WorldWideScience

Sample records for temperatures aerosol opacities

  1. Opacity

    CERN Document Server

    Huebner, Walter F

    2014-01-01

    The interaction of radiation with matter is a fundamental process in the universe; in particular, the absorption and scattering of radiation by matter (the opacity) govern the formation, evolution, and structure of stars and planets.  But opacity is also important in many terrestrial applications in which radiation is the dominant means of energy transfer, such as controlled nuclear-fusion, laser ablation, atmospheric entry and reentry, and the "greenhouse" effect.  This book covers all aspects of opacity and equations of state for plasmas, gases, vapors, and dust and emphasizes the continuous transformation of phases and molecular compositions with changing density and temperature under conditions of local thermodynamic equilibrium (LTE) while preserving the basic abundances of the chemical elements in a mixture.

  2. Experiment to measure oxygen opacity at high density and temperature

    Science.gov (United States)

    Keiter, Paul; Mussack, Katie; Orban, Chris; Colgan, James; Ducret, Jean-Eric; Fontes, Christopher J.; Guzik, Joyce Ann; Heeter, Robert F.; Kilcrease, Dave; Le Pennec, Maelle; Mancini, Roberto; Perry, Ted; Turck-Chièze, Sylvaine; Trantham, Matt

    2017-06-01

    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. This discrepancy has led to an investigation of opacities through laboratory experiments and improved opacity models for many of the larger contributors to the sun’s opacity, including iron and oxygen. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al, 2015]. Although these results are still controversial, repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for C, O and Fe to address the solar abundance issue [Colgan, 2013]. Armstrong et al [2014] have also implemented changes in the ATOMIC code for low-Z elements. However, no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions.This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, grant No. DE-NA0001840, and the NLUF Program, grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.

  3. Experiment to measure oxygen opacity at high density and temperature

    Science.gov (United States)

    Keiter, Paul; Butler, Hannah; Trantham, Matt; Mussack, Katie; Colgan, James; Fontes, Chris; Guzik, Joyce; Kilcrease, David; Perry, Ted; Orban, Chris; Ducret, Jean-Eric; La Pennec, Maelle; Turck-Chieze, Sylvaine; Mancini, Roberto; Heeter, Robert

    2017-10-01

    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al., 2015]. Repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for low-Z elements [Colgan, 2013, Armstrong 2014], however no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDLP, Grant Number DE-NA0002956, and the NLUF Program, Grant Number DE-NA0002719, and through the LLE, University of Rochester by the NNSA/OICF under No. DE-NA0001944.

  4. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    Science.gov (United States)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  5. Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements

    Science.gov (United States)

    Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak

  6. Simultaneous mapping of Titan's surface albedo and aerosol opacity from Cassini/VIMS massive inversion

    Science.gov (United States)

    Maltagliati, L.; Rodriguez, S.; Sotin, C.; Cornet, T.; Rannou, P.; Le Mouelic, S.; Solomonidou, A.; Coustenis, A.; Brown, R.

    2015-10-01

    Titan still lacks information on the cartography of its surface albedo, due to the complications linked to the treatment of the atmospheric contributions on surface observations. We present in this paper the results of our massive inversion method that we developed to treat Cassini/VIMS h yperspectral data of Titan. Our minimization procedure is based on look-up tables (LUTs) we create from a state-of-the-art radiative transfer (RT) model[1]. This allows us to decrease the computational time by a factor of several thousands with respect to the standard radiative transfer applications. We will present the improvements on the RT modeling thanks to the acquisition of new information on Titan's aerosol properties and our results for the simultaneous mapping of Titan's surface albedo and aerosol abundance in some regions of interest.

  7. Background Opacities

    NARCIS (Netherlands)

    Kamp, I.; Monier, R.; Smalley, B.; Wahlgren, G.; Stee, Ph.

    2010-01-01

    In NLTE computations of trace elements in stellar atmospheres, background opacities are generally treated in LTE. It is thus important to assess the impact of different methods of including this background opacity on the statistical equilibrium of the trace element and its resulting NLTE abundance.

  8. Does temperature nudging overwhelm aerosol radiative ...

    Science.gov (United States)

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c

  9. Response of California temperature to regional anthropogenic aerosol changes

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas; Novakov, T.; Kirchstetter, T.W.; Menon, S.; Aguiar, J.

    2008-05-12

    In this paper, we compare constructed records of concentrations of black carbon (BC)--an indicator of anthropogenic aerosols--with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

  10. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  11. Dust Opacities*

    OpenAIRE

    Min Michiel

    2015-01-01

    Dust particles are the dominant source of opacity at (almost) all wavelengths and in (almost) all regions of protoplanetary disks. By this they govern the transport of energy through the disk and thus the thermal structure. Furthermore, their spectral properties determine the low resolution spectral signature observed at infrared wavelengths. The infrared resonances that can be observed using low resolution infrared spectroscopy can be used to identify the composition and size distribution of...

  12. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  13. Observation of a strong inverse temperature dependence for the opacity of atmospheric water vapor in the mm continuum near 280 GHz

    Science.gov (United States)

    Emmons, Louisa K.; De Zafra, Robert L.

    1990-01-01

    Results are presented of the field measurements of atmospheric opacity at 278 GHz (9.3/cm) conducted at the McMurdo Station (Antarctica) during the austral springs of 1986 and 1987, in conjunction with balloon measurements of water vapor profile and total column density, showing a strong inverse temperature dependence when normalized to precipitable water vapor. The value of measured opacity per mm of precipitable water vapor (PWV) is roughly two times greater at -35 C than at -10 C and three times greater than measurements at +25 C reported by Zammit and Ade (1981). Various theories proposed to explain excess absorption in continuum regions are reviewed.

  14. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    Science.gov (United States)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Thomason, L. W.; Peter, T.

    2011-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model. to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will he significantly reduced.

  15. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  16. Asset Opacity and Liquidity

    NARCIS (Netherlands)

    Stenzel, A.; Wagner, W.B.

    2013-01-01

    Abstract: We consider a model of private information acquisition in which the cost of information depends on an asset's opacity. The model generates a hump-shaped relationship between opacity and the equilibrium amount of private information. In particular, the incentives to acquire information are

  17. Effect of aerosols loading and retention on surface temperature in the DJF months

    Science.gov (United States)

    Emetere, M. E.; Onyechekwa, L.; Tunji-Olayeni, P.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects the fluctuation of the surface temperature. The location of study is Enugu, Nigeria (6.4584° N, 7.5464° E). Twenty-nine years GISS Surface Temperature Analysis (GISTEMP) data set and sixteen years MISR aerosol optical data set were used. The fluctuations in the sixteen years aerosol optical depth (AOD) tallied with the surface temperature. The curve-fitting tool of Matlab was used to generate a polynomial for the surface temperature and used to project a five years prediction of the surface temperature.

  18. Dust Temperatures and Opacities in the Central Parsec of the Galactic Center Modeled from Analysis of Multi-Wavelength Mid-Infrared Images

    Science.gov (United States)

    Varosi, F.; Gezari, D.; Dwek, E.; Telesco, C.

    2016-01-01

    We have analyzed multi-wavelength mid-infrared images of the central parsec of the Galactic Center using a two-temperature line-of-sight (LOS) radiative transfer model at each pixel of the images, giving maps of temperatures, luminosities and opacities of the hot, warm, cold (dark)dust components. The data consists of images at nine wavelengths in the mid-infrared (N-band and Q-band) from the Thermal Region Camera and Spectrograph (T-ReCS) instrument operating at the Gemini South Observatory. The results of the LOS modeling indicate that the extinction optical depth is quite large and varies substantially over the FOV. The high-resolution images of the central parsec of the Galactic center region were obtained with T-ReCS at Gemini South in January 2004. These images provide nearly diffraction-limited resolution (approx. 0.5) of the central parsec. The T-ReCS images were taken with nine filters (3.8, 4.7, 7.7, 8.7, 9.7, 10.3, 12.3, 18.3 and 24.5m), over a field-of-view (FOV) of 20 x 20 arcsec.

  19. The neutrino opacity of neutron rich matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcain, P.N., E-mail: pabloalcain@gmail.com [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina); Dorso, C.O. [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina)

    2017-05-15

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  20. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    Science.gov (United States)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; hide

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  1. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  2. Restricted fish feeding reduces cod otolith opacity

    DEFF Research Database (Denmark)

    Høie, H.; Folkvord, A.; Mosegaard, Henrik

    2008-01-01

    in otolith opacity were found between individual fish both within groups and between groups. In two of the three groups significantly more translucent otolith material was deposited in response to reduced feeding. Our results show that variations in feeding and hence fish growth resulted in variation......The purpose of this work was to examine the effect of reduced feeding and constant temperature on cod otolith opacity. Three groups of juvenile cod were given restricted food rations at different times for 4 months, resulting in depressed somatic growth. Otolith opacity was measured on pictures...... of the otolith sections. The otolith carbonate deposited during the experimental period was generally opaque compared to the more translucent otolith material deposited prior to and after the experimental period, when the fish were kept in a pond and in sea-cages at higher temperatures. Large variations...

  3. Can Aerosol Direct Radiative Effects Account for Analysis Increments of Temperature in the Tropical Atlantic?

    Science.gov (United States)

    da Silva, Arlindo M.; Alpert, Pinhas

    2016-01-01

    In the late 1990's, prior to the launch of the Terra satellite, atmospheric general circulation models (GCMs) did not include aerosol processes because aerosols were not properly monitored on a global scale and their spatial distributions were not known well enough for their incorporation in operational GCMs. At the time of the first GEOS Reanalysis (Schubert et al. 1993), long time series of analysis increments (the corrections to the atmospheric state by all available meteorological observations) became readily available, enabling detailed analysis of the GEOS-1 errors on a global scale. Such analysis revealed that temperature biases were particularly pronounced in the Tropical Atlantic region, with patterns depicting a remarkable similarity to dust plumes emanating from the African continent as evidenced by TOMS aerosol index maps. Yoram Kaufman was instrumental encouraging us to pursue this issue further, resulting in the study reported in Alpert et al. (1998) where we attempted to assess aerosol forcing by studying the errors of a the GEOS-1 GCM without aerosol physics within a data assimilation system. Based on this analysis, Alpert et al. (1998) put forward that dust aerosols are an important source of inaccuracies in numerical weather-prediction models in the Tropical Atlantic region, although a direct verification of this hypothesis was not possible back then. Nearly 20 years later, numerical prediction models have increased in resolution and complexity of physical parameterizations, including the representation of aerosols and their interactions with the circulation. Moreover, with the advent of NASA's EOS program and subsequent satellites, atmospheric aerosols are now monitored globally on a routine basis, and their assimilation in global models are becoming well established. In this talk we will reexamine the Alpert et al. (1998) hypothesis using the most recent version of the GEOS-5 Data Assimilation System with assimilation of aerosols. We will

  4. Molecular opacities for exoplanets.

    Science.gov (United States)

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy.

  5. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments.

    Science.gov (United States)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Hsi-Hsien; Wu, Jheng-Syun

    2008-05-01

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.

  6. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, J.; Hautanen, J.; Laitinen, A. [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  7. Development of Aerosol Measurement, Sampling and Generation Experimental Facilities under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Yong [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    The pressure is key factor determining Knudsen number and it affects aerosol dynamics. Hence, it is important to design experimental facilities to simulate the aerosols transport phenomena and removal mechanisms in the high temperature and high pressure (HT/HP). In case of Nuclear Power Plant, during the Light Water Reactor (LWR) severe accident, core degradation results in the release of both vapors and aerosol particles which differ in composition depending on their source terms. Vapor and aerosols generated under severe accident enter the containment atmosphere and are distributed in the containment by atmospheric flow. Temperature and pressure in the containment increase until containment spray system, fan cooler system or FCVS initiates to extract heat and avoid pressurization. The main purpose of the experimental facility is to develop not only multi-purpose test loops applying for aerosol industry but also to evaluation performance of engineered safety system including containment filtered venting system. The main experiment will be carried out in this loop and provide representative behavior of the aerosols under HT/HP conditions. The aim of the research is to be able to 1) develop the aerosol generation, mixing, sampling and measurement system and conduct tests based on various aerosol concentration, thermal-hydraulic conditions including high temperature and pressure and type of carrier gases (air, nitrogen and steam), applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant, and 2) investigate aerosol behaviors and removal mechanisms under these conditions. The tests with the main carrier gas of air will be performed on PHASEⅠ, steam will be conducted on PHASEⅡ.

  8. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    Science.gov (United States)

    Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2017-08-01

    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  9. Replicating the Z iron opacity experiments on the NIF

    Science.gov (United States)

    Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Ross, P. W.; Kline, J. L.; Flippo, K. A.; Sherrill, M. E.; Dodd, E. S.; DeVolder, B. G.; Cardenas, T.; Archuleta, T. N.; Craxton, R. S.; Zhang, R.; McKenty, P. W.; Garcia, E. M.; Huffman, E. J.; King, J. A.; Ahmed, M. F.; Emig, J. A.; Ayers, S. L.; Barrios, M. A.; May, M. J.; Schneider, M. B.; Liedahl, D. A.; Wilson, B. G.; Urbatsch, T. J.; Iglesias, C. A.; Bailey, J. E.; Rochau, G. A.

    2017-06-01

    X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity of iron at a temperature of ∼160 eV and an electron density of ∼7 × 1021 cm-3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.

  10. Dominance of pollutant aerosols over an urban region and its impact on boundary layer temperature profile

    Science.gov (United States)

    Talukdar, Shamitaksha; Jana, Soumyajyoti; Maitra, Animesh

    2017-01-01

    Collocated measurements of aerosol optical depth (AOD) and black carbon at different wavelengths over Kolkata, an urban region in eastern India, have been used to calculate aerosol single-scattering albedo (SSA). The wavelength dependence of SSA and AOD has been presented to discriminate the aerosol types over this highly populated metropolitan area. The spectral pattern shows that SSA decreases with wavelength for most of the time in a year and corresponding Ångström coefficient is greater than unity. These optical properties indicate the dominance of fine-mode pollutant particles over the city. The temperature lapse rate profile within the surface boundary layer has been found to be significantly influenced by the heating effect of fine-mode pollutants, and consequently, the growth of the convective processes in the lower troposphere is notably affected. In addition, a back trajectory analysis has also been presented to indicate that transported air masses can have significant impact on spectral pattern of SSA.

  11. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    Directory of Open Access Journals (Sweden)

    R. Baró

    2017-08-01

    Full Text Available The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol–radiation interactions (ARIs and indirect effects, resulting from aerosol–cloud–radiation interactions (ACIs. Online coupled meteorology–chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i a heat wave event and a forest fire episode (July–August 2010 and (ii a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  12. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine

    Science.gov (United States)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.

    1998-01-01

    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  13. Opacity data for stellar models and its uncertainties

    Science.gov (United States)

    Bailey, James; Nagayama, T.; Loisel, G. P.; Rochau, G. A.; Hansen, S. B.; Blancard, C.; Cosse, Ph.; Faussurier, G.; Gilleron, F.; Pain, J.-C.; Colgan, J.; Fontes, C. J.; Kilcrease, D. P.; Sherrill, M.; Golovkin, I.; Macfarlane, J. J.; Iglesias, C. A.; Wilson, B.; Kurzweil, Y.; Hazak, G.; Mancini, R. C.; More, R. M.; Nahar, S. N.; Orban, C.; Pradhan, A., K.

    2017-10-01

    Laboratory experiments have found iron opacity predictions are notably different from measurements performed at conditions similar to the boundary between the solar radiation and convection zone. The measurements help resolve discrepancies between helioseismology and solar models. However, it is essential to understand the difference between opacity predictions and measurements. New measurements with chromium, iron, and nickel are providing a systematic study of how opacity changes with temperature, density, and atomic number. This helps further evaluate experiment error possibilities and constrain hypotheses for opacity model refinements. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  14. Management of Opacities in Children and Adolescents.

    Science.gov (United States)

    Wallace, Ann; Deery, Chris

    2015-12-01

    Enamel opacities can appear as white, cream, yellow or brown patches. They can result from developmental or acquired conditions. The diagnosis, severity of the opacity and patient's desire for treatment guide the clinician when choosing the correct management option. Microabrasion is indicated for surface opacities, whereas bleaching can treat opacities deep within the tooth. When these techniques have failed to achieve the desired result, camouflaging the opacity with composite resin may be useful. Novel techniques, such as infiltrating or sealing the opacity, can alter enamel's refractive index, offering further treatment choices. CPD/Clinical Relevance: There are many conservative treatments available which can improve the appearance of enamel opacities.

  15. Broadening effects on opacity calculation of CH plasmas

    Science.gov (United States)

    Ghorashi, Seyed Alaeddin; Mahdavi, Mohammad

    2017-02-01

    Opacity is a function of the temperature and electron density of plasma. The plasma density can be determined by measurements of Stark-broadened K-shell spectral lines. The purpose of this work is to obtain a more detailed structure of opacity with regard to broadening effects. For this aim, the opacity frequency dependency and mean opacity of mixed plasmas are calculated under local thermodynamic equilibrium (LTE) conditions. The LTE state in inertial confinement fusion occurs when the collisional deexcitation rate from the upper level to the lower level greatly exceeds the spontaneous decay rate. Since the thermal radiation can be absorbed by the CH-ablator, by studying the behavior of the CH Polystyrene opacity, one can obtain the temperature and density of the plasma in investigations of matter found in stellar interiors, inertial fusion implosions, and Z pinches as a diagnostic technique. The main aspect of diagnostic application is spectrum broadening. The final results show that the Stark-broadened line shape is dependent on the density. Also, it is shown that the resonance peak and spectrum broadening of the opacity spectrum of a mixed plasma such as the CH-plasma is larger than a single atom plasma such as Carbon.

  16. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  17. Opacity spectra of silicon and carbon in ICF plasmas

    Science.gov (United States)

    Benredjem, D.; Calisti, A.; Ferri, S.; Gilleron, F.; Mondet, G.; Pain, J.-C.

    2017-03-01

    The knowledge of opacity is very important when one investigates the radiative properties of ICF and astrophysical plasmas. Germanium and silicon are good candidates as dopants in the ablator of some ICF schemes (LMJ in France, NIF at Livermore). In this work we calculate the opacity spectra of silicon and carbon mixtures. Two competitive methods were used. The first one is based on a detailed line calculation in which the atomic database is provided by the MCDF code. A lineshape code based on a fast algorithm was then adapted to the calculation of opacity profiles. All major line broadening mechanisms, including Zeeman splitting and Stark effect, are taken into account. This approach provides accurate opacity spectra but becomes rapidly prohibitive when the number of lines is large. To account for systems involving many ionic stages and thousands of lines, a second approach combines detailed line calculations and statistical calculations. This approach necessitates much smaller calculation times than the first one and is then more appropriate for extensive calculations. The monochromatic opacity and the Rosseland and Planck mean opacities are calculated for relevant densities and temperatures.

  18. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  19. X-Ray Opacity Measurements of Solid Density Plasmas

    Science.gov (United States)

    Wark, Justin; Preston, Thomas; Ciricosta, Orlando; Vinko, Sam; Hollebon, Patrick; Chung, Hyun-Kyung; Burian, Thomas; Chalupsky, Jaromir; Vozda, Vojtech; Hall, Frank; Spindloe, Christopher; Zastrau, Ulf; Dakovski, Georgi; Minitti, Michael

    2016-10-01

    Accurate opacity measurements of dense plasmas are scarce, in part owing to the difficulty in creating samples that are uniform in density and temperature, and the associated undertaking of an opacity measurement on a time-scale short compared with disassembly. Here we demonstrate that x-ray opacity information can be obtained from emissivity measurements of solid-density targets of varying but known thickness, irradiated by a sub-100-fsec x-ray pulse from LCLS. As the emission is generated by the creation of core-holes created by the FEL, and they are rapidly filled on a femtosecond time-scale, information is gleaned before any hydrodynamic motion. Comparision with simulations based on the SCFLY atomic-kinetics code reveal that the time-integrated emission data can provide a strong constraint on the opacity under well-defined conditions of density and temperature, and further demonstrate that the technique is relatively insensitive to x-ray pulse-length and spatial distribution. As an example we present measurements of the K-shell opacity of a solid-density magnesium plasma for all ion stages up to helium-like.

  20. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization

    Science.gov (United States)

    Kim, Eugene; Hopke, Philip K.; Edgerton, Eric S.

    Daily integrated PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at the Jefferson Street monitoring site in Atlanta were analyzed with positive matrix factorization (PMF). Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-rich secondary aerosol I (50%), on-road diesel emissions (11%), nitrate-rich secondary aerosol (9%), wood smoke (7%), gasoline vehicle (6%), sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance facility/highway traffic (2%). Differences from previous studies using only the traditional OC and EC data (J. Air Waste Manag. Assoc. 53(2003a)731; Atmos Environ. (2003b)) include four traffic-related combustion sources (gasoline vehicle, on-road diesel, railroad, and bus maintenance facility) containing carbon fractions whose abundances were different between the various sources. This study indicates that the temperature resolved fractional carbon data can be utilized to enhance source apportionment study, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and identified source contributions aid the identifications of local point sources.

  1. Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear-sky conditions

    Science.gov (United States)

    Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk

    2011-01-01

    Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.

