete delays. The stability conditions of the unique Nash equilibrium of the system are determined and the emergence of Hopf bifurcations is shown. Applying some recent mathematical techniques (stability switching curves) and performing numerical simulations, the paper confirms how different time delays affect the stability of the economy.

  16. Spatial and temporal infiltration dynamics during managed aquifer recharge.

    Science.gov (United States)

    Racz, Andrew J; Fisher, Andrew T; Schmidt, Calla M; Lockwood, Brian S; Los Huertos, Marc

    2012-01-01

    Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  17. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability.

    Science.gov (United States)

    Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C

    2002-11-01

    To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  18. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  19. Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism

    Science.gov (United States)

    Kurmyshev, Evguenii; Juárez, Héctor A.; González-Silva, Ricardo A.

    2011-08-01

    Bounded confidence models of opinion dynamics in social networks have been actively studied in recent years, in particular, opinion formation and extremism propagation along with other aspects of social dynamics. In this work, after an analysis of limitations of the Deffuant-Weisbuch (DW) bounded confidence, relative agreement model, we propose the mixed model that takes into account two psychological types of individuals. Concord agents (C-agents) are friendly people; they interact in a way that their opinions always get closer. Agents of the other psychological type show partial antagonism in their interaction (PA-agents). Opinion dynamics in heterogeneous social groups, consisting of agents of the two types, was studied on different social networks: Erdös-Rényi random graphs, small-world networks and complete graphs. Limit cases of the mixed model, pure C- and PA-societies, were also studied. We found that group opinion formation is, qualitatively, almost independent of the topology of networks used in this work. Opinion fragmentation, polarization and consensus are observed in the mixed model at different proportions of PA- and C-agents, depending on the value of initial opinion tolerance of agents. As for the opinion formation and arising of “dissidents”, the opinion dynamics of the C-agents society was found to be similar to that of the DW model, except for the rate of opinion convergence. Nevertheless, mixed societies showed dynamics and bifurcation patterns notably different to those of the DW model. The influence of biased initial conditions over opinion formation in heterogeneous social groups was also studied versus the initial value of opinion uncertainty, varying the proportion of the PA- to C-agents. Bifurcation diagrams showed an impressive evolution of collective opinion, in particular, radical changes of left to right consensus or vice versa at an opinion uncertainty value equal to 0.7 in the model with the PA/C mixture of population near 50/50.

  20. Long-term simulations of water and isoproturon dynamics in a heterogeneous soil receiving different urban waste composts

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine

    2016-04-01

    isoproturon leaching patterns except for the large preferential flow events that were observed in the MSW and CONT plots. The timing of these preferential flow events could be reproduced by the model but not their magnitude. Additional simulations were carried out, assuming temporal variation of the IPU degradation rate to explain the leaching events observed at the end of the monitoring period (2010). Modeling results indicate that spatial and temporal variations in pesticide degradation rate due to tillage and compost application play a major role in the dynamics of isoproturon leaching. Both types of compost were found to reduce isoproturon leaching on the long-term (6 years) duration of the field experiment. Keywords: Compost amendment; Soil heterogeneity; Conventional tillage; Water flow; Isoproturon; HYDRUS-2D

  1. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  2. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    Science.gov (United States)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  3. Research and Design of Dynamic Migration Access Control Technology Based on Heterogeneous Network

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2017-01-01

    Full Text Available With the continuous development of wireless networks, the amount of privacy services in heterogeneous mobile networks is increasing, such as information storage, user access, and so on. Access control security issues for heterogeneous mobile radio network, this paper proposes a dynamic migration access control technology based on heterogeneous network. Through the system architecture of the mutual trust system, we can understand the real-time mobile node failure or abnormal state. To make the service can be terminated for the node. And adopt the 802.1X authentication way to improve the security of the system. Finally, it by combining the actual running test data, the trust update algorithm of the system is optimized to reduce the actual security threats in the environment. Experiments show that the system’s anti-attack, the success rate of access, bit error rate is in line with the expected results. This system can effectively reduce the system authentication information is illegally obtained after the network security protection mechanism failure and reduce the risk of user data leakage.

  4. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  5. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly.

    Directory of Open Access Journals (Sweden)

    Daisuke Ohshima

    2015-06-01

    Full Text Available Stress granules (SGs are non-membranous cytoplasmic aggregates of mRNAs and related proteins, assembled in response to environmental stresses such as heat shock, hypoxia, endoplasmic reticulum (ER stress, chemicals (e.g. arsenite, and viral infections. SGs are hypothesized as a loci of mRNA triage and/or maintenance of proper translation capacity ratio to the pool of mRNAs. In brain ischemia, hippocampal CA3 neurons, which are resilient to ischemia, assemble SGs. In contrast, CA1 neurons, which are vulnerable to ischemia, do not assemble SGs. These results suggest a critical role SG plays in regards to cell fate decisions. Thus SG assembly along with its dynamics should determine the cell fate. However, the process that exactly determines the SG assembly dynamics is largely unknown. In this paper, analyses of experimental data and computer simulations were used to approach this problem. SGs were assembled as a result of applying arsenite to HeLa cells. The number of SGs increased after a short latent period, reached a maximum, then decreased during the application of arsenite. At the same time, the size of SGs grew larger and became localized at the perinuclear region. A minimal mathematical model was constructed, and stochastic simulations were run to test the modeling. Since SGs are discrete entities as there are only several tens of them in a cell, commonly used deterministic simulations could not be employed. The stochastic simulations replicated observed dynamics of SG assembly. In addition, these stochastic simulations predicted a gamma distribution relative to the size of SGs. This same distribution was also found in our experimental data suggesting the existence of multiple fusion steps in the SG assembly. Furthermore, we found that the initial steps in the SG assembly process and microtubules were critical to the dynamics. Thus our experiments and stochastic simulations presented a possible mechanism regulating SG assembly.

  6. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  7. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  8. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  9. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  10. First Principles Molecular Dynamics Study of Catalysis for Polyolefins: the Ziegler-Natta Heterogeneous System.

    Directory of Open Access Journals (Sweden)

    Michele Parrinello

    2002-04-01

    Full Text Available Abstract: We review part of our recent ab initio molecular dynamics study on the Ti-based Ziegler-Natta supported heterogeneous catalysis of α-olefins. The results for the insertion of ethylene in the metal-carbon bond are discussed as a fundamental textbook example of polymerization processes. Comparison with the few experimental data available has shown that simulation can reproduce activation barriers and the overall energetics of the reaction with sufficient accuracy. This puts these quantum dynamical simulations in a new perspective as a virtual laboratory where the microscopic picture of the catalysis, which represents an important issue that still escapes experimental probes, can be observed and understood. These results are then discussed in comparison with a V-based catalyst in order to figure out analogies and differences with respect to the industrially more successful Tibased systems.

  11. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.

    Science.gov (United States)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  12. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    Science.gov (United States)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  13. STABILITY AND DYNAMICS OF SPATIO-TEMPORAL STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Hermann Riecke

    2005-10-21

    This document constitutes the final report for the grant. It provides a complete list of publications and presentations that arose from the project as well as a brief description of the highlights of the research results. The research funded by this grant has provided insights into the spontaneous formation of structures of increasing complexity in systems driven far from thermodynamic equilibrium. A classic example of such a system is thermally driven convection in a horizontal fluid layer. Highlights of the research are: (1) explanation of the localized traveling wave pulses observed in binary-mixture convection, (2) explanation of the localized waves in electroconvection, (3) introduction of a new diagnostics for spatially and temporally chaotic states, which is based on the statistics of defect trajectories, (4) prediction of complex states in thermally driven convection in rotating systems. Additional contributions provided insight into the localization mechanism for oscillons, the prediction of a new localization mechanism for traveling waves based on a resonant periodic forcing, and an analysis of the stability of quasi-periodic patterns.

  14. Collective motion of macroscopic spheres floating on capillary ripples: Dynamic heterogeneity and dynamic criticality

    NARCIS (Netherlands)

    Sanli, Ceyda; Saitoh, K.; Luding, Stefan; van der Meer, Roger M.

    2014-01-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal

  15. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater

  16. Estimating field-scale soil water dynamics at a heterogeneous site using multi-channel GPR

    Directory of Open Access Journals (Sweden)

    X. Pan

    2012-11-01

    Full Text Available We explore the feasibility to quantify the field-scale soil water dynamics through time series of GPR (ground-penetrating radar measurements, which bridge the gap between point measurements and field measurements. Working on a 40 m × 50 m area in a heterogeneous agricultural field, we obtain a time series of radargrams after a heavy rainfall event. The data are analysed to simultaneously yield (i a three-dimensional representation of the subsurface architecture and (ii the total soil water volume between the surface and a reflection boundary associated with the presence of paleo sand dunes or clay inclusions in a rather uniform sand matrix. We assess the precision and the accuracy of these quantities and conclude that the method is sensitive enough to capture the spatial structure of the changing soil water content in a three-dimensional heterogeneous soil during a short-duration infiltration event. While the sensitivity of the method needs to be improved, it already produced useful information to understand the observed patterns in crop height and it yielded insight into the dynamics of soil water content at this site including the effect of evaporation.

  17. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration.

    Science.gov (United States)

    Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi

    2018-04-13

    The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.

  18. [Spatial and temporal dynamics of the weed community in the Zoysia matrella lawn].

    Science.gov (United States)

    Liu, Jia-Qi; Li, You-Han; Zeng, Ying; Xie, Xin-Ming

    2014-02-01

    The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.

  19. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  20. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  1. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    Science.gov (United States)

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional

  2. The interplay between perceptual organization and object recognition: Temporal dynamics and neuropsychology

    OpenAIRE

    Torfs, Katrien

    2012-01-01

    The ease and efficiency with which we perceive objects in daily life masks the complexity of the processes involved. The main goal of my doctoral research was to enhance our understanding of the complex interplay between perceptual organization and object recognition. To this end, we investigated the dynamic interplay between different component processes of object recognition, and their temporal dynamics. In the first part of this thesis, I present three behavioral studies focusing on the ro...

  3. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    Science.gov (United States)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  4. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    Science.gov (United States)

    Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon

    2016-01-01

    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601

  5. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans.

    Directory of Open Access Journals (Sweden)

    Sebastian Michelmann

    2016-08-01

    Full Text Available Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans.

  6. A Model of the Temporal Dynamics of Knowledge Brokerage in Sustainable Development

    Science.gov (United States)

    Hukkinen, Janne I.

    2016-01-01

    I develop a conceptual model of the temporal dynamics of knowledge brokerage for sustainable development. Brokerage refers to efforts to make research and policymaking more accessible to each other. The model enables unbiased and systematic consideration of knowledge brokerage as part of policy evolution. The model is theoretically grounded in…

  7. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor

  8. The Temporal Dynamics of Spoken Word Recognition in Adverse Listening Conditions

    Science.gov (United States)

    Brouwer, Susanne; Bradlow, Ann R.

    2016-01-01

    This study examined the temporal dynamics of spoken word recognition in noise and background speech. In two visual-world experiments, English participants listened to target words while looking at four pictures on the screen: a target (e.g. "candle"), an onset competitor (e.g. "candy"), a rhyme competitor (e.g.…

  9. An assessment of the temporal dynamics of moral decisions

    Directory of Open Access Journals (Sweden)

    Gregory J. Koop

    2013-09-01

    Full Text Available In the domain of moral decision making, models in which emotion and deliberation constitute competing dual-systems have become increasingly popular. Currently, the favored explanation of this interaction is what Evans (2008 termed a ``default-interventionist'' (DI process where moral decisions are the result of a prepotent emotional response, which can be overridden with substantial deliberative effort. Although this ``emotion-then-deliberation'' sequence is often assumed, existing methods have lacked the requisite process resolution to clearly depict the nature of this interaction. The present work utilized continuous mouse tracking, or response dynamics, to develop and test predictions of these DI models of moral decision making. Study 1 utilized previously published moral dilemmas to validate the method for use with such complex stimuli. Although the data replicated typical choice and RT patterns, the process metrics provided by the response trajectories did not demonstrate the online preference reversals predicted by DI models. Study 2 utilized more rigorously constructed stimuli and an alternative presentation format to provide the strongest possible test of DI predictions, but again failed to show the predicted reversals. In summary, neither experiment provided data in accordance with the predictions of popular DI dual-systems models, which suggests that researchers should consider models allowing for concurrent activation of deliberative and emotional systems, or reconceptualize moral decisions within the typical multiattribute decision framework.

  10. Temporal dynamics of reward anticipation in the human brain.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Qi; Wang, Zhao; Liu, Xun; Zheng, Ya

    2017-09-01

    Reward anticipation is a complex process including cue evaluation, motor preparation, and feedback anticipation. The present study investigated whether these psychological processes were dissociable on neural dynamics in terms of incentive valence and approach motivation. We recorded EEG when participants were performing a monetary incentive delay task, and found a cue-P3 during the cue-evaluation stage, a contingent negative variation (CNV) during the motor-preparation stage, and a stimulus-preceding negativity (SPN) during the feedback-anticipation stage. Critically, both the cue-P3 and SPN exhibited an enhanced sensitivity to gain versus loss anticipation, which was not observed for the CNV. Moreover, both the cue-P3 and SPN, instead of the CNV, for gain anticipation selectively predicted the participants' approach motivation as measured in a following effort expenditure for rewards task, particularly when reward uncertainty was maximal. Together, these results indicate that reward anticipation consists of several sub-stages, each with distinct functional significance, thus providing implications for neuropsychiatric diseases characterized by dysfunction in anticipatory reward processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An American termite in Paris: temporal colony dynamics.

    Science.gov (United States)

    Baudouin, Guillaume; Dedeine, Franck; Bech, Nicolas; Bankhead-Dronnet, Stéphanie; Dupont, Simon; Bagnères, Anne-Geneviève

    2017-12-01

    Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.

  12. Spatio-temporal dynamics of oscillatory heterogeneous catalysis: CO oxidation on platinum

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.; Pina, R. K.

    1995-06-01

    Reaction-rate oscillations in the oxidation of carbon monoxide on the surface of platinum catalysts are studied in a continuous flow reactor at atmospheric pressure using infrared imaging. Small-amplitude temperature oscillations (0.2-8 K) result in approximately isothermal conditions, where changes in rate constants, for typical activation energies and temperatures, are small. The catalysts are in the form of platinum thin films on quartz substrates and provide highly repeatable oscillatory behavior. The platinum films are fabricated in the form of annular rings which provide a quasi-one-dimensional geometry in order to simplify comparison to theoretical models. Time-series measurements by means of thermocouples are used to characterize the oscillations. The infrared images show that most oscillations are spatially synchronized to within the 0.25 s time resolution of the experiment. The images also show that ``fine structure'' oscillations (i.e., small-amplitude, high frequency oscillations superimposed on larger-amplitude waveforms) are associated with spatially desynchronized patterns.

  13. Off-fault heterogeneities promote supershear transition of dynamic mode II cracks

    Science.gov (United States)

    Albertini, Gabriele; Kammer, David S.

    2017-08-01

    The transition from sub-Rayleigh to supershear propagation of mode II cracks is a fundamental problem of fracture mechanics. It has extensively been studied in homogeneous uniform setups. When the applied shear load exceeds a critical value, transition occurs through the Burridge-Andrews mechanism at a well-defined crack length. However, velocity structures in geophysical conditions can be complex and affect the transition. Damage induced by previous earthquakes causes low-velocity zones surrounding mature faults and inclusions with contrasting material properties can be present at seismogenic depth. We relax the assumption of homogeneous media and investigate dynamic shear fracture in heterogeneous media using two-dimensional finite element simulations and a linear slip-weakening law. We analyze the role of heterogeneities in the elastic media, while keeping the frictional interface properties uniform. We show that supershear transition is possible due to the sole presence of favorable off-fault heterogeneities. Subcritical shear loads, for which propagation would remain permanently sub-Rayleigh in an equivalent homogeneous setup, will transition to supershear as a result of reflected waves. P wave reflected as S waves, followed by further reflections, affect the amplitude of the shear stress peak in front of the propagating crack, leading to supershear transition. A wave reflection model allows to uniquely describe the effect of off-fault inclusions on the shear stress peak. A competing mechanism of modified released potential energy affects transition and becomes predominant with decreasing distance between fault and inclusions. For inclusions at far distances, the wave reflection is the predominant mechanism.

  14. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    International Nuclear Information System (INIS)

    Joo, Sung Hee; Zhao, Dongye

    2017-01-01

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  15. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sung Hee, E-mail: s.joo1@miami.edu [Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630 (United States); Zhao, Dongye [Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849 (United States)

    2017-01-15

    Highlights: • Influence of contaminants on the mobility of metal oxide nanoparticles (MNPs). • Synergistic effects of MNPs in the presence of contaminants. • Effect of environmental factors on the transformed MNPs. • Research direction on the toxicity modeling assessment of heterogeneous systems. - Abstract: Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics – both in homogeneous and heterogeneous systems – and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.

  16. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2016-01-01

    the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging......Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding...

  17. Fashion cycle dynamics in a model with endogenous discrete evolution of heterogeneous preferences

    Science.gov (United States)

    Naimzada, A. K.; Pireddu, M.

    2018-05-01

    We propose a discrete-time exchange economy evolutionary model, in which two groups of agents are characterized by different preference structures. The reproduction level of a group is related to its attractiveness degree, which depends on the social visibility level, determined by the consumption choices of the agents in that group. The attractiveness of a group is initially increasing with its visibility level, but it becomes decreasing when its visibility exceeds a given threshold value, due to a congestion effect. Thanks to the combined action of the price mechanism and of the share updating rule, the model is able to reproduce the recurrent dynamic behavior typical of the fashion cycle, presenting booms and busts both in the agents' consumption choices and in the population shares. More precisely, we investigate the existence of equilibria and their stability, and we perform a qualitative bifurcation analysis on varying the parameter describing the group's heterogeneity degree. From a global viewpoint, we detect, among others, multistability phenomena in which the group coexistence is dynamic, either regular or irregular, and the fashion cycle occurs. The existence of complex dynamics is proven via the method of the turbulent maps, working with homoclinic orbits. Finally, we provide a social and economic interpretation of the main scenarios.