  2. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    Science.gov (United States)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  3. A steady-state analysis of the temperature responses of water vapor and aerosol lifetimes

    NARCIS (Netherlands)

    Roelofs, G.J.H.|info:eu-repo/dai/nl/100925375

    2013-01-01

    The dominant removal mechanism of soluble aerosol is wet deposition. The atmospheric lifetime of aerosol, relevant for aerosol radiative forcing, is therefore coupled to the atmospheric cycling time of water vapor. This study investigates the coupling between water vapor and aerosol lifetimes in a

  4. Experimental evaluation of opacity in the deep solar interior using the concept of ``microscopic equivalence''

    Science.gov (United States)

    Kurzweil, Yair; Hazak, Giora; Bailey, James; Nagayama, Taisuke

    2017-10-01

    A problem for stellar astrophysics is that existing opacity models have been called into question both by experiments and by solar model comparisons with helioseismology, but an alternative opacity model does not yet exist. Importantly, the experiments measured opacity only for iron, at 182 eV - 195 eV temperatures (Te) comparable to the value at 0.7. Experimental validation of opacity models at higher Te and density (ne) are required to understand the entire Sun. Unfortunately, controlled transmission measurements at the required conditions are extremely difficult to achieve at lab. We propose to help resolve this dilemma using experiments at achieved conditions combined with the ``microscopic equivalence'' principle. Thus, using this principle, we can use a lower-atomic-number surrogate element to test opacity model physics important for iron at higher Te and ne than can be reached in present experiments. Theoretical modeling to evaluate this idea, using the CRSTA/PRCRSTA models will be discussed.

  5. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene

    Directory of Open Access Journals (Sweden)

    C. von Hessberg

    2009-06-01

    Full Text Available The temperature dependence of secondary organic aerosol (SOA formation from ozonolysis of β-pinene was studied in a flow reactor at 263 K–303 K and 1007 hPa under dry and humid conditions (0% and 26%–68% relative humidity, respectively. The observed SOA yields reached maximum values of 0.18–0.39 at high particle mass concentrations (Mo. Under dry conditions, the measurement data showed an overall increase in SOA yield with inverse temperature, but significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo was observed. Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature. For the atmospherically relevant concentration level of Mo=10 μg m−3 and temperature range 263 K–293 K, the results from humid experiments in this study indicate that the SOA yield of β-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i and the stoichiometric yields (αi of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions than by vapour pressure temperature dependencies. We suggest that the elucidation and modelling of SOA formation need to take into account the

  6. Barbados Cloud Observatory: Raman Lidars for air temperature, humidity, aerosols and cloud characterization

    Science.gov (United States)

    Serikov, Ilya; Linné, Holger; Brügmann, Björn; Kiliani, Johannes; Stevens, Bjorn

    2017-04-01

    Processes governing the development and evolution of shallow cumulus clouds in trades remain a large uncertainty in climate studies. To enrich the experimental database, Max Planck Institute for Meteorology in cooperation with Caribbean Institute for Meteorology and Hydrology have established and maintain since April 2010 the Barbados Cloud Observatory (13.1627 N, 59.4289 W) equipped among other instrumentation with multi-channel Raman lidar to profile routinely the cloud stratification, aerosol properties, air temperature and humidity. More than six years of operation with nearly continuous data flow resulted in quite extensive and statistically representative dataset. In this presentation we describe and evaluate three generations of Raman lidars that have been or are begin deployed at the observatory. Focusing primarily on our first lidar initially deployed on the site, an EARLI system (the MPI-M Raman lidar originally designed for EARLINET, the European Aerosol Research LIdar NETwork) that gave us most of the lidar data collected, we compare it to the presently deployed instrument, the LICHT system (LIdar for Clouds, Humidity and Temperature) designed to extend the observation with daytime measurements of water vapor. Third-generation lidar, a high power Raman lidar component of the upcoming CORAL system (Cloud Observation with RAdar and Lidar) developed for high resolution water vapor measurement is being prepared for deployment and will be described conceptually. Giving an overview on the technique implemented, we touch briefly the lidar calibration algorithms, some aspects of quality assurance, and present the data available with a particular focus on the ability of the instruments to measure atmospheric humidity and extinction.

  7. Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol

    Directory of Open Access Journals (Sweden)

    X. Yue

    2011-06-01

    Full Text Available Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1 The negative net (shortwave plus longwave radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2 The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.

  8. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-04-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  9. EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter G.; Roy, Arabindo; Miville-Deschenes, Marc-Antoine [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Bontemps, Sylvain [Observatoire de Bordeaux, BP 89, F-33270 Floirac (France); Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip [Department of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA (United Kingdom); Bock, James J. [Jet Propulsion Laboratory, Pasadena, CA 91109-8099 (United States); Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Carol Gables, FL 33146 (United States); Hughes, David H. [Instituto Nacional de Astrofisica Optica y Electronica (INAOE), Aptdo. Postal 51 y 72000 Puebla (Mexico); Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Olmi, Luca [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 (Italy); Patanchon, Guillaume [Laboratoire APC, 10, rue Alice Domon et Leonie Duquet F-75205 Paris (France); and others

    2012-05-20

    The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 {mu}m and one IRAS band at 100 {mu}m. The proxy is the near-infrared color excess, E(J - K{sub s}), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity {sigma}{sub e}(1200) at 1200 GHz or 250 {mu}m can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N{sub H} > 10{sup 22} cm{sup -2}) and small enough to ensure a uniform dust temperature. We find {sigma}{sub e}(1200) is typically (2-4) Multiplication-Sign 10{sup -25} cm{sup 2} H{sup -1} and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing {sigma}{sub e}(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity

  10. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    Aerosols are important climactically. Their specific emissions are key to reducing the uncertainty in global climate models. Marine aerosols make up the largest source of primary aerosols to the Earth's atmosphere. Uncertainty in marine aerosol mass and number flux lies in separating primary emis...... with decreasing temperature. Unique surface images of bubble size distributions allow the investigation of temperature, bubble size, and particle production......Aerosols are important climactically. Their specific emissions are key to reducing the uncertainty in global climate models. Marine aerosols make up the largest source of primary aerosols to the Earth's atmosphere. Uncertainty in marine aerosol mass and number flux lies in separating primary...... entrainment may account for the large discrepancy in energy input for the two systems. In the third study, the temperature dependence of sea spray aerosol production is probed with the use of a highly stable temperature controlled plunging jet. Similar to previous studies, particle production increases...

  11. Influence of temperature and artificially-created physical barriers on the efficacy of synergized pyrethrin aerosol

    Science.gov (United States)

    Flour mills in the United States are utilizing synergized pyrethrin aerosol for management of stored product insects. However, the dispersal of the aerosol within a facility may be hampered by barriers created from machinery and other equipment that block dispersion. Additionally, seasonal temperatu...

  12. Summary of Fe opacity measurement platform

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Taisuke

    2016-05-01

    This powerpoint presentation goes over the Fe opacity measurement platform, including how the experiment works, what can be gathered from the measurements, what can be gathered from the simulations, and the limitations of the experiment.

  13. Opacity Issues in Games with Imperfect Information

    Directory of Open Access Journals (Sweden)

    Bastien Maubert

    2011-06-01

    Full Text Available We study in depth the class of games with opacity condition, which are two-player games with imperfect information in which one of the players only has imperfect information, and where the winning condition relies on the information he has along the play. Those games are relevant for security aspects of computing systems: a play is opaque whenever the player who has imperfect information never "knows" for sure that the current position is one of the distinguished "secret" positions. We study the problems of deciding the existence of a winning strategy for each player, and we call them the opacity-violate problem and the opacity-guarantee problem. Focusing on the player with perfect information is new in the field of games with imperfect-information because when considering classical winning conditions it amounts to solving the underlying perfect-information game. We establish the EXPTIME-completeness of both above-mentioned problems, showing that our winning condition brings a gap of complexity for the player with perfect information, and we exhibit the relevant opacity-verify problem, which noticeably generalizes approaches considered in the literature for opacity analysis in discrete-event systems. In the case of blindfold games, this problem relates to the two initial ones, yielding the determinacy of blindfold games with opacity condition and the PSPACE-completeness of the three problems.

  14. Detailed Opacity Calculations for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Pain

    2017-05-01

    Full Text Available Nowadays, several opacity codes are able to provide data for stellar structure models, but the computed opacities may show significant differences. In this work, we present state-of-the-art precise spectral opacity calculations, illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments involving hot dense plasmas produced by ultra-high-intensity laser irradiation. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. The focus is on iron, due to its crucial role in understanding asteroseismic observations of β Cephei-type and Slowly Pulsating B stars, as well as of the Sun. For instance, in β Cephei-type stars, the iron-group opacity peak excites acoustic modes through the “kappa-mechanism”. Particular attention is paid to the higher-than-predicted iron opacity measured at the Sandia Z-machine at solar interior conditions. We discuss some theoretical aspects such as density effects, photo-ionization, autoionization or the “filling-the-gap” effect of highly excited states.

  15. Jovian temperature and cloud variability during the 2009-2010 fade of the South Equatorial Belt

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, G. S.; Rogers, J. H.; Simon-Miller, A. A.; de Pater, I.; Wong, M. H.; Mousis, O.; Irwin, P. G. J.; Jacquesson, M.; Yanamandra-Fisher, P. A.

    2011-06-01

    Mid-infrared 7-20 μm imaging of Jupiter from ESO's Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter's South Equatorial Belt (SEB) during the 'fade' (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free 'brown barges' (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels ( p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process. The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air

  16. Development on the National Ignition Facility of a High Energy Density Opacity Platform

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dodd, Evan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeVolder, Barbara Gloria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cardenas, Tana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Thomas Nick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sherrill, Manolo Edgar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Bernhard Heinz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Douglas, Melissa Rae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liedahl, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, B. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iglesias, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martin, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahmed, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emig, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zika, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opachich, Y. P. [Nevada National Security Site (NNSS), NV (United States); King, J. A. [Nevada National Security Site (NNSS), NV (United States); Ross, P. W. [Nevada National Security Site (NNSS), NV (United States); Huffman, E. J. [Nevada National Security Site (NNSS), NV (United States); Knight, R. A. [Nevada National Security Site (NNSS), NV (United States); Koch, J. A. [Nevada National Security Site (NNSS), NV (United States); Pond, T. D. [Nevada National Security Site (NNSS), NV (United States); Craxton, R. S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Zhang, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McKenty, P. W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Garcia, E. M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bailey, J. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, G. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, S. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-02

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results, but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.

  17. A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2009-10-01

    Full Text Available In the present work it is investigated the direct shortwave effect of anthropogenic aerosols on the near surface temperature over Southeastern Europe and the atmospheric circulation during summer 2000. In summer 2000, a severe heat-wave and droughts affected many countries in the Balkans. The study is based on two yearly simulations with and without the aerosol feedback of the regional climate model RegCM3 coupled with a simplified aerosol model. The surface radiative forcing associated with the anthropogenic aerosols is negative throughout the European domain with the more negative values in Central and Central-eastern Europe. A basic pattern of the aerosol induced changes in air temperature at the lower troposphere is a decrease over Southeastern Europe and the Balkan Peninsula (up to about 1.2°C thus weakening the pattern of the climatic temperature anomalies of summer 2000. The aerosol induced changes in air temperature from the lower troposphere to upper troposphere are not correlated with the respective pattern of the surface radiative forcing implying the complexity of the mechanisms linking the aerosol radiative forcing with the induced atmospheric changes through dynamical feedbacks of aerosols on atmospheric circulation. Investigation of the aerosol induced changes in the circulation indicates a southward shift of the subtropical jet stream playing a dominant role for the decrease in near surface air temperature over Southeastern Europe and the Balkan Peninsula. The southward shift of the jet exit region over the Balkan Peninsula causes a relative increase of the upward motion at the northern flank of the jet exit region, a relative increase of clouds, less solar radiation absorbed at the surface and hence relative cooler air temperatures in the lower troposphere between 45° N and 50° N. The southward extension of the lower troposphere aerosol induced negative temperature changes in the latitudinal band 35° N–45° N over the

  18. Early solar mass loss, opacity uncertainties, and the solar abundance problem

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Joyce Ann [Los Alamos National Laboratory; Keady, John [Los Alamos National Laboratory; Kilcrease, David [Los Alamos National Laboratory

    2009-01-01

    Solar models calibrated with the new element abundance mixture of Asplund et al. published in 2005 no longer produce good agreement with the sound speed, convection zone depth, and convection zone helium abundance inferred from solar oscillation data. Attempts to modify the input physics of the standard model, for example, by including enhanced diffusion, increased opacities, accretion, convective overshoot, or gravity waves have not restored the good agreement attained with the prior abundances. Here we present new models including early mass loss via a stronger solar wind. Early mass loss has been investigated prior to the solar abundance problem to deplete lithium and resolve the 'faint early sun problem'. We find that mass loss modifies the core structure and deepens the convection zone, and so improves agreement with oscillation data using the new abundances: however the amount of mass loss must be small to avoid destroying all of the surface lithium, and agreement is not fully restored. We also considered the prospects for increasing solar interior opacities. In order to increase mixture opacities by the 30% required to mitigate the abundance problem, the opacities of individual elements (e.g., O, N, C, and Fe) must be revised by a factor of two to three for solar interior conditions: we are investigating the possibility of broader calculated line wings for bound-bound transitions at the relevant temperatures to enhance opacity. We find that including all of the elements in the AGS05 opacity mixture (through uranium at atomic number Z=92) instead of only the 17 elements in the OPAL opacity mixture increases opacities by a negligible 0.2%.

  19. Global-mean temperature change from shipping toward 2050: improved representation of the indirect aerosol effect in simple climate models.

    Science.gov (United States)

    Lund, Marianne Tronstad; Eyring, Veronika; Fuglestvedt, Jan; Hendricks, Johannes; Lauer, Axel; Lee, David; Righi, Mattia

    2012-08-21

    We utilize a range of emission scenarios for shipping to determine the induced global-mean radiative forcing and temperature change. Ship emission scenarios consistent with the new regulations on nitrogen oxides (NO(x)) and sulfur dioxide (SO(2)) from the International Maritime Organization and two of the Representative Concentration Pathways are used as input to a simple climate model (SCM). Based on a complex aerosol-climate model we develop and test new parametrizations of the indirect aerosol effect (IAE) in the SCM that account for nonlinearities in radiative forcing of ship-induced IAE. We find that shipping causes a net global cooling impact throughout the period 1900-2050 across all parametrizations and scenarios. However, calculated total net global-mean temperature change in 2050 ranges from -0.03[-0.07,-0.002]°C to -0.3[-0.6,-0.2]°C in the A1B scenario. This wide range across parametrizations emphasizes the importance of properly representing the IAE in SCMs and to reflect the uncertainties from complex global models. Furthermore, our calculations show that the future ship-induced temperature response is likely a continued cooling if SO(2) and NO(x) emissions continue to increase due to a strong increase in activity, despite current emission regulations. However, such cooling does not negate the need for continued efforts to reduce CO(2) emissions, since residual warming from CO(2) is long-lived.

  20. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    Science.gov (United States)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    2012-01-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  1. Temperature Dependency of the Correlation between Secondary Organic Aerosol and Monoterpenes Concentrations at a Boreal Forest Site in Finland

    Science.gov (United States)

    Zhou, Y.; Zhang, W.; Rinne, J.

    2016-12-01

    Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.

  2. Design of the opacity spectrometer for opacity measurements at the National Ignition Facility

    Science.gov (United States)

    Ross, P. W.; Heeter, R. F.; Ahmed, M. F.; Dodd, E.; Huffman, E. J.; Liedahl, D. A.; King, J. A.; Opachich, Y. P.; Schneider, M. B.; Perry, T. S.

    2016-11-01

    Recent experiments at the Sandia National Laboratory Z facility have called into question models used in calculating opacity, of importance for modeling stellar interiors. An effort is being made to reproduce these results at the National Ignition Facility (NIF). These experiments require a new X-ray opacity spectrometer (OpSpec) spanning 540 eV-2100 eV with a resolving power E/ΔE > 700. The design of the OpSpec is presented. Photometric calculations based on expected opacity data are also presented. First use on NIF is expected in September 2016.

  3. Aerosols and Climate

    Indian Academy of Sciences (India)

    How do Aerosols Influence Climate? Although making up only one part in a billion of the mass of the atmosphere, aerosols have the potential to significantly influ- ence the climate. The global impact of aerosol is assessed as the change imposed on planetary radiation measured in Wm-2, which alters the global temperature ...

  4. Hydro-dissection and posterior capsule opacity

    African Journals Online (AJOL)

    Windows2G

    whose refracted vision was less then optimal. Conclusion: Hydrodissection is associated with a marginal reduction in post-operative posterior capsule opacity formation following ECCE-IOL surgery. It may however be associated with early post operative complications such as cornea striae, epithelial oedema and iritis due ...

  5. [Multiple ground-glass opacities nodules].

    Science.gov (United States)

    Moreau, D; Gazaille, V; Allou, N; Fernandez, C; André, V; André, M

    2017-06-01

    Ground-glass opacities nodules are frequently detected with the advances of radiological imaging. These can be preinvasive lesions such as atypical adenomatous hyperplasia but also invasive lesions. It leads to question in patients with lung cancer about treatment strategy and follow up. We report the case of a 72 years-old woman followed for a lung adenocarcinoma with an EGFR mutation of the right upper lobe stage IIb. The CT scan shows multiple pure ground-glass opacities in the same lobe of the primitive tumor but also in the other lobe. On the piece of lobectomy, histopathology of two ground-glass opacities showed atypical adenomatous hyperplasia. Ground-glass opacities nodules could be found in patients with an operable lung cancer. These can be multiple and match with atypical adenomatous hyperplasia but also carcinomas lesions. The radiological surveillance is still the standard. The strategy for surgical resection has to be defined especially in case of multiple lesions which can require repeated surgical resection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River

    Science.gov (United States)

    Cai, Jiaxi; Guan, Zhaoyong; Ma, Fenhua

    2016-12-01

    Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.

  7. Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Directory of Open Access Journals (Sweden)

    Gilles D.

    2013-11-01

    Full Text Available Seismology of stars is strongly developing. To address this question we have formed an international collaboration, OPAC, to perform specific experimental measurements, compare opacity calculations, and improve the opacity calculations in stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2–4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.

  8. The Influence of Stratospheric Sulphate Aerosol Deployment on the Surface Air Temperature and the Risk of an Abrupt Global Warming

    Directory of Open Access Journals (Sweden)

    Roland von Glasow

    2010-12-01

    Full Text Available We used the ‘Radiative-Convective Model of the Earth-atmosphere system’ (OGIM to investigate the cooling effects induced by sulphur injections into the stratosphere. The ensemble of numerical calculations was based on the A1B scenario from the IPCC Special Report on Emissions Scenarios (SRES. Several geoengineered scenarios were analysed, including the abrupt interruption of these injections in different scenarios and at different dates. We focused on the surface air temperature (SAT anomalies induced by stratospheric sulphate aerosol generated in order to compensate future warming. Results show that continuous deployment of sulphur into the stratosphere could induce a lasting decrease in SAT. Retaining a constant aerosol loading equivalent to 6 TgS would delay the expected global warming by 53 years. Keeping the SAT constant in a context of increasing greenhouse gases (GHGs means that the aerosol loading needs to be increased by 1.9% annually. This would offset the effect of increasing GHG under the A1B scenario. A major focus of this study was on the heating rates of SAT that would arise in different scenarios in case of an abrupt cessation of sulphur injections into the stratosphere. Our model results show that heating rates after geoengineering interruption would be 15–28 times higher than in a case without geoengineering, with likely important consequences for life on Earth. Larger initial sulphate loadings induced more intense warming rates when the geoengineering was stopped at the same time. This implies that, if sulphate loading was increased to maintain constant SAT in the light of increasing GHG concentrations, the later the geoengineering interruption was to occur, the higher the heating rates would be. Consequently, geoengineering techniques like this should only be regarded as last-resort measures and require intense further research should they ever become necessary.

  9. Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature

    Science.gov (United States)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Camredon, M.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Temime-Roussel, B.; Monod, A.; Aumont, B.; Doussin, J. F.

    2015-01-01

    A series of experiments was conducted in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosols (SOAs) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOAs generated from the ozonolysis of α-pinene were exposed under dry conditions (ozone concentrations, (2) light (under controlled temperature conditions) or (3) light and heat (6 °C light-induced temperature increase), and the resultant changes in SOA optical properties (i.e. absorption and scattering), hygroscopicity and chemical composition were measured using a suite of instrumentation interfaced to the CESAM chamber. The complex refractive index (CRI) was derived from integrated nephelometer measurements of 525 nm wavelength, using Mie scattering calculations and measured number size distributions. The particle size growth factor (GF) was measured with a hygroscopic tandem differential mobility analyzer (H-TDMA). An aerosol mass spectrometer (AMS) was used for the determination of the f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. On the contrary, illumination of SOAs in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simulation of the experiments using the master chemical mechanism (MCM) and the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) shows that these changes resulted

  10. Revitalizing the Library OPAC: Interface, Searching, and Display Challenges

    Directory of Open Access Journals (Sweden)

    Jia Mi

    2008-03-01

    Full Text Available The behavior of academic library users has drastically changed in recent years. Internet search engines have become the preferred tool over the library online public access catalog (OPAC for finding information. Libraries are losing ground to online search engines. In this paper, two aspects of OPAC use are studied: (1 the current OPAC interface and searching capabilities, and (2 the OPAC bibliographic display. The purpose of the study is to find answers to the following questions: Why is the current OPAC ineffective? What can libraries and librarians do to deliver an OPAC that is as good as search engines to better serve our users? Revitalizing the library OPAC is one of the pressing issues that has to be accomplished.

  11. Light element opacities of astrophysical interest from ATOMIC

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.; Armstrong, G. S. J.; Abdallah, J. Jr.; Sherrill, M. E. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fontes, C. J.; Zhang, H. L.; Hakel, P. [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-11

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a new equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.

  12. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Boehly, T. R.; Epstein, R.; McCrory, R. L.; Skupsky, S.

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρD=0.5 to 673.518g/cm3 and temperatures from T=5000K up to the Fermi temperature TF for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ˜10% up to a factor of ˜2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  13. Biochemical factors in the lens opacities. Case-control study. The Lens Opacities Case-Control Study Group.

    Science.gov (United States)

    Leske, M C; Wu, S Y; Hyman, L; Sperduto, R; Underwood, B; Chylack, L T; Milton, R C; Srivastava, S; Ansari, N

    1995-09-01

    To evaluate associations with biochemical indicators of nutritional and other risk factors in the Lens Opacities Case-Control Study. Case-control study. The Lens Opacities Case-Control Study determined risk factors for cortical, nuclear, and posterior subcapsular opacities among 1380 participants aged 40 to 79 years. Vitamin E, selenium, and biochemistry profile determinations were performed on all patients; red blood cell enzymes and amino acids were measured in systematic samples of about 25% of the Lens Opacities Case-Control Study population. Laboratory test values in cases and controls were compared and expressed as odds ratios and 95% confidence intervals. In polychotomous logistic regression analyses controlling for age and sex, the risk of opacities was reduced to less than one half in persons with higher levels of vitamin E (odds ratio, 0.44 for nuclear opacities), albumin-globulin ratio (odds ratio, 0.41 for mixed opacities), or iron (odds ratio, 0.43 for cortical opacities); higher uric acid levels increased risk (odds ratio, 1.74 for mixed opacities). Persons with opacities were twice as likely to have high glutathione reductase activity (with flavin adenine dinucleotide), which suggests low riboflavin status (odds ratio, 2.13). Most odds ratios for amino acids were under unity and were significantly decreased for glycine (0.36) and aspartic acid (0.31). Lens opacities were associated with lower levels of riboflavin, vitamin E, iron, and protein nutritional status. Higher levels of uric acid increased risk of mixed opacities. The findings for riboflavin, vitamin E, iron, and uric acid are compatible with the dietary intake and medical history results of the Lens Opacities Case-Control Study.

  14. Nodular opacities in pulmonary paragonimiasis: Radiologic pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Han, Young Min; Jeong, Su Hyun; Kang, Myung Jae; Chung, Gyung Ho; Sohn, Myung Hee; Kim, Chong Soo; Choi, Ki Chul [Chonbuk National University College of Medicine, Seoul (Korea, Republic of)

    1993-11-15

    The CT findings of pulmonary paragonimiasis are well known. However, the pathologic findings of nodular opacity have not been studied sufficiently. To clarify the nature of nodular opacity on CT in patient with paragonimiasis, we reviewed CT scans of 9 patients retrospectively. Five of them were compared with pathologic findings of the resected specimen. Other four patients were confirmed by needle aspiration biopsy. CT scans showed nodular opacities of 5 to 30 mm in diameter which were accompanied with perinodular air-space consolidations in all patients. The usual location of nodular opacities were peripheral zone of the lung. Correlation with pathologic findings demonstrated that the nodular opacity on CT scans corresponded to the parasitic granuloma with central ova and intracystic worm. The most frequent CT findings of pulmonary paragonimiasis was nodular opacities with perinodular air-space consolidations caused by parasitic granuloma or intracystic worm.

  15. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    Directory of Open Access Journals (Sweden)

    G. S. Jones

    2011-01-01

    Full Text Available Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC, produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  16. Opportunities for Laboratory Opacity Chemistry Studies to Facilitate Characterization of Young Giant Planets and Brown Dwarfs

    Science.gov (United States)

    Marley, Mark; Freedman, Richard S.

    2015-01-01

    The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.

  17. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: menahem.krief@mail.huji.ac.il [The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel)

    2016-04-10

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.

  18. Infrared studies of temperature-dependent phase transitions in ammonium sulfate aerosol and the development of a visible light scattering technique to measure atmospheric particle compositions

    Science.gov (United States)

    Onasch, Timothy Bruce

    1999-10-01

    Sulfate containing particles exist globally throughout the atmosphere and impact its chemistry and radiative properties. Under the low temperature conditions found in the upper troposphere and lower stratosphere, sulfate particles act as nuclei for cirrus clouds and facilitate heterogeneous reactions which affect ozone chemistry. Both of these processes are dependent upon the chemical composition and phase of the background aerosol, and thus the behavior of these particles at low temperatures. This thesis represents two approaches undertaken to investigate the composition and phase of atmospheric aerosols. First, a flow tube system has been developed to study the low temperature behavior of atmospherically relevant particles within a controlled laboratory environment. Second, a visible light scattering technique has been developed to characterize the physical properties of particles in situ from an aircraft platform. The relative humidities of temperature-dependent phase transitions in ammonium sulfate aerosols were measured within a flow tube system. A chilled-mirror hygrometer measured the relative humidity and Fourier transform infrared spectroscopy was utilized to probe the phase of the particles and to characterize their microphysical properties. The relative humidity of deliquescence changed from 80% to 82% over the temperature range from 294.8 K to 258.0 K, in agreement with thermodynamic theory. The efflorescence relative humidity of submicron ammonium sulfate particles increased slightly from 32% to 39% as the temperature decreased from 294.8 K to 234.3 K. The latter result suggests that salt particles may exist as metastable solution droplets under low relative humidity conditions for significant time periods in the upper troposphere. To measure particle refractive indices in situ, a visible light scattering technique based on NCAR's Multiangle Aerosol Spectrometer Probe (MASP) was developed. The MASP was calibrated with monodisperse particles having

  19. Surgery for Pulmonary Multiple Ground Glass Opacities

    Directory of Open Access Journals (Sweden)

    Qun WANG

    2016-06-01

    Full Text Available The incidence of pulmonary ground glass opacity (GGO has been increasing in recent years, with a great number of patients having multiple GGOs. Unfortunately, the management of multiple GGOs is still controversial. Pulmonary GGO is a radiological term, consisting of different pathological types. Some of the GGOs are early-staged lung cancer. GGO is an indolent nodule, only a small proportion of GGOs change during observation, which does not influence the efficacy of surgery. . The timing of surgery for multiple GGOs mainly depends on the predominant nodule and surgery is recommended if the solid component of the predominant nodule >5 mm. Either lobectomy or sub-lobectomy is feasible. GGOs other than the predominant nodule can be left unresected. Multiple GGOs with high risk factors need mediastinal lymph node dissection or sampling.

  20. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  1. Measurements of mesospheric water vapour, aerosols and temperatures with the Spectral Absorption Line Imager (SALI-AT)

    Science.gov (United States)

    Shepherd, M. G.; Mullins, M.; Brown, S.; Sargoytchev, S. I.

    2001-08-01

    Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, mesospheric clouds (MC). The processes of formation and occurrence parameters of MC constitute an interesting problem in their own right, but recently evidence has been provided which suggests that they are a critical indicator of atmospheric change. The aim of the SALI-AT experiment is to make simultaneous (although not strictly collocated) measurements of water vapour, aerosols and temperature in the mesosphere and the mesopause region under twilight condition in the presence of mesospheric clouds. The water vapour will be measured in the regime of solar occultation utilizing a water vapour absorption band at 936 nm wavelength employing the SALI (Spectral Absorption Line Imager) instrument concept. A three-channel zenith photometer, AT-3, with wavelengths of 385 nm, 525 nm, and 1040 nm will measure Mie and Rayleigh scattering giving both mesospheric temperature profiles and the particle size distribution. Both instruments are small, low cost and low mass. It is envisioned that the SALI-AT experiment be flown on a small rocket - the Improved Orion/Hotel payload configuration, from the Andoya Rocket range, Norway. Alternatively the instrument can be flown as a "passenger" on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height.

  2. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-01-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface

  3. Code developer's guide to the Styx Liaison Library: a software interface for accessing and manipulating Styx opacity data

    Energy Technology Data Exchange (ETDEWEB)

    Pfeufer, G.W.

    1985-04-01

    The Styx Liaison Library (STYXLL) is a new software interface under development on the Cray-1 and Cray X-MP computers at Los Alamos. STYXLL provides standardized techniques for accessing and manipulating gray and multi-group opacity data in Styx format. The first version of STYXLL provides interrogation methods for seeking a list of materials on a random-access Styx opacity file, and for determining the storage parameters of the data defined for these materials. In particular, the query procedures for the opacity files determine, for each requested material found on the file, the first-word disk address, the number of words, and the internal storage substructure for the DS530 data structure (Rosseland absorption and scattering opacities as a function of photon energy and material density and temperature, and Rosseland gray total opacities as a function of material density and temperature). Knowledge of these storage parameters simplifies data acquisition to a set of read specifications from a ''generic'' random-access file. A tutorial illustrates the use of the Styx Liaison Library and examines the output from the interrogation of Styx opacity files. An overview of the Styx data base and a detailed discussion of the query procedures for an opacity file complement the tutorial. A Glossary summarizes the terms used in these discussions.

  4. Laboratory Measurements of Sulfuric Acid Vapor Opacity at Millimeter Wavelengths Under Venus Conditions

    Science.gov (United States)

    Akins, Alexander Brooks; Steffes, Paul G.

    2017-10-01

    Radio astronomical observations of the lower-cloud and sub-cloud regions of the Venusian atmosphere at millimeter wavelengths can provide insight into the nature of the sub-cloud sulfur chemistry. Previous observations (de Pater et al., Icarus 90, 1991 and Sagawa, J. Natl. Inst. of Inf. And Comm. Tech. 55, 2008) indicate substantial variations in Venus disc brightness at millimeter wavelengths, likely due to variations in SO2 and H2SO4 vapor abundances. Although previous measurements of H2SO4 vapor opacity provide accurate information at centimeter wavelengths (Kolodner and Steffes, Icarus 132, 1998), extrapolation to millimeter wavelength observations is speculative. A Fabry-Perot open resonator with a quality factor in excess of 15,000 has been designed to measure the opacity of H2SO4 vapor in a CO2 atmosphere under Venus temperature and pressure conditions below the clouds. The resonator system has been designed using corrosion-resistant materials to ensure data integrity. Opacity measurements made with this system target the 2-4 millimeter wavelength range, applicable to recent Atacama Large Millimeter Array observations of Venus. Initial laboratory results for H2SO4 vapor opacity will be presented, and the implications of these results for pressure broadened opacity formalisms will be discussed. In addition to radio astronomical observations, these results of these measurements can aid in the interpretation of radiometer and radio occultation measurements from future Venus missions, such as the Venera D orbiter. This work is supported by the NASA Solar System Workings Program under grant NNX17AB19G.

  5. Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Aerosols and Greenhouse Gases

    Science.gov (United States)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.; Correa, G. J. P.

    2014-12-01

    Climate model outputs usually have much coarser spatial resolution than is needed by impacts models. Although higher resolution can be achieved using regional climate models for dynamical downscaling, further downscaling is often required. The final resolution gap is often closed with a combination of spatial interpolation and bias correction, which constitutes a form of statistical downscaling. We use this technique to downscale regional climate model data and evaluate its skill in reproducing extreme events. We downscale output from the North American Regional Climate Change Assessment Program (NARCCAP) dataset from its native 50-km spatial resolution to the 4-km resolution of University of Idaho's METDATA gridded surface meterological dataset, which derives from the PRISM and NLDAS-2 observational datasets. We operate on the major variables used in impacts analysis at a daily timescale: daily minimum and maximum temperature, precipitation, humidity, pressure, solar radiation, and winds. To interpolate the data, we use the patch recovery method from the Earth System Modeling Framework (ESMF) regridding package. We then bias correct the data using Kernel Density Distribution Mapping (KDDM), which has been shown to exhibit superior overall performance across multiple metrics. Finally, we evaluate the skill of this technique in reproducing extreme events by comparing raw and downscaled output with meterological station data in different bioclimatic regions according to the the skill scores defined by Perkins et al in 2013 for evaluation of AR4 climate models. We also investigate techniques for improving bias correction of values in the tails of the distributions. These techniques include binned kernel density estimation, logspline kernel density estimation, and transfer functions constructed by fitting the tails with a generalized pareto distribution.

  6. Linear opacities on HRCT in bronchiolitis obliterans organising pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.M.; Flower, C.D.R. [Dept. of Radiology, Addenbrookes Hospital, Univ. of Cambridge (United Kingdom); Schnyder, P.; Leuenberger, P. [Depts. of Radiology and Medicine, University Hospital, CHUV, Lausanne (Switzerland); Verschakelen, J. [Dept. of Radiology, University Hospital, Leuven (Belgium)

    1999-07-01

    The aim of this study was to report the high-resolution computed tomography (HRCT) appearances of linear opacities that may occur in isolation or in combination with other changes in bronchiolitis obliterans organising pneumonia (BOOP). Eleven patients with BOOP and linear opacities on HRCT were identified at three independent teaching hospitals. The HRCT images and clinical course of each patient were reviewed. Two distinct types of linear opacity were identified. The type-1 opacity extended in a radial manner along the line of the bronchi towards the pleura and was usually intimately related to bronchi. The type-2 opacity occurred in a sub-pleural location and bore no relationship to the bronchi. Both types occurred most commonly in the lower lobes, frequently were associated with multi-focal areas of consolidation and usually completely resolved with treatment. There was no associated bronchiectasis, irreversible volume loss or a reticular or honeycomb pattern. In 2 patients linear opacities were the sole abnormality on HRCT. Bronchiolitis obliterans organising pneumonia may occur in a pure ''linear form'' or HRCT may demonstrate linear opacities in addition to multi-focal consolidation. (orig.)

  7. Computing NLTE Opacities -- Node Level Parallel Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-11

    Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.

  8. Exome Array Analysis of Nuclear Lens Opacity.

    Science.gov (United States)

    Loomis, Stephanie J; Klein, Alison P; Lee, Kristine E; Chen, Fei; Bomotti, Samantha; Truitt, Barbara; Iyengar, Sudha K; Klein, Ronald; Klein, Barbara E K; Duggal, Priya

    2017-11-28

    Nuclear cataract is the most common subtype of age-related cataract, the leading cause of blindness worldwide. It results from advanced nuclear sclerosis, or opacity in the center of the optic lens, and is affected by both genetic and environmental risk factors, including smoking. We sought to understand the genetic factors associated with nuclear sclerosis through interrogation of rare and low frequency coding variants using exome array data. We analyzed Illumina Human Exome Array data for 1,488 participants of European ancestry in the Beaver Dam Eye Study who were without cataract surgery for association with nuclear sclerosis grade, controlling for age and sex. We performed single-variant regression analysis for 32,138 variants with minor allele frequency (MAF) ≥0.003. In addition, gene-based analysis of 11,844 genes containing at least two variants with MAF nuclear sclerosis, the possible association with the RNF149 gene highlights a potential candidate gene for future studies that aim to understand the genetic architecture of nuclear sclerosis.

  9. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    Science.gov (United States)

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  10. SONUBHAU BASWANT COLLEGE OF ARTS AND COMMERCE LIBRARY’S SOUL OPAC AND WEB OPAC

    OpenAIRE

    Waghmode, S. S.

    2014-01-01

    “Save the time of the reader” it is the 4th Law of S.R. Ranganathan’s Five Laws of Library Science (1931). It is a challenge to ask whether the printed Library catalogues precisely do this for its library users. There is a common understanding that the evolution of OPAC should be in line with the evolution of technology and its services. Users are should be satisfied from library services. Online Public Access Catalogue should not be a complex matrix for the users. There is no doubt that Libr...

  11. Is Seeing Believing? Consumer Responses to Opacity of Product Packaging

    National Research Council Canada - National Science Library

    Sucharita Chandran; Rishtee Kumar Batra; Benjamin Lawrence

    2009-01-01

      Prior studies have shown that product and packaging design influences consumer reactions and purchase behaviors, however, research has neglected to examine a package's opacity or lack of transparency...

  12. Phototherapeutic Keratectomy Outcomes in Superficial Corneal Opacities

    Directory of Open Access Journals (Sweden)

    Khalid Al Arfaj

    2011-01-01

    Full Text Available Purpose Compare the effectiveness of Phototherapeutic keratectomy (PTK in treatment corneal dystrophies versus superficial corneal scars: visual outcomes, recurrence rate and safety profile. Methods PTK was performed in 51 eyes of 51 patients. Data regarding the indications for PTK, ablation depth, symptomatic relief, pre-and postoperative best spectacle-corrected visual acuity (BSCVA, spherical equivalent changes, recurrence and complications were analyzed. The indications for PTK in our study were classified into two categories – group A: patients with corneal dystrophies (n = 23 and the other group B (n = 28 with other indications. Results The average age of the patients was 47 years (±16.4. The mean follow up period was 15.16 months (±10.01 months. Post operatively, there were no significant complications. While the overall BSCVA in the patients improved from 20/41 (0.484 to 20/32 (0.645, group A showed improvement from 20/35 (0.561 to 20/29 (0.687, as compared to group B in which BSCVA improved from 20/47 (0.421 to 20/33 (0.611. The most common indication in group A was granular corneal dystrophy (n = 10 and the most common indication in group B was post traumatic/infectious corneal scar or opacity (n = 10. Eighty-six percent (n = 44 of all patients had alleviation of symptoms. Recurrence of symptoms was seen in 3 eyes of recurrent corneal erosions which required retreatment. Conclusion PTK is a safe and effective procedure. The outcome of this study suggests that PTK improves BSCVA. PTK appears to improve ocular surface health. Furthermore, PTK can be recommended to most patients with corneal dystrophies as a treatment modality prior to other more invasive procedure (viz. penetrating keratoplasty.

  13. Ipsilateral rotational autokeratoplasty for the management of corneal opacities.

    Science.gov (United States)

    Verma, N; Melengas, S; Garap, J A

    1999-02-01

    Penetrating keratoplasty is the logical solution for the management of corneal opacities. In situations such as in Papua New Guinea, where donor corneal tissue is scarce and corneal opacities are plenty, an alternative procedure for the management of corneal opacities in the form of ipsilateral rotational autokeratoplasty was considered. In the present prospective study, ipsilateral rotational autokeratoplasty was performed in 17 eyes over a 2 year period in a general hospital. The patient's cornea was trephined eccentrically and the corneal opacity was dialed out of the visual axis and was replaced by clear peripheral cornea. Most opacities were leucomata (76.4%). The average size of the opacity was 5.1 mm and the corneal button size was 7 mm.A final visual acuity of 6/18 or better was obtained in 64.7% of cases (at 12 months). No significant postoperative complications were encountered. No complex formula was needed to calculate the size of the button and, by simply adding 3 mm to the pupillary diameter in standard illumination, one could make an estimation of the graft diameter. Rotational autokeratoplasty has a definite role in places where donor corneal tissue is scarce, in patients in whom long-term steroids are a risk or in situations where follow up of patients is difficult. Rejection is a theoretical impossibility, but late endothelial failure could occur, requiring regrafting. Rotational autokeratoplasty should be seriously considered as an alternative to conventional penetrating keratoplasty.

  14. Computational design of short pulse laser driven iron opacity experiments

    Science.gov (United States)

    Martin, M. E.; London, R. A.; Goluoglu, S.; Whitley, H. D.

    2017-02-01

    The resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emission requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.

  15. Modeling and evaluation of the global sea-salt aerosol distribution: sensitivity to size-resolved and sea-surface temperature dependent emission schemes

    Directory of Open Access Journals (Sweden)

    M. Spada

    2013-12-01

    Full Text Available One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multiscale chemical transport model NMMB/BSC-CTM. We compare 5 yr global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1. Model results are highly sensitive to the introduction of sea-surface-temperature (SST-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 Tg yr−1 to 8114 Tg yr−1, lifetime varies between 7.3 h and 11.3 h, and the average column mass load is between 5.0 Tg and 7.2 Tg. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8% to +38.8%. Surface concentration is simulated with normalized biases ranging from −9.5% to +28% and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  16. Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP

    Science.gov (United States)

    Stancalie, Viorica; Rachlew, Elisabeth

    We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.

  17. Random sampling technique for ultra-fast computations of molecular opacities for exoplanet atmospheres

    Science.gov (United States)

    Min, M.

    2017-10-01

    Context. Opacities of molecules in exoplanet atmospheres rely on increasingly detailed line-lists for these molecules. The line lists available today contain for many species up to several billions of lines. Computation of the spectral line profile created by pressure and temperature broadening, the Voigt profile, of all of these lines is becoming a computational challenge. Aims: We aim to create a method to compute the Voigt profile in a way that automatically focusses the computation time into the strongest lines, while still maintaining the continuum contribution of the high number of weaker lines. Methods: Here, we outline a statistical line sampling technique that samples the Voigt profile quickly and with high accuracy. The number of samples is adjusted to the strength of the line and the local spectral line density. This automatically provides high accuracy line shapes for strong lines or lines that are spectrally isolated. The line sampling technique automatically preserves the integrated line opacity for all lines, thereby also providing the continuum opacity created by the large number of weak lines at very low computational cost. Results: The line sampling technique is tested for accuracy when computing line spectra and correlated-k tables. Extremely fast computations ( 3.5 × 105 lines per second per core on a standard current day desktop computer) with high accuracy (≤1% almost everywhere) are obtained. A detailed recipe on how to perform the computations is given.

  18. Model-independent Constraints on Cosmic Curvature and Opacity

    Science.gov (United States)

    Wang, Guo-Jian; Wei, Jun-Jie; Li, Zheng-Xiang; Xia, Jun-Qing; Zhu, Zong-Hong

    2017-09-01

    In this paper, we propose to estimate the spatial curvature of the universe and the cosmic opacity in a model-independent way with expansion rate measurements, H(z), and type Ia supernova (SNe Ia). On the one hand, using a nonparametric smoothing method Gaussian process, we reconstruct a function H(z) from opacity-free expansion rate measurements. Then, we integrate the H(z) to obtain distance modulus μ H, which is dependent on the cosmic curvature. On the other hand, distances of SNe Ia can be determined by their photometric observations and thus are opacity-dependent. In our analysis, by confronting distance moduli μ H with those obtained from SNe Ia, we achieve estimations for both the spatial curvature and the cosmic opacity without any assumptions for the cosmological model. Here, it should be noted that light curve fitting parameters, accounting for the distance estimation of SNe Ia, are determined in a global fit together with the cosmic opacity and spatial curvature to get rid of the dependence of these parameters on cosmology. In addition, we also investigate whether the inclusion of different priors for the present expansion rate (H 0: global estimation, 67.74 ± 0.46 km s-1 Mpc-1, and local measurement, 73.24 ± 1.74 km s-1 Mpc-1) exert influence on the reconstructed H(z) and the following estimations of the spatial curvature and cosmic opacity. Results show that, in general, a spatially flat and transparent universe is preferred by the observations. Moreover, it is suggested that priors for H 0 matter a lot. Finally, we find that there is a strong degeneracy between the curvature and the opacity.