  18. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    International Nuclear Information System (INIS)

    Imran, Muhammad; Hussain, Fayyaz; Ullah, Hafeez; Ahmad, Ejaz; Rashid, Muhammad; Ismail, Muhammad; Cai, Yongqing; Javid, M Arshad; Ahmad, S A

    2016-01-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results. (paper)

  19. Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics

    Science.gov (United States)

    Amaral, Marco Antonio; Javarone, Marco Alberto

    2018-04-01

    Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.

  20. Reconstruction of tissue dynamics in the compressed breast using multiplexed measurements and temporal basis functions

    Science.gov (United States)

    Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Fang, Qianqian; Carp, S. A.; Selb, J. J.; Boas, David A.

    2007-02-01

    In the course of our experiments imaging the compressed breast in conjunction with digital tomosynthesis, we have noted that significant changes in tissue optical properties, on the order of 5%, occur during our imaging protocol. These changes seem to consistent with changes both in total Hemoglobin concentration as well as in oxygen saturation, as was the case for our standalone breast compression study, which made use of reflectance measurements. Simulation experiments show the importance of taking into account the temporal dynamics in the image reconstruction, and demonstrate the possibility of imaging the spatio-temporal dynamics of oxygen saturation and total Hemoglobin in the breast. In the image reconstruction, we make use of spatio-temporal basis functions, specifically a voxel basis for spatial imaging, and a cubic spline basis in time, and we reconstruct the spatio-temporal images using the entire data set simultaneously, making use of both absolute and relative measurements in the cost function. We have modified the sequence of sources used in our imaging acquisition protocol to improve our temporal resolution, and preliminary results are shown for normal subjects.

  1. Event heap: a coordination infrastructure for dynamic heterogeneous application interactions in ubiquitous computing environments

    Science.gov (United States)

    Johanson, Bradley E.; Fox, Armando; Winograd, Terry A.; Hanrahan, Patrick M.

    2010-04-20

    An efficient and adaptive middleware infrastructure called the Event Heap system dynamically coordinates application interactions and communications in a ubiquitous computing environment, e.g., an interactive workspace, having heterogeneous software applications running on various machines and devices across different platforms. Applications exchange events via the Event Heap. Each event is characterized by a set of unordered, named fields. Events are routed by matching certain attributes in the fields. The source and target versions of each field are automatically set when an event is posted or used as a template. The Event Heap system implements a unique combination of features, both intrinsic to tuplespaces and specific to the Event Heap, including content based addressing, support for routing patterns, standard routing fields, limited data persistence, query persistence/registration, transparent communication, self-description, flexible typing, logical/physical centralization, portable client API, at most once per source first-in-first-out ordering, and modular restartability.

  2. Extreme Threshold Failures Within a Heterogeneous Elastic Thin Sheet and the Spatial-Temporal Development of Induced Seismicity Within the Groningen Gas Field

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.

    2017-12-01

    Measurements of the strains and earthquakes induced by fluid extraction from a subsurface reservoir reveal a transient, exponential-like increase in seismicity relative to the volume of fluids extracted. If the frictional strength of these reactivating faults is heterogeneously and randomly distributed, then progressive failures of the weakest fault patches account in a general manner for this initial exponential-like trend. Allowing for the observable elastic and geometric heterogeneity of the reservoir, the spatiotemporal evolution of induced seismicity over 5 years is predictable without significant bias using a statistical physics model of poroelastic reservoir deformations inducing extreme threshold frictional failures of previously inactive faults. This model is used to forecast the temporal and spatial probability density of earthquakes within the Groningen natural gas reservoir, conditional on future gas production plans. Probabilistic seismic hazard and risk assessments based on these forecasts inform the current gas production policy and building strengthening plans.

  3. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.

    Science.gov (United States)

    Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.

  4. Portraying Temporal Dynamics of Urban Spatial Divisions with Mobile Phone Positioning Data: A Complex Network Approach

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2016-12-01

    Full Text Available Spatial structure is a fundamental characteristic of cities that influences the urban functioning to a large extent. While administrative partitioning is generally done in the form of static spatial division, understanding a more temporally dynamic structure of the urban space would benefit urban planning and management immensely. This study makes use of a large-scale mobile phone positioning dataset to characterize the diurnal dynamics of the interaction-based urban spatial structure. To extract the temporally vibrant structure, spatial interaction networks at different times are constructed based on the movement connections of individuals between geographical units. Complex network community detection technique is applied to identify the spatial divisions as well as to quantify their temporal dynamics. Empirical analysis is conducted using data containing all user positions on a typical weekday in Shenzhen, China. Results are compared with official zoning and planned structure and indicate a certain degree of expansion in urban central areas and fragmentation in industrial suburban areas. A high level of variability in spatial divisions at different times of day is detected with some distinct temporal features. Peak and pre-/post-peak hours witness the most prominent fluctuation in spatial division indicating significant change in the characteristics of movements and activities during these periods of time. Findings of this study demonstrate great potential of large-scale mobility data in supporting intelligent spatial decision making and providing valuable knowledge to the urban planning sectors.

  5. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, R; Gallagher, B; Neville, J; Henderson, K

    2011-11-11

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.

  6. A dynamic texture-based approach to recognition of facial actions and their temporal models.

    Science.gov (United States)

    Koelstra, Sander; Pantic, Maja; Patras, Ioannis

    2010-11-01

    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set.

  7. A Temporal Domain Decomposition Algorithmic Scheme for Large-Scale Dynamic Traffic Assignment

    Directory of Open Access Journals (Sweden)

    Eric J. Nava

    2012-03-01

    This paper presents a temporal decomposition scheme for large spatial- and temporal-scale dynamic traffic assignment, in which the entire analysis period is divided into Epochs. Vehicle assignment is performed sequentially in each Epoch, thus improving the model scalability and confining the peak run-time memory requirement regardless of the total analysis period. A proposed self-turning scheme adaptively searches for the run-time-optimal Epoch setting during iterations regardless of the characteristics of the modeled network. Extensive numerical experiments confirm the promising performance of the proposed algorithmic schemes.

  8. Heterogeneous structure and solvation dynamics of DME/water binary mixtures: A combined spectroscopic and simulation investigation

    Science.gov (United States)

    Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2018-05-01

    Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.

  9. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation.

    Science.gov (United States)

    McLeod, Claire M; Mauck, Robert L

    2016-12-12

    Extracellular matrix dynamics are key to tissue morphogenesis, homeostasis, injury, and repair. The spatiotemporal organization of this matrix has profound biological implications, but is challenging to monitor using standard techniques. Here, we address these challenges by using noncanonical amino acid tagging to fluorescently label extracellular matrix synthesized in the presence of bio-orthogonal methionine analogs. This strategy labels matrix proteins with high resolution, without compromising their distribution or mechanical function. We demonstrate that the organization and temporal dynamics of the proteinaceous matrix depend on the biophysical features of the microenvironment, including the biomaterial scaffold and the niche constructed by cells themselves. Pulse labeling experiments reveal that, in immature constructs, nascent matrix is highly fibrous and interdigitates with pre-existing matrix, while in more developed constructs, nascent matrix lacks fibrous organization and is retained in the immediate pericellular space. Inhibition of collagen crosslinking increases matrix synthesis, but compromises matrix organization. Finally, these data demonstrate marked cell-to-cell heterogeneity amongst both chondrocytes and mesenchymal stem cells undergoing chondrogenesis. Collectively, these results introduce fluorescent noncanonical amino acid tagging as a strategy to investigate spatiotemporal matrix organization, and demonstrate its ability to identify differences in phenotype, microenvironment, and matrix assembly at the single cell level.

  10. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  11. Unexpected Nongenetic Individual Heterogeneity and Trait Covariance in Daphnia and Its Consequences for Ecological and Evolutionary Dynamics.

    Science.gov (United States)

    Cressler, Clayton E; Bengtson, Stefan; Nelson, William A

    2017-07-01

    Individual differences in genetics, age, or environment can cause tremendous differences in individual life-history traits. This individual heterogeneity generates demographic heterogeneity at the population level, which is predicted to have a strong impact on both ecological and evolutionary dynamics. However, we know surprisingly little about the sources of individual heterogeneity for particular taxa or how different sources scale up to impact ecological and evolutionary dynamics. Here we experimentally study the individual heterogeneity that emerges from both genetic and nongenetic sources in a species of freshwater zooplankton across a large gradient of food quality. Despite the tight control of environment, we still find that the variation from nongenetic sources is greater than that from genetic sources over a wide range of food quality and that this variation has strong positive covariance between growth and reproduction. We evaluate the general consequences of genetic and nongenetic covariance for ecological and evolutionary dynamics theoretically and find that increasing nongenetic variation slows evolution independent of the correlation in heritable life-history traits but that the impact on ecological dynamics depends on both nongenetic and genetic covariance. Our results demonstrate that variation in the relative magnitude of nongenetic versus genetic sources of variation impacts the predicted ecological and evolutionary dynamics.

  12. Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques.

    Science.gov (United States)

    Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan

    2016-08-15

    This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    Science.gov (United States)

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  14. Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

    Science.gov (United States)

    He, Xiaozhou; Wang, Yin; Tong, Penger

    2018-05-01

    Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.

  15. Emergence of cooperation in phenotypically heterogeneous populations: a replicator dynamics analysis

    International Nuclear Information System (INIS)

    Barreira da Silva Rocha, A; Escobedo, R; Laruelle, A

    2015-01-01

    The emergence of cooperation is analyzed in heterogeneous populations where two kinds of individuals exist according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type. Individuals thus behave under partial information conditions. The interactions between individuals are described by the snowdrift game, where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game theory by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that the four monomorphic states are unstable and that a polymorphic state exists which is a global attractor for non-degenerate initial states of the population. The result for the discrete-time replicator coincides with the one of the continuous case. (paper)

  16. A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).

    Science.gov (United States)

    Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo

    2018-02-01

    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.

  17. A QoS-Based Dynamic Queue Length Scheduling Algorithm in Multiantenna Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Verikoukis Christos

    2010-01-01

    Full Text Available The use of real-time delay-sensitive applications in wireless systems has significantly grown during the last years. Therefore the designers of wireless systems have faced a challenging issue to guarantee the required Quality of Service (QoS. On the other hand, the recent advances and the extensive use of multiple antennas have already been included in several commercial standards, where the multibeam opportunistic transmission beamforming strategies have been proposed to improve the performance of the wireless systems. A cross-layer-based dynamically tuned queue length scheduler is presented in this paper, for the Downlink of multiuser and multiantenna WLAN systems with heterogeneous traffic requirements. To align with modern wireless systems transmission strategies, an opportunistic scheduling algorithm is employed, while a priority to the different traffic classes is applied. A tradeoff between the maximization of the throughput of the system and the guarantee of the maximum allowed delay is obtained. Therefore, the length of the queue is dynamically adjusted to select the appropriate conditions based on the operator requirements.

  18. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. C.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2017-03-10

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in H α and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.

  19. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  20. Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.

    Science.gov (United States)

    Reinl, Maren; Bartels, Andreas

    2014-11-15

    Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Directory of Open Access Journals (Sweden)

    Carlos Díaz-Castillo

    2017-11-01

    Full Text Available Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications.

  2. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Science.gov (United States)

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  3. Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex

    Directory of Open Access Journals (Sweden)

    Sofia Fertuzinhos

    2014-03-01

    Full Text Available The hallmark of the cerebral neocortex is its organization into six layers, each containing a characteristic set of cell types and synaptic connections. The transcriptional events involved in laminar development and function still remain elusive. Here, we employed deep sequencing of mRNA and small RNA species to gain insights into transcriptional differences among layers and their temporal dynamics during postnatal development of the mouse primary somatosensory neocortex. We identify a number of coding and noncoding transcripts with specific spatiotemporal expression and splicing patterns. We also identify signature trajectories and gene coexpression networks associated with distinct biological processes and transcriptional overlap between these processes. Finally, we provide data that allow the study of potential miRNA and mRNA interactions. Overall, this study provides an integrated view of the laminar and temporal expression dynamics of coding and noncoding transcripts in the mouse neocortex and a resource for studies of neurodevelopment and transcriptome.

  4. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Duru, Kenneth, E-mail: kduru@stanford.edu [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  5. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems

    Science.gov (United States)

    S. T. A. Pickett; M. L. Cadenasso; E. J. Rosi-Marshall; Ken Belt; P. M. Groffman; Morgan Grove; E. G. Irwin; S. S. Kaushal; S. L. LaDeau; C. H. Nilon; C. M. Swan; P. S. Warren

    2016-01-01

    Urban areas are understood to be extraordinarily spatially heterogeneous. Spatial heterogeneity, and its causes, consequences, and changes, are central to ecological science. The social sciences and urban design and planning professions also include spatial heterogeneity as a key concern. However, urban ecology, as a pursuit that integrates across these disciplines,...

  6. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju; McKinley, James P.; Resch, Charles T.; Kaluzny, Rachael M.; Lauber, C.; Fredrickson, Jim K.; Knight, Robbie C.; Konopka, Allan

    2012-03-29

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater Bacteria and Archaea over 10 months within 3 well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained 3 wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all 9 wells over the 10 month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated to river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (e.g.methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment, but also by top-down biological control.

  7. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    Science.gov (United States)

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  8. Spatio-temporal dynamics of security investments in an interdependent risk environment

    Science.gov (United States)

    Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.

    2012-10-01

    In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.

  9. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.

    Science.gov (United States)

    Jie, Biao; Liu, Mingxia; Shen, Dinggang

    2018-07-01

    Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer's disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi

  10. Fire in Fennoscandia: A palaeo-perspective of spatial and temporal variability in fire frequency and vegetation dynamics

    Science.gov (United States)

    Clear, Jennifer; Bradshaw, Richard; Seppä, Heikki

    2014-05-01

    Active fire suppression in Fennoscandia has created a boreal forest ecosystem that is almost free of fire. Absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce), though the character and structure of spruce forests operates as a positive feedback retarding fire frequency. This lack of fire and dominance by Picea abies may have assisted declines in deciduous tree species, with a concomitant loss of floristic diversity. Forest fires are driven by a complex interplay between natural (climate, vegetation and topography) and anthropogenic disturbance and through palaeoecology we are able to explore spatio-temporal variability in the drivers of fire, changing fire dynamics and the subsequent consequences for forest succession, development and floristic diversity over long timescales. High resolution analysis of palaeoenvironmental proxies (pollen and macroscopic charcoal) allows Holocene vegetation and fire dynamics to be reconstructed at the local forest-stand scale. Comparisons of fire histories with pollen-derived quantitative reconstruction of vegetation at local- and regional-scales identify large-scale ecosystem responses and local-scale disturbance. Spatio-temporal heterogeneity and variability in biomass burning is explored to identify the drivers of fire and palaeovegetation reconstructions are compared to process-based, climate-driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Fire was not always so infrequent in the northern European forest with early-Holocene fire regimes driven by natural climate variations and fuel availability. The establishment and spread of Picea abies was probably driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. Picea expansion led to a step-wise reduction in regional biomass burning and here we show the now

  11. Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology

    Science.gov (United States)

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frédéric

    2018-02-01

    Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a

  12. The Temporal Derivative of Expected Utility: A Neural Mechanism for Dynamic Decision-making

    Science.gov (United States)

    Zhang, Xian; Hirsch, Joy

    2012-01-01

    Real world tasks involving moving targets, such as driving a vehicle, are performed based on continuous decisions thought to depend upon the temporal derivative of the expected utility (∂V/∂t), where the expected utility (V) is the effective value of a future reward. However, those neural mechanisms that underlie dynamic decision-making are not well understood. This study investigates human neural correlates of both V and ∂V/∂t using fMRI and a novel experimental paradigm based on a pursuit-evasion game optimized to isolate components of dynamic decision processes. Our behavioral data show that players of the pursuit-evasion game adopt an exponential discounting function, supporting the expected utility theory. The continuous functions of V and ∂V/∂t were derived from the behavioral data and applied as regressors in fMRI analysis, enabling temporal resolution that exceeded the sampling rate of image acquisition, hyper-temporal resolution, by taking advantage of numerous trials that provide rich and independent manipulation of those variables. V and ∂V/∂t were each associated with distinct neural activity. Specifically, ∂V/∂t was associated with anterior and posterior cingulate cortices, superior parietal lobule, and ventral pallidum, whereas V was primarily associated with supplementary motor, pre and post central gyri, cerebellum, and thalamus. The association between the ∂V/∂t and brain regions previously related to decision-making is consistent with the primary role of the temporal derivative of expected utility in dynamic decision-making. PMID:22963852

  13. The temporal derivative of expected utility: a neural mechanism for dynamic decision-making.

    Science.gov (United States)

    Zhang, Xian; Hirsch, Joy

    2013-01-15

    Real world tasks involving moving targets, such as driving a vehicle, are performed based on continuous decisions thought to depend upon the temporal derivative of the expected utility (∂V/∂t), where the expected utility (V) is the effective value of a future reward. However, the neural mechanisms that underlie dynamic decision-making are not well understood. This study investigates human neural correlates of both V and ∂V/∂t using fMRI and a novel experimental paradigm based on a pursuit-evasion game optimized to isolate components of dynamic decision processes. Our behavioral data show that players of the pursuit-evasion game adopt an exponential discounting function, supporting the expected utility theory. The continuous functions of V and ∂V/∂t were derived from the behavioral data and applied as regressors in fMRI analysis, enabling temporal resolution that exceeded the sampling rate of image acquisition, hyper-temporal resolution, by taking advantage of numerous trials that provide rich and independent manipulation of those variables. V and ∂V/∂t were each associated with distinct neural activity. Specifically, ∂V/∂t was associated with anterior and posterior cingulate cortices, superior parietal lobule, and ventral pallidum, whereas V was primarily associated with supplementary motor, pre and post central gyri, cerebellum, and thalamus. The association between the ∂V/∂t and brain regions previously related to decision-making is consistent with the primary role of the temporal derivative of expected utility in dynamic decision-making. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media

    Science.gov (United States)

    Watson, Keri B.; Wood, Spencer A.; Ricketts, Taylor H.

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18–20.2 at 95% confidence) to Vermont’s tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making. PMID:27611325

  15. Dynamic spatial organization of the occipito-temporal word form area for second language processing.

    Science.gov (United States)

    Gao, Yue; Sun, Yafeng; Lu, Chunming; Ding, Guosheng; Guo, Taomei; Malins, Jeffrey G; Booth, James R; Peng, Danling; Liu, Li

    2017-08-01

    Despite the left occipito-temporal region having shown consistent activation in visual word form processing across numerous studies in different languages, the mechanisms by which word forms of second languages are processed in this region remain unclear. To examine this more closely, 16 Chinese-English and 14 English-Chinese late bilinguals were recruited to perform lexical decision tasks to visually presented words in both their native and second languages (L1 and L2) during functional magnetic resonance imaging scanning. Here we demonstrate that visual word form processing for L1 versus L2 engaged different spatial areas of the left occipito-temporal region. Namely, the spatial organization of the visual word form processing in the left occipito-temporal region is more medial and posterior for L2 than L1 processing in Chinese-English bilinguals, whereas activation is more lateral and anterior for L2 in English-Chinese bilinguals. In addition, for Chinese-English bilinguals, more lateral recruitment of the occipito-temporal region was correlated with higher L2 proficiency, suggesting higher L2 proficiency is associated with greater involvement of L1-preferred mechanisms. For English-Chinese bilinguals, higher L2 proficiency was correlated with more lateral and anterior activation of the occipito-temporal region, suggesting higher L2 proficiency is associated with greater involvement of L2-preferred mechanisms. Taken together, our results indicate that L1 and L2 recruit spatially different areas of the occipito-temporal region in visual word processing when the two scripts belong to different writing systems, and that the spatial organization of this region for L2 visual word processing is dynamically modulated by L2 proficiency. Specifically, proficiency in L2 in Chinese-English is associated with assimilation to the native language mechanisms, whereas L2 in English-Chinese is associated with accommodation to second language mechanisms. Copyright © 2017

  16. Bursts and heavy tails in temporal and sequential dynamics of foraging decisions.

    Directory of Open Access Journals (Sweden)

    Kanghoon Jung

    2014-08-01

    Full Text Available A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a a highly biased choice distribution; and (b preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices.

  17. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-11-15

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  18. Bursts and Heavy Tails in Temporal and Sequential Dynamics of Foraging Decisions

    Science.gov (United States)

    Jung, Kanghoon; Jang, Hyeran; Kralik, Jerald D.; Jeong, Jaeseung

    2014-01-01

    A fundamental understanding of behavior requires predicting when and what an individual will choose. However, the actual temporal and sequential dynamics of successive choices made among multiple alternatives remain unclear. In the current study, we tested the hypothesis that there is a general bursting property in both the timing and sequential patterns of foraging decisions. We conducted a foraging experiment in which rats chose among four different foods over a continuous two-week time period. Regarding when choices were made, we found bursts of rapidly occurring actions, separated by time-varying inactive periods, partially based on a circadian rhythm. Regarding what was chosen, we found sequential dynamics in affective choices characterized by two key features: (a) a highly biased choice distribution; and (b) preferential attachment, in which the animals were more likely to choose what they had previously chosen. To capture the temporal dynamics, we propose a dual-state model consisting of active and inactive states. We also introduce a satiation-attainment process for bursty activity, and a non-homogeneous Poisson process for longer inactivity between bursts. For the sequential dynamics, we propose a dual-control model consisting of goal-directed and habit systems, based on outcome valuation and choice history, respectively. This study provides insights into how the bursty nature of behavior emerges from the interaction of different underlying systems, leading to heavy tails in the distribution of behavior over time and choices. PMID:25122498

  19. On Fluid and Thermal Dynamics in a Heterogeneous CO2 Plume Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Tianfu Xu

    2017-01-01

    Full Text Available CO2 is now considered as a novel heat transmission fluid to extract geothermal energy. It can achieve both the energy exploitation and CO2 geological sequestration. The migration pathway and the process of fluid flow within the reservoirs affect significantly a CO2 plume geothermal (CPG system. In this study, we built three-dimensional wellbore-reservoir coupled models using geological and geothermal conditions of Qingshankou Formation in Songliao Basin, China. The performance of the CPG system is evaluated in terms of the temperature, CO2 plume distribution, flow rate of production fluid, heat extraction rate, and storage of CO2. For obtaining a deeper understanding of CO2-geothermal system under realistic conditions, heterogeneity of reservoir’s hydrological properties (in terms of permeability and porosity is taken into account. Due to the fortissimo mobility of CO2, as long as a highly permeable zone exists between the two wells, it is more likely to flow through the highly permeable zone to reach the production well, even though the flow path is longer. The preferential flow shortens circulation time and reduces heat-exchange area, probably leading to early thermal breakthrough, which makes the production fluid temperature decrease rapidly. The analyses of flow dynamics of CO2-water fluid and heat may be useful for future design of a CO2-based geothermal development system.

  20. Flight Dynamics Operations Management of the Large and Heterogeneous Eutelsat Fleet of Commercial Satellites

    Science.gov (United States)

    Bellido, E.

    The EUTELSAT FDU (Flight Dynamics Unit) manages the resources to perform the typical activities of the large satellite operators and faces the usual difficulties raising from a vast and heterogeneous fleet. At present 20 satellites from 9 different platforms/sub-platforms are controlled from our Satellite Control Centre. The FDU was created in 2002 with the aim to respond to the operational needs of a growing fleet in terms of number of satellites and activities. It is at present composed of 6 engineering staff with the objective to provide operations service covering the whole lifecycle of the satellites from the procurement phase till the decommissioning. The most demanding activity is the daily operations, which must ensure maximum safety and continuity of service with the highest efficiency. Solutions have been applied from different areas: management, structure, operations organisation, processes, facilities, quality standards, etc. In addition to this, EUTELSAT is a growing communications operator and the FDU needs to contribute to the global objectives of the company. This paper covers our approach.

  1. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karahaliou, A; Skiadopoulos, S; Yiakoumelos, A; Costaridou, L; Vassiou, K; Kanavou, T

    2009-01-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  2. A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)

    2016-07-01

    In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.

  3. Microarray Gene Expression Analysis of Murine Tumor Heterogeneity Defined by Dynamic Contrast-Enhanced MRI

    Directory of Open Access Journals (Sweden)

    Nick G. Costouros

    2002-07-01

    Full Text Available Current methods of studying angiogenesis are limited in their ability to serially evaluate in vivo function throughout a target tissue. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI and pharmacokinetic modeling provide a useful method for evaluating tissue vasculature based on contrast accumulation and washout. While it is often assumed that areas of high contrast enhancement and washout comprise areas of increased angiogenesis and tumor activity, the actual molecular pathways that are active in such areas are poorly understood. Using DCE-MRI in a murine subcutaneous tumor model, we were able to perform pharmacokinetic functional analysis of a tumor, coregistration of MRI images with histological cross-sections, immunohistochemistry, laser capture microdissection, and genetic profiling of tumor heterogeneity based on pharmacokinetic parameters. Using imaging as a template for biologic investigation, we have not found evidence of increased expression of proangiogenic modulators at the transcriptional level in either distinct pharmacokinetic region. Furthermore, these regions show no difference on histology and CD31 immunohistochemistry. However, the expression of ribosomal proteins was greatly increased in high enhancement and washout regions, implying increased protein translation and consequent increased cellular activity. Together, these findings point to the potential importance of posttranscriptional regulation in angiogenesis and the need for the development of angiogenesis-specific contrast agents to evaluate in vivo angiogenesis at a molecular level.

  4. Heterogeneity of growth in the west Balkans and emerging Europe: A dynamic panel data model approach

    Directory of Open Access Journals (Sweden)

    Josifidis Kosta

    2012-01-01

    Full Text Available This paper explores the heterogeneity of growth in the Western Balkan and Emerging European economies. For that purpose, growth determinants are estimated in the period 1997-2009 by dynamic panel data models. The chosen period provides a comparison for the model results with those estimated for the period up to 2007 in order to analyze changes caused by the global instability. According to the main findings of the paper, macroeconomic stabilization and structural reforms still matter in determining economic growth, but foreign direct investments and economic integrations seem to have the most important role in stimulating growth in the observed countries. Moreover, significant positive effects of foreign direct investments and economic integrations produce differences in growth paths between Emerging European and Western Balkan economies. Sharp decrease of foreign inflows in 2008 determined contractions of growth rates firstly in Emerging European economies with subsequent spill-over on the Western Balkan economies during 2009. Consequently, in the period of global instability, differences between two groups of economies become even more obvious.

  5. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Swaminarayan, Sriram [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Kadau, Kai [Los Alamos National Laboratory; Fossum, Gordon C [IBM CORPORATION

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementation of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.

  6. INFORMATION MINING OF SPATIO-TEMPORAL EVOLUTION OF LAKES BASED ON MULTIPLE DYNAMIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Feng

    2017-09-01

    Full Text Available Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes’ area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1 the swap dynamic degree (SDD reflects the space activity of lakes in the study period. 2 the attenuation dynamic degree (ADD reflects the net attenuation of lakes into non-lake areas. 3 the fragmentation dynamic degree (FDD reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation – fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  7. A general science-based framework for dynamical spatio-temporal models

    Science.gov (United States)

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic

  8. Temporal variability in phosphorus transfers: classifying concentration–discharge event dynamics

    Directory of Open Access Journals (Sweden)

    P. Haygarth

    2004-01-01

    Full Text Available The importance of temporal variability in relationships between phosphorus (P concentration (Cp and discharge (Q is linked to a simple means of classifying the circumstances of Cp–Q relationships in terms of functional types of response. New experimental data at the upstream interface of grassland soil and catchment systems at a range of scales (lysimeters to headwaters in England and Australia are used to demonstrate the potential of such an approach. Three types of event are defined as Types 1–3, depending on whether the relative change in Q exceeds the relative change in Cp (Type 1, whether Cp and Q are positively inter-related (Type 2 and whether Cp varies yet Q is unchanged (Type 3. The classification helps to characterise circumstances that can be explained mechanistically in relation to (i the scale of the study (with a tendency towards Type 1 in small scale lysimeters, (ii the form of P with a tendency for Type 1 for soluble (i.e., p–Q relationships that can be developed further to contribute to future models of P transfer and delivery from slope to stream. Studies that evaluate the temporal dynamics of the transfer of P are currently grossly under-represented in comparison with models based on static/spatial factors. Keywords: phosphorus, concentration, discharge, lysimeters, temporal dynamics, overland flow

  9. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Science.gov (United States)

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  10. Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing

    Science.gov (United States)

    Lyons, Mitchell B.; Roelfsema, Chris M.; Phinn, Stuart R.

    2013-03-01

    The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (≈200 km2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and

  11. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    Science.gov (United States)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a

  12. The Temporal Dynamics of Visual Search: Evidence for Parallel Processing in Feature and Conjunction Searches

    Science.gov (United States)

    McElree, Brian; Carrasco, Marisa

    2012-01-01

    Feature and conjunction searches have been argued to delineate parallel and serial operations in visual processing. The authors evaluated this claim by examining the temporal dynamics of the detection of features and conjunctions. The 1st experiment used a reaction time (RT) task to replicate standard mean RT patterns and to examine the shapes of the RT distributions. The 2nd experiment used the response-signal speed–accuracy trade-off (SAT) procedure to measure discrimination (asymptotic detection accuracy) and detection speed (processing dynamics). Set size affected discrimination in both feature and conjunction searches but affected detection speed only in the latter. Fits of models to the SAT data that included a serial component overpredicted the magnitude of the observed dynamics differences. The authors concluded that both features and conjunctions are detected in parallel. Implications for the role of attention in visual processing are discussed. PMID:10641310

  13. Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Tao, Nairong

    2014-01-01

    to develop a heterogeneous structure, consisting of regions with different textures and microstructures. This heterogeneity within the deformed structure leads to the formation of severely clustered grains in partially recrystallized samples. The recrystallization kinetic curve shows an Avrami exponent less...... recrystallization kinetics. The hardness of the two samples was measured, and the mechanical properties before and after partial recrystallization of both samples are discussed based on the presence of structural heterogeneities on the macroscopic and the microscopic scale....

  14. Coexistence of two freshwater turtle species along a Mediterranean stream: The role of spatial and temporal heterogeneity

    Science.gov (United States)

    Segurado, Pedro; Figueiredo, Diogo

    2007-09-01

    In the Iberian Peninsula the European pond turtle ( Emys orbicularis) and the Mediterranean pond turtle ( Mauremys leprosa) share many freshwater habitats, in particular Mediterranean streams. Whether and how these two species divide space within those habitats is poorly known in part due to the very low abundance of E. orbicularis at most syntopic sites. The spatial coexistence of these two species was studied along a 1.3 km reach of a typical Mediterranean stream based on data from trapping sessions and basking counts. The effect of the hydrological regime on differences in space use between species was also assessed. Spatial associations between species and between each species and microhabitat descriptors were estimated using a permutation procedure to account for spatial autocorrelation. Differences in the use of space were also estimated using a resample technique to account for the small sample sizes of E. orbicularis. Results indicate that E. orbicularis shows a preference for temporary, shallow, well vegetated and sandy reaches, while M. leprosa is less selective regarding microhabitat. Differences between E. orbicularis and juveniles of M. leprosa were less obvious. The high spatial heterogeneity of Mediterranean streams may be responsible for the persistence of viable populations of E. orbicularis as well as favouring the coexistence of the two turtle species. Therefore, stream habitat management and conservation plans for E. orbicularis should give priority to the maintenance of high levels of heterogeneity along Mediterranean streams.

  15. Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach

    NARCIS (Netherlands)

    Embling, C.B.; Illian, J.; Armstrong, E.; van der Kooij, J.; Sharples, J.; Camphuysen, K.C.J.; Scott, B.E.

    2012-01-01

    1. Spatial management of marine ecosystems requires detailed knowledge of spatio-temporal mechanisms linking physical and biological processes. Tidal currents, the main driver of ecosystem dynamics in temperate coastal ecosystems, influence predator foraging ecology by affecting prey distribution

  16. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    Science.gov (United States)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required

  17. Spatio-temporal variation in groundwater head affected by stratigraphic heterogeneity of the alluvial aquifer in Northwest India

    Science.gov (United States)

    van Dijk, W. M.; Joshi, S. K.; Densmore, A. L.; Jackson, C. R.; Sutanudjaja, E.; Lafare, A. E. A.; Gupta, S.; Mackay, J. D.; Mason, P. J.; Sinha, R.

    2017-12-01

    Groundwater is a primary source of freshwater in the alluvial aquifer system of northwestern India. Unsustainable exploitation of the groundwater resources has led to a regional hotspot in groundwater depletion. Rapid groundwater-level decline shows spatial variation, as the effects of various stresses, including precipitation, potential evapotranspiration and abstraction, are likely to be influenced by the stratigraphic and geomorphic heterogeneity between sediment fan and interfan areas (see Geomorphological map in Figure A). We used a transfer function-noise (TFN) time series approach to quantify the effect of the various stress components in the period 1974-2010, based on predefined impulse response functions (IRFs) of von Asmuth et al. (2008). The objective of this study was 1) to acquire the impulse response function of various stresses, 2) assess the spatial estimation parameter (the zeroth moment, M0) of the spatial development of the groundwater head and 3) relate the spatial M0 to the observed stratigraphic and geomorphic heterogeneity. We collected information on the groundwater head pre- and post-monsoon, the district-wise monthly precipitation and potential evapotranspiration, and we modeled the monthly abstraction rate using land-use information. The TFN identified the IRF of precipitation as well as abstraction. The IRF, summarized in the parameter M0, identified a hotspot for the abstraction stress (see M0 spatial map for abstraction in Figure B) at the margins of the Sutlej and Yamuna fans. No hotspot is observed for the precipitation stress, but the M0 for precipitation increases with distance from the Himalayan front. At larger distances from the Himalayan front, observed groundwater head rises cannot be explained by the IRFs for the abstraction and precipitation stresses. This is likely because the current TFN models do not account for other stresses, such as recharge by canal leakage, which are locally important. We conclude that the spatial

  18. Exploring dynamical complexity in diffusion driven predator-prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Kumari, Nitu; Rai, Vikas

    2009-01-01

    In this paper, dynamical complexities in two reaction-diffusion (RD) model systems are explored. A spatial heterogeneity in the form of linear spatial gradient in the reproductive growth rate of the phytoplankton is incorporated in both the model systems. Extra mortality of the zooplankton due to toxin production by the phytoplankton is included in the second reaction diffusion model system. Effect of toxin production and spatial heterogeneity in the model systems are studied. Toxin production does not seem to have an appreciable effect on the asymptotic dynamics of the model systems. On the other hand, spatial heterogeneity does influence the dynamics. In particular, it increases the frequency of occurrence of chaos as evident from two dimensional parameter scans. Both these model systems display short term recurrent chaos [Rai V. Chaos in natural populations: edge or wedge? Ecol Complex 2004;1: 127-38] as they reside on 'edges of chaos' (EOC) [Rai V, Upadhyay RK. Evolving to the edge of chaos: chance or necessity? Chaos, Solitons and Fractals 2006;30:1074-87]. This suggests that the ecological systems have a tendency to evolve to EOC. The study corroborates the inferences drawn from an earlier study by Rai and Upadhyay [Rai V, Upadhyay RK. Evolving to the edge of chaos: chance or necessity? Chaos, Solitons and Fractals 2006;30:1074-87]. The system's dynamics is largely unpredictable and admits bursts of short-term predictability.

  19. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    Science.gov (United States)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  20. Temporal dynamics of disgust and morality: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Qun Yang

    Full Text Available Disgust is argued to be an emotion that motivates the avoidance of disease-causing entities in the physical domain and unacceptable behaviors in the social-moral domain. Empirical work from behavioral, physiological and brain imaging studies suggests moral judgments are strongly modulated by disgust feelings. Yet, it remains unclear how they are related in the time course of neural processing. Examining the temporal order of disgust emotion and morality could help to clarify the role of disgust in moral judgments. In the present research, a Go/No-Go paradigm was employed to evoke lateralized readiness potentials (LRPs to investigate the temporal order of physical disgust and moral information processing. Participants were asked to give a "yes" or "no" response regarding the physical disgust and moral wrongness of a social act. The results showed that the evaluation of moral information was processed prior to that of physical disgust information. This suggests that moral information is available earlier than physical disgust, and provides more data on the biological heterogeneity between disgust and morality in terms of the time course of neural activity. The findings implicate that physical disgust emotion may not be necessary for people to make moral judgments. They also suggest that some of our moral experience may be more fundamental (than physical disgust experience to our survival and development, as humans spend a considerable amount of time engaging in social interaction.