  19. Conceptual design of initial opacity experiments on the national ignition facility

    Science.gov (United States)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  20. Organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  1. Electron Density from Balmer Series Hydrogen Lines and Ionization Temperatures in Inductively Coupled Argon Plasma Supplied by Aerosol and Volatile Species

    Directory of Open Access Journals (Sweden)

    Jolanta Borkowska-Burnecka

    2016-01-01

    Full Text Available Electron density and ionization temperatures were measured for inductively coupled argon plasma at atmospheric pressure. Different sample introduction systems were investigated. Samples containing Sn, Hg, Mg, and Fe and acidified with hydrochloric or acetic acids were introduced into plasma in the form of aerosol, gaseous mixture produced in the reaction of these solutions with NaBH4 and the mixture of the aerosol and chemically generated gases. The electron densities measured from Hα, Hβ, Hγ, and Hδ lines on the base of Stark broadening were compared. The study of the H Balmer series line profiles showed that the ne values from Hγ and Hδ were well consistent with those obtained from Hβ which was considered as a common standard line for spectroscopic measurement of electron density. The ne values varied from 0.56·1015 to 1.32·1015 cm−3 and were the highest at loading mixture of chemically generated gases. The ionization temperatures of plasma, determined on the base of the Saha approach from ion-to-atom line intensity ratios, were lower for Sn and Hg (6500–7200 K than those from Fe and Mg lines (7000–7800 K. The Sn II/Sn I and Hg II/Hg I, Fe II/Fe I, and Mg II/Mg I intensity ratios and the electron densities (ne were dependent on experimental conditions of plasma generation. Experimental and theoretically calculated ionization degrees were compared.

  2. The effect of temperature and water on secondary organic aerosol formation from ozonolysis of limonene, Δ3-carene and α-pinene

    Directory of Open Access Journals (Sweden)

    E. Ljungström

    2008-11-01

    Full Text Available The effect of reaction temperature and how water vapour influences the formation of secondary organic aerosol (SOA in ozonolysis of limonene, Δ3-carene and α-pinene, both regarding number and mass of particles, has been investigated by using a laminar flow reactor (G-FROST. Experiments with cyclohexane and 2-butanol as OH scavengers were compared to experiments without any scavenger. The reactions were conducted in the temperature range between 298 and 243 K, and at relative humidities between <10 and 80%. Results showed that there is still a scavenger effect on number and mass concentrations at low temperatures between experiments with and without an addition of an OH scavenger. This shows that the OH chemistry is influencing the SOA formation also at these temperatures. The overall temperature dependence on SOA formation is not as strong as expected from partitioning theory. In some cases there is even a positive temperature dependence that must be related to changes in the chemical mechanism and/or reduced rates of secondary chemistry at low temperatures. The precursor's α-pinene and Δ3-carene exhibit a similar temperature dependence regarding both number and mass of particles formed, whereas limonene shows a different dependence. The water effect at low temperature could be explained by physical uptake and cluster stabilisation. At higher temperatures, only a physical explanation is not sufficient and the observations are in line with water changing the chemical mechanism or reaction rates. The data presented adds to the understanding of SOA contribution to new particle formation and atmospheric degradation mechanisms.

  3. ATLAS9: Model atmosphere program with opacity distribution functions

    Science.gov (United States)

    Kurucz, Robert L.

    2017-10-01

    ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

  4. Verification of Opacity and Diagnosability for Pushdown Systems

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available In control theory of discrete event systems (DESs, one of the challenging topics is the extension of theory of finite-state DESs to that of infinite-state DESs. In this paper, we discuss verification of opacity and diagnosability for infinite-state DESs modeled by pushdown automata (called here pushdown systems. First, we discuss opacity of pushdown systems and prove that opacity of pushdown systems is in general undecidable. In addition, a decidable class is clarified. Next, in diagnosability, we prove that under a certain assumption, which is different from the assumption in the existing result, diagnosability of pushdown systems is decidable. Furthermore, a necessary condition and a sufficient condition using finite-state approximations are derived. Finally, as one of the applications, we consider data integration using XML (Extensible Markup Language. The obtained result is useful for developing control theory of infinite-state DESs.

  5. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P. [Las Palmas de Gran Canaria Univ., Dept. de Fisica (Spain); Sauvan, P. [Universidad Nacional de Educacion a Distancia, Dept. de Ingenieria Energetica, Madrid (Spain); Minguez, E. [Madrid Univ. Politecnica, Instituto de Fusion Nuclear-DENIM (Spain)

    2006-06-15

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  6. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio

    2016-03-03

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.

  7. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during...... aerosol contribution from wood combustion will not be sufficient. Arctic aerosols were investigated during several time periods with different instruments and time resolutions. Two years of weekly measurements of black carbon and sulfate at the Villum Research Station showed elevated concentrations during...

  8. Dry Live Aerosol Anthrax Vaccine

    Science.gov (United States)

    In preparing the dry live aerosol anthrax vaccine the use of a spore culture of the STI-1 single vaccine strain and culturing of the latter on a...to 10 billion spores in 1 mm of wash. Dry live aerosol anthrax vaccine is suitable for aerosol immunization if the calculated aspiration dose, when...the viable spores in dry live aerosol anthrax vaccine, it is necessary to store it under deep vacuum (in the range of 100-150 microns) and at temperatures not exceeding +10 degrees.

  9. The effect of preheating and opacity on the sorption and solubility of a composite resin.

    Science.gov (United States)

    Castro, Fabrício Luscino Alves de; Pazinatto, Flávia Bittencourt; de Lima, Érick; Cesar, Paulo Francisco; Reges, Rogério Vieira

    2016-01-01

    This study evaluated the influence of material opacity and preheating on the sorption and solubility of a composite resin material. A commercially available composite resin and an 8 × 2-mm circular metallic matrix were used to fabricate a total of 60 specimens in 6 shades, of which 3 had conventional opacity (CA2, CA3, and CA3.5) and 3 were opaque (OA2, OA3, and OA3.5). Specimens were prepared at a room temperature of 25°C or preheated to 60°C (n = 5 per shade at each temperature). The specimens were weighed 3 times: M1, dried for 24 hours at 37°C; M2, stored for 7 days in 75% ethanol at 37°C; and M3, dried for an additional 24 hours at 37°C. The weights were used to calculate the sorption and solubility of the composite resin and were analyzed using 2-way analysis of variance and Tukey tests (α = 5%). Composite resin specimens heated at 60°C yielded lower values of sorption and solubility than did specimens prepared at 25°C (P solubility of conventional and opaque composite shades were found to be similar (P > 0.05), except for shade CA2, which presented a greater mean solubility value than OA2 (P = 0.004). Therefore, preheating was beneficial, as it lowered both the sorption and solubility of the evaluated composite resin, but opacity had little effect on these properties.

  10. An Assessment of Online Public Access Catalogue (OPAC ...

    African Journals Online (AJOL)

    An Assessment of Online Public Access Catalogue (OPAC) Utilization in Two Selected University Libraries in Lagos State, Nigeria. ... It was found out that the computerized catalogue is a very important service for any library system, because this has helped the users in their information seeking. Some problems faced with ...

  11. 40 CFR 75.14 - Specific provisions for monitoring opacity.

    Science.gov (United States)

    2010-07-01

    ... calendar year. (d) Diesel-fired units and dual-fuel reciprocating engine units. The owner or operator of an affected diesel-fired unit or a dual-fuel reciprocating engine unit is exempt from the opacity monitoring... performance specifications in Performance Specification 1 in appendix B to part 60 of this chapter. Any...

  12. Lidar Observation of Aerosol and Temperature Stratification over Urban Area During the Formation of a Stable Atmospheric PBL

    Science.gov (United States)

    Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.

    1992-01-01

    In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.

  13. Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature

    National Research Council Canada - National Science Library

    Denjean, C; Formenti, P; Picquet-Varrault, B; Camredon, M; Pangui, E; Zapf, P; Katrib, Y; Giorio, C; Tapparo, A; Temime-Roussel, B; Monod, A; Aumont, B; Doussin, J. F

    2015-01-01

    ...) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing , photochemistry, and diurnal temperature cycling upon SOA properties...

  14. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    Science.gov (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  15. Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements

    Science.gov (United States)

    Vicente-Retortillo, Álvaro; Martínez, Germán. M.; Renno, Nilton O.; Lemmon, Mark T.; de la Torre-Juárez, Manuel

    2017-04-01

    We calculate the seasonal and interannual variation in dust aerosol particle size above Gale Crater during the first 1413 Martian solar days (sols = 24.6 h) of the Mars Science Laboratory mission. Measurements of UV radiation made by the Rover Environmental Monitoring Station in combination with atmospheric opacities retrieved from the Mastcam instrument are used for the calculations. Our results indicate that the dust effective radius varies significantly with season, ranging from 0.6 μm during the low opacity season (Ls = 60°-140°) to 2 μm during the high opacity season (Ls = 180°-360°). Our results suggest that Gale Crater is affected by dust events of high aerosol content originated at various distances from it. Our results improve the accuracy of estimations of ultraviolet radiation fluxes at the Martian surface. Moreover, our results have important implications because the lifetime of suspended dust and its ability to nucleate clouds are affected by particle size.

  16. [Glycosaminoglycans in subepithelial opacity after excimer laser keratectomy].

    Science.gov (United States)

    Nakayasu, K; Gotoh, T; Ishikawa, T; Kanai, A

    1996-05-01

    We evaluated histochemically the characteristics of glycosaminoglycans and proteoglycans in the corneal subepithelial opacity after excimer laser keratectomy on rabbit corneas. We also performed the same evaluations on the cornea after mechanical keratectomy. Twenty days after the operations, the area immediately subjacent to the epithelium showed strong staining with toluidine blue, alcian blue, and colloidal iron. However, after treatment with chondroitinase ABC or chondroitinase AC, alcian blue staining in this area decreased dramatically. Antilarge proteoglycan antibody also reacted strongly in this area. Histochemical and immunohistochemical examination of the cornea where mechanical keratectomy was done showed basically similar findings with the cornea of excimer laser keratectomy. These results suggest that large-molecula proteoglycans with chondroitine sulfate side chains become localized in the subepithelial area after two different kinds of keratectomies. We presume from histochemical and immunohistochemical observations that the subepithelial opacity observed after excimer laser keratectomy is not a special reaction to excimer laser but simply a corneal scar formed after stromal resection.

  17. Studies on the Effect of Sub-zero Temperatures on the Formation of Extremely Low Volatility Dimer Esters in Secondary Organic Aerosol from Alpha-Pinene

    Science.gov (United States)

    Kristensen, Kasper; Normann Jensen, Louise; Bilde, Merete

    2016-04-01

    The oxidation of volatile organic compounds (VOC) is considered a major source of secondary organic aerosols (SOA) in the atmosphere. Recently, extremely low volatility organic compounds, or ELVOC, formed from the oxidation of VOCs have been shown to play a crucial role in new particle formation (Ehn et al., 2014). In addition, higher molecular weight dimer esters originating from the oxidation of the biogenic VOC alpha-pinene have been observed in both laboratory-generated and ambient SOA (Kristensen et al., 2013). The low volatility of the dimer esters along with an observed rapid formation makes these high molecular weight compounds likely candidates involved in new particle formation from the oxidation of alpha-pinene. Furthermore, laboratory experiments show that the dimer esters only form in the presence of ozone, thus may be used as tracers for the ozone-initiated oxidation of alpha-pinene, and are therefore indicative of enhanced anthropogenic activities. In this work, we present the results of a series of oxidation experiments performed in the newly constructed cold-room smog chamber at Aarhus University. This unique and state-of-the-art Teflon chamber allows for atmospheric simulations of the oxidation VOCs and subsequent SOA formation at temperatures down to -16 °C. In this study, ozonolysis and photochemical oxidations of alpha-pinene are performed at temperatures ranging from +20 to -16 °C. Chemical characterization of the formed SOA is performed using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The results show significant differences in the chemical composition related to the experiment temperature. In particularly, the concentration of the high molecular weight dimer esters showed to be highly affected by temperature. Interestingly, preliminary results show higher formation of dimer esters related to increased SOA formation rate, thus indicating that these particle-phase ELVOCs may be linked with new particle

  18. Lightweight, high-opacity Bible paper by fiber loading

    Science.gov (United States)

    Klaus Doelle; Oliver Heise; John H. Klungness; Said M. AbuBakr

    2000-01-01

    This paper has been prepared in order to discuss Fiber Loading™ for lightweight, high-opacity bible paper. Incorporating fillers within pulp fibers has been subject to research since 1960 (Green et al. 1962, Scallan et al. 1985, Allen et al. 1992). Fiber Loading™ is a method for manufacturing precipitated calcium carbonate (PCC) directly within the pulp processing...

  19. Measurements of the K -Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser

    Science.gov (United States)

    Preston, T. R.; Vinko, S. M.; Ciricosta, O.; Hollebon, P.; Chung, H.-K.; Dakovski, G. L.; Krzywinski, J.; Minitti, M.; Burian, T.; Chalupský, J.; Hájková, V.; Juha, L.; Vozda, V.; Zastrau, U.; Lee, R. W.; Wark, J. S.

    2017-08-01

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μ m thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K -shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the K α transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  20. Measurements of the K-Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser.

    Science.gov (United States)

    Preston, T R; Vinko, S M; Ciricosta, O; Hollebon, P; Chung, H-K; Dakovski, G L; Krzywinski, J; Minitti, M; Burian, T; Chalupský, J; Hájková, V; Juha, L; Vozda, V; Zastrau, U; Lee, R W; Wark, J S

    2017-08-25

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  1. Enforcement of opacity security properties for ship information system

    Directory of Open Access Journals (Sweden)

    Bowen Xing

    2016-09-01

    Full Text Available In this paper, we consider the cybersecurity issue of ship information system (SIS from a new perspective which is called opacity. For a SIS, its confidential information (named as “secret” may be leaked through the working behaviors of each Distributed Control Unit (DCU from an outside observer called an “intruder” which is able to determine ship's mission state by detecting the source of each data flow from the corresponding DCUs in SIS. Therefore we proposed a dual layer mechanism to enforce opacity by activating non-essential DCU during secret mission. This mechanism is calculated by two types of insertion functions: Safety-assured insertion function (fIS and Admissibility-assured insertion function (fIA. Due to different objectives, fIS is designed to confuse intruder by constructing a non-secret behaviors from a unsafe one, and the division of fIA is to polish the modified output behaviors back to normal. We define the property of “I2–Enforceability” that dual layer insertion functions has the ability to enforce opacity. By a given mission map of SIS and the marked secret missions, we propose an algorithm to select fIS and compute its matchable fIA and then the DCUs which should be activated to release non-essential data flow in each step is calculable.

  2. Radiative and temperature effects of aerosol simulated by the COSMO-Ru model for different atmospheric conditions and their testing against ground-based measurements and accurate RT simulations

    Science.gov (United States)

    Chubarova, Nataly; Poliukhov, Alexei; Shatunova, Marina; Rivin, Gdali; Becker, Ralf; Muskatel, Harel; Blahak, Ulrich; Kinne, Stefan; Tarasova, Tatiana

    2017-04-01

    We use the operational Russian COSMO-Ru weather forecast model (Ritter and and Geleyn, 1991) with different aerosol input data for the evaluation of radiative and temperature effects of aerosol in different atmospheric conditions. Various aerosol datasets were utilized including Tegen climatology (Tegen et al., 1997), updated Macv2 climatology (Kinne et al., 2013), Tanre climatology (Tanre et al., 1984) as well as the MACC data (Morcrette et al., 2009). For clear sky conditions we compare the radiative effects from the COSMO-Ru model over Moscow (55.7N, 37.5E) and Lindenberg/Falkenberg sites (52.2N, 14.1E) with the results obtained using long-term aerosol measurements. Additional tests of the COSMO RT code were performed against (FC05)-SW model (Tarasova T.A. and Fomin B.A., 2007). The overestimation of about 5-8% of COSMO RT code was obtained. The study of aerosol effect on temperature at 2 meters has revealed the sensitivity of about 0.7-1.1 degree C per 100 W/m2 change in shortwave net radiation due to aerosol variations. We also discuss the radiative impact of urban aerosol properties according to the long-term AERONET measurements in Moscow and Moscow suburb as well as long-term aerosol trends over Moscow from the measurements and Macv2 dataset. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Morcrette J.-J.,O. Boucher, L. Jones, eet al, J.GEOPHYS. RES.,VOL. 114, D06206, doi:10.1029/2008JD011235, 2009. Ritter, B. and Geleyn, J., Monthly Weather Review, 120, 303-325, 1992. Tanre, D., Geleyn, J., and Slingo, J., A. Deepak Publ., Hampton, Virginia, 133-177, 1984. Tarasova, T., and Fomin, B., Journal of Atmospheric and Oceanic Technology, 24, 1157-1162, 2007. Tegen, I., Hollrig, P., Chin, M., et al., Journal of Geophysical Research- Atmospheres, 102, 23895-23915, 1997.

  3. Spectrally resolved opacities and Rosseland and Planck mean opacities of lowly ionized gold plasmas: a detailed level-accounting investigation.

    Science.gov (United States)

    Zeng, Jiaolong; Yuan, Jianmin

    2007-08-01

    Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.

  4. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  5. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  6. Aerosol Variability Observed with Rpas

    Science.gov (United States)

    Altstädter, B.; Lampert, A.; Scholtz, A.; Bange, J.; Platis, A.; Hermann, M.; Wehner, B.

    2013-08-01

    To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS) Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter). Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  7. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  8. Radiation attenuation and opacity in smoke and water sprays

    Science.gov (United States)

    Parent, Gilles; Boulet, Pascal; Morlon, Romain; Blanchard, Elizabeth

    2017-08-01

    Radiation attenuation through sprays, smoke and mixings of both media was studied in the infrared and in the visible range, by conducting real scale experiments in a corridor. The effect of water injection by a water mist nozzle and a sprinkler device was investigated. Radiation attenuation in the infrared range and opacity in the visible range were measured, by using a FTIR spectrometer and a dedicated opacimetry device especially designed for the present application. Experiments were done using either a blackbody source for attenuation characterization, or a heptane pool fire aimed at producing smoke for opacity measurements. For tests with smoke, the difficulties raised by the harsh environment involving a hot mixing of gas plus soot and vapor carrying water droplets were circumvented with an original device involving an optical fiber network. Mean infrared transmission was found equal to 12% for the water mist (with a 25 L/min water flowrate) and 37% for the sprinkler (with a 91 L/min water flowrate). Fitting the infrared transmission spectra with results obtained using a Monte Carlo simulation provided an estimation of the water volumetric fraction in the spray. It was shown that the better attenuation capability of the water mist is due to two factors: (1) a higher extinction coefficient of the water mist for a given water volumetric fraction due to the small size of the injected droplets and (2) a higher water volumetric fraction. Opacity measurements in the visible range yielded a measured extinction coefficient in good agreement with an estimation obtained with the Mie theory and the identified water volumetric fraction. Moreover, the water sprays (sprinkler or water mist) was seen to lead to a quick de-stratification of the smoke layer. When the spraying operation was stopped, the visibility re-increased in two main steps: a first step of fast increase and a second step of slow increase needing a few tens of seconds to get again a fully stratified smoke

  9. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  10. The Epidemiology of Cosmetic Treatments for Corneal Opacities in a Korean Population

    OpenAIRE

    Chang, Ki Cheol; Kwon, Ji-Won; Han, Young Keun; Wee, Won Ryang; Lee, Jin Hak

    2010-01-01

    Purpose To describe etiologies and clinical characteristics of corneal opacities leading patients to seek cosmetic treatments. Methods The medical records of 401 patients who presented for cosmetic improvement in corneal opacities between May 2004 and July 2007 were retrospectively reviewed. The following parameters were analyzed: age, gender, cause of corneal opacity, time course of the corneal disease, associated diseases, prior and current cosmetic treatments, visual acuity, location and d...

  11. Mars dust and cloud opacities and scattering properties

    Science.gov (United States)

    Clancy, R. T.; Lee, S. W.

    1992-01-01

    We have recently completed an analysis of the visible emission-phase function (EPF) sequences obtained with the solar-band channel of the Infrared Thermal Mapping (IRTM) instrument onboard the two Viking Orbiters. Roughly 100 of these EPF sequences were gathered during the 1977-1980 period, in which the total broadband (.3-3.0 microns) reflectances of the atmosphere/surface above specific locations on Mars were measured versus emission angle as the spacecraft passed overhead. A multiple scattering radiative transfer program was employed to model the EPF observations in terms of the optical depths of dust/clouds, their single scattering albedos and phase functions, and the Lambert albedos and phase coefficient of the underlying surfaces. Due to the predominance of atmospheric scattering at large atmospheric pathlengths and/or large dust opacities, we were able to obtain strong constraints on the scattering properties of dust/clouds and their opacities for a wide range of latitudes, longitudes, and seasons on Mars.

  12. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  13. DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes

    Science.gov (United States)

    Palaniswaamy, Geethpriya

    The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.