  1. Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh

    Science.gov (United States)

    Adams, Helen; Adger, W. Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N.; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim

    2016-01-01

    Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries. PMID:27824340

  2. A comprehensive model of audiovisual perception: both percept and temporal dynamics.

    Directory of Open Access Journals (Sweden)

    Patricia Besson

    Full Text Available The sparse information captured by the sensory systems is used by the brain to apprehend the environment, for example, to spatially locate the source of audiovisual stimuli. This is an ill-posed inverse problem whose inherent uncertainty can be solved by jointly processing the information, as well as introducing constraints during this process, on the way this multisensory information is handled. This process and its result--the percept--depend on the contextual conditions perception takes place in. To date, perception has been investigated and modeled on the basis of either one of two of its dimensions: the percept or the temporal dynamics of the process. Here, we extend our previously proposed audiovisual perception model to predict both these dimensions to capture the phenomenon as a whole. Starting from a behavioral analysis, we use a data-driven approach to elicit a bayesian network which infers the different percepts and dynamics of the process. Context-specific independence analyses enable us to use the model's structure to directly explore how different contexts affect the way subjects handle the same available information. Hence, we establish that, while the percepts yielded by a unisensory stimulus or by the non-fusion of multisensory stimuli may be similar, they result from different processes, as shown by their differing temporal dynamics. Moreover, our model predicts the impact of bottom-up (stimulus driven factors as well as of top-down factors (induced by instruction manipulation on both the perception process and the percept itself.

  3. Femtosecond laser spectroscopy of spins: Magnetization dynamics in thin magnetic films with spatio-temporal resolution

    International Nuclear Information System (INIS)

    Carpene, E.; Mancini, E.; Dallera, C.; Puppin, E.; De Silvestri, S.

    2010-01-01

    Based on the Magneto-Optical Kerr Effect (MOKE), we have developed an experimental set-up that allows us to fully characterize the magnetization dynamics in thin magnetic films by measuring all three real space components of the magnetization vector M. By means of the pump-probe technique it is possible to extract the time dependence of each individual projection with sub-picosecond resolution. This method has been exploited to investigate the temporal evolution of the magnetization (modulus and orientation) induced by an ultrashort laser pulse in thin epitaxial iron films. According to our results, we deduced that the initial, sub-picosecond demagnetization is established at the electronic level through electron-magnon excitations. The subsequent dynamics is characterized by a precessional motion on the 100 ps time scale, around an effective, time-dependent magnetic field. Following the full dynamics of M, the temporal evolution of the magneto-crystalline anisotropy constant can be unambiguously determined, providing the experimental evidence that the precession is triggered by the rapid, optically-induced misalignment between the magnetization vector and the effective magnetic field. These results suggest a possible pathway toward the ultrarapid switching of the magnetization.

  4. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    Science.gov (United States)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  5. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  6. Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Hendriksen, Morten; Sørensen, Preben Graae

    2013-01-01

    Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredict...

  7. Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transboundary Watershed

    Directory of Open Access Journals (Sweden)

    Narcisa G. Pricope

    2015-07-01

    Full Text Available Increasing temperatures and wildfire incidence and decreasing precipitation and river runoff in southern Africa are predicted to have a variety of impacts on the ecology, structure, and function of semi-arid savannas, which provide innumerable livelihood resources for millions of people. This paper builds on previous research that documents change in inundation and fire regimes in the Chobe River Basin (CRB in Namibia and Botswana and proposes to demonstrate a methodology that can be applied to disentangle the effect of environmental variability from land management decisions on changing and ecologically sensitive savanna ecosystems in transboundary contexts. We characterized the temporal dynamics (1985–2010 of vegetation productivity for the CRB using proxies of vegetation productivity and examine the relative importance of shifts in flooding and fire patterns to vegetation dynamics and effects of the association of phases of the El Niño—Southern Oscillation (ENSO on vegetation greenness. Our results indicate that vegetation in these semi-arid environments is highly responsive to climatic fluctuations and the long-term trend is one of increased but heterogeneous vegetation cover. The increased cover and heterogeneity during the growing season is especially noted in communally-managed areas of Botswana where long-term fire suppression has been instituted, in contrast to communal areas in Namibia where heterogeneity in vegetation cover is mostly increasing primarily outside of the growing season and may correspond to mosaic early dry season burns. Observed patterns of increased vegetation productivity and heterogeneity may relate to more frequent and intense burning and higher spatial variability in surface water availability from both precipitation and regional inundation patterns, with implications for global environmental change and adaptation in subsistence-based communities.

  8. Embodiment of intersubjective time: relational dynamics as attractors in the temporal coordination of interpersonal behaviors and experiences.

    Science.gov (United States)

    Laroche, Julien; Berardi, Anna Maria; Brangier, Eric

    2014-01-01

    This paper addresses the issue of "being together," and more specifically the issue of "being together in time." We provide with an integrative framework that is inspired by phenomenology, the enactive approach and dynamical systems theories. To do so, we first define embodiment as a living and lived phenomenon that emerges from agent-world coupling. We then show that embodiment is essentially dynamical and therefore we describe experiential, behavioral and brain dynamics. Both lived temporality and the temporality of the living appear to be complex, multiscale phenomena. Next we discuss embodied dynamics in the context of interpersonal interactions, and briefly review the empirical literature on between-persons temporal coordination. Overall, we propose that being together in time emerges from the relational dynamics of embodied interactions and their flexible co-regulation.

  9. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    Science.gov (United States)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  10. Temporal and spatial heterogeneity in lacustrine δ13CDIC and δ18ODO signatures in a large mid-latitude temperate lake

    Directory of Open Access Journals (Sweden)

    Jane DRUMMOND

    2010-08-01

    Full Text Available Modelling limnetic carbon processes is necessary for accurate global carbon models and stable isotope analysis can provide additional insight of carbon flow pathways. This research examined the spatial and temporal complexity of carbon cycling in a large temperate lake. Dissolved inorganic carbon (DIC is utilised by photosynthetic organisms and dissolved oxygen (DO is used by heterotrophic organisms during respiration. Thus the spatial heterogeneity in the pelagic metabolic balance in Loch Lomond, Scotland was investigated using a combined natural abundance isotope technique. The isotopic signatures of dissolved inorganic carbon (δ13CDIC and dissolved oxygen (δ18ODO were measured concurrently on four different dates between November 2004 and September 2005. We measured isotopic variation over small and large spatial scales, both horizontal distance and depth. δ13CDIC and δ18ODO changed over a seasonal cycle, becoming concurrently more positive (negative in the summer (winter months, responding to increased photosynthetic and respiratory rates, respectively. With increasing depth, δ13CDIC became more negative and δ18ODO more positive, reflecting the shift to a respiration-dominated system. The horizontal distribution of δ13CDIC and δ18ODO in the epilimnion was heterogeneous. In general, the south basin had the most positive δ13CDIC, becoming more negative with increasing latitude, except in winter when the opposite pattern was observed. Areas of local variation were often observed near inflows. Clearly δ13CDIC and δ18ODO can show large spatial heterogeneity, as a result of varying metabolic balance coupled with inflow proximity and thus single point sampling to extrapolate whole lake metabolic patterns can result in error when modelling large lake systems Whilst we advise caution when using single point representation, we also show that this combined isotopic approach has potential to assist in constructing detailed lake carbon models.

  11. Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator

    Science.gov (United States)

    Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.

    2018-05-01

    In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.

  12. The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.

    Science.gov (United States)

    McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M

    2017-10-01

    Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for

  13. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Extending minimal repair models for repairable systems: A comparison of dynamic and heterogeneous extensions of a nonhomogeneous Poisson process

    International Nuclear Information System (INIS)

    Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry

    2015-01-01

    For many applications of repairable systems, the minimal repair assumption, which leads to nonhomogeneous Poisson processes (NHPP), is not adequate. We review and study two extensions of the NHPP, the dynamic NHPP and the heterogeneous NHPP. Both extensions are motivated by specific aspects of potential applications. It has long been known, however, that the two paradigms are essentially indistinguishable in an analysis of failure data. We investigate the connection between the two approaches for extending NHPP models, both theoretically and numerically in a data example and a simulation study. - Highlights: • Review of dynamic extension of a minimal repair model (LEYP), introduced by Le Gat. • Derivation of likelihood function and comparison to NHPP model with heterogeneity. • Likelihood functions and conditional intensities are similar for the models. • ML estimation is considered for both models using a power law baseline. • A simulation study illustrates and confirms findings of the theoretical study

  15. Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells.

    Science.gov (United States)

    Hald, Bjørn Olav; Garkier Hendriksen, Morten; Sørensen, Preben Graae

    2013-05-15

    Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredictable. In heterogeneous populations, synchronization of events becomes a cardinal problem-particularly for phase coherence in oscillating systems. The present article presents a novel strategy for construction of large-scale simulation programs of heterogeneous biological entities. The strategy is designed to be tractable, to handle heterogeneity and to handle computational cost issues simultaneously, primarily by writing a generator of the 'model to be simulated'. We apply the strategy to model glycolytic oscillations among thousands of yeast cells coupled through the extracellular medium. The usefulness is illustrated through (i) benchmarking, showing an almost linear relationship between model size and run time, and (ii) analysis of the resulting simulations, showing that contrary to the experimental situation, synchronous oscillations are surprisingly hard to achieve, underpinning the need for tools to study heterogeneity. Thus, we present an efficient strategy to model the biological heterogeneity, neglected by ordinary mean-field models. This tool is well posed to facilitate the elucidation of the physiologically vital problem of synchronization. The complete python code is available as Supplementary Information. bjornhald@gmail.com or pgs@kiku.dk Supplementary data are available at Bioinformatics online.

  16. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  17. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  18. Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2017-01-01

    Full Text Available Purpose. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS theory makes it possible to recover MR images from randomly undersampled k-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast. Methods. We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT, Haar wavelet transform (WT, total variation (TV, second-order total generalized variation (TGVα2, and nuclear norm (NN. We measured the signal-to-error ratio (SER of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs of the derived pharmacokinetic parameters Ktrans (volume transfer constant and ve (extravascular-extracellular volume fraction across a population of random sampling schemes. Results. NN produced the lowest image error (SER: 29.1, while TV/TGVα2 produced the most accurate Ktrans (CCC: 0.974/0.974 and ve (CCC: 0.916/0.917. WT produced the highest image error (SER: 21.8, while FT produced the least accurate Ktrans (CCC: 0.842 and ve (CCC: 0.799. Conclusion. TV/TGVα2 should be used as temporal constraints for CS DCE-MRI of the breast.

  19. Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks.

    Science.gov (United States)

    Lee, Wang Wei; Kukreja, Sunil L; Thakor, Nitish V

    2017-01-01

    This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications.

  20. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor\\'s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its

  1. Spatial and temporal heterogeneity of water quality in Rio das Pedras reservoir (Billings Complex, São Paulo State

    Directory of Open Access Journals (Sweden)

    Viviane Moschini-Carlos

    2009-12-01

    Full Text Available Este trabalho teve como objetivo avaliar em escalas espacial (vertical e horizontal e temporal as características limnológicas do Reservatório Rio das Pedras (Complexo Billings, São Bernardo do Campo, SP – Brasil. Nos meses de março e outubro de 2004 foram amostradas em perfil três estações no reservatório. As variáveis analisadas foram: temperatura, condutividade elétrica e pH, com sonda multiparâmetros; concentrações de amônio, nitrito, nitrato, fosfato, ortosilicato, fósforo total, clorofila-a e feofitina, por método espectrofotométrico; oxigênio dissolvido por método titulométrico; além das concentrações de sólidos totais e material em suspensão. Para análise estatística dos dados foi aplicada a ACP (Análise de Componentes Principais. A heterogeneidade temporal observada foi conseqüência das diferenças de temperatura, que geraram estratificação térmica, química e biológica, no mês de março. As diferenças espaciais verticais também resultaram da estratificação térmica. As maiores discrepâncias das características limnológicas, em relação ao padrão de distribuição espacial horizontal, foram obtidas na estação 1, e são diretamente relacionadas à influência das águas provenientes do reservatório Billings. De acordo com a CONAMA 357/05, para o mês de outubro de 2004 as águas do reservatório estão em conformidade com a Classe 3. Para o mês de março, na estação 3 os valores estão abaixo do estabelecido, conferindo não conformidade para a Classe 3.

  2. Evaluating complementary networks of restoration plantings for landscape-scale occurrence of temporally dynamic species.

    Science.gov (United States)

    Ikin, Karen; Tulloch, Ayesha; Gibbons, Philip; Ansell, Dean; Seddon, Julian; Lindenmayer, David

    2016-10-01

    Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and

  3. The impact of heterogeneous response on coupled spreading dynamics in multiplex networks

    Science.gov (United States)

    Nie, Xiaoyu; Tang, Ming; Zou, Yong; Guan, Shuguang; Zhou, Jie

    2017-10-01

    Many recent studies have demonstrated that individual awareness of disease may significantly affect the spreading process of infectious disease. In the majority of these studies, the response of the awareness is generally treated homogeneously. Considering of diversity and heterogeneity in the human behavior which widely exist under different circumstances, in this paper we study heterogeneous response when people are aware of the prevalence of infectious diseases. Specifically, we consider that an individual with more neighbors may take more preventive measures as a reaction when he is aware of the disease. A suppression strength is introduced to describe such heterogeneity, and we find that a more evident heterogeneity may cause a more effective suppressing effect to the spreading of epidemics. A mean-field theory is developed to support the results which are verified on the multiplex networks with different interlayer degree correlation.

  4. Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    Science.gov (United States)

    Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J.B.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.

    2016-01-01

    Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main

  5. Near equilibrium dynamics and one-dimensional spatial—temporal structures of polar active liquid crystals

    International Nuclear Information System (INIS)

    Yang Xiao-Gang; Wang Qi; Forest, M. Gregory

    2014-01-01

    We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for one-dimensional (1D) spatial—temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial—temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating

  6. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant–interspace heterogeneity

    Directory of Open Access Journals (Sweden)

    J. Gong

    2018-01-01

    Full Text Available We used process-based modelling to investigate the roles of carbon-flux (C-flux components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation. The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  7. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity

    Science.gov (United States)

    Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli

    2018-01-01

    We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  8. Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex.

    Science.gov (United States)

    Inberg, Sharon; Jacob, Eyal; Elkobi, Alina; Edry, Efrat; Rappaport, Akiva; Simpson, T Ian; Armstrong, J Douglas; Shomron, Noam; Pasmanik-Chor, Metsada; Rosenblum, Kobi

    2016-02-09

    Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex (GC) hours following acquisition. However, the role of transcription regulation in the process is unknown. Here, we report that transcription in the GC is necessary for taste learning in rats, and that drinking and its consequences, as well as the novel taste experience, affect transcription in the GC during taste memory consolidation. We show differential effects of learning on temporal dynamics in set of genes in the GC, including Arc/Arg3.1, known to regulate the homeostasis of excitatory synapses. We demonstrate that in taste learning, transcription programs were activated following the physiological responses (i.e., fluid consumption following a water restriction regime, reward, arousal of the animal, etc.) and the specific information about a given taste (i.e., taste novelty). Moreover, the cortical differential prolonged kinetics of mRNA following novel versus familiar taste learning may represent additional novelty related molecular response, where not only the total amount, but also the temporal dynamics of transcription is modulated by sensory experience of novel information.

  9. Amygdala temporal dynamics: temperamental differences in the timing of amygdala response to familiar and novel faces

    Directory of Open Access Journals (Sweden)

    Shelton Richard C

    2009-12-01

    Full Text Available Abstract Background Inhibited temperament - the predisposition to respond to new people, places or things with wariness or avoidance behaviors - is associated with increased risk for social anxiety disorder and major depression. Although the magnitude of the amygdala's response to novelty has been identified as a neural substrate of inhibited temperament, there may also be differences in temporal dynamics (latency, duration, and peak. We hypothesized that persons with inhibited temperament would have faster responses to novel relative to familiar neutral faces compared to persons with uninhibited temperament. We used event-related functional magnetic resonance imaging to measure the temporal dynamics of the blood oxygen level dependent (BOLD response to both novel and familiar neutral faces in participants with inhibited or uninhibited temperament. Results Inhibited participants had faster amygdala responses to novel compared with familiar faces, and both longer and greater amygdala response to all faces. There were no differences in peak response. Conclusion Faster amygdala response to novelty may reflect a computational bias that leads to greater neophobic responses and represents a mechanism for the development of social anxiety.

  10. Left or right? Lateralizing temporal lobe epilepsy by dynamic amygdala fMRI.

    Science.gov (United States)

    Ives-Deliperi, Victoria; Butler, James Thomas; Jokeit, Hennric

    2017-05-01

    In this case series, the findings of 85 functional MRI studies employing a dynamic fearful face paradigm are reported. Previous findings have shown the paradigm to generate bilateral amygdala activations in healthy subjects and unilateral activations in patients with MTLE, in the contralateral hemisphere to seizure origin. Such findings suggest ipsilateral limbic pathology and offer collateral evidence in lateralizing MTLE. The series includes 60 patients with TLE, 12 patients with extra-temporal lobe epilepsy, and 13 healthy controls. Functional MRI studies using a 1.5T scanner were conducted over a three-year period at a single epilepsy center and individual results were compared with EEG findings. In the cohort of unilateral TLE patients, lateralized activations of the amygdala were concordant with EEG findings in 76% of patients (77% lTLE, 74% rTLE). The differences in the mean lateralized indices of the lTLE, rTLE, and healthy control groups were all statistically significant. Lateralized amygdala activations were concordant with EEG findings in only 31% of the 12 patients with extra-temporal lobe epilepsy and bilateral amygdala activations were generated in all but one of the healthy control subjects. This case series further endorses the utility of the dynamic fearful face functional MRI paradigm using the widely available 1.5T as an adjunctive investigation to lateralize TLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Temporal dynamics of categorization: Forgetting as the basis of abstraction and generalization

    Directory of Open Access Journals (Sweden)

    Haley eVlach

    2014-09-01

    Full Text Available Historically, models of categorization have focused on how learners track frequencies and co-occurrence information to abstract relevant category features for generalization. The current study takes a different approach by examining how the temporal dynamics of categorization affect abstraction and generalization. In the learning phase of the experiment, all relevant category features were presented an equal number of times across category exemplars. However, the relevant features were presented on one of two learning schedules: massed or interleaved. At a series of immediate and delayed tests, learners were asked to generalize to novel exemplars that contained massed features, interleaved features, or all novel features. The results of this experiment revealed that, at an immediate test, learners more readily generalized based upon features presented on a massed schedule. Conversely, at a delayed test, learners more readily generalized based upon features presented on an interleaved schedule, until information was no longer readily retrievable from memory. These findings suggest that forgetting and retrieval processes engendered by the temporal dynamics of learning are used as a basis of abstraction, implicating forgetting as a central mechanism of generalization.

  12. Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France).

    Science.gov (United States)

    Dhivert, E; Grosbois, C; Rodrigues, S; Desmet, M

    2015-02-01

    Floodplains are often cored to build long-term pollutant trends at the basin scale. To highlight the influences of depositional environments on archiving processes, aggradation rates, archived trace element signals and vertical redistribution processes, two floodplain cores were sampled near in two different environments of the Upper Loire River (France): (i) a river bank ridge and (ii) a paleochannel connected by its downstream end. The base of the river bank core is composed of sandy sediments from the end of the Little Ice Age (late 18th century). This composition corresponds to a proximal floodplain aggradation (sediments that settled in the distal floodplain. In this distal floodplain environment, the aggradation rate depends on the topography and connection degree to the river channel. The temporal dynamics of anthropogenic trace element enrichments recorded in the distal floodplain are initially synchronous and present similar levels. Although the river bank core shows general temporal trends, the paleochannel core has a better resolution for short-time variations of trace element signals. After local water depth regulation began in the early 1930s, differences of connection degree were enhanced between the two cores. Therefore, large trace element signal divergences are recorded across the floodplain. The paleochannel core shows important temporal variations of enrichment levels from the 1930s to the coring date. However, the river bank core has no significant temporal variations of trace element enrichments and lower contamination levels because of a lower deposition of contaminated sediments and a pedogenetic trace elements redistribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    Science.gov (United States)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  14. Exploring spatial–temporal dynamics of fire regime features in mainland Spain

    Directory of Open Access Journals (Sweden)

    A. Jiménez-Ruano

    2017-10-01

    Full Text Available This paper explores spatial–temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial – regional and provincial/NUTS3 – levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974–2013. Temporal shifts in fire features are investigated by means of change point detection procedures – Pettitt test, AMOC (at most one change, PELT (pruned exact linear time and BinSeg (binary segmentation – at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann–Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA and varimax rotation to trend outputs – mainly Sen's slope values – to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann–Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1, summer burnt area (PC2, large fires (PC3 and natural fires (PC4.

  15. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.

    Directory of Open Access Journals (Sweden)

    Hui Kuang

    2010-12-01

    Full Text Available Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.

  16. Multi-scale heterogeneity in the temporal origin of water taken up by trees water uptake inferred using stable isotopes

    Science.gov (United States)

    Allen, S. T.; Kirchner, J. W.; Braun, S.; Siegwolf, R. T.; Goldsmith, G. R.

    2017-12-01

    Xylem water isotopic composition can reveal how water moves through soil and is subsequently taken up by plants. By examining how xylem water isotopes vary across distinct climates and soils, we test how these site characteristics control critical-zone water movement and tree uptake. Xylem water was collected from over 900 trees at 191 sites across Switzerland during a 10-day period in mid-summer 2015. Sites contained oak, beech and/or spruce trees and ranged in elevation from 260 to 1870 m asl with mean annual precipitation from 700 to 2060 mm. Xylem water samples were analyzed for 2H and 18O using isotope ratio mass spectrometry. Patterns in the temporal origin of xylem water showed regional differences. For example, trees in the southern and alpine regions had xylem water isotopic signatures that more closely resembled summer precipitation. The isotopic spatial range observed for mid-summer xylem waters was similar to the seasonal range of precipitation; that is, mid-summer xylem water at some sites resembled summer precipitation, and at other sites resembled winter precipitation. Xylem water from spruces, oaks, and beeches at the same sites did not differ from each other, despite these species having different rooting habits. Across all sites and species, precipitation amount correlated positively with xylem δ18O. In higher-precipitation areas, summer rain apparently displaces or mixes with older (winter) stored waters, thus reducing the winter-water isotopic signal in xylem water. Alternatively, in areas with limited precipitation, xylem water more closely matched winter water, indicating greater use of older stored water. We conclude that regional variations in precipitation deficits determine variations in the turnover rate of plant-available soil water and storage.

  17. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    Science.gov (United States)

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3

  18. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  19. Modeling Transport of Cesium in Grimsel Granodiorite With Micrometer Scale Heterogeneities and Dynamic Update of Kd

    Science.gov (United States)

    Voutilainen, Mikko; Kekäläinen, Pekka; Siitari-Kauppi, Marja; Sardini, Paul; Muuri, Eveliina; Timonen, Jussi; Martin, Andrew

    2017-11-01

    Transport and retardation of cesium in Grimsel granodiorite taking into account heterogeneity of mineral and pore structure was studied using rock samples overcored from an in situ diffusion test at the Grimsel Test Site. The field test was part of the Long-Term Diffusion (LTD) project designed to characterize retardation properties (diffusion and distribution coefficients) under in situ conditions. Results of the LTD experiment for cesium showed that in-diffusion profiles and spatial concentration distributions were strongly influenced by the heterogeneous pore structure and mineral distribution. In order to study the effect of heterogeneity on the in-diffusion profile and spatial concentration distribution, a Time Domain Random Walk (TDRW) method was applied along with a feature for modeling chemical sorption in geological materials. A heterogeneous mineral structure of Grimsel granodiorite was constructed using X-ray microcomputed tomography (X-μCT) and the map was linked to previous results for mineral specific porosities and distribution coefficients (Kd) that were determined using C-14-PMMA autoradiography and batch sorption experiments, respectively. After this the heterogeneous structure contains information on local porosity and Kd in 3-D. It was found that the heterogeneity of the mineral structure on the micrometer scale affects significantly the diffusion and sorption of cesium in Grimsel granodiorite at the centimeter scale. Furthermore, the modeled in-diffusion profiles and spatial concentration distributions show similar shape and pattern to those from the LTD experiment. It was concluded that the use of detailed structure characterization and quantitative data on heterogeneity can significantly improve the interpretation and evaluation of transport experiments.

  20. Spatio-temporal dynamics of the penetration resistance of recultivated soils formed after open cast mining

    Directory of Open Access Journals (Sweden)

    A. V. Zhukov

    2016-01-01

    Full Text Available On the basis of studying the spatio-temporal dynamics of soil penetration resistance we proved the existence of the technozem ecomorphs as above horizon soil formations. Research was carried out at a research center for study of recultivation processes in Ordzhonikidze city. Measurement of soils penetration was made in field conditions using an Eijkelkamp penetrometer on a regular grid at depths of up to50 cmwith intervals of5 cm. Calculation of average values and degrees of variation was performed by means of descriptive statistical tools. The extent of soil penetration spatial dependence was assessed and the existence of ecomorphs was proved by means of geostatistical analysis. The degree of associativity of spatial distribution of indicators of a soil body in different years of research was established by means of correlation analysis. The level of variation in space and in time of  technozem penetration generated on loess-like loams, grey-green, red-brown clays, and also pedozems was revealed. The degree of spatial dependence of  technozem penetration within soil layers and also the linear sizes of ecomorphs as above horizon soil structures was established. The time dynamics of  penetration of various recultozems were described. As a result of research into the spatio-temporal dynamics of penetration of technozems, data confirming the hypothesis of the existence of ecomorphs as above horizon morphological soil formations were obtained. An ecomorphic approach to the study of the morphological structure of technozems is proposed. The comparative characteristics of ecomorphs from various types of technozem are presented. The results obtained solve the problem of combining the higher and lowest levels in the hierarchical system of soil organisation as a natural body, which should raise the efficiency of the analysis of relations of morphological elements as a basis for detailed reconstruction of recultivation processes, soil formation, and

  1. Frontiers in Fluctuation Spectroscopy: Measuring protein dynamics and protein spatio-temporal connectivity

    Science.gov (United States)

    Digman, Michelle

    Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.

  2. The Emergence of Visual Awareness: Temporal Dynamics in Relation to Task and Mask Type

    Science.gov (United States)

    Kiefer, Markus; Kammer, Thomas

    2017-01-01

    One aspect of consciousness phenomena, the temporal emergence of visual awareness, has been subject of a controversial debate. How can visual awareness, that is the experiential quality of visual stimuli, be characterized best? Is there a sharp discontinuous or dichotomous transition between unaware and fully aware states, or does awareness emerge gradually encompassing intermediate states? Previous studies yielded conflicting results and supported both dichotomous and gradual views. It is well conceivable that these conflicting results are more than noise, but reflect the dynamic nature of the temporal emergence of visual awareness. Using a psychophysical approach, the present research tested whether the emergence of visual awareness is context-dependent with a temporal two-alternative forced choice task. During backward masking of word targets, it was assessed whether the relative temporal sequence of stimulus thresholds is modulated by the task (stimulus presence, letter case, lexical decision, and semantic category) and by mask type. Four masks with different similarity to the target features were created. Psychophysical functions were then fitted to the accuracy data in the different task conditions as a function of the stimulus mask SOA in order to determine the inflection point (conscious threshold of each feature) and slope of the psychophysical function (transition from unaware to aware within each feature). Depending on feature-mask similarity, thresholds in the different tasks were highly dispersed suggesting a graded transition from unawareness to awareness or had less differentiated thresholds indicating that clusters of features probed by the tasks quite simultaneously contribute to the percept. The latter observation, although not compatible with the notion of a sharp all-or-none transition between unaware and aware states, suggests a less gradual or more discontinuous emergence of awareness. Analyses of slopes of the fitted psychophysical functions

  3. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Wu; Wang, Xiaoyi; Xie, Fangfang; Liao, Weihua [Dept. of Radiology, Xiangya Hospital of Central South Univ., Changsha (China)], e-mail: doctoring@sina.com

    2013-02-15

    Background: Accurately locatithe epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. Purpose: To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. Material and Methods: Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were pared between the two groups. Results: In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 {+-} 0.32, right 1.57 {+-} 0.28) or rCBF (left 99.00 {+-} 24.61, right 100.38 {+-} 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 {+-} 0.64 and 96.35 {+-} 22.63, respectively) were markedly lower than those of the contralateral side (2.01 {+-} 0.79 and 108.56 {+-} 26.92; P < 0.05). Both the AI of the rCBV (AIrCBV; 13.03 {+-} 10.33) and the AI of the rCBF (AIrCBF; 11.24 {+-} 8.70) of the case group were significantly higher than that of the control group (AIrCBV 5.55 {+-} 3.74, AIrCBF 5.12 {+-} 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AIrCBV and AIrCBF of the control group as the normal upper limits. Conclusion: In

  4. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Xing, Wu; Wang, Xiaoyi; Xie, Fangfang; Liao, Weihua

    2013-01-01

    Background: Accurately locatithe epileptogenic focus in temporal lobe epilepsy (TLE) is important in clinical practice. Single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) have been widely used in the lateralization of TLE, but both have limitations. Magnetic resonance perfusion imaging can accurately and reliably reflect differences in cerebral blood flow and volume. Purpose: To investigate the diagnostic value of dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) in the lateralization of the epileptogenic focus in TLE. Material and Methods: Conventional MRI and DSC-MRI scanning was performed in 20 interictal cases of TLE and 20 healthy volunteers. The relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) of the bilateral mesial temporal lobes of the TLE cases and healthy control groups were calculated. The differences in the perfusion asymmetry indices (AIs), derived from the rCBV and rCBF of the bilateral mesial temporal lobes, were pared between the two groups. Results: In the control group, there were no statistically significant differences between the left and right sides in terms of rCBV (left 1.55 ± 0.32, right 1.57 ± 0.28) or rCBF (left 99.00 ± 24.61, right 100.38 ± 23.46) of the bilateral mesial temporal lobes. However, in the case group the ipsilateral rCBV and rCBF values (1.75 ± 0.64 and 96.35 ± 22.63, respectively) were markedly lower than those of the contralateral side (2.01 ± 0.79 and 108.56 ± 26.92; P < 0.05). Both the AI of the rCBV (AIrCBV; 13.03 ± 10.33) and the AI of the rCBF (AIrCBF; 11.24 ± 8.70) of the case group were significantly higher than that of the control group (AIrCBV 5.55 ± 3.74, AIrCBF 5.12 ± 3.48; P < 0.05). The epileptogenic foci of nine patients were correctly lateralized using the 95th percentile of the AIrCBV and AIrCBF of the control group as the normal upper limits. Conclusion: In patients with TLE interictal

  5. Dynamics in population heterogeneity during batch and continuous fermentation of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    2012-01-01

    Traditionally, microbial populations in optimization studies of fermentation processes have been considered homogeneous. However, research has shown that a typical microbial population in fermentation is heterogeneous. There are indications that this heterogeneity may be both beneficial...... (facilitates quick adaptation to new conditions) and harmful (reduces yields and productivities)[1,2]. Typically, gradients of e.g. dissolved oxygen, substrates, and pH are observed in industrial scale fermentation processes. Consequently, microbial cells circulating throughout a bioreactor experience rapid...... distribution during different growth stages. To further simulate which effect gradients have on population heterogeneity, glucose and ethanol perturbations during continuous cultivation were performed. Physiological changes were analyzed on single cell level by using flow cytometry followed by cell sorting...

  6. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.

    Science.gov (United States)

    Kawasaki, Takeshi; Tanaka, Hajime

    2010-06-16

    The physical understanding of glass transition remains a major challenge of physics and materials science. Among various glass-forming liquids, a colloidal liquid interacting with hard-core repulsion is now regarded as one of the most ideal model systems. Here we study the structure and dynamics of three-dimensional polydisperse colloidal liquids by Brownian dynamics simulations. We reveal that medium-range crystalline bond orientational order of the hexagonal close packed structure grows in size and lifetime with increasing packing fraction. We show that dynamic heterogeneity may be a direct consequence of this transient structural ordering, which suggests its origin is thermodynamic rather than kinetic. We also reveal that nucleation of crystals preferentially occurs in regions of high medium-range order, reflecting the low crystal-liquid interfacial energy there. These findings may shed new light not only on the fundamental nature of the glass transition, but also the mechanism of crystal nucleation.

  7. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Dong Keon

    2016-01-01

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics

  8. Population responses to environmental change in a tropical ant: the interaction of spatial and temporal dynamics.

    Science.gov (United States)

    Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M

    2014-01-01

    Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants' dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution - a signal of spatial self organization - but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.

  9. Population responses to environmental change in a tropical ant: the interaction of spatial and temporal dynamics.

    Directory of Open Access Journals (Sweden)

    Doug Jackson

    Full Text Available Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants' dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution - a signal of spatial self organization - but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.

  10. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)

    2016-09-15

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.

  11. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes.

    Science.gov (United States)

    Leong, Misha; Ponisio, Lauren C; Kremen, Claire; Thorp, Robbin W; Roderick, George K

    2016-03-01

    Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change. © 2015 John Wiley & Sons Ltd.

  12. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  13. Spatio-temporal dynamics of action-effect associations in oculomotor control.

    Science.gov (United States)

    Riechelmann, Eva; Pieczykolan, Aleksandra; Horstmann, Gernot; Herwig, Arvid; Huestegge, Lynn

    2017-10-01

    While there is ample evidence that actions are guided by anticipating their effects (ideomotor control) in the manual domain, much less is known about the underlying characteristics and dynamics of effect-based oculomotor control. Here, we address three open issues. 1) Is action-effect anticipation in oculomotor control reflected in corresponding spatial saccade characteristics in inanimate environments? 2) Does the previously reported dependency of action latency on the temporal effect delay (action-effect interval) also occur in the oculomotor domain? 3) Which temporal effect delay is optimally suited to develop strong action-effect associations over time in the oculomotor domain? Participants executed left or right free-choice saccades to peripheral traffic lights, causing an (immediate or delayed) action-contingent light switch in the upper vs. lower part of the traffic light. Results indicated that saccades were spatially shifted toward the location of the upcoming change, indicating anticipation of the effect (location). Saccade latency was affected by effect delay, suggesting that corresponding time information is integrated into event representations. Finally, delayed (vs. immediate) effects were more effective in strengthening action-effect associations over the course of the experiment, likely due to greater saliency of perceptual changes occurring during target fixation as opposed to changes during saccades (saccadic suppression). Overall, basic principles underlying ideomotor control appear to generalize to the oculomotor domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    Directory of Open Access Journals (Sweden)

    Gretchen J A Hansen

    Full Text Available Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance and "occasional" (rare occurrence and low abundance species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions.

  15. Dynamics of Disagreement: Large-Scale Temporal Network Analysis Reveals Negative Interactions in Online Collaboration

    Science.gov (United States)

    Tsvetkova, Milena; García-Gavilanes, Ruth; Yasseri, Taha

    2016-11-01

    Disagreement and conflict are a fact of social life. However, negative interactions are rarely explicitly declared and recorded and this makes them hard for scientists to study. In an attempt to understand the structural and temporal features of negative interactions in the community, we use complex network methods to analyze patterns in the timing and configuration of reverts of article edits to Wikipedia. We investigate how often and how fast pairs of reverts occur compared to a null model in order to control for patterns that are natural to the content production or are due to the internal rules of Wikipedia. Our results suggest that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor. We further relate these interactions to the status of the involved editors. Even though the individual reverts might not necessarily be negative social interactions, our analysis points to the existence of certain patterns of negative social dynamics within the community of editors. Some of these patterns have not been previously explored and carry implications for the knowledge collection practice conducted on Wikipedia. Our method can be applied to other large-scale temporal collaboration networks to identify the existence of negative social interactions and other social processes.