  14. CHANGES OF DUST OPACITY WITH DENSITY IN THE ORION A MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Arabindo; Martin, Peter G.; Nguyen-Luong, Quang [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Polychroni, Danae [INAF-IFSI, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Bontemps, Sylvain; Schneider, Nicola [Universite de Bordeaux, LAB, UMR5804, F-33270 Floirac (France); Abergel, Alain; Konyves, Vera [IAS, CNRS (UMR 8617), Universite Paris-Sud 11, Batiment 121, F-91400 Orsay (France); Andre, Philippe; Arzoumanian, Doris; Hill, Tracey [Laboratoire AIM, C.E.A. Saclay, F-90091 Gif-sur-Yvette (France); Di Francesco, James [National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Pezzuto, Stefano [Istituto di Astrofisica e Planetologia Spaziali IAPS, Istituto Nazionale di Astrofisica INAF, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Testi, Leonardo [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); White, Glenn [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)

    2013-01-20

    We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 {mu}m from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K {sub s}). Our main goal was to investigate the spatial variations of the opacity due to 'big' grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N {sub H} ranging from 1.5 Multiplication-Sign 10{sup 21} cm{sup -2} to 50 Multiplication-Sign 10{sup 21} cm{sup -2}, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, {tau}{sub 1200}, at a fiducial frequency of 1200 GHz (250 {mu}m). Using a calibration of N {sub H}/E(J - K{sub s} ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), {sigma}{sub e}(1200), for every pixel. From a value {approx}1 Multiplication-Sign 10{sup -25} cm{sup 2} H{sup -1} at the lowest column densities that is typical of the high-latitude diffuse ISM, {sigma}{sub e}(1200) increases as N {sup 0.28} {sub H} over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 Multiplication-Sign 10{sup -31} W H{sup -1}, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for

  15. Microcomputer programs for particulate control: section failure; baghouse; plume opacity prediction; and in-stack opacity calculator. Software

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, L.E.

    1985-09-01

    IBM-PC usable versions of several computer models useful in particulate control are provided. The models were originally written for the TRS-80 Model I-III series of microcomputers and have been translated to run on the IBM-PC. The documentation for the TRS-80 versions applies to the IBM-PC versions. The programs are written in FORTRAN and are provided in both source (FORTRAN) and executable form. Some small machine language routines are used to format the screen for data entry. These routines limit the programs to IBM-PC and close clones. The minimum hardware requirements are 256K IBM-PC or close clone, a monochrome monitor, and a disk drive. A printer is useful but not required. The following computer programs are provided in the four-disk package: (1) ESP section failure model, (2) GCA/EPA baghouse model, (3) Plume opacity prediction model, and (4) In-stack opacity calculator. All the models are documented in EPA report Microcomputer Programs for Particulate Control, EPA-600/8-85-025a (PB86-146529). The models provide useful tools for those involved in particulate control.

  16. Opacity Build-up in Impulsive Relativistic Sources

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-09-28

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production ({gamma}{gamma} {yields} e{sup +}e{sup -}) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, {tau}{gamma}{gamma}, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R{sub 0} {le} R {le} R{sub 0}+{Delta}R. This is particularly relevant for GRB internal shocks. We find that in an impulsive source ({Delta}R {approx}< R{sub 0}), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy {var_epsilon}1(T) where t{gamma}{gamma}({var_epsilon}1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy {var_epsilon}1* {approx} {var_epsilon}1({Delta}T) where {Delta}T is the duration of the emission episode. Furthermore, photons with energies {var_epsilon} > {var_epsilon}1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth {tau}{gamma}{gamma}({var_epsilon}) initially increases with time and {var_epsilon}1(T) correspondingly decreases with time, so that photons of energy {var_epsilon} > {var

  17. Radiative hydrodynamics simulations of red supergiant stars. IV. Gray versus non-gray opacities

    Science.gov (United States)

    Chiavassa, A.; Freytag, B.; Masseron, T.; Plez, B.

    2011-11-01

    Context. Red supergiants are massive evolved stars that contribute extensively to the chemical enrichment of our Galaxy. It has been shown that convection in those stars produces large granules that cause surface inhomogeneities and shock waves in the photosphere. The understanding of their dynamics is crucial for unveiling the unknown mass-loss mechanism, their chemical composition, and their stellar parameters. Aims: We present a new generation of red supergiant simulations with a more sophisticated opacity treatment performed with 3D radiative-hydrodynamics code CO5BOLD. Methods: In the code the coupled equations of compressible hydrodynamics and non-local radiation transport are solved in the presence of a spherical potential. The stellar core is replaced by a special spherical inner boundary condition, where the gravitational potential is smoothed and the energy production by fusion is mimicked by a simply producing heat corresponding to the stellar luminosity. All outer boundaries are transmitting for matter and light. The post-processing radiative transfer code OPTIM3D is used to extract spectroscopic and interferometric observables. Results: We show that if one relaxes the assumption of frequency-independent opacities, this leads to a steeper mean thermal gradient in the optical thin region that strongly affects the atomic strengths and the spectral energy distribution. Moreover, the weaker temperature fluctuations reduce the incertitude on the radius determination with interferometry. We show that 1D models of red supergiants must include a turbulent velocity that is calibrated on 3D simulations to obtain the effective surface gravity that mimics the effect of turbulent pressure on the stellar atmosphere. We provide an empirical calibration of the ad hoc micro- and macroturbulence parameters for 1D models using the 3D simulations: we find that there is no clear distinction between the different macroturbulent profiles needed in 1D models to fit 3D

  18. Maps of Structured Aerosol Activity During the MY 25 Planet-encircling Dust Storm on Mars

    Science.gov (United States)

    Noble, J.; Wilson, R. J.; Cantor, B. A.; Kahre, M. A.; Hollingsworth, J. L.; Bridger, A. F. C.; Haberle, R. M.; Barnes, J.

    2016-12-01

    We have produced a sequence of 42 global maps from Ls=165.1-187.7° that delimit the areal extent of structured aerosol activity based on a synthesis of Mars Global Surveyor (MGS) data, including Mars Orbiter Camera (MOC) daily global maps (DGMs) and wide angle imagery, Thermal Emission Spectrometer (TES) dust and H2O ice opacity, and Mars general circulation model (MGCM) derived dust opacity. The primary motivation of this work is to examine the temporal and spatial relationship between dust storms observed by MOC and baroclinic eddies inferred from Fast Fourier Synoptic Mapping (FFSM) of TES temperatures in order to study the initiation and evolution of Mars year (MY) 25 planet-encircling dust storm (PDS) precursor phase dust storms. A secondary motivation is to provide improved input to MGCM simulations. Assuming that structured dust storms indicate active dust lifting, these maps allow us to define potential dust lifting regions. This work has two implications for martian atmospheric science. First, integration of MGS data has enabled us to develop improved quantitative and qualitative descriptions of storm evolution that may be used to constrain estimates of dust lifting regions, horizontal dust distribution, and to infer associated circulations. Second, we believe that these maps provide better bases and constraints for modeling storm initiation. Based on our analysis of these MGS data, we propose the following working hypothesis to explain the dynamical processes responsible for PDS initiation and expansion. Six eastward-traveling transient baroclinic eddies triggered the MY 25 precursor storms in Hellas during Ls=176.2-184.6° due to the enhanced dust lifting associated with their low-level wind and stress fields. This was followed by a seventh eddy that contributed to expansion on Ls=186.3°. Increased opacity and temperatures from dust lifting associated with the first three eddies enhanced thermal tides which supported further storm initiation and

  19. The epidemiology of cosmetic treatments for corneal opacities in a Korean population.

    Science.gov (United States)

    Chang, Ki Cheol; Kwon, Ji-Won; Han, Young Keun; Wee, Won Ryang; Lee, Jin Hak

    2010-06-01

    To describe etiologies and clinical characteristics of corneal opacities leading patients to seek cosmetic treatments. The medical records of 401 patients who presented for cosmetic improvement in corneal opacities between May 2004 and July 2007 were retrospectively reviewed. The following parameters were analyzed: age, gender, cause of corneal opacity, time course of the corneal disease, associated diseases, prior and current cosmetic treatments, visual acuity, location and depth of the corneal opacity, and the presence of either corneal neovascularization or band keratopathy. A single practitioner examined all patients. The most common causes of corneal opacity were ocular trauma (203 eyes, 50.6%), retinal disease (62 eyes, 15.5%), measles (38 eyes, 9.5%), and congenital etiologies (22 eyes, 5.5%). Prior treatments included iris colored contact lenses (125 eyes, 31.1%) and corneal tattooing (34 eyes, 8.46%). A total of 321 of 401 eyes underwent cosmetic treatment for corneal opacities. The most common treatment performed after the primary visit was corneal tattooing (261 eyes, 64.92%). This is the first study to investigate the causes and clinical characteristics of patients presenting for cosmetic treatment of corneal opacities rather than for functional improvement. Various cosmetic interventions are available for patients with corneal opacities, and these should be individualized for the needs of each patient.

  20. Influence of opacity on the color stability of a nanocomposite.

    Science.gov (United States)

    Prodan, Daiana Antoaneta; Gasparik, Cristina; Mada, Diana Carla; Miclăuş, Vasile; Băciuţ, Mihaela; Dudea, Diana

    2015-05-01

    The aim of this study was to evaluate the color stability in relation to the opacity of the nanocomposite Filtek Ultimate (3M ESPE), by immersing the specimens in different types of natural and artificial staining solutions. Eighty disks of the shades A1 body (A1B), A1 dentine (A1D), A1 enamel (A1E), and white enamel (WE) (n = 4) of the nanocomposite Filtek Ultimate (3M ESPE) were immersed in staining solutions Orange II, Amaranth, coffee, tea, and artificial saliva. Color coordinates Commission Internationale de l'éclairage (CIE) L*a*b* were collected before and after immersion at 4, 6, 12, 24 h and 7 days. Two-way repeated measurements ANOVA was used in order to assess the effect of immersion time, staining solutions, and materials on CIE L*a*b* parameters, translucency parameter (TP), and color difference (ΔE*). For comparisons between staining solutions and materials, pairwise contrasts adjusted by Bonferroni method were used. The color difference (ΔE*) after 7 days of immersing in staining solution ranged between 0.9 and 15.8. The highest ΔE* after 7 days was obtained for WE, followed by A1E, A1B, and A1D (for all of the immersion solutions, except coffee). There were differences among staining solutions regarding the induced color changes. Coffee induced the most pronounced color differences. However, Orange II, Amaranth, and artificial saliva generated similar behavior in time, for all tested materials. No statistically significant differences were found among various opacities of Filtek Ultimate regarding the ΔE*, TP, ΔL*, and Δb* overtime. In contrast, Δa* was significantly affected by the type of material. The purpose of this study was to predict the color change of different layers of composites, in cases of complex stratified dental restorations.

  1. The Generation And Properties Of Solid Monodisperse Aerosols Of ...

    African Journals Online (AJOL)

    A monodisperse aerosol generator (MAGE) was used to generate calibration or monodisperse aerosols containing stearic acid and carnauba wax. Some of the factors affecting the size of aerosol particles generated with the MAGE were determined. The factors include: temperature of operation of the MAGE, type and purity ...

  2. Conceptual design of initial opacity experiments on the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.; DeVolder, B.  G.; Dodd, E.  S.; Garcia, E.  M.; Huffman, E.  J.; Iglesias, C.  A.; King, J.  A.; Kline, J.  L.; Liedahl, D.  A.; McKenty, P.  W.; Opachich, Y.  P.; Rochau, G.  A.; Ross, P.  W.; Schneider, M.  B.; Sherrill, M.  E.; Wilson, B.  G.; Zhang, R.; Perry, T.  S.

    2017-01-09

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures${\\geqslant}150$ eV and electron densities${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$. The iron will be probed using continuum X-rays emitted in a${\\sim}200$ ps,${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design

  3. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  4. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  5. Aerosol and monsoon climate interactions over Asia

    Science.gov (United States)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from

  6. Orientation-dependent low field magnetic anomalies and room-temperature spintronic material – Mn doped ZnO films by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-12-01

    Full Text Available High quality un-doped and Mn-doped ZnO films deposited by a simple aerosol spray pyrolysis technique for 20 and 30 min were studied using electron paramagnetic resonance (EPR), X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques...

  7. The production and assessment of a plastic rod for the Chinese Reference Preparation for Opacity.

    Science.gov (United States)

    Yi, X B; Xu, H L; Qin, J C; Qiao, L Y

    1989-04-01

    A reference preparation for opacity consisting of a plastic rod was introduced by Perkins et al. in 1973. It was adopted as the International Reference Preparation for Opacity in 1975. This plastic rod opacity reference preparation has been used to standardize the Chinese National Bacterial Opacity Standard. The material was prepared from plastic sheet by a water-bath method and by a dry-heat method; the sheet was then machined into the plastic rods. We have studied the technical processes and set up methods for the examination of the sheets and rods. The water-bath method was found to be better than the dry-heat method in our tests. Collaborative assays in research institutes of biological products have shown that the plastic rod can replace the glass-powder suspension. The duration of validity of the plastic rod opacity reference preparation and that of the glass-powder suspension used for the Chinese National Bacterial Opacity Standard were studied and found to be similar. For this reason the plastic rod opacity reference preparation has not been widely used in China.

  8. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors.

    Science.gov (United States)

    McWilliams, R Stewart; Dalton, D Allen; Konôpková, Zuzana; Mahmood, Mohammad F; Goncharov, Alexander F

    2015-06-30

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000-15,000 K and pressures of 15-52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn.

  9. Aerosol radiative effects over BIMSTEC regions

    Science.gov (United States)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  10. First Successes and Modifications of the NIF Opacity Spectrometer

    Science.gov (United States)

    King, J. A.; Huffman, E. J.; Knight, R. A.; Opachich, Y. P.; Ross, P. W.; Heeter, R. F.; Ahmed, M. F.; Emig, J. A.; Liedahl, D. A.; Martin, M. E.; Schneider, M. B.; Thompson, N. B.; Dodd, E. S.; Flippo, K. A.; Kline, J. L.; Lopez, F. E.; Archuleta, T. N.; Perry, T. S.

    2017-10-01

    The NIF Opacity Spectrometer (OpSpec) began returning X-ray spectra on its first NIF shot in September 2016. In May 2017, OpSpec recorded the first X-ray transmission data for iron-magnesium plasmas on NIF, at ``Anchor 1'' sample conditions (150 eV and 7E21 e-/cc). OpSpec diffracts X-rays in the 540-2100 eV range off a KAP or RbAP crystal onto either image plate or X-ray film. Modifications to further improve OpSpec's performance are underway, with the largest improvements expected in resolving power (E/dE up to 1000) and reduction of background levels. Implementation is planned for NIF shots in August and December 2017. This presentation will discuss the OpSpec data and design improvements, and also future goals. This work was performed by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-2891.

  11. Cosmic opacity to CMB photons and polarization measurements

    Science.gov (United States)

    Colombo, L. P. L.; Bonometto, S. A.

    2003-05-01

    Anisotropy data analysis leaves a significant degeneracy between primeval spectral index ( ns) and cosmic opacity to CMB photons ( τ). Low- l polarization measures, in principle, can remove it. We perform a likelihood analysis to see how cosmic variance possibly affects such a problem. We find that, for a sufficiently low noise level ( σPpix) and if τ is not negligibly low, the degeneracy is greatly reduced, while the residual impact of cosmic variance on ns and τ determinations is under control. On the contrary, if σPpix is too high, cosmic variance effects appear to be magnified. We apply general results to specific experiments and find that, if favorable conditions occur, it is possible that a 2- σ detection of a lower limit on τ is provided by the SPOrt experiment. Furthermore, if the PLANCK experiment will measure polarization with the expected precision, the error on low- l harmonics is adequate to determine τ, without significant magnification of the cosmic variance. This however indicates that high sensitivity might be more important than high resolution in τ determinations. We also outline that a determination of τ is critical to perform detailed analyses on the nature of dark energy and/or on the presence of primeval gravitational waves.

  12. Color and opacity of composites protected with surface sealants and submitted to artificial accelerated aging.

    Science.gov (United States)

    Aguilar, Fabiano Gamero; Roberti Garcia, Lucas da Fonseca; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2012-01-01

    To evaluate the color similarity, stability and opacity of composites (TPH, Charisma, and Concept, shade A2) protected with surface sealants (Fortify Plus and Biscover) and cyanoacrylate (Super Bonder). Forty specimens of each composite were made and separated into 4 groups (n=10) according to the surface protection: GI - without sealant; GII - cyanoacrylate; GIII - Fortify Plus; GIV - Biscover. Color and opacity readings were taken before and after Artificial Acelerated Aging (AAA) and the values obtained for color stability were submitted to statistical analysis by 2-way ANOVA and Bonferroni's test (Pcolor similarity were submitted to 1-way ANOVA and Tukey's test (Pcolor similarity among them. All composites presented color alteration after AAA with clinically unacceptable values. Protected groups presented lower opacity variation after AAA, in comparison with the control goup. SEM evaluation demonstrated that AAA increased the surface irregularities in all of the studied groups. Surface sealants were not effective in maintaining composite color, but were able to maintain opacity.

  13. The Influence of Opacity on Hydrogen Line Emission and Ionisation Balance in High Density Divertor Plasmas

    OpenAIRE

    Behringer, K.

    1997-01-01

    The influence of opacity on hydrogen line emission and ionisation balance in high density divertor plasmas. - Garching bei München : Max-Planck-Inst. für Plasmaphysik, 1997. - 21 S. - (IPP-Report ; 10/5)

  14. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    National Research Council Canada - National Science Library

    Woitke, P; Min, M; Pinte, C; Thi, W. -F; Kamp, I; Rab, C; Anthonioz, F; Antonellini, S; Baldovin-Saavea, C; Carmona, A; Dominik, C; Dionatos, O; Greaves, J; Güdel, M; Ilee, J. D; Liebhart, A; Ménard, F; Rigon, L; Waters, L. B. F. M; Aresu, G; Meijerink, R; Spaans, M

    2016-01-01

    ..., and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs...

  15. Non-LTE H2+ as the source of missing opacity in the solar atmosphere

    Science.gov (United States)

    Swamy, K. S. K.; Stecher, T. P.

    1974-01-01

    The population of the various vibrational levels of the H2+ molecule has been calculated from the consideration of formation and destruction mechanisms. The resulting population is used in calculating the total absorption due to H2+ and is compared with the other known sources of opacity at several optical depths of the solar atmosphere. It is shown that the absorption due to H2+ can probably account for the missing ultraviolet opacity in the solar atmosphere.

  16. Deep corneal stromal opacities associated with long term contact lens wear.

    OpenAIRE

    Pimenides, D; Steele, C F; McGhee, C N; Bryce, I G

    1996-01-01

    BACKGROUND: One male and three female long term contact lens wearers (mean age 30.3 years; range 26-33) demonstrated unusual deep corneal stromal opacities which were predominantly just anterior to Descemet's membrane. None had any history of corneal dystrophy. These opacities were more common centrally, but were also identified in the corneal periphery. METHODS: All patients underwent routine ophthalmic examinations and, where appropriate, slit-lamp photography and specular microscopy. RESUL...

  17. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madison E. [Univ. of Florida, Gainesville, FL (United States)

    2017-05-20

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  18. Characterization of Cooking-Related Aerosols

    Science.gov (United States)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  19. Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops.

    Directory of Open Access Journals (Sweden)

    Jessica G Cole

    2009-12-01

    Full Text Available The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa proteins are expressed during infection and have a semivariable (SV and highly conserved (4L loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ab(linear and cyclic (Ab(cyclic peptides that correspond to the SV and 4L loops and selected hypervariable (HV(2 loops for surface-binding and protective activity in vitro and in vivo.Ab(SV cyclic bound a greater number of different Opa variants than Ab(SV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. Ab(SV (cyclic and Ab(HV2 (cyclic, but not Ab(SV (linear or Ab(HV2 linear agglutinated homologous Opa variants, and Ab(HV2BD (cyclic but not Ab(HV2BD (linear blocked the association of OpaB variants with human endocervical cells. Only Ab(HV2BD (linear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of Ab(HV2BD (linear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration.We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV(2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.

  20. Exploring central opacity and asymptotic scenarios in elastic hadron scattering

    Science.gov (United States)

    Fagundes, D. A.; Menon, M. J.; Silva, P. V. R. G.

    2016-02-01

    In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio X between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m. energy interval 5 GeV-8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for X, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio X bar = 0.30 ± 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for X and physical aspects related to a change of curvature in this quantity at 80-100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

  1. Evaluation of opacity in polyethylene fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    Hasani Tabatabaie M

    2010-06-01

    Full Text Available "nBackground and Aims: The main objective of this study was to determine the effect of polyethylene fibers and veneering composites in fiber-reinforced resin systems on the opacity (contrast ratio. "nMaterials and Methods: The specimens were divided into four groups. Two groups were used as the control groups, with no reinforcement. The fibers of polyethylene (Fibre-Braid with special basement composites were used as the reinforced framework materials. Filtek Z250 and GRADIA (shade A2 were used as veneering materials. The total thickness of samples was 3 mm with 13 mm diameter. Specimens were prepared in disk shaped metal mold. The composite materials were light-cured according to their manufacturers' instructions. The contrast ratio (CR of each specimen was determined on black and white backgrounds using reflection spectrophotometer. Reflectance was measured at intervals of 10 nm between 400 nm and 750 nm. Data were analyzed by two-way ANOVA and Tukey HSD test. "nResults: When contrast ratio were compared among the different types of materials statistically significant differences were observed in both veneering composites (P<0.05. The Z250 resin composite had the lowest CR. It was shown that CR tended to decrease as the wavelength of incident light increased from 400 nm to 750 nm. On the other hand, the most differences in CR between groups were found in longer wavelengths. "nConclusion: It was found that polyethylene fibers reduced the amount of the translucency in FRC samples. The results of this study indicate that light reflectance characteristics, including the wavelength dependence, play an important role for the CR of a fiber-reinforced composite.

  2. CT quantification of large opacities and emphysema in silicosis: correlations among clinical, functional, and radiological parameters.