  16. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    Science.gov (United States)

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  17. Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.

    Science.gov (United States)

    Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D

    2011-04-01

    The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.

  18. Right mesial temporal lobe epilepsy impairs empathy-related brain responses to dynamic fearful faces.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; Kurthen, Martin; Rankin, Katherine P; Jokeit, Hennric

    2015-03-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with reduced amygdala responsiveness to fearful faces. However, the effect of unilateral MTLE on empathy-related brain responses in extra-amygdalar regions has not been investigated. Using functional magnetic resonance imaging, we measured empathy-related brain responses to dynamic fearful faces in 34 patients with unilateral MTLE (18 right sided), in an epilepsy (extra-MTLE; n = 16) and in a healthy control group (n = 30). The primary finding was that right MTLE (RMTLE) was associated with decreased activity predominantly in the right amygdala and also in bilateral periaqueductal gray (PAG) but normal activity in the right anterior insula. The results of the extra-MTLE group demonstrate that these reduced amygdala and PAG responses go beyond the attenuation caused by antiepileptic and antidepressant medication. These findings clearly indicate that RMTLE affects the function of mesial temporal and midbrain structures that mediate basic interoceptive input necessary for the emotional awareness of empathic experiences of fear. Together with the decreased empathic concern found in the RMTLE group, this study provides neurobehavioral evidence that patients with RMTLE are at increased risk for reduced empathy towards others' internal states and sheds new light on the nature of social-cognitive impairments frequently accompanying MTLE.

  19. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    Science.gov (United States)

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  20. Temporal variability in phosphorus transfers: classifying concentration-discharge event dynamics

    Science.gov (United States)

    Haygarth, P.; Turner, B. L.; Fraser, A.; Jarvis, S.; Harrod, T.; Nash, D.; Halliwell, D.; Page, T.; Beven, K.

    The importance of temporal variability in relationships between phosphorus (P) concentration (Cp) and discharge (Q) is linked to a simple means of classifying the circumstances of Cp-Q relationships in terms of functional types of response. New experimental data at the upstream interface of grassland soil and catchment systems at a range of scales (lysimeters to headwaters) in England and Australia are used to demonstrate the potential of such an approach. Three types of event are defined as Types 1-3, depending on whether the relative change in Q exceeds the relative change in Cp (Type 1), whether Cp and Q are positively inter-related (Type 2) and whether Cp varies yet Q is unchanged (Type 3). The classification helps to characterise circumstances that can be explained mechanistically in relation to (i) the scale of the study (with a tendency towards Type 1 in small scale lysimeters), (ii) the form of P with a tendency for Type 1 for soluble (i.e., <0.45 μm P forms) and (iii) the sources of P with Type 3 dominant where P availability overrides transport controls. This simple framework provides a basis for development of a more complex and quantitative classification of Cp-Q relationships that can be developed further to contribute to future models of P transfer and delivery from slope to stream. Studies that evaluate the temporal dynamics of the transfer of P are currently grossly under-represented in comparison with models based on static/spatial factors.

  1. Enabling Computational Dynamics in Distributed Computing Environments Using a Heterogeneous Computing Template

    Science.gov (United States)

    2011-08-09

    heterogeneous computing concept advertised recently as the paradigm capable of delivering exascale flop rates by the end of the decade. In this framework...and Lamb. Page 10 of 10 UNCLASSIFIED [3] Skaugen, K., Petascale to Exascale : Extending Intel’s HPC Commitment: http://download.intel.com

  2. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  3. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    Science.gov (United States)

    The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variab...

  4. A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms.

    Directory of Open Access Journals (Sweden)

    Matthias Rieckher

    Full Text Available We describe a customizable and cost-effective light sheet microscopy (LSM platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP, which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples.

  5. Spatial and temporal dynamics of dengue fever in Peru: 1994-2006.

    Science.gov (United States)

    Chowell, G; Torre, C A; Munayco-Escate, C; Suárez-Ognio, L; López-Cruz, R; Hyman, J M; Castillo-Chavez, C

    2008-12-01

    SUMMARYThe weekly number of dengue cases in Peru, South America, stratified by province for the period 1994-2006 were analysed in conjunction with associated demographic, geographic and climatological data. Estimates of the reproduction number, moderately correlated with population size (Spearman rho=0.28, P=0.03), had a median of 1.76 (IQR 0.83-4.46). The distributions of dengue attack rates and epidemic durations follow power-law (Pareto) distributions (coefficient of determination >85%, Pjungle areas. Our findings suggest a hierarchy of transmission events during the large 2000-2001 epidemic from large to small population areas when serotypes DEN-3 and DEN-4 were first identified (Spearman rho=-0.43, P=0.03). The need for spatial and temporal dengue epidemic data with a high degree of resolution not only increases our understanding of the dynamics of dengue but will also generate new hypotheses and provide a platform for testing innovative control policies.

  6. The surface chemistry determines the spatio-temporal interaction dynamics of quantum dots in atherosclerotic lesions.

    Science.gov (United States)

    Uhl, Bernd; Hirn, Stephanie; Mildner, Karina; Coletti, Raffaele; Massberg, Steffen; Reichel, Christoph A; Rehberg, Markus; Zeuschner, Dagmar; Krombach, Fritz

    2018-03-01

    To optimize the design of nanoparticles for diagnosis or therapy of vascular diseases, it is mandatory to characterize the determinants of nano-bio interactions in vascular lesions. Using ex vivo and in vivo microscopy, we analyzed the interactive behavior of quantum dots with different surface functionalizations in atherosclerotic lesions of ApoE-deficient mice. We demonstrate that quantum dots with different surface functionalizations exhibit specific interactive behaviors with distinct molecular and cellular components of the injured vessel wall. Moreover, we show a role for fibrinogen in the regulation of the spatio-temporal interaction dynamics in atherosclerotic lesions. Our findings emphasize the relevance of surface chemistry-driven nano-bio interactions on the differential in vivo behavior of nanoparticles in diseased tissue.

  7. Quantitative tradeoffs between spatial, temporal, and thermometric resolution of nonresonant Raman thermometry for dynamic experiments.

    Science.gov (United States)

    McGrane, Shawn D; Moore, David S; Goodwin, Peter M; Dattelbaum, Dana M

    2014-01-01

    The ratio of Stokes to anti-Stokes nonresonant spontaneous Raman can provide an in situ thermometer that is noncontact, independent of any material specific parameters or calibrations, can be multiplexed spatially with line imaging, and can be time resolved for dynamic measurements. However, spontaneous Raman cross sections are very small, and thermometric measurements are often limited by the amount of laser energy that can be applied without damaging the sample or changing its temperature appreciably. In this paper, we quantitatively detail the tradeoff space between spatial, temporal, and thermometric accuracy measurable with spontaneous Raman. Theoretical estimates are pinned to experimental measurements to form realistic expectations of the resolution tradeoffs appropriate to various experiments. We consider the effects of signal to noise, collection efficiency, laser heating, pulsed laser ablation, and blackbody emission as limiting factors, provide formulae to help choose optimal conditions and provide estimates relevant to planning experiments along with concrete examples for single-shot measurements.

  8. Temporal dynamics of the response to Al stress in Eucalyptus grandis × Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Berenice K. de Alcântara

    2015-06-01

    Full Text Available Lipid peroxidation and root elongation of Eucalyptus grandis × Eucalyptus camaldulensis were studied under stress conditions in response to aluminum (Al, a metal known to limit agricultural productivity in acidic soils primarily due to reduced root elongation. In Brazil, the Grancam 1277 hybrid (E. grandis × E. camaldulensis has been planted in the "Cerrado", a region of the country with a wide occurrence of acidic soils. The present study demonstrated that the hybrid exhibited root growth reduction and increased levels of lipid peroxidation after 24h of treatment with 100 µM of Al, which was followed by a reduction in lipid peroxidation levels and the recovery of root elongation after 48h of Al exposure, suggesting a rapid response to the early stressful conditions induced by Al. The understanding of the temporal dynamics of Al tolerance may be useful for selecting more tolerant genotypes and for identifying genes of interest for applications in bioengineering.

  9. Spatio-temporal dynamics of the white-eye square superlattice pattern in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Wei, Lingyan; Dong, Lifang; Feng, Jianyu; Liu, Weibo; Fan, Weili; Pan, Yuyang

    2016-01-01

    We report on the first investigation of the white-eye square superlattice pattern (WESSP) in a dielectric barrier discharge system. The evolution of patterns with increasing voltage is given. A phase diagram of WESSP as functions of gas pressure p and argon concentration φ is presented. The spatio-temporal dynamics of the WESSP is studied by using an intensified charge-coupled device camera and photomultipliers. Results show that the WESSP consists of four different transient sublattices, whose discharge sequence is small spots—spots on the line—halos—central spots in each half voltage cycle. The discharge moment and position of each sublattice are dependent upon the field of the wall charges produced by all sublattices discharged previously. (paper)

  10. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    Directory of Open Access Journals (Sweden)

    Olivera Savic

    Full Text Available We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  11. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    Science.gov (United States)

    Savic, Olivera; Savic, Andrej M; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  12. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    Science.gov (United States)

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  13. Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas

    Science.gov (United States)

    Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry

    2017-04-01

    Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable

  14. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  15. Retinal Vascular and Oxygen Temporal Dynamic Responses to Light Flicker in Humans.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Blair, Norman P; Shahidi, Mahnaz

    2017-11-01

    To mathematically model the temporal dynamic responses of retinal vessel diameter (D), oxygen saturation (SO2), and inner retinal oxygen extraction fraction (OEF) to light flicker and to describe their responses to its cessation in humans. In 16 healthy subjects (age: 60 ± 12 years), retinal oximetry was performed before, during, and after light flicker stimulation. At each time point, five metrics were measured: retinal arterial and venous D (DA, DV) and SO2 (SO2A, SO2V), and OEF. Intra- and intersubject variability of metrics was assessed by coefficient of variation of measurements before flicker within and among subjects, respectively. Metrics during flicker were modeled by exponential functions to determine the flicker-induced steady state metric values and the time constants of changes. Metrics after the cessation of flicker were compared to those before flicker. Intra- and intersubject variability for all metrics were less than 6% and 16%, respectively. At the flicker-induced steady state, DA and DV increased by 5%, SO2V increased by 7%, and OEF decreased by 13%. The time constants of DA and DV (14, 15 seconds) were twofold smaller than those of SO2V and OEF (39, 34 seconds). Within 26 seconds after the cessation of flicker, all metrics were not significantly different from before flicker values (P ≥ 0.07). Mathematical modeling revealed considerable differences in the time courses of changes among metrics during flicker, indicating flicker duration should be considered separately for each metric. Future application of this method may be useful to elucidate alterations in temporal dynamic responses to light flicker due to retinal diseases.

  16. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass

    International Nuclear Information System (INIS)

    Huo, L.S.; Zeng, J.F.; Wang, W.H.; Liu, C.T.; Yang, Y.

    2013-01-01

    Starting from the nanoscale structural heterogeneities intrinsic to metallic glasses (MGs), here we show that there are two concurrent contributions to their microscale quasi-static shear modulus G I : one (μ) is related to the atomic bonding strength of solid-like regions and the other (G II ) to the change in the possible configurations of liquid-like regions (dynamic relaxation). Through carefully designed high-rate nanoscale indentation tests, a simple constitutive relation (μ = G I + G II ) is experimentally verified. On a fundamental level, our current work provides a structure–property correlation that may be applicable to a wide range of glassy materials

  17. The Relationship of Dynamical Heterogeneity to the Adam-Gibbs and Random First-Order Transition Theories of Glass Formation

    OpenAIRE

    Starr, Francis W.; Douglas, Jack F.; Sastry, Srikanth

    2013-01-01

    We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and stri...

  18. Temporal contrast enhancement and parametric imaging for the visualisation of time patterns in dynamic scintigraphic imaging

    International Nuclear Information System (INIS)

    Deconinck, F.; Bossuyt, A.; Lepoudre, R.

    1982-01-01

    Image contrast, photon noise and sampling frequency limit the visual extraction of relevant temporal information in scintigraphic image series. When the Unitation is mainly due to low temporal contrast, temporal contrast enhancement will strongly improve the perceptibility of time patterns in the series. When the limitation is due to photon noise and limited temporal sampling, parametric imaging by means of the Hadamard transform can visualise temporal patterns. (WU)

  19. The effect of spatial heterogeneity on the extinction transition in stochastic population dynamics

    International Nuclear Information System (INIS)

    Kessler, David A; Shnerb, Nadav M

    2009-01-01

    Stochastic logistic-type growth on a static heterogeneous substrate is studied both above and below the drift-induced delocalization transition. Using agent-based simulations, the delocalization of the highest eigenfunction of the deterministic operator is connected with the large N limit of the stochastic theory. It is seen that the localization length of the deterministic theory controls the divergence of the spatial correlation length with N at the transition. It is argued that, in the presence of a strong wind, the extinction transition belongs to the directed percolation universality class, as any finite colony made of discrete agents is washed away from a heterogeneity with compact support. Some of the difficulties in the analysis of the extinction transition in the presence of a weak wind, where there is a localized active state, are discussed.

  20. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance

    Science.gov (United States)

    Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.

    2007-11-01

    Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.

  1. Dynamic computed tomography based on spatio-temporal analysis in acute stroke: Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ha Young; Pyeon, Do Yeong; Kim, Da Hye; Jung, Young Jin [Dongseo University, Busan (Korea, Republic of)

    2016-12-15

    Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes o n the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

  2. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    Science.gov (United States)

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  3. The Temporal Dynamics of Coastal Phytoplankton and Bacterioplankton in the Eastern Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Ofrat Raveh

    Full Text Available This study considers variability in phytoplankton and heterotrophic bacterial abundances and production rates, in one of the most oligotrophic marine regions in the world-the Levantine Basin. The temporal dynamics of these planktonic groups were studied in the coastal waters of the southeastern Mediterranean Sea approximately every two weeks for a total of two years. Heterotrophic bacteria were abundant mostly during late summer and midwinter, and were positively correlated with bacterial production and with N2 fixation. Based on size fractionating, picophytoplankton was abundant during the summer, whereas nano-microphytoplankton predominated during the winter and early spring, which were also evident in the size-fractionated primary production rates. Autotrophic abundance and production correlated negatively with temperature, but did not correlate with inorganic nutrients. Furthermore, a comparison of our results with results from the open Levantine Basin demonstrates that autotrophic and heterotrophic production, as well as N2 fixation rates, are considerably higher in the coastal habitat than in the open sea, while nutrient levels or cell abundance are not different. These findings have important ecological implications for food web dynamics and for biological carbon sequestration in this understudied region.

  4. Complexity Uncertainty Analysis of Dynamic in a Dual-Channel Energy Supply Chain Model with Heterogeneous Retailers

    Directory of Open Access Journals (Sweden)

    Ting Li

    2015-01-01

    Full Text Available This paper analyses the dynamics of dual-channel energy supply chain model with heterogeneous retailers (as regards the type of expectations’ formation. On the basis of analyzing the stabilities of four fixed points in the three-dimensional dynamic system, local stable regions of Nash equilibrium are obtained. Effects of S on the stable regions and profit are studied. Simulation results show that the adjustment of price speed has an obvious impact on the complexity of competition. The performances of the model in different period are measured by using the index of average profit. The results show that unstable behavior in economic system is often an unfavorable outcome. So this paper discusses the application of parameters control method when the model is in chaos and then allows the oligarchs to eliminate the negative effects.

  5. Spatial and Temporal Dynamics of Aphids (Hemiptera: Aphididae) in the Columbia Basin and Northeastern Oregon.

    Science.gov (United States)

    Klein, Mathew L; Rondon, Silvia I; Walenta, Darrin L; Zeb, Qamar; Murphy, Alexzandra F

    2017-08-01

    Aphid species, such as the potato aphid, Macrosiphum euphorbiae Thomas, and the green peach aphid, Myzus persicae Sulzer, are routinely considered the most important pests of potatoes. Potato aphid, green peach aphid, and more recently, other aphids such as the bird cherry-oat aphid Rhopalosiphum padi L. have been identified as vectors of multiple plant pathogenic viruses in potatoes. Since 2006, an area-wide trapping network consisting of ∼60 sites was developed through collaboration between researchers, extension faculty, and stakeholders, to monitor aphid populations in the Columbia Basin of Oregon (Umatilla and Morrow counties) and in northeastern Oregon (Union and Baker counties). Over a 9-yr period (2006 to 2014), aphid specimens were collected weekly using yellow bucket traps and specimens were then identified and counted to determine population levels during the growing season (May-September). Thus, aphid population data were compiled and subjected to spatial and temporal distribution analysis. Weather data, obtained from an established network of weather stations located in the monitoring areas, were used in a nonparametric multiplicative regression analysis to determine which abiotic variables may impact aphid populations. Weather conditions were characterized using confidence intervals (CIs) established based on weather data from 1999 to 2005 for each environmental variable. Aphid populations were found to have a heterogeneous distribution in most years; a few sites had high aphid populations while low numbers were observed at most sites; aphids were also found to correlate with several abiotic variables, namely, elevation, previous season temperature, and previous season dew point. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Exploring the isotopic niche: isotopic variance, physiological incorporation, and the temporal dynamics of foraging

    Directory of Open Access Journals (Sweden)

    Justin Douglas Yeakel

    2016-01-01

    Full Text Available Consumer foraging behaviors are dynamic, changing in response to prey availability, seasonality, competition, and even the consumer's physiological state. The isotopic composition of a consumer is a product of these factors as well as the isotopic `landscape' of its prey, i.e. the isotopic mixing space. Stable isotope mixing models are used to back-calculate the most likely proportional contribution of a set of prey to a consumer's diet based on their respective isotopic distributions, however they are disconnected from ecological process. Here we build a mechanistic framework that links the ecological and physiological processes of an individual consumer to the isotopic distribution that describes its diet, and ultimately to the isotopic composition of its own tissues, defined as its `isotopic niche’. By coupling these processes, we systematically investigate under what conditions the isotopic niche of a consumer changes as a function of both the geometric properties of its mixing space and foraging strategies that may be static or dynamic over time. Results of our derivations reveal general insight into the conditions impacting isotopic niche width as a function of consumer specialization on prey, as well as the consumer's ability to transition between diets over time. We show analytically that moderate specialization on isotopically unique prey can serve to maximize a consumer's isotopic niche width, while temporally dynamic diets will tend to result in peak isotopic variance during dietary transitions. We demonstrate the relevance of our theoretical findings by examining a marine system composed of nine invertebrate species commonly consumed by sea otters. In general, our analytical framework highlights the complex interplay of mixing space geometry and consumer dietary behavior in driving expansion and contraction of the isotopic niche. Because this approach is established on ecological mechanism, it is well-suited for enhancing the

  7. The effect of heterogeneous landscape dynamics on ecotone types at two convergent semi-arid biomes

    Science.gov (United States)

    Landscapes in biome transition zones consist of a mosaic of patches dominated or codominated by species from adjacent biomes. Shifts in the vegetation composition and dynamics of a biome transition zone depend upon the underlying patch dynamics of the ecotones between these dominant species. Landsca...