    Science.gov (United States)

    de Castro, Marcos César Santos; Ferreira, Angela Santos; Irion, Klaus Loureiro; Hochhegger, Bruno; Lopes, Agnaldo José; Velarde, Guilhermo Coca; Zanetti, Gláucia; Marchiori, Edson

    2014-08-01

    The assessment of the extent of silicosis on chest radiographs is subjective and could be more standardized by using computed tomography (CT) quantification methods. We propose a semiautomatic method of quantifying the anatomical lung damage (LD) (the sum of the emphysema and large opacities volumes) measured by CT densitovolumetry in complicated silicosis. Twenty-three nonsmokers with complicated silicosis were included. Large opacities were recorded as size A, B, or C according to the size of the opacities on chest radiographs. Pulmonary function tests (PFT) were assessed by spirometry and the carbon monoxide diffusion capacity. Total lung capacity (TLC) was measured by helium dilution, and total lung volume (TLV) was measured by CT quantification (TLVct). CT images were postprocessed using CT densitovolumetry to measure the TLVct, large opacities volume, emphysema volume (EV), and emphysema index (EI). Significant correlations were observed between the EV and the forced vital capacity (r = 0.41, p = 0.04), TLC (r = 0.44, p = 0.03), and residual volume (RV) (r = 0.49, p = 0.01). A correlation also was observed between the LD% and RV (r = 0.43, p = 0.03) and between the LD and RV (r = 0.47, p = 0.02). The PFT findings were correlated with the EV, EI, LD, and LD%, but they were not correlated with the large opacities volume. These results suggest that the emphysema volume, more than the large opacities volume, is responsible for functional impairment in patients with complicated silicosis.

  3. NLTE opacity calculations: C-Si and C-Ge mixtures

    Science.gov (United States)

    Jarrah, W.; Benredjem, D.; Pain, J.-C.; Dubau, J.

    2017-09-01

    The opacity is an important issue in the knowledge of the radiative properties of ICF and astrophysical plasmas. We present the opacity of dopants (silicon, germanium) embedded in the ablator of some ICF capsules. In recent works, Hill and Rose calculated the opacity of silicon in LTE and non-LTE plasmas, while Minguez and co-workers focused on the opacity of carbon. We have used the Cowan code to calculate the atomic structure of carbon, silicon and germanium in various ionic stages. The cross-sections of atomic processes (collisional excitation, collisional ionization) are obtained by fitting the values given by the code FAC to the Van Regemorter-like formulas of Sampson and Zhang. A corrected Gaunt factor is then obtained. A collisional-radiative code was developed in order to obtain the ionic populations, the level populations and the opacity. Line broadening and line shift are taken into account. The ionization potential depression is included in our calculations. The effect of a radiation field on the opacity is examined.

  4. Aerosol gels

    Science.gov (United States)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  5. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  6. Dust Aerosol Particle Size at the Mars Science Laboratory Landing Site

    Science.gov (United States)

    Vicente-Retortillo, Alvaro; Martínez, Germán; Renno, Nilton; Lemmon, Mark; de la Torre-Juárez, Manuel

    2017-04-01

    We have developed a new methodology to retrieve dust aerosol particle size from Mars Science Laboratory (MSL) observations [1]. We use photodiode output currents measured by the Rover Environmental Monitoring Station (REMS) UV sensor (UVS), ancillary data records (ADR) containing the geometry of the rover and the Sun, and values of the atmospheric opacity retrieved from Mastcam measurements. In particular, we analyze REMS UVS measurements when the Sun is blocked by the masthead and the mast of the rover since the behavior of the output currents during these shadow events depends on the dust phase function, which depends on particle size. The retrieved dust effective radii show a significant seasonal variability, ranging from 0.6 μm during the low opacity season (Ls = 60° - 140°) to 2 μm during the high opacity season (Ls = 180° - 360°). The relationship between atmospheric opacity and dust particle size indicates that dust-lifting events originate at various distances from Gale Crater. The external origin of high dust content events is consistent with the strong and persistent northerly and northwesterly winds at Gale Crater during the perihelion season centered around Ls = 270° [2]. From an interannual perspective, the general behavior of the particle size evolution in MY 31-32 is similar to that in MY 32-33, although some differences are noted. During the low opacity season (Ls = 60° - 140°), the retrieved dust effective radii in MY 33 are significantly lower than in MY 32. A larger contribution of water ice clouds to the total atmospheric opacity during the aphelion season of MY 33 can partially explain such a departure. Differences during the perihelion season are caused by interannual variability of enhanced opacity events. The determination of dust aerosol particle size is important to improve the accuracy of models in simulating the UV environment at the surface [3] and in predicting heating rates, which affect the atmospheric thermal and dynamical

  7. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  8. Opacity of big toenail predicts poor prognosis in patients with end-stage renal disease on hemodialysis.

    Science.gov (United States)

    Soma, Osamu; Hatakeyama, Shingo; Matsumoto, Teppei; Tanaka, Toshikazu; Tanaka, Yoshimi; Hosogoe, Shogo; Kodama, Hirotake; Horiguchi, Hirotaka; Kubota, Yuka; Kido, Koichi; Momota, Masaki; Anan, Go; Narita, Ikuyo; Kitahara, Ryuji; Saitoh, Hisao; Suzuki, Tadashi; Ohyama, Chikara

    2017-10-25

    The impact of nail abnormalities on prognosis in hemodialysis patients is unknown. This study investigated whether toenail opacity as a readout of nail abnormalities predicted prognosis in hemodialysis patients. In this observational study, 494 eligible hemodialysis patients who received hemodialysis at Oyokyo Kidney Research Institute between September 2010 and December 2015 were included. The presence of nail abnormalities was objectively evaluated by big toenail opacity ratio measurement. Primary endpoint was overall survival, and secondary endpoints were lower limb amputation and determination of risk factors for poor prognosis among patient demographics, comorbidities, blood tests, and big toenail opacity. Overall survival and lower limb survival were evaluated using the Kaplan-Meier method with log-rank test. Multivariate Cox regression analyses assessed predictors for poor prognosis. Big toenail opacity was found in 259 (52%) patients. Patients with big toenail opacity were significantly older, had shorter duration of dialysis, higher prevalence rates of diabetes mellitus (DM), cardiovascular disease (CVD), and higher mortality rates than those without opacity. Presence of big toenail opacity predicted poor prognosis for both overall and lower limb survival. Multivariate Cox regression analyses revealed serum albumin, the presence of DM and big toenail opacity were independent risk factors for both poor overall and lower limb survivals. The prevalence of big toenail opacity was high in hemodialysis patients. Despite the short observation period, our findings indicated that big toenail opacity had significant predictive power for poor overall and lower limb survival.

  9. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect.

    Science.gov (United States)

    Mishra, Amit Kumar; Koren, Ilan; Rudich, Yinon

    2015-10-01

    This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 μm) and thermal-infrared (TH-IR: 4.0-20.0 μm) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 μm) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in

  10. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect

    Directory of Open Access Journals (Sweden)

    Amit Kumar Mishra

    2015-10-01

    Full Text Available This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE. Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25–0.42 μm and thermal-infrared (TH-IR: 4.0–20.0 μm regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42–4.0 μm region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2–0.3. Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the

  11. A new in vitro method to evaluate radio-opacity of endodontic sealers.

    Science.gov (United States)

    Malka, V B; Hochscheidt, G L; Larentis, N L; Grecca, F S; Fontanella, V R C; Kopper, P M P

    2015-01-01

    To evaluate a new method for assessing the radio-opacity of endodontic sealers and to compare radio-opacity values with a well-established standard method. The sealers evaluated in this study were AH Plus(®) (Dentsply DeTrey GmbH, Konstanz, Germany), Endo CPM Sealer (EGEO SRL, Buenos Aires, Argentina) and MTA Fillapex(®) (Angelus Dental Products Industry S/A, Londrina, Parana, Brazil). Two methods were used to evaluate radio-opacity: (D) standard discs and (S) a tissue simulator. For (D), ten standard discs were prepared for each sealer and were radiographed using Digora(®) phosphor storage plates (Soredex; Orion Corporation, Helsinki, Finland), alongside an aluminium stepwedge. For (S), polyethylene tubes filled with sealer (n = 10 for each) were radiographed inside the simulator as described. The digital images were analysed using Adobe Photoshop(®) software v. 10.0 (Adobe Systems, San Jose, CA). To compare the radio-opacity among the sealers, the data were analysed by ANOVA and Tukey's test, and to compare methods, they were analysed by the Mann-Whitney U test. To compare the data obtained from dentin and sealers in method (S), Student's paired t-test was used (=0.05). In both methods, the sealers showed significant differences, according to the following decreasing order: AH Plus, MTA Fillapex and Endo CPM. In (D), MTA Fillapex and Endo CPM showed less radio-opacity than aluminium. For all of the materials, the radio-opacity was higher in (S) than in (D). Compared with dentin, all of the materials were more radio-opaque. The comparison of the two assessment methods for sealer radio-opacity testing validated the use of a tissue simulator block.

  12. Effects of relative humidity on aerosol light scattering: results from different European sites

    Directory of Open Access Journals (Sweden)

    P. Zieger

    2013-11-01

    Full Text Available The effect of aerosol water uptake on the aerosol particle light scattering coefficient (σsp is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l.; Ny-Ålesund, located on Spitsbergen in the Arctic; Mace Head, a coastal site in Ireland; Cabauw, a rural site in the Netherlands; and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f(RH, λ is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σsp(RH at a certain relative humidity (RH and wavelength λ divided by its dry value. f(RH at the five sites varied widely, starting at very low values of f(RH = 85%, λ = 550 nm around 1.28 for mineral dust, and reaching up to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch (due to the absence of sea salt. Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f(RH. Both parameters are also needed to successfully predict f(RH. Finally, the measurement results were compared to the widely used aerosol model, OPAC (Hess et al., 1998. Significant discrepancies were seen, especially at intermediate RH ranges; these were mainly attributed to inappropriate implementation of hygroscopic growth in the OPAC model. Replacement of the hygroscopic growth with values from the recent literature resulted in a clear improvement of the OPAC model.

  13. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  14. Effektivität und Effizienz von Online-Hilfesystemen in deutschen Universitäts-OPACs

    OpenAIRE

    Greifeneder, Elke

    2007-01-01

    Today, almost always Online Public Access Catalogues (OPACs) are the only way to access library collections, but practical experience shows that users have problems dealing with electronic catalogues. The author therefore recommends that any good OPAC needs an elaborated online help system. The present master thesis surveys implemented online help systems in German university OPACs and gives a critical discussion. Beyond the variety of help texts, the author also includes help systems like sp...

  15. Tamper asymmetry and its effect on transmission for x-ray driven opacity simulations

    Science.gov (United States)

    Morris, H. E.; Tregillis, I. L.; Hoffman, N. M.; Sherrill, M. E.; Fontes, C. J.; Marshall, A. J.; Urbatsch, T. J.; Bradley, P. A.

    2017-09-01

    This paper reports on synthetic transmission results from Lasnex [Zimmerman and Kruer, Comments Plasma Phys. 2, 51 (1975)] radiation-hydrodynamics simulations of opacity experiments carried out at Sandia National Laboratories' recently upgraded ZR facility. The focus is on experiments utilizing disk targets composed of a half-moon Fe/Mg mixture tamped on either end with 10-μm CH and an additional 35-μm beryllium tamper accessory on the end facing the spectrometer. Five x-ray sources with peak power ranging from 10 to 24 TW were used in the simulations to heat and backlight the opacity target. The dominant effect is that the beryllium behind the Fe/Mg mixture is denser and more opaque than the beryllium unshielded by metal during the times of greatest importance for the transmission measurement for all drives. This causes the simulated transmission to be lower than expected, and this is most pronounced for the case using the lowest drive power. While beryllium has a low opacity, its areal density is sufficiently high such that the expected reduction of the measured transmission is significant. This situation leads to an overestimate of iron opacity by 10%-215% for a photon energy range of 975-1775 eV for the 10-TW case. It is shown that if the tamper conditions are known, the transmission through each component of the target can be calculated and the resulting opacity can be corrected.

  16. The significance of recurrent lung opacities in neonates on surfactant treatment for respiratory distress syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Odita, J.C. [Dept. of Radiology, Louisiana State Univ. Health Sciences Center, Shreveport (United States)

    2001-02-01

    Purpose. To determine the significance of recurrent opacities in chest radiographs of neonates on surfactant therapy for respiratory distress syndrome (RDS) after an initial period of improvement. Materials and methods. Serial pre- and post-surfactant chest radiographs on 94 preterm infants with RDS were analyzed and the pattern of chest radiographic response was classified as (a) clear, (b) recurrent opacities, and (c) no response. Their clinical characteristics were also recorded. Results. In 34 infants the RDS changes cleared within 3 days. 31 infants developed lung opacities within 10 days after an initial period of improvement. Twenty-nine infants failed to respond to the surfactant. The corresponding mean birth weights for the three groups were 1.74, 1.19, and 0.76 kg and the mean gestation ages 32.6, 27.7, and 25.4 weeks. The incidence of bronchopulmonary dysplasia (BPD) was highest among the slumping infants (72. % vs 50 % in no responders, P < 0.001) Conclusions. The pattern of chest radiographic response is primarily affected by gestation age and birth weight. Recurrent lung opacity after an initial positive response to surfactant therapy may be caused by such factors as edema from barotrauma and patent ductus arteriosus. Infants with intraventricular hemorrhage may demonstrate neurogenic edema. Other contributory factors include pneumonia and abnormal consumption of surfactant. Recurrent lung opacities after surfactant may be a predictor of chronic lung disease in the preterm infant. (orig.)

  17. Aerosols and Climate

    Indian Academy of Sciences (India)

    Aerosols and Climate · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Principal efforts in improving the understanding of Climate impact of aerosols - · Slide 8 · Observations of Aerosol – from space (Spatial variation) · AOD around Indian region from AVHRR · Dust absorption efficiency over Great Indian Desert from Satellite ...

  18. Aerosol distribution apparatus

    Science.gov (United States)

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  19. Have tropospheric aerosol emissions contributed to the recent climate hiatus?

    Science.gov (United States)

    Kühn, Thomas; Partanen, Antti-Ilari; Laakso, Anton; Lu, Zifeng; Bergman, Tommi; Mikkonen, Santtu; Kokkola, Harri; Korhonen, Hannele; Räisänen, Petri; Streets, David G.; Romakkaniemi, Sami; Laaksonen, Ari

    2014-05-01

    During the last 15 years global warming has slowed considerably, with the resulting plateau in global temperature records being dubbed the climate hiatus. Apart from variations in solar irradiance and ocean temperature, increased anthropogenic aerosol emissions in South and East Asia have been suggested as possible causes for this hiatus. While European and and North American aerosol emissions have constantly decreased since the 1980's, emissions in China and India have started increasing at the same time and, although total global aerosol emissions have decreased, aerosol effects on the global energy budget are expected to enhance towards the equator due to stronger irradiance there. In this study we used the aerosol-climate model ECHAM5-HAM2 to assess the effect that this re-distribution of anthropogenic aerosol emissions towards the equator may have on climate. To this end, we computed radiative forcing and equilibrium temperature response due to the change in global aerosol emissions (black carbon (BC), organic carbon and sulphur dioxide) between 1996 and 2010, keeping all other anthropogenic influences fixed. Surprisingly we found that the cooling due the increased aerosol emissions in China and India is almost negligible compared to the warming caused by the decreasing aerosol emissions in Europe and North America. The radiative flux perturbation (RFP; includes aerosol indirect effects) was 0.42 W/m2 and the change in global equilibrium 2 m temperature increased by 0.25 °C. The lack of cooling in China and India stems from a cancellation of sulfate cooling and BC warming, especially over China. There, the strong cloud cover leads to both attenuation of sulphate aerosol light scattering and saturation tendency of indirect aerosol effects on clouds. BC levels on the other hand increase also above the clouds (relative increase of BC levels is almost uniform with height), leading to warming through light absorption.

  20. OPAC Design Enhancements and Their Effects on Circulation and Resource Sharing within the Library Consortium Environment

    Directory of Open Access Journals (Sweden)

    Michael J. Bennett

    2007-03-01

    Full Text Available A longitudinal study of three discrete online public access catalog (OPAC design enhancements examined the possible effects such changes may have on circulation and resource sharing within the automated library consortium environment. Statistical comparisons were made of both circulation and interlibrary loan (ILL figures from the year before enhancement to the year after implementation. Data from sixteen libraries covering a seven-year period were studied in order to determine the degree to which patrons may or may not utilize increasingly broader OPAC ILL options over time. Results indicated that while ILL totals increased significantly after each OPAC enhancement, such gains did not result in significant corresponding changes in total circulation.

  1. Extracting User Interaction Information from the Transaction Logs of a Faceted Navigation OPAC

    Directory of Open Access Journals (Sweden)

    Brad Hemminger

    2009-06-01

    Full Text Available This paper discusses the analysis of Apache web server logs from a faceted catalog interface (OPAC at North Carolina State University. By grouping individual HTTP requests into user sessions and analyzing in that context, requests can be understood as particular user actions, with more specificity as to purpose and effect of an action. Client IP address and time are used as a sufficient proxy for determining user sessions from logs. Some initial exploratory findings of user behavior in the NCSU OPAC are provided, including that users make use of facets less than of text searching, and that some facet groups are used significantly more than others. Links are provided to the scripts used to make this session-based analysis, which could be modified for use with other facetted OPACs which use an Apache front-end.

  2. Smoke opacity in agricultural tractor in function of interior and metropolitano diesel mixture in mamona biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Tabile, Rubens Andre [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Lopes, Afonso; Camara, Felipe Thomas da; Grotta, Danilo Cesar Checchio; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (DER/UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural

    2008-07-01

    The great demand for energy sources by production systems allied to scarcity of fossil fuels has motivated the development and production of biodiesel, which is a fuel produced from renewable sources. Given that, the aim of this study was to compare smoke opacity of an agricultural tractor engine, working with metropolitano and interior diesel mixed to mamona biodiesel, in seven proportions. The tests were conducted in the Departamento de Engenharia Rural of UNESP/Jaboticabal - SP. The results showed that the diesel type did influence opacity of smoke, and metropolitano diesel showed best quality. It was also observed that, as biodiesel proportion increased, smoke opacity decreased until B75, turning to increase to B100. (author)

  3. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations

    Science.gov (United States)

    Ward, P. L.

    2016-12-01

    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during

  4. Alpha Dithering to Correct Low-Opacity 8 Bit Compositing Errors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P L; Frank, R J; LaMar, E C

    2003-03-31

    This paper describes and analyzes a dithering technique for accurately specifying small values of opacity ({alpha}) that would normally not be possible because of the limited number of bits available in the alpha channel of graphics hardware. This dithering technique addresses problems related to compositing numerous low-opacity semitransparent polygons to create volumetric effects with graphics hardware. The paper also describes the causes and a possible solution to artifacts that arise from parallel or distributed volume rendering using bricking on multiple GPU's.

  5. Photoperiodic regime influences onset of lens opacities in a non-human primate.

    Science.gov (United States)

    Dubicanac, Marko; Strueve, Julia; Mestre-Frances, Nadine; Verdier, Jean-Michel; Zimmermann, Elke; Joly, Marine

    2017-01-01

    Opacities of the lens are typical age-related phenomena which have a high influence on photoreception and consequently circadian rhythm. In mouse lemurs, a small bodied non-human primate, a high incidence (more than 50% when >seven years) of cataracts has been previously described during aging. Previous studies showed that photoperiodically induced accelerated annual rhythms alter some of mouse lemurs' life history traits. Whether a modification of photoperiod also affects the onset of age dependent lens opacities has not been investigated so far. The aim of this study was therefore to characterise the type of opacity and the mouse lemurs' age at its onset in two colonies with different photoperiodic regimen. Two of the largest mouse lemur colonies in Europe were investigated: Colony 1 having a natural annual photoperiodic regime and Colony 2 with an induced accelerated annual cycle. A slit-lamp was used to determine opacities in the lens. Furthermore, a subset of all animals which showed no opacities in the lens nucleus in the first examination but developed first changes in the following examination were further examined to estimate the age at onset of opacities. In total, 387 animals were examined and 57 represented the subset for age at onset estimation. The first and most commonly observable opacity in the lens was nuclear sclerosis. Mouse lemurs from Colony 1 showed a delayed onset of nuclear sclerosis compared to mouse lemurs from Colony 2 (4.35 ± 1.50 years vs. 2.75 ± 0.99 years). For colony 1, the chronological age was equivalent to the number of seasonal cycles experienced by the mouse lemurs. For colony 2, in which seasonal cycles were accelerated by a factor of 1.5, mouse lemurs had experienced 4.13 ± 1.50 seasonal cycles in 2.75 ± 0.99 chronological years. Our study showed clear differences in age at the onset of nuclear sclerosis formation between lemurs kept under different photoperiodic regimes. Instead of measuring the chronological age

  6. Corneal Opacity in a Participant of a 161-km Mountain Bike Race at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Torres, David R

    2016-06-01

    Visual dysfunction is a relatively uncommon complaint among athletes during ultraendurance races. The pathophysiology of most of these cases is unknown. Corneal opacity has been speculated as the etiology for most of reported cases. We are presenting a case of a 56-year-old man with a partial unilateral corneal opacity and edema at kilometer 150 of a 161-km mountain bike race in high altitude. He was not able to finish the race (12-hour cutoff) because of his visual symptoms. He completely recovered in 3 days with no sequelae. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. The DRAGON aerosol research facility to study aerosol behaviour for reactor safety applications

    Energy Technology Data Exchange (ETDEWEB)

    Suckow, Detlef; Guentay, Salih [Paul Scherrer Institut, Villigen (Switzerland)

    2008-07-01

    During a severe accident in a nuclear power plant fission products are expected to be released in form of aerosol particles and droplets. To study the behaviour of safety relevant reactor components under aerosol loads and prototypical severe accident conditions the multi-purpose aerosol generation facility DRAGON is used since 1994 for several projects. DRAGON can generate aerosol particles by the evaporation-condensation technique using a plasma torch system, fluidized bed and atomization of particles suspended in a liquid. Soluble, hygroscopic aerosol (i.e. CsOH) and insoluble aerosol particles (i.e. SnO{sub 2}, TiO{sub 2}) or mixtures of them can be used. DRAGON uses state-of-the-art thermal-hydraulic, data acquisition and aerosol measurement techniques and is mainly composed of a mixing chamber, the plasma torch system, a steam generator, nitrogen gas and compressed air delivery systems, several aerosol delivery piping, gas heaters and several auxiliary systems to provide vacuum, coolant and off-gas treatment. The facility can be operated at system pressure of 5 bars, temperatures of 300 deg. C, flow rates of non-condensable gas of 900 kg/h and steam of 270 kg/h, respectively. A test section under investigation is attached to DRAGON. The paper summarizes and demonstrates with the help of two project examples the capabilities of DRAGON for reactor safety studies. (authors)

  8. Volatile properties of atmospheric aerosols during nucleation events ...

    Indian Academy of Sciences (India)

    C temperatures. Averaged monthly aerosol concen- tration is at its maximum in November and gradually decreases to its minimum at the end of March. The diurnal variations of aerosol concentrations gradually decrease in the night and in early morning hours (0400–0800 hr). However, concentration attains minimum in its ...

  9. Open-Source Tools for Enhancing Full-Text Searching of OPACs: Use of Koha, Greenstone and Fedora

    Science.gov (United States)

    Anuradha, K. T.; Sivakaminathan, R.; Kumar, P. Arun

    2011-01-01

    Purpose: There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text…

  10. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    Science.gov (United States)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    ratio is calculated from the geometry of core-shell particles, which depends on the mass and density of the core and shell. The size distribution parameters and refractive indices of different aerosol species are taken from OPAC database [3]. Different fractions of black carbon, water soluble and mineral dust aerosols involved in core-shell mixing emerge as the most probable mixing states over the IGP. Aerosol forcing for external mixing shows higher deviations from those for probable mixing cases during winter and pre-monsoon. The heating rate over Kanpur and Gandhi College in the lower troposphere is similar during pre-monsoon (March-May) ( 0.75 K day^{-1}) and monsoon (June-September) ( 0.5 K day^{-1}), while differences occur in other seasons [4]. Aerosol heating rate profiles exhibit primary and secondary peaks over the IGP and exhibit seasonal variations. Details on the calculations of aerosol mixing states over IGP, the impact of aerosol mixing state on aerosol forcing and heating rate will be discussed. References: [1] Intergovernmental panel on climate change (2007), Solomon S. et al. (eds.), Cambridge Univ. Press, NewYork. [2] Holben B. N., et al. (2001), J. Geophys. Res., 106(D11), 12067-12097. [3] Hess M., P. Koepke, I. Schult (1998), Bull. Am. Meteorol. Soc., 79, 831-844. [4] Srivastava R., S. Ramachandran (2012), Q. J. R. Meteorol. Soc., 138, doi:10.1002/qj.1958.

  11. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  12. New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convection model

    Science.gov (United States)

    D'Antona, Francesca; Mazzitelli, Italo

    1994-01-01

    We present tabular and graphic results on the computation of pre-main-sequence evolutionary tracks of Population I stellar structures from 2.5 to approximately 0.015 solar mass. Deuterium and lithium burning are followed in detail. The chosen input physics gives M approximately 0.018 solar mass as minimum mass for deuterium burning and M approximately 0.065 solar mass as minimum mass for lithium burning. While we adopt the approximations of hydrostatic equilibrium, no mass accretion and no mass loss, we have taken care to include several updates in the input physics, among them two different sets of the more recent available low-temperature opacities, and we test two different models of overdiabatic convection (the mixing-available low-temperature opacities, and we test two different models of overdiabatic convection (the mixing-length theory (MLT) with the mixing-length scale calibrated on the solar model, and the recent Canuto & Mazzitelli (CM) model). The Hertzsprung-Russell diagram location of tracks turns out to be largely model-dependent, especially for M less than or equal to 0.6 solar mass, and we are able to relate the cause of the large differences (up to 0.04 dex in Teff at 0.3 solar mass) with opacity and with the details of the convection model adopted. Since we are not able to provide 'first principle' physical reasons to choose among models, we consider these tracks as 'tests', in the hope that significant comparisons with observations can exclude some models or provide hints toward a better understanding of convection. Nevertheless, we feel obliged to call the reader's attention to the fact that theoretical Teff's, especially in the red, are intrinsically ill-determined, and no sound observational interpretation critically depending on the Teff's can be presently performed, contrary to the current habit due to an exceedingly 'faithful' use of the MLT.

  13. Engineering analysis of lightweight high-opacity newsprint production by fiber loading

    Science.gov (United States)

    John H. Klungness; Matthew L. Stroika; Marguerite S. Sykes; Said M. Abubakr; Werner. Witek; Oliver U. Heise

    1999-01-01

    We estimated the capital effectiveness of fiber loading in regard to producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian standard freeness or additional use of energy. We investigated the return on investment (ROI) for fiber loading precipitated...

  14. Reduction of greenhouse gases by fiber-loaded lightweight, high-opacity newsprint production

    Science.gov (United States)

    John H. Klungness; Matthew L. Stroika; Said M. Abubakr

    1999-01-01

    We estimated the effectiveness of fiber loading in reducing greenhouse gas emissions for producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian Standard Freeness or additional energy use. We investigated the reduction of greenhouse gas emissions for a...

  15. Extending fiber resources : fiber loading recycled fiber and mechanical pulps for lightweight, high opacity paper

    Science.gov (United States)

    Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr

    1999-01-01

    Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...

  16. Ground-Glass Opacity Lung Nodules in the Era of Lung Cancer CT Screening

    DEFF Research Database (Denmark)

    Pedersen, Jesper Holst; Saghir, Zaigham; Winkler Wille, Mathilde Marie

    2016-01-01

    The advent of computed tomography screening for lung cancer will increase the incidence of ground-glass opacity (GGO) nodules detected and referred for diagnostic evaluation and management. GGO nodules remain a diagnostic challenge; therefore, a more systematic approach is necessary to ensure cor...

  17. Important consequences of atomic diffusion inside main-sequence stars: opacities, extra-mixing, oscillations

    Directory of Open Access Journals (Sweden)

    Deal M.

    2017-01-01

    Full Text Available Atomic diffusion, including the effects of radiative accelerations on individual elements, leads to important variations of the chemical composition inside stars. The accumulation of important elements in specific layers leads to a local increase of the average opacity and to hydrodynamic instabilities that modify the internal stellar structure. This can also have important consequences for asteroseismology.

  18. Quantum opacity, the RHIC Hanbury Brown-Twiss puzzle, and the chiral phase transition.

    Science.gov (United States)

    Cramer, John G; Miller, Gerald A; Wu, Jackson M S; Yoon, Jin-Hee

    2005-03-18

    We present a relativistic quantum-mechanical treatment of opacity and refractive effects that allows reproduction of observables measured in two-pion Hanbury Brown-Twiss (HBT) interferometry and pion spectra at RHIC. The inferred emission duration is substantial. The results are consistent with the emission of pions from a system that has a restored chiral symmetry.

  19. Minimally invasive surgery - endoscopic retinal detachment repair in patients with media opacities

    NARCIS (Netherlands)

    de Smet, M. D.; Mura, M.

    2008-01-01

    Purpose Evaluate the use of an ophthalmic endoscope in patients with a retinal detachment and anterior media opacity. Materials and methods A retrospective interventional case series. Search of a comprehensive database of retinal detachment patients with pre-operatively impaired anterior segments

  20. Color and opacity of composites protected with surface sealants and submitted to artificial accelerated aging

    Science.gov (United States)

    Aguilar, Fabiano Gamero; Roberti Garcia, Lucas da Fonseca; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2012-01-01

    Objectives: To evaluate the color similarity, stability and opacity of composites (TPH, Charisma, and Concept, shade A2) protected with surface sealants (Fortify Plus and Biscover) and cyanoacrylate (Super Bonder). Methods: Forty specimens of each composite were made and separated into 4 groups (n=10) according to the surface protection: GI - without sealant; GII - cyanoacrylate; GIII - Fortify Plus; GIV - Biscover. Color and opacity readings were taken before and after Artificial Acelerated Aging (AAA) and the values obtained for color stability were submitted to statistical analysis by 2-way ANOVA and Bonferroni’s test (P<.05). The values acquired for color similarity were submitted to 1-way ANOVA and Tukey’s test (P<.05). The specimen sufaces were compared before and after AAA using Scanning Electronic Microscopy (SEM). Results: Studied composites did not present the same values for the coordinates L*, a* and b * before AAA, indicating that there was no color similarity among them. All composites presented color alteration after AAA with clinically unacceptable values. Protected groups presented lower opacity variation after AAA, in comparison with the control goup. SEM evaluation demonstrated that AAA increased the surface irregularities in all of the studied groups. Conclusion: Surface sealants were not effective in maintaining composite color, but were able to maintain opacity. PMID:22229004

  1. An experimental concept to measure opacities under solar-relevant conditions

    Science.gov (United States)

    Keiter, Paul A.; Mussack, Katie; Klein, Sallee R.

    2013-06-01

    Recent solar abundance models (Asplund 2009) use a significantly lower abundance for C, N, O compared to models used roughly a decade ago. Although the models used now are much more sophisticated than before, a discrepancy still exists between the abundances in the models and the abundances determined by helioseismic measurements. Agreement can be obtained by ad hoc adjustments to the opacity of high-Z (Z > 2) elements ranging from a few percent in the solar interior to as much as 30 just below the convection zone (CZ). Although many of the opacity models are thought to agree within a few percent, a recent element-by-element study (Blancard 2012) indicates a larger disagreement between models for certain elements. Experimental opacity measurements for these elements in the regimes of interest will provide valuable information to help resolve these discrepancies. We will present an experimental platform designed to measure the opacity of C, N, and O and discuss the achievable parameter regime. We will also briefly discuss how this platform can be extended to include other high-Z elements.

  2. Influence of hydrogen peroxide bleaching gels on color, opacity, and fluorescence of composite resins.

    Science.gov (United States)

    Torres, C R G; Ribeiro, C F; Bresciani, E; Borges, A B

    2012-01-01

    The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (ptherapies (phydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (ptherapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.

  3. Impact of Internet Search Engines on OPAC Users: A Study of Punjabi University, Patiala (India)

    Science.gov (United States)

    Kumar, Shiv

    2012-01-01

    Purpose: The aim of this paper is to study the impact of internet search engine usage with special reference to OPAC searches in the Punjabi University Library, Patiala, Punjab (India). Design/methodology/approach: The primary data were collected from 352 users comprising faculty, research scholars and postgraduate students of the university. A…

  4. Gluon Radiation off Hard Quarks in a Nuclear Environment Opacity Expansion

    CERN Document Server

    Wiedemann, Urs Achim

    2000-01-01

    We study the relation between the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) and Zakharov formalisms for medium-induced gluon radiation off hard quarks, and the radiation off very few scattering centers. Based on the non-abelian Furry approximation for the motion of hard partons in a spatially extended colour field, we derive a compact diagrammatic and explicitly colour trivial expression for the N-th order term of the kt-differential gluon radiation cross section in an expansion in the opacity of the medium. Resumming this quantity to all orders in opacity, we obtain Zakharov's path-integral expression (supplemented with a regularization prescription). This provides a new proof of the equivalence of the BDMPS and Zakharov formalisms which extends previous arguments to the kt-differential cross section. We give explicit analytical results up to third order in opacity for both the gluon radiation cross section of free incoming and of in-medium produced quarks. The N-th order term in the opacity expansion o...

  5. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Hence, in order to meet the envi- ronmental legislations, it is highly desirable to reduce the amount of NOx in the exhaust gas. 275 .... (i) Hot EGR: Exhaust gas is recirculated without being cooled, resulting in increased intake ... is mounted on the inlet pipe between the air filter and the inlet manifold of the engine as shown in ...

  6. The influence of metallurgy on the formation of welding aerosols.

    Science.gov (United States)

    Zimmer, Anthony T

    2002-10-01

    Recent research has indicated that insoluble ultrafine aerosols (ie., particles whose physical diameters are less than 100 nm) may cause adverse health effects due to their small size, and that toxicological response may be more appropriately represented by particle number or particle surface area. Unfortunately, current exposure criteria and the associated air-sampling techniques are primarily mass-based. Welding processes are high-temperature operations that generate substantial number concentrations of ultrafine aerosols. Welding aerosols are formed primarily through the nucleation of metal vapors followed by competing growth mechanisms such as coagulation and condensation. Experimental results and mathematical tools are presented to illustrate how welding metallurgy influences the chemical aspects and dynamic processes that initiate and evolve the resultant aerosol. This research suggests that a fundamental understanding of metallurgy and aerosol physics can be exploited to suppress the formation of undesirable chemical species as well as the amount of aerosol generated during a welding process.

  7. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    Science.gov (United States)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  8. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  9. Imaging aerosol viscosity

    Science.gov (United States)

    Pope, Francis; Athanasiadis, Thanos; Botchway, Stan; Davdison, Nicholas; Fitzgerald, Clare; Gallimore, Peter; Hosny, Neveen; Kalberer, Markus; Kuimova, Marina; Vysniauskas, Aurimas; Ward, Andy

    2017-04-01

    Organic aerosol particles play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states; however, diffusion rates of small molecules such as water appear not to be limited by these high viscosities. We have developed a technique for measuring viscosity that allows for the imaging of aerosol viscosity in micron sized aerosols through use of fluorescence lifetime imaging of viscosity sensitive dyes which are also known as 'molecular rotors'. These rotors can be introduced into laboratory generated aerosol by adding minute quantities of the rotor to aerosol precursor prior to aerosolization. Real world aerosols can also be studied by doping them in situ with the rotors. The doping is achieved through generation of ultrafine aerosol particles that contain the rotors; the ultrafine aerosol particles deliver the rotors to the aerosol of interest via impaction and coagulation. This work has been conducted both on aerosols deposited on microscope coverslips and on particles that are levitated in their true aerosol phase through the use of a bespoke optical trap developed at the Central Laser Facility. The technique allows for the direct observation of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles. The technique is non-destructive thereby allowing for multiple experiments to be carried out on the same sample. It can dynamically quantify and track viscosity changes during atmospherically relevant processes such oxidation and hygroscopic growth (1). This presentation will focus on the oxidation of aerosol particles composed of unsaturated and saturated organic species. It will discuss how the type of oxidant, oxidation rate and the composition of the oxidized products affect the time

  10. Whitecaps, sea-salt aerosols, and climate

    Science.gov (United States)

    Anguelova, Magdalena Dimitrova

    Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is

  11. Alternative control of nanoparticles dispersity in high-temperature ...

    African Journals Online (AJOL)

    The 1-dimentional model of aerosol process which includes a hot aerosol stream flowing through a tube with thermal gradients between the aerosol stream and the reactor cooled walls was developed to predict the aerosol formation, growth and thermophoretic deposition in high-temperature reactors. The mass and energy ...

  12. Smoke opacity of agricultural tractor using biodiesel in function of weather conditions in the time of testing; Opacidade da fumaca de trator agricola utilizando biodiesel em funcao das condicoes climaticas no horario de execucao do ensaio

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Afonso; Camara, Felipe T. da; Oliveira, Melina Cais Jejcic de; Furlani, Carlos E.A.; Silva, Rouverson Pereira da; Mello Junior, Jose G.S. [Universidade Estadual Paulista (FCAV/UNESP), SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias. Dept. de Engenharia Rural], E-mail: afonso@fcav.unesp.br

    2009-07-01

    The biodiesel highlights as an alternative fuel to petroleum diesel, due its similar diesel properties, allowing the biodiesel replace the diesel without engine's alterations. The present work aimed measure the tractor's smoke opacity running with biodiesel in three proportions (B0, B50, and B100), in function of environment temperature and moisture in eight times (1h, 4h, 7h, 10h, 13h, 16h, 19h, and 22h). The experiment was conducted in the Rural Engineering Department of UNESP, Jaboticabal, Brazil, it was used a Valtra BM100 4x2 TDA (74kW - 100 cv) tractor, in the engine at 2350 rpm, and a soybean's distillated ethylic Biodiesel produced by USP - Laboratory of Development of Clean Technologies, in Ribeirao Preto, Brazil. The results evidence smoke opacity reduction in order to environment temperature reduction and when increased the moisture. (author)

  13. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ziemann, Paul J. [Univ. of California, Riverside, CA (United States); Kreidenweis, Sonia M. [Colorado State Univ., Fort Collins, CO (United States); Petters, Markus D. [North Carolina State Univ., Raleigh, NC (United States)

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  14. Aerosols Science and Technology

    CERN Document Server

    Agranovski, Igor

    2011-01-01

    This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors.Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary

  15. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  16. Arab Libraries’ Web-based OPACs: An evaluative study in the light of IFLA’s Guidelines For Online Public Access Catalogue (OPAC Displays

    Directory of Open Access Journals (Sweden)

    Sherif Kamel Shaheen

    2005-03-01

    Full Text Available The research aims at evaluating Arabic Libraries’ Web-based Catalogues in the light of Principles and Recommendations published in: IFLA’s Guidelines For OPAC Displays (September 30, 2003 Draft For Worldwide Review. The total No. Of Recommendations reached” 38 “were categorized under three main titles, as follows: User Needs (12 recommendations, Content and arrangement Principle (25 recommendations, Standardization Principle (one recommendation However that number increased to reach 88 elements when formulated as evaluative criteria and included in the study’s checklist.

  17. Investigation of the value of a photographic tool to measure self-perception of enamel opacities

    Directory of Open Access Journals (Sweden)

    Davies Gill M

    2012-10-01

    Full Text Available Abstract Background The standard measurement of oral conditions that are mainly of cosmetic concern can be carried out by a trained clinical professional, or they can be assessed and reported by the individuals who may have the condition or be aware of others who have it. Enamel opacities of anterior teeth are examples of such a condition. At a public health level the interest is only about opacities that are of aesthetic concern, so the need for an index that records opacities that the public perceive to be a problem is clear. Measurement methods carried out by highly trained professionals, using unnatural conditions are not indicated at this level. This study reports on the testing of a novel epidemiological tool that aims to report on the prevalence and impact of self-perceived enamel opacities in a population of young adolescents. Methods A dental health survey was carried out using a random sample of 12-year-old school pupils during 2008/09 by Primary Care Organisations (PCOs in England. This included the use of a novel self-perception tool which aimed to measure individual’s self-perception of the presence and impact of enamel opacities to produce population measures. This tool comprised questions asking about the presence of white marks on their teeth and whether these marks bothered the volunteers and a sheet of grouped photographs of anterior teeth showing opacities ranging from TF 0, TF 1–2 to TF 2–3. Volunteers were asked which of the groups of photographs looked more like their own teeth. Examining teams from a convenience sample of 3 PCOs from this survey agreed to undertake additional measurements to assess the value of the self-perception tool. Volunteer pupils were asked the questions on a second occasion, some time after the first and clinical examiners recorded their assessments of the most closely matching set of photographs of the volunteers on two occasions. Results The tool was feasible to use, with 74% of pupils

  18. Ice-condenser aerosol tests

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  19. Diagnostic performance of qualitative shear-wave elastography according to different color map opacities for breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hana; Youk, Ji Hyun, E-mail: jhyouk@yuhs.ac; Gweon, Hye Mi; Kim, Jeong-Ah; Son, Eun Ju

    2013-08-15

    Purpose: To compare the diagnostic performance of qualitative shear-wave elastography (SWE) according to three different color map opacities for breast masses Materials and methods: 101 patients aged 21–77 years with 113 breast masses underwent B-mode US and SWE under three different color map opacities (50%, 19% and 100%) before biopsy or surgery. Following SWE features were reviewed: visual pattern classification (pattern 1–4), color homogeneity (E{sub homo}) and six-point color score of maximum elasticity (E{sub col}). Combined with B-mode US and SWE, the likelihood of malignancy (LOM) was also scored. The area under the curve (AUC) was obtained by ROC curve analysis to assess the diagnostic performance under each color opacity. Results: A visual color pattern, E{sub homo}, E{sub col} and LOM scoring were significantly different between benign and malignant lesions under all color opacities (P < 0.001). For 50% opacity, AUCs of visual color pattern, E{sub col}, E{sub homo} and LOM scoring were 0.902, 0.951, 0.835 and 0.975. But, for each SWE feature, there was no significant difference in the AUC among three different color opacities. For all color opacities, visual color pattern and E{sub col} showed significantly higher AUC than E{sub homo}. In addition, a combined set of B-mode US and SWE showed significantly higher AUC than SWE alone for color patterns, E{sub homo}, but no significant difference was found in E{sub col}. Conclusion: Qualitative SWE was useful to differentiate benign from malignant breast lesion under all color opacities. The difference in color map opacity did not significantly influence diagnostic performance of SWE.

  20. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Taizo, E-mail: t-kanai@criepi.denken.or.jp; Furuya, Masahiro, E-mail: furuya@criepi.denken.or.jp; Arai, Takahiro, E-mail: t-arai@criepi.denken.or.jp; Nishi, Yoshihisa, E-mail: y-nishi@criepi.denken.or.jp

    2016-07-15

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  1. [A case of pulmonary alveolar proteinosis presenting with miniscule ground-glass opacity in the apex of the left lung].