  8. Structural and dynamical heterogeneity of undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yu; Wang, Li; Wang, Shenghai, E-mail: shenghaiw@163.com; Li, Xuelian; Cui, Wenchao

    2014-12-05

    Highlights: • We simulate the undercooled Fe{sub 75}Cu{sub 25} melts with miscibility gap at atomic level. • Fe{sub 75}Cu{sub 25} melts separate into Cu-rich and Fe-rich liquid upon relaxation. • The process is controlled by the nucleation and grows mechanism. • Both PPCFs and CN confirm that L–L phase separation is a successive process. - Abstract: Molecular dynamics simulation (MD) based upon the developed embedded atom method (EAM) has been performed to explore the structural and dynamical heterogeneity of Fe{sub 75}Cu{sub 25} melts. The results show that the melts separate into Cu-rich droplets surround by the Fe-rich matrix controlled by nucleation and growth mechanism. The larger undercoolings suggest the higher nucleation rate and growth rate of droplets. The growth of droplet is achieved by the aggregation and coagulation of neighbor droplet with the characteristics of collective movement for homogeneous atoms. A sharp increase of S{sub CC} (q = 0) is found at all simulated temperature, which means concentration fluctuation on large length scales are much pronounced. Both partial pair correlation functions (PPCFs) and coordination number (CN) confirm that liquid–liquid (L–L) phase separation is a successive process with a stronger interaction of homogeneous pairs than that of heterogeneous pairs in Fe{sub 75}Cu{sub 25} melts. The studies above characterize the phase separation of metal melts on the atomic scale.

  9. Temporal and spatial dynamics of phytoplankton near farm fish in eutrophic reservoir in Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Ariadne do Nascimento Moura

    2012-06-01

    Full Text Available Spatial and temporal variations in phytoplankton communities in continental waters have received attention from limnologists, since they are differently influenced by many physico-chemical and biological factors. This study was undertaken with the aim to identify the environmental variables that influence the temporal and spatial dynamics of the phytoplankton near a fish farm in the Jucazinho reservoir, in a semi-arid region of Northeastern Brazil. Samples were taken from three sampling sites, at two depths during the rainy (Aug 2008, Feb and Mar 2009 and dry (Oct, Nov and Dec 2008 seasons. Phytoplankton was identified, density determined, and biomass values obtained. Concomitantly, abiotic analyses were performed for the characterization of the system. The reservoir was homogeneous with regard to the spatial-temporal variation in hydrological variables: water well oxygenated at the surface and anoxic at the bottom; pH ranging from neutral to alkaline; temperatures always above 25ºC; high turbidity; and high electrical conductivity at all sampling sites and both depths. For both seasons, there was limited nitrogen and high concentrations of phosphorus. Cyanophyta species were predominant, generally representing 80% of the phytoplankton biomass throughout practically the entire study, at all sampling sites and both depths. Co-dominance of cyanobacteria belonging to H1, MP, S1 and Sn associations was recorded in most of the months studied, except August 2008, when there was a substitution of the S1 association (Planktothrix agardhii by the P association (Aulacoseira granulata. Water temperature, precipitation and pH were the parameters with the greatest influence over the temporal variation in phytoplankton, whereas the vertical distribution of the phytoplankton biomass was directly related to the availability of light in the wáter column. There were no spatial or temporal differences in water quality, likely due to the fact that the sampling

  10. Detecting small-scale spatial differences and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Science.gov (United States)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-04-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end

  11. Physical Exercise Leads to Rapid Adaptations in Hippocampal Vasculature : Temporal Dynamics and Relationship to Cell Proliferation and Neurogenesis

    NARCIS (Netherlands)

    Van der Borght, Karin; Kobor-Nyakas, Dora E.; Klauke, Karin; Eggen, Bart J. L.; Nyakas, Csaba; Van der Zee, Eddy A.; Meerlo, Peter

    2009-01-01

    Increased levels of angiogenesis and neurogenesis possibly mediate the beneficial effects of physical activity on hippocampal plasticity. This study was designed to investigate the temporal dynamics of exercise-induced changes in hippocampal angiogenesis and cell proliferation. Mice were housed with

  12. Temporal Dynamics of Social Exchange and the Development of Solidarity: "Testing the Waters" versus "Taking a Leap of Faith"

    Science.gov (United States)

    Kuwabara, Ko; Sheldon, Oliver

    2012-01-01

    In their concerted efforts to unpack the microprocesses that transform repeated exchanges into an exchange relation, exchange theorists have paid little attention to how actors perceive changes and dynamics in exchanges over time. We help fill this gap by studying how temporal patterns of exchange affect the development of cohesion. Some exchange…

  13. Detecting Temporal Change in Dynamic Sounds: On the Role of Stimulus Duration, Speed, and Emotion

    Directory of Open Access Journals (Sweden)

    Annett eSchirmer

    2016-01-01

    Full Text Available For dynamic sounds, such as vocal expressions, duration often varies alongside speed. Compared to longer sounds, shorter sounds unfold more quickly. Here, we asked whether listeners implicitly use this confound when representing temporal regularities in their environment. In addition, we explored the role of emotions in this process. Using a mismatch negativity (MMN paradigm, we asked participants to watch a silent movie while passively listening to a stream of task-irrelevant sounds. In Experiment 1, one surprised and one neutral vocalization were compressed and stretched to create stimuli of 378 and 600 ms duration. Stimuli were presented in four blocks, two of which used surprised and two of which used neutral expressions. In one surprised and one neutral block, short and long stimuli served as standards and deviants, respectively. In the other two blocks, the assignment of standards and deviants was reversed. We observed a climbing MMN-like negativity shortly after deviant onset, which suggests that listeners implicitly track sound speed and detect speed changes. Additionally, this MMN-like effect emerged earlier and was larger for long than short deviants, suggesting greater sensitivity to duration increments or slowing down than to decrements or speeding up. Last, deviance detection was facilitated in surprised relative to neutral blocks, indicating that emotion enhances temporal processing. Experiment 2 was comparable to Experiment 1 with the exception that sounds were spectrally rotated to remove vocal emotional content. This abolished the emotional processing benefit, but preserved the other effects. Together, these results provide insights into listener sensitivity to sound speed and raise the possibility that speed biases duration judgments implicitly in a feed-forward manner. Moreover, this bias may be amplified for duration increments relative to decrements and within an emotional relative to a neutral stimulus context.

  14. Using the relational event model (REM) to investigate the temporal dynamics of animal social networks.

    Science.gov (United States)

    Tranmer, Mark; Marcum, Christopher Steven; Morton, F Blake; Croft, Darren P; de Kort, Selvino R

    2015-03-01

    Social dynamics are of fundamental importance in animal societies. Studies on nonhuman animal social systems often aggregate social interaction event data into a single network within a particular time frame. Analysis of the resulting network can provide a useful insight into the overall extent of interaction. However, through aggregation, information is lost about the order in which interactions occurred, and hence the sequences of actions over time. Many research hypotheses relate directly to the sequence of actions, such as the recency or rate of action, rather than to their overall volume or presence. Here, we demonstrate how the temporal structure of social interaction sequences can be quantified from disaggregated event data using the relational event model (REM). We first outline the REM, explaining why it is different from other models for longitudinal data, and how it can be used to model sequences of events unfolding in a network. We then discuss a case study on the European jackdaw, Corvus monedula , in which temporal patterns of persistence and reciprocity of action are of interest, and present and discuss the results of a REM analysis of these data. One of the strengths of a REM analysis is its ability to take into account different ways in which data are collected. Having explained how to take into account the way in which the data were collected for the jackdaw study, we briefly discuss the application of the model to other studies. We provide details of how the models may be fitted in the R statistical software environment and outline some recent extensions to the REM framework.

  15. Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions

    Directory of Open Access Journals (Sweden)

    Moschner Carsten

    2007-08-01

    Full Text Available Abstract Background Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. Results Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. Conclusion We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making.

  16. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    Science.gov (United States)

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    Science.gov (United States)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  18. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    Directory of Open Access Journals (Sweden)

    Florine Degrune

    2017-06-01

    Full Text Available Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum below the seedbed (15–20 cm. Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional

  19. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes.

    Science.gov (United States)

    Degrune, Florine; Theodorakopoulos, Nicolas; Colinet, Gilles; Hiel, Marie-Pierre; Bodson, Bernard; Taminiau, Bernard; Daube, Georges; Vandenbol, Micheline; Hartmann, Martin

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas

  20. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  1. Graphics Processing Unit-Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks.

    Science.gov (United States)

    García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent

  2. Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks

    Science.gov (United States)

    García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent

  3. Temporal dominance of emotions: Measuring dynamics of food-related emotions during consumption

    NARCIS (Netherlands)

    Jager, G.; Schlich, P.; Tijssen, I.O.J.M.; Yao, Y.J.; Visalli, M.; Graaf, de C.; Stieger, M.A.

    2014-01-01

    Mapping food-evoked emotions in addition to sensory profiling is topical. In sensory profiling, the Temporal Dominance of Sensation (TDS) method focuses on the assessment of the temporal evolution of dominant sensory attributes over time. We hypothesize that food-evoked emotions also show temporal

  4. Dynamic Difficulty Adaptation for Heterogeneously Skilled Player Groups in Multiplayer Collaborative Games

    OpenAIRE

    Greciano, Miguel Cristian

    2016-01-01

    This work focuses on the combination of two key concepts: Dynamic Difficulty Adjustment/Adaptation (video games adapting their difficulty according to the in-game performance of players, making themselves easier if the player performs poorly or more difficult if the player performs well) and Collaborative Multiplayer Games (video games where two or more human players work together to achieve a common goal). It considers and analyzes the challenges, potential and possibilities of Dynamic Diffi...

  5. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    Science.gov (United States)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence

  6. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical

  7. Using climate information to understand the spatio-temporal heterogeneity of a chikungunya outbreak in the presence of widespread asymptomatic infection

    Science.gov (United States)

    Dommar, C. J.; Lowe, R.; Robinson, M.; Rodó, X.

    2013-12-01

    found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.

  8. Climate-driven mathematical models to understand the spatio-temporal heterogeneity of a chikungunya outbreak in the presence of widespread asymptomatic infection

    Science.gov (United States)

    Dommar, Carlos J.; Robinson, Marguerite; Lowe, Rachel; Conan, Anne; Buchy, Philippe; Tarantola, Arnaud; Rodó, Xavier

    2014-05-01

    found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.

  9. Does carbon availability control temporal dynamics of radial growth in Norway spruce (Picea abies)?

    Science.gov (United States)

    Oberhuber, Walter; Gruber, Andreas; Swidrak, Irene

    2015-04-01

    Intra-annual dynamics of cambial activity and wood formation of coniferous species exposed to soil dryness revealed early culmination of maximum growth in late spring prior to occurrence of more favourable environmental conditions, i.e., repeated high rainfall events during summer (Oberhuber et al. 2014). Because it is well known that plants can adjust carbon allocation patterns to optimize resource uptake under prevailing environmental constraints, we hypothesize that early decrease in radial stem growth is an adaptation to cope with drought stress, which might require an early switch of carbon allocation to belowground organs. Physical blockage of carbon transport in the phloem through girdling causes accumulation and depletion of carbohydrates above and below the girdle, respectively, making this method quite appropriate to investigate carbon relationships in trees. Hence, in a common garden experiment we will manipulate the carbon status of Norway spruce (Picea abies) saplings by phloem blockage at different phenological stages during the growing season. We will present the methodological approach and first results of the study aiming to test the hypothesis that carbon status of the tree affects temporal dynamics of cambial activity and wood formation in conifers under drought. Acknowledgment The research is funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine". Reference Oberhuber W, A Gruber, W Kofler, I Swidrak (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res 133:467-479.

  10. Temporal dynamics of the longitudinal bunch profile in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Heigoldt, Matthias

    2017-05-19

    iterative reconstruction algorithm by our collaborators from Oxford University. A major benefit of their algorithm is to avoid any a priori assumptions about the bunch shape or extrapolation of the spectrum outside the measured range, which are usually necessary in traditional methods. In the presented experiments, the ATLAS 50 TW Ti:Sa based laser system was used in conjunction with a hydrogen-filled gas cell. Under optimized conditions, the shortest bunch duration was determined to 4.8±0.2 fs for single electron bunches with a maximum energy of 650 MeV, a charge of 30 pC and a resulting peak current of 5.7±1.2 kA. In combination with the lengthtunable gas target, the single-shot measurement technique allows for the first time to study the temporal evolution of the electron bunch profile as a function of the acceleration distance. This technique sheds new light onto the acceleration regimes characterized by electron dephasing and laser depletion as well as the involved plasma dynamics. The results show that after electron dephasing a second electron bunch can be injected in the first or subsequent plasma periods. After laser depletion, the first bunch is further found to be dense enough to drive its own beam-driven wakefield. The obtained double bunch structure is well suited for further beam-driven experiments and may enable a demonstration scheme for an energy boost by afterburner acceleration in the near future.

  11. Temporal dynamics of the longitudinal bunch profile in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Heigoldt, Matthias

    2017-01-01

    iterative reconstruction algorithm by our collaborators from Oxford University. A major benefit of their algorithm is to avoid any a priori assumptions about the bunch shape or extrapolation of the spectrum outside the measured range, which are usually necessary in traditional methods. In the presented experiments, the ATLAS 50 TW Ti:Sa based laser system was used in conjunction with a hydrogen-filled gas cell. Under optimized conditions, the shortest bunch duration was determined to 4.8±0.2 fs for single electron bunches with a maximum energy of 650 MeV, a charge of 30 pC and a resulting peak current of 5.7±1.2 kA. In combination with the lengthtunable gas target, the single-shot measurement technique allows for the first time to study the temporal evolution of the electron bunch profile as a function of the acceleration distance. This technique sheds new light onto the acceleration regimes characterized by electron dephasing and laser depletion as well as the involved plasma dynamics. The results show that after electron dephasing a second electron bunch can be injected in the first or subsequent plasma periods. After laser depletion, the first bunch is further found to be dense enough to drive its own beam-driven wakefield. The obtained double bunch structure is well suited for further beam-driven experiments and may enable a demonstration scheme for an energy boost by afterburner acceleration in the near future.

  12. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Liyuan Zhang

    2017-07-01

    Full Text Available In temporal lobe epilepsy (TLE, the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin–Huxley (HH type neurons and Pinsky–Rinzel (PR type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR, we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.

  13. Predicting seizures in untreated temporal lobe epilepsy using point-process nonlinear models of heartbeat dynamics.

    Science.gov (United States)

    Valenza, G; Romigi, A; Citi, L; Placidi, F; Izzi, F; Albanese, M; Scilingo, E P; Marciani, M G; Duggento, A; Guerrisi, M; Toschi, N; Barbieri, R

    2016-08-01

    Symptoms of temporal lobe epilepsy (TLE) are frequently associated with autonomic dysregulation, whose underlying biological processes are thought to strongly contribute to sudden unexpected death in epilepsy (SUDEP). While abnormal cardiovascular patterns commonly occur during ictal events, putative patterns of autonomic cardiac effects during pre-ictal (PRE) periods (i.e. periods preceding seizures) are still unknown. In this study, we investigated TLE-related heart rate variability (HRV) through instantaneous, nonlinear estimates of cardiovascular oscillations during inter-ictal (INT) and PRE periods. ECG recordings from 12 patients with TLE were processed to extract standard HRV indices, as well as indices of instantaneous HRV complexity (dominant Lyapunov exponent and entropy) and higher-order statistics (bispectra) obtained through definition of inhomogeneous point-process nonlinear models, employing Volterra-Laguerre expansions of linear, quadratic, and cubic kernels. Experimental results demonstrate that the best INT vs. PRE classification performance (balanced accuracy: 73.91%) was achieved only when retaining the time-varying, nonlinear, and non-stationary structure of heartbeat dynamical features. The proposed approach opens novel important avenues in predicting ictal events using information gathered from cardiovascular signals exclusively.

  14. On the temporal dynamics of sign production: An ERP study in Catalan Sign Language (LSC).

    Science.gov (United States)

    Baus, Cristina; Costa, Albert

    2015-06-03

    This study investigates the temporal dynamics of sign production and how particular aspects of the signed modality influence the early stages of lexical access. To that end, we explored the electrophysiological correlates associated to sign frequency and iconicity in a picture signing task in a group of bimodal bilinguals. Moreover, a subset of the same participants was tested in the same task but naming the pictures instead. Our results revealed that both frequency and iconicity influenced lexical access in sign production. At the ERP level, iconicity effects originated very early in the course of signing (while absent in the spoken modality), suggesting a stronger activation of the semantic properties for iconic signs. Moreover, frequency effects were modulated by iconicity, suggesting that lexical access in signed language is determined by the iconic properties of the signs. These results support the idea that lexical access is sensitive to the same phenomena in word and sign production, but its time-course is modulated by particular aspects of the modality in which a lexical item will be finally articulated. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection.

    Science.gov (United States)

    Brotman, Rebecca M; Shardell, Michelle D; Gajer, Pawel; Tracy, J Kathleen; Zenilman, Jonathan M; Ravel, Jacques; Gravitt, Patti E

    2014-12-01

    We sought to describe the temporal relationship between vaginal microbiota and human papillomavirus (HPV) detection. Thirty-two reproductive-age women self-collected midvaginal swabs twice weekly for 16 weeks (937 samples). Vaginal bacterial communities were characterized by pyrosequencing of barcoded 16S rRNA genes and clustered into 6 community state types (CSTs). Each swab was tested for 37 HPV types. The effects of CSTs on the rate of transition between HPV-negative and HPV-positive states were assessed using continuous-time Markov models. Participants had an average of 29 samples, with HPV point prevalence between 58%-77%. CST was associated with changes in HPV status (PVaginal microbiota dominated by L. gasseri was associated with increased clearance of detectable HPV. Frequent longitudinal sampling is necessary for evaluation of the association between HPV detection and dynamic microbiota. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Spatio-temporal dynamics of the mirror neuron system during social intentions.

    Science.gov (United States)

    Cacioppo, Stephanie; Bolmont, Mylene; Monteleone, George

    2017-10-27

    Previous research has shown that specific goals and intentions influence a person's allocation of social attention. From a neural viewpoint, a growing body of evidence suggests that the inferior fronto-parietal network, including the mirror neuron system, plays a role in the planning and the understanding of motor intentions. However, it is unclear whether and when the mirror neuron system plays a role in social intentions. Combining a behavioral task with electrical neuroimaging in 22 healthy male participants, the current study investigates whether the temporal brain dynamic of the mirror neuron system differs during two types of social intentions i.e., lust vs. romantic intentions. Our results showed that 62% of the stimuli evoking lustful intentions also evoked romantic intentions, and both intentions were sustained by similar activations of the inferior frontal gyrus and the inferior parietal lobule/angular gyrus for the first 432 ms after stimulus onset. Intentions to not love or not lust, on the other hand, were characterized by earlier differential activations of the inferior fronto-parietal network i.e., as early as 244 ms after stimulus onset. These results suggest that the mirror neuron system may not only code for the motor correlates of intentions, but also for the social meaning of intentions and its valence at both early/automatic and later/more elaborative stages of information processing.

  17. Neural Temporal Dynamics of Facial Emotion Processing: Age Effects and Relationship to Cognitive Function

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liao

    2017-06-01

    Full Text Available This study used event-related potentials (ERPs to investigate the effects of age on neural temporal dynamics of processing task-relevant facial expressions and their relationship to cognitive functions. Negative (sad, afraid, angry, and disgusted, positive (happy, and neutral faces were presented to 30 older and 31 young participants who performed a facial emotion categorization task. Behavioral and ERP indices of facial emotion processing were analyzed. An enhanced N170 for negative faces, in addition to intact right-hemispheric N170 for positive faces, was observed in older adults relative to their younger counterparts. Moreover, older adults demonstrated an attenuated within-group N170 laterality effect for neutral faces, while younger adults showed the opposite pattern. Furthermore, older adults exhibited sustained temporo-occipital negativity deflection over the time range of 200–500 ms post-stimulus, while young adults showed posterior positivity and subsequent emotion-specific frontal negativity deflections. In older adults, decreased accuracy for labeling negative faces was positively correlated with Montreal Cognitive Assessment Scores, and accuracy for labeling neutral faces was negatively correlated with age. These findings suggest that older people may exert more effort in structural encoding for negative faces and there are different response patterns for the categorization of different facial emotions. Cognitive functioning may be related to facial emotion categorization deficits observed in older adults. This may not be attributable to positivity effects: it may represent a selective deficit for the processing of negative facial expressions in older adults.

  18. Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Lee

    Full Text Available White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences, have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs. Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response.

  19. Spatial and temporal dynamics of dengue fever in Peru: 1994–2006

    Science.gov (United States)

    CHOWELL, G.; TORRE, C. A.; MUNAYCO-ESCATE, C.; SUÁREZ-OGNIO, L.; LÓPEZ-CRUZ, R.; HYMAN, J. M.; CASTILLO-CHAVEZ, C.

    2008-01-01

    SUMMARY The weekly number of dengue cases in Peru, South America, stratified by province for the period 1994–2006 were analysed in conjunction with associated demographic, geographic and climatological data. Estimates of the reproduction number, moderately correlated with population size (Spearman ρ=0·28, P=0·03), had a median of 1·76 (IQR 0·83–4·46). The distributions of dengue attack rates and epidemic durations follow power-law (Pareto) distributions (coefficient of determination >85%, Pjungle areas. Our findings suggest a hierarchy of transmission events during the large 2000–2001 epidemic from large to small population areas when serotypes DEN-3 and DEN-4 were first identified (Spearman ρ=−0·43, P=0·03). The need for spatial and temporal dengue epidemic data with a high degree of resolution not only increases our understanding of the dynamics of dengue but will also generate new hypotheses and provide a platform for testing innovative control policies. PMID:18394264

  20. Amygdala and fusiform gyrus temporal dynamics: Responses to negative facial expressions

    Directory of Open Access Journals (Sweden)

    Rauch Scott L

    2008-05-01

    Full Text Available Abstract Background The amygdala habituates in response to repeated human facial expressions; however, it is unclear whether this brain region habituates to schematic faces (i.e., simple line drawings or caricatures of faces. Using an fMRI block design, 16 healthy participants passively viewed repeated presentations of schematic and human neutral and negative facial expressions. Percent signal changes within anatomic regions-of-interest (amygdala and fusiform gyrus were calculated to examine the temporal dynamics of neural response and any response differences based on face type. Results The amygdala and fusiform gyrus had a within-run "U" response pattern of activity to facial expression blocks. The initial block within each run elicited the greatest activation (relative to baseline and the final block elicited greater activation than the preceding block. No significant differences between schematic and human faces were detected in the amygdala or fusiform gyrus. Conclusion The "U" pattern of response in the amygdala and fusiform gyrus to facial expressions suggests an initial orienting, habituation, and activation recovery in these regions. Furthermore, this study is the first to directly compare brain responses to schematic and human facial expressions, and the similarity in brain responses suggest that schematic faces may be useful in studying amygdala activation.

  1. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection.

    Directory of Open Access Journals (Sweden)

    Yongsheng Huang

    2011-08-01

    Full Text Available Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.

  2. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Lin

    2016-03-01

    Full Text Available Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G, matrix protein (M, and nucleoprotein (N genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10−4–4.75 × 10−4 substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.

  3. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    Science.gov (United States)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  4. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    Science.gov (United States)

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  5. Temporal dynamics of physical activity and affect in depressed and nondepressed individuals.

    Science.gov (United States)

    Stavrakakis, Nikolaos; Booij, Sanne H; Roest, Annelieke M; de Jonge, Peter; Oldehinkel, Albertine J; Bos, Elisabeth H

    2015-12-01

    The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional dynamic relationship between physical activity and affect, in depressed and nondepressed individuals, using time-series analysis. A pair-matched sample of 10 depressed and 10 nondepressed participants (mean age = 36.6, SD = 8.9, 30% males) wore accelerometers and completed electronic questionnaires 3 times a day for 30 days. Physical activity was operationalized as the total energy expenditure (EE) per day segment (i.e., 6 hr). The multivariate time series (T = 90) of every individual were analyzed using vector autoregressive modeling (VAR), with the aim to assess direct as well as lagged (i.e., over 1 day) effects of EE on positive and negative affect, and vice versa. Large interindividual differences in the strength, direction and temporal aspects of the relationship between physical activity and positive and negative affect were observed. An exception was the direct (but not the lagged) effect of physical activity on positive affect, which was positive in nearly all individuals. This study showed that the association between physical activity and affect varied considerably across individuals. Thus, while at the group level the effect of physical activity on affect may be small, in some individuals the effect may be clinically relevant. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  6. Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance.

    Science.gov (United States)

    Borges, Karina Lima Reis; Salvato, Fernanda; Alcântara, Berenice Kussumoto; Nalin, Rafael Storto; Piotto, Fernando Ângelo; Azevedo, Ricardo Antunes

    2018-04-01

    Despite numerous studies on cadmium (Cd) uptake and accumulation in crops, relatively little is available considering the temporal dynamic of Cd uptake and responses to stress focused on the root system. Here we highlighted the responses to Cd-induced stress in roots of two tomato genotypes contrasting in Cd-tolerance: the tolerant Pusa Ruby and the sensitive Calabash Rouge. Tomato genotypes growing in the presence of 35 μM CdCl 2 exhibited a similar trend of Cd accumulation in tissues, mainly in the root system and overall plants exhibited reduction in the dry matter weight. Both genotypes showed similar trends for malondialdehyde and hydrogen peroxide accumulation with increases when exposed to Cd, being this response more pronounced in the sensitive genotype. When the antioxidant machinery is concerned, in the presence of Cd the reduced glutathione content was decreased in roots while ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) activities were increased in the presence of Cd in the tolerant genotype. Altogether these results suggest APX, GR and GST as the main players of the antioxidant machinery against Cd-induced oxidative stress.

  7. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy.

    Science.gov (United States)

    Zhang, Liyuan; Fan, Denggui; Wang, Qingyun

    2017-01-01

    In temporal lobe epilepsy (TLE), the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin-Huxley (HH) type neurons and Pinsky-Rinzel (PR) type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG) region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR), we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.

  8. Dynamics of the rupture precursors for heterogeneous materials: application to vitreous polymers foams

    International Nuclear Information System (INIS)

    Deschanel, St.

    2005-12-01

    New physical approaches concerning the damage mechanisms consist to consider the rupture phenomenon as the critical point of a phase transition. Rupture can then result for some materials by a percolation of microcracks. This multi-crack implies the choice of heterogeneous materials. Mechanical tests on solid polymer foams have been carried out until rupture and have been coupled to the follow-up of the acoustic activity. The energies distributions reveal power laws independently of the material density, of the load mode or of the behaviour laws. On the other hand, the agreement with a power law of time periods seems to require a quasi constant stress on the most part of the test. The trend of the cumulated energy in the case of creep experiments seems to present a power law on a narrow period of time. On the other hand, for tensile tests, no power law has been observed. (O.M.)

  9. Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility.

    Science.gov (United States)

    Yurk, Brian P

    2018-07-01

    Animal movement behaviors vary spatially in response to environmental heterogeneity. An important problem in spatial ecology is to determine how large-scale population growth and dispersal patterns emerge within highly variable landscapes. We apply the method of homogenization to study the large-scale behavior of a reaction-diffusion-advection model of population growth and dispersal. Our model includes small-scale variation in the directed and random components of movement and growth rates, as well as large-scale drift. Using the homogenized model we derive simple approximate formulas for persistence conditions and asymptotic invasion speeds, which are interpreted in terms of residence index. The homogenization results show good agreement with numerical solutions for environments with a high degree of fragmentation, both with and without periodicity at the fast scale. The simplicity of the formulas, and their connection to residence index make them appealing for studying the large-scale effects of a variety of small-scale movement behaviors.

  10. Temporal dynamics of plant succession in abandoned field in Mediterranean mountain areas: farming terraces and sloping fields (Iberian System, Spain)

    Science.gov (United States)

    Nadal-Romero, Estela; Errea, Paz; Lasanta, Teodoro

    2017-04-01

    by the DESEMON and ESPAS projects (CGL2014-52135-C3-3-R and CGL2015-65569-R, funded by the MINECO-FEDER). The "Geomorphology and Global Change" and the "Climate, water, global change and natural systems" research groups were financed by the Aragón Government and the European Social Fund (ESF-FSE). Estela Nadal-Romero was the recipient of a "Ramón y Cajal" postdoctoral contract (Spanish Ministry of Economy and Competitiveness). References Burel, F. & Baudry, J. (2002): Ecología del paisaje. Conceptos, métodos y aplicaciones. Ediciones Mundi-Prensa: 353 pp., Madrid. Kouba, Y. & Alados, C.L. (2012): Spatio-temporal dynamics of Quercus faginea forest in the Spanish Central Pre-Pyrenees. European Journal of Forest Research, 131: 369-379.

  11. Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach

    Science.gov (United States)

    Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.

    2018-05-01

    Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.

  12. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  13. Heterogeneous Gossip

    Science.gov (United States)

    Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien

    Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.

  14. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    Science.gov (United States)

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  15. Temporal and spatial variation in recent vehicular emission inventories in China based on dynamic emission factors.

    Science.gov (United States)

    Cai, Hao; Xie, Shaodong

    2013-03-01

    emissions. This paper tracks the temporal and spatial variation characteristics in recent vehicular emission inventories in China based on dynamic emission factors. The fact that CO and NMVOC emissions kept growing at reduced rates and the NOx, PM10, and GHG emissions continued rising rapidly reveals that it was insufficient to bring down the rapid growth of NOx, PM10, and CO2 emissions by merely tightening emission standards and improving fuel quality of motor vehicles. The results will assist decision makers to formulate effective control policies for China's vehicular emissions. The improved methodologies are applicable for routine update of China's vehicular emission inventories.

  16. A Distributed Dynamic Super Peer Selection Method Based on Evolutionary Game for Heterogeneous P2P Streaming Systems

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2013-01-01

    Full Text Available Due to high efficiency and good scalability, hierarchical hybrid P2P architecture has drawn more and more attention in P2P streaming research and application fields recently. The problem about super peer selection, which is the key problem in hybrid heterogeneous P2P architecture, is becoming highly challenging because super peers must be selected from a huge and dynamically changing network. A distributed super peer selection (SPS algorithm for hybrid heterogeneous P2P streaming system based on evolutionary game is proposed in this paper. The super peer selection procedure is modeled based on evolutionary game framework firstly, and its evolutionarily stable strategies are analyzed. Then a distributed Q-learning algorithm (ESS-SPS according to the mixed strategies by analysis is proposed for the peers to converge to the ESSs based on its own payoff history. Compared to the traditional randomly super peer selection scheme, experiments results show that the proposed ESS-SPS algorithm achieves better performance in terms of social welfare and average upload rate of super peers and keeps the upload capacity of the P2P streaming system increasing steadily with the number of peers increasing.

  17. Comparison of one-dimensional probabilistic finite element method with direct numerical simulation of dynamically loaded heterogeneous materials

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas

    2011-06-01

    Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model

    Science.gov (United States)

    Dey, Supravat; Massiera, Gladys; Pitard, Estelle

    2018-01-01

    Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed. In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over a wide range.

  19. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  20. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.

    Science.gov (United States)

    Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing

    2010-05-04

    High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding

  1. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viktor R. Tóth

    2018-06-01

    Full Text Available Littoral zones of freshwater lakes are exposed to environmental impacts from both terrestrial and aquatic sides, while substantial anthropogenic pressure also affects the high spatial, and temporal variability of the ecotone. In this study, the possibility of monitoring seasonal and spatial changes in reed (Phragmites australis stands using an unmanned aerial vehicle (UAV based remote sensing technique was examined. Stands in eutrophic and mesotrophic parts of Lake Balaton including not deteriorating (stable and deteriorating (die-back patches, were tracked throughout the growing season using a UAV equipped with a Normalized Difference Vegetation Index (NDVI camera. Photophysiological parameters of P. australis were also measured with amplitude modulated fluorescence. Parameters characterizing the dynamics of seasonal changes in NDVI data were used for phenological comparison of eutrophic and mesotrophic, stable and die-back, terrestrial and aquatic, mowed and not-mowed patches of reed. It was shown that stable Phragmites plants from the eutrophic part of the lake reached specific phenological stages up to 3.5 days earlier than plants from the mesotrophic part of the lake. The phenological changes correlated with trophic (total and nitrate-nitrite nitrogen and physical (organic C and clay content properties of the sediment, while only minor relationships with air and water temperature were found. Phenological differences between the stable and die-back stands were even more pronounced, with ~34% higher rates of NDVI increase in stable than die-back patches, while the period of NDVI increase was 16 days longer. Aquatic and terrestrial parts of reed stands showed no phenological differences, although intermediate areas (shallow water parts of stands were found to be less vigorous. Winter mowing of dried Phragmites sped up sprouting and growth of reed in the spring. This study showed that remote sensing-derived photophysiological and phenological

  2. Apparent Violation of the Fluctuation-Dissipation Theorem due to Dynamic Heterogeneity in a Model Glass-Forming Liquid

    International Nuclear Information System (INIS)

    Kawasaki, Takeshi; Tanaka, Hajime

    2009-01-01

    Here we study the relation between the mobility and the translational diffusion in supercooled two-dimensional polydisperse colloidal liquids, using numerical simulations. We find an apparent violation of the Einstein-Smoluchowski (ES) relation D=k B Tμ (D: diffusion constant; μ: mobility; k B ; Boltzmann's constant; T: temperature). The violation is a direct consequence of the fact that it is difficult for a driven particle to enter a jammed region with high order due to its yield stress. The degree of this apparent ES violation is controlled solely by the characteristic size of slow jammed regions, ξ. Our finding implies that the characteristic time of this problem is not the structural relaxation time τ α but the lifetime of dynamic heterogeneity, τ ξ . A supercooled liquid can be regarded to be ergodic only over τ ξ , which may be the slowest intrinsic time scale of the system.

  3. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  4. Joint  effects of habitat configuration and temporal stochasticity on population dynamics

    Science.gov (United States)

    Jennifer M. Fraterrigo; Scott M. Pearson; Monica G. Turner

    2009-01-01

    Habitat configuration and temporal stochasticity in the environment are recognized as important drivers of population structure, yet few studies have examined the combined influence of these factors....

  5. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H., E-mail: xuehuma@dlut.edu.cn [Liaoning Provincial Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation

  6. Cascading Dynamics of Heterogenous Scale-Free Networks with Recovery Mechanism

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2013-01-01

    Full Text Available In network security, how to use efficient response methods against cascading failures of complex networks is very important. In this paper, concerned with the highest-load attack (HL and random attack (RA on one edge, we define five kinds of weighting strategies to assign the external resources for recovering the edges from cascading failures in heterogeneous scale-free (SF networks. The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading failures in the real-world networks.

  7. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Ah [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok [Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Seon Young [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Oh, Keunhee; Lee, Dong-Sup [Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul Nationa