    Science.gov (United States)

    Matsushima, Sayomi; Yokomura, Koushi; Matsui, Takashi; Suda, Takafumi; Chida, Kingo

    2011-07-01

    A 66-year-old man was found to have a very small ground-glass opacity in the apex of the left lung. Because the ground-glass opacity had slightly enlarged after 2 years, video-assisted thoracic surgery (VATS) biopsy was performed. The histological findings showed the alveolar spaces to be filled with PAS-positive granular materials, so pulmonary alveolar proteinosis was diagnosed. Although his bronchoalveolar lavage fluid (BALF) did not have a milky appearance, his serum and BALF GM-CSF autoantibody and serum KL-6 levels were elevated. Asymptomatic pulmonary alveolar proteinosis may appear as very small ground-grass opacities.

  2. Sensitivity of aerosol direct radiative forcing to aerosol vertical profile

    Directory of Open Access Journals (Sweden)

    Jung-Ok Choi

    2014-05-01

    Full Text Available Aerosol vertical profile significantly affects the aerosol direct radiative forcing at the TOA level. The degree to which the aerosol profile impacts the aerosol forcing depends on many factors such as presence of cloud, surface albedo and aerosol single scattering albedo (SSA. Using a radiation model, we show that for absorbing aerosols (with an SSA of 0.7–0.8 whether aerosols are located above cloud or below induces at least one order of magnitude larger changes of the aerosol forcing than how aerosols are vertically distributed in clear skies, above cloud or below cloud. To see if this finding also holds for the global average aerosol direct radiative effect, we use realistic AOD distribution by integrating MODIS, MISR and AERONET observations, SSA from AERONET and cloud data from various satellite observations. It is found that whether aerosols are above cloud or below controls about 70–80% of the effect of aerosol vertical profile on the global aerosol radiative effect. Aerosols below cloud contribute as much to the global aerosol radiative effect as aerosols above cloud.

  3. Femtosecond laser-assisted keratoplasty in a child with corneal opacity:case report

    Directory of Open Access Journals (Sweden)

    E. Yu. Markova

    2014-07-01

    Full Text Available Corneal opacities are the fourth cause of blindness world-wide. Over the past two centuries, various corneal transplantation (i.e., keratoplasty methods have been developed and improved. Nowadays, femtolaserssisted keratoplasty is one of most promising techniques. Femtosecond laser have several advantages that provide additional surgical benefits. Among them, no thermal injury, the ability to cut deeply on a single plane and to perform various corneal profiles should be mentioned. In children, corneal disorders are of special importance while femtosecondassisted keraatoplasty case reports are rare. Here, we describe femtosecond laserssisted penetrating keratoplasty in a girl with a rough central corneal opacity.

  4. Radiative ablation with two ionizing-fronts when opacity displays a sharp absorption edge

    CERN Document Server

    Poujade, Olivier; Vandenboomgaerde, Marc

    2014-01-01

    The interaction of a strong flux of photons with matter through an ionizing-front (I-front) is an ubiquitous phenomenon in the context of astrophysics and inertial confinement fusion (ICF) where intense sources of radiation put matter into motion. When the opacity of the irradiated material varies continuously in the radiation spectral domain, only one single I-front is formed. In contrast, as numerical simulations tend to show, when the opacity of the irradiated material presents a sharp edge in the radiation spectral domain, a second I-front (an edge-front) can form. A full description of the mechanism behind the formation of this edge-front is presented in this article. It allows to understand supernumerary shocks (edge-shocks), displayed by ICF simulations, that might affect the robustness of the design of fusion capsules in actual experiments. Moreover, it may have consequences in various domains of astrophysics where ablative flows occur.

  5. Femtosecond laser-assisted keratoplasty in a child with corneal opacity:case report

    Directory of Open Access Journals (Sweden)

    E. Yu. Markova

    2014-01-01

    Full Text Available Corneal opacities are the fourth cause of blindness world-wide. Over the past two centuries, various corneal transplantation (i.e., keratoplasty methods have been developed and improved. Nowadays, femtolaserssisted keratoplasty is one of most promising techniques. Femtosecond laser have several advantages that provide additional surgical benefits. Among them, no thermal injury, the ability to cut deeply on a single plane and to perform various corneal profiles should be mentioned. In children, corneal disorders are of special importance while femtosecondassisted keraatoplasty case reports are rare. Here, we describe femtosecond laserssisted penetrating keratoplasty in a girl with a rough central corneal opacity.

  6. Radiative ablation with two ionizing fronts when opacity displays a sharp absorption edge.

    Science.gov (United States)

    Poujade, Olivier; Bonnefille, Max; Vandenboomgaerde, Marc

    2015-11-01

    The interaction of a strong flux of photons with matter through an ionizing front (I-front) is an ubiquitous phenomenon in the context of astrophysics and inertial confinement fusion (ICF) where intense sources of radiation put matter into motion. When the opacity of the irradiated material varies continuously in the radiation spectral domain, only one single I-front is formed. In contrast, as numerical simulations tend to show, when the opacity of the irradiated material presents a sharp edge in the radiation spectral domain, a second I-front (an edge front) can form. A full description of the mechanism behind the formation of this edge front is presented in this article. It allows us to understand extra shocks (edge-shocks), displayed by ICF simulations, that might affect the robustness of the design of fusion capsules in actual experiments. Moreover, it may have consequences in various domains of astrophysics where ablative flows occur.

  7. Interactive Boundary Detection for Automatic Definition of 2D Opacity Transfer Function

    Science.gov (United States)

    Rauberger, Martin; Overhoff, Heinrich Martin

    In computer assisted diagnostics nowadays, high-value 3-D visualization intake a supporting role to the traditional 2-D slice wise visualization. 3-D visualization may create intuitive visual appearances of the spatial relations of anatomical structures, based upon transfer functions mapping data values to visual parameters, e.g. color or opacity. Manual definition of these transfer functions however requires expert knowledge and can be tedious. In this paper an approach to automatizing 2-D opacity transfer function definition is presented. Upon few parameters characterizing the image volume and an user-depicted area of interest, the procedure detects organ surfaces automatically, upon which transfer functions may automatically be defined. Parameter setting still requires experience about the imaging properties of modalities, and improper setting can cause falsely detected organ surfaces. Procedure tests with CT and MRI image volumes show, that real time structure detection is even possible for noisy image volumes.

  8. Assessment of CNRM coupled ocean-atmosphere model sensitivity to the representation of aerosols

    Science.gov (United States)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2017-12-01

    Atmospheric aerosols can significantly affect the Earth's radiative balance due to absorption, scattering and aerosol-cloud interactions. Although our understanding of aerosol properties has improved over recent decades, aerosol radiative forcing remains as one of the largest uncertainties when attributing recent and projecting future anthropogenic climate change. Ensembles of a coupled ocean-atmosphere general circulation model were used to investigate how the representation of aerosols within the model can affect climate. The control simulation consisted of a 30-year simulation with an interactive aerosol scheme and aerosol emissions that evolve from 1980-2009. The sensitivity tests included using constant 1980 emissions, using prescribed 2-D monthly mean AODs, modifying the aerosol vertical distribution, altering aerosol optical properties, and changing the parameters used for calculating the aerosol first indirect effect. The results of these sensitivity studies show how modifying certain aspects of the aerosol scheme can significantly affect radiative flux and temperature. In particular, it was shown that compared to the control simulation the use of constant 1980 aerosol emissions decreased the average winter surface temperature of the Arctic by 0.2 K and that the use of prescribed 2-D monthly mean AODs reduced the annual global surface temperature by 0.3 K. Increasing the vertical distribution of anthropogenic aerosols in the model and altering aerosol optical properties modified localised radiative fluxes and temperatures, but the most significant change in global surface temperature (1.3 K) was caused by removing sea salt and organic matter from the calculation of cloud droplet number concentration.

  9. CLINICAL OUTCOME OF PENETRATING KERATOPLASTY IN CORNEAL OPACITIES OF DIFFERENT AETIOLOGY- A CLINICAL STUDY

    OpenAIRE

    Dipak Bhuyan; Himanto Nath Hazarika; Bonomita Neogi; Sujit Addya

    2017-01-01

    BACKGROUND Corneal transplantation or grafting is an operation in which abnormal corneal host tissue is replaced by healthy donor cornea. According to the World Health Organization (WHO), corneal diseases are among the major causes of vision loss and blindness in the world today after cataract and glaucoma. The aim of the study is to- 1. Evaluate the different aetiology of corneal opacity including active infective aetiology as indicated for penetrating keratoplasty. ...

  10. Influence of pupil size on measurements made with the Lens Opacity Meter 701.

    OpenAIRE

    Clarke, M P; Pearson, J C; Vernon, S A; Matthews, J C

    1990-01-01

    The Lens Opacity Meter 701 (Interzeag, Switzerland) is a recently developed instrument for assessing cataract. It measures the degree of scatter of a red light beam by the lens. Fifty patients prior to cataract surgery had measurements made before and after dilatation of the pupil. Inconsistent results were found at pupil diameters of less than 4 mm. It is postulated that this was due to absorption of scattered light by the iris.

  11. Influence of pupil size on measurements made with the Lens Opacity Meter 701.

    Science.gov (United States)

    Clarke, M P; Pearson, J C; Vernon, S A; Matthews, J C

    1990-09-01

    The Lens Opacity Meter 701 (Interzeag, Switzerland) is a recently developed instrument for assessing cataract. It measures the degree of scatter of a red light beam by the lens. Fifty patients prior to cataract surgery had measurements made before and after dilatation of the pupil. Inconsistent results were found at pupil diameters of less than 4 mm. It is postulated that this was due to absorption of scattered light by the iris.

  12. Instantaneous aerosol dynamics in a turbulent flow

    KAUST Repository

    Zhou, Kun

    2012-01-01

    Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par-ticles are nucleated in a thin layer region corresponding to a specific narrow temperature range near the cool stream side. However, particles undergo high growth rate on the hot stream side due to condensation. Coagulation decreases the total particle number density at a rate which is highly correlated to the in-stantaneous number density.

  13. Microkeratome-assisted superficial anterior lamellar keratoplasty for anterior stromal corneal opacities after penetrating keratoplasty.

    Science.gov (United States)

    Patel, Amit K; Scorcia, Vincenzo; Kadyan, Anju; Lapenna, Lucia; Ponzin, Diego; Busin, Massimo

    2012-01-01

    To describe the surgical technique and report the outcomes of patients treated with microkeratome-assisted superficial anterior lamellar keratoplasty for anterior stromal corneal opacities developing after penetrating keratoplasty (PK). All patients with post-penetrating keratoplasty anterior stromal opacities treated with microkeratome-assisted superficial anterior lamellar keratoplasty between July 2005 and June 2007 were reviewed. A 130-μm superficial keratectomy was performed, followed by the placement of an appropriately sized donor graft, which was secured with overlay sutures. Refraction, corneal topography, and uncorrected and best-corrected visual acuities (UCVA, BCVA, respectively) were noted at each examination. Nine eyes of 8 consecutive patients were identified. Causes of anterior stromal opacities included dystrophy recurrence (n = 3), post-photorefractive keratectomy haze (n = 2), and scarring after stromal melt (n = 4). BCVA improved in all 9 eyes at final follow-up, and 7 of 9 eyes achieved ≥20/40 within the first month. Average follow-up period was 28 ± 3.9 months. Refractive astigmatism also improved by an average of 0.7 diopters. Superficial anterior lamellar keratoplasty is a viable and effective alternative to repeat PK in treating anterior stromal scars. It avoids open-globe surgery and exposure to endothelial rejection associated with repeat PK, and visual rehabilitation is considerably quicker.

  14. The Effects of New Nuclear Reaction Rates and Opacities on Hydrodynamic Simulations of the Nova Outburst

    Science.gov (United States)

    Starrfield, S.; Sparks, W. M.; Truran, J. W.; Wiescher, M. C.

    2000-04-01

    We report on the results of new calculations of thermonuclear runaways on 1.25 Msolar oxygen, neon, and magnesium white dwarfs, using our one-dimensional, fully implicit, hydrodynamic stellar evolution code that includes a large nuclear reaction network. We have updated the nuclear reaction network by including both new and improved experimental and theoretical determinations of the nuclear reaction rates. We have also incorporated the carbon-rich OPAL opacity tables. Our results show that the changes in the reaction rates and opacities that we have introduced produce important changes with respect to our previous studies. For example, a smaller amount of 26Al is produced, while the abundances of 31P and 32S increase by factors of more than 2. This change is attributed to the increased proton-capture reaction rates for some of the intermediate-mass nuclei near 26Al and beyond, such that nuclear fusion to higher mass nuclei is enhanced. We also find that our predicted values for the amount of mass ejected in the outburst are at least a factor of 10 less than observed. The low values for the amount of ejected mass is a consequence of the fact that the OPAL opacities are larger than those we previously used, which results in more heat being trapped in the nuclear-burning regions and, therefore, less mass being accreted onto the white dwarf.

  15. Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source

    Directory of Open Access Journals (Sweden)

    Luis Gustavo Barrotte Albino

    2011-06-01

    Full Text Available The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN and FT-Raman spectroscopy (FTIR of one nanofilled (Filtek Supreme-3M-ESPE [FS] and one microhybrid composite (Charisma-Heraeus-Kulzer [CH], each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH and a light-emitting diode (LED. Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05. Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05. The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.

  16. Opacity and Color Changes of Light-Cured Ideal Makoo (IDM

    Directory of Open Access Journals (Sweden)

    M.Ghavam

    2004-03-01

    Full Text Available Statement of Problem: Esthetic materials undergo some physical and mechanical changes,during their service in oral cavity.Purpose: The aim of this study was the evaluation of the color and opacity stability of Ideal Makoo (IDM composites and compare it with Tetric ceram.Material and methods: Fifteen disk shaped samples of each material was divided into three groups of five. Different aging treatments were applied to each group. The contrast ratio of 1mm thickness and rE of the samples were evaluated at base line and after aging,using CIE system and Data Flash spectrophotometer. All the samples were kept at 37°C.Results: Baseline opacity of IDM was relatively high (77.60%±8.6. Both materials showed increased opacity after aging. The highest rE belonged to IDM samples of B group, which was significantly more than Tetric Ceram (P<0.05. Tetric Ceram, also showed some degree of color change (rE=4.60 and 5.79, on black and white background,respectively, which is noticeable clinically.Conclusion: The research showed that IDM can not be a reliable esthetic material, unless some improvements in the chemical composition will be achieved.

  17. Atmosphere aerosol satellite project Aerosol-UA

    Science.gov (United States)

    Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii

    2017-04-01

    The experiment Aerosol-UA is Ukrainian space mission aimed to the terrestrial atmospheric aerosol spatial distribution and microphysics investigations. The experiment concept is based on idea of Glory/APS mission of precise orbital measurements of polarization and intensity of the sunlight scattered by the atmosphere, aerosol and the surface the multichannel Scanning Polarimeter (ScanPol) with narrow field-of-view. ScanPol measurements will be accompanied by the wide-angle MultiSpectral Imager-Polarimeter (MSIP). The ScanPol is designed to measure Stokes parameters I, Q, U within the spectral range from the UV to the SWIR in a wide range of phase angles along satellite ground path. Expected ScanPol polarimetric accuracy is 0.15%. A high accuracy measurement of the degree of linear polarization is provided by on-board calibration of the ScanPol polarimeter. On-board calibration is performed for each scan of the mirror scanning system. A set of calibrators is viewed during the part of the scan range when the ScanPol polarimeter looks in the direction opposite to the Earth's surface. These reference assemblies provide calibration of the zero of the polarimetric scale (unpolarized reference assembly) and the scale factor for the polarimetric scale (polarized reference assembly). The zero of the radiometric scale is provided by the dark reference assembly.The spectral channels of the ScanPol are used to estimate the tropospheric aerosol absorption, the aerosol over the ocean and the land surface, the signals from cirrus clouds, stratospheric aerosols caused by major volcanic eruptions, and the contribution of the Earth's surface. The imager-polarimeter MSIP will collect 60°x60° field-of-view images on the state of the atmosphere and surface in the area, where the ScanPol polarimeter will measure, to retrieve aerosol optical depth and polarization properties of aerosol by registration of three Stokes parameters simultaneously in three spectral channels. The two more

  18. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol

  19. Gas/Aerosol partitioning: a simplified method for global modeling

    Science.gov (United States)

    Metzger, S. M.

    2000-09-01

    The main focus of this thesis is the development of a simplified method to routinely calculate gas/aerosol partitioning of multicomponent aerosols and aerosol associated water within global atmospheric chemistry and climate models. Atmospheric aerosols are usually multicomponent mixtures, partly composed of acids (e.g. H2SO4, HNO3), their salts (e.g. (NH4)2SO4, NH4NO3, respectively), and water. Because these acids and salts are highly hygroscopic, water, that is associated with aerosols in humid environments, often exceeds the total dry aerosol mass. Both the total dry aerosol mass and the aerosol associated water are important for the role of atmospheric aerosols in climate change simulations. Still, multicomponent aerosols are not yet routinely calculated within global atmospheric chemistry or climate models. The reason is that these particles, especially volatile aerosol compounds, require a complex and computationally expensive thermodynamical treatment. For instance, the aerosol associated water depends on the composition of the aerosol, which is determined by the gas/liquid/solid partitioning, in turn strongly dependent on temperature, relative humidity, and the presence of pre-existing aerosol particles. Based on thermodynamical relations such a simplified method has been derived. This method is based on the assumptions generally made by the modeling of multicomponent aerosols, but uses an alternative approach for the calculation of the aerosol activity and activity coefficients. This alternative approach relates activity coefficients to the ambient relative humidity, according to the vapor pressure reduction and the generalization of Raoult s law. This relationship, or simplification, is a consequence of the assumption that the aerosol composition and the aerosol associated water are in thermodynamic equilibrium with the ambient relative humidity, which determines the solute activity and, hence, activity coefficients of a multicomponent aerosol mixture

  20. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    Science.gov (United States)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter, M. Stock, R. Neuber, and M. Maturilli, A three dimensional characterization of Arctic aerosols from airborne sun photometer observations: PAM-ARCMIP - April 2009, Journal Geophysical Research, VOL. 115, D13203, doi:10.1029/2009JD013605, 2010.

  1. Pre-papillary vitreous opacities associated with Behçet's disease: a case series and review of the literature.

    Science.gov (United States)

    Grotting, Lindsay A; Davoudi, Samaneh; Uchiyama, Eduardo; Lobo, Ann-Marie; Papaliodis, George N; Sobrin, Lucia

    2017-10-01

    To present pre-papillary vitreous opacity as an uncommon manifestation of inflammation in Behçet's disease that may be specific to this uveitic entity. We retrospectively reviewed the charts of 67 patients with Behçet's disease examined at our clinic between 2005 and 2016. Behçet's disease was diagnosed based on established clinical criteria of inflammation involving the eyes, mucocutaneous junctions, and skin. Patients with Behçet's disease who presented with papillitis and a pre-papillary vitreous opacity were identified. Response to anti-inflammatory treatment on examination and optical coherence tomography imaging were evaluated. PubMed searches were performed for (1) other cases with pre-papillary vitreous opacities in uveitic entities and (2) reports of optic nerve involvement specifically in Behçet's disease. We identified three patients with Behçet's disease who presented with unilateral papillitis and a pre-papillary vitreous opacity. The pre-papillary vitreous opacity had a funnel-shaped appearance on optical coherence tomography. All patients were initially treated with steroids, which led to resolution of the opacity clinically and on imaging. We identified one previous report of such a pre-papillary opacity in a patient with Behçet's disease, and no reports of this finding in other uveitic entities. This study expands the number of Behçet's disease cases presenting with a pre-papillary vitreous opacity and demonstrates novel optical coherence imaging of this finding. This finding may be specific to Behçet's disease as it was not identified in other uveitic entities in a review of the existing literature.

  2. Temperature retrieval at the southern pole of the Venusian atmosphere

    Science.gov (United States)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  3. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  4. Aerosol Optical Properties and Determination of Aerosol Size Distribution in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2014-01-01

    Full Text Available Columnar aerosol volume size distributions from March 2012 to February 2013 in Wuhan, China, were investigated with a focus on monthly and seasonal variations in the aerosol optical depths (AODs and Ångström exponents. AOD is wavelength dependent, and for AOD at, for example, 500 nm, the seasonal averaged AOD value decreased in the order of winter (~0.84, spring (~0.83, summer (~0.76 and autumn (~0.55. The Ångström exponent suggested that the aerosol sizes in summer (~1.22, winter (~1.14, autumn (~1.06 and spring (~0.99 varied from fine to coarse particles. The Ångström exponent and AOD could provide a qualitative evaluation of ASD. Moreover, aerosol size distribution (ASD was larger in winter than the other three seasons, especially from 1.0 µm to 15 µm due to heavy anthropogenic aerosol and damp climate. The ASD spectral shape showed a bimodal distribution in autumn, winter, and spring, with one peak (<0.1 in the fine mode range and the other (>0.14 in the coarse mode range. However, there appeared to be a trimodal distribution during summer, with two peaks in the coarse mode, which might be due to the hygroscopic growth of the local particles and the generation of aerosol precursor resulting from the extreme-high temperature and relative humidity.

  5. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    Science.gov (United States)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  6. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  7. Emergency Protection from Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  8. Marine Aerosols and Clouds.

    Science.gov (United States)

    Brooks, Sarah D; Thornton, Daniel C O

    2017-10-13

    The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gasphase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models. Expected final online publication date for the Annual Review of Marine Science Volume 10 is January 3, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  9. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

  10. Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area

    Science.gov (United States)

    Tedeschi, Gilles; van Eijk, Alexander M. J.; Piazzola, Jacques; Kusmierczyk-Michulec, Jolanta T.

    2017-01-01

    Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea-land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air-sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1-5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.

  11. Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2011-07-01

    Full Text Available Ship-borne observations of spectral aerosol optical depth (AOD have been carried out over the entire Bay of Bengal (BoB as part of the W-ICARB cruise campaign during the period 27 December 2008–30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD500>0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångström exponent is also found to be high (~1.2–1.25 indicating transport of strong anthropogenic emissions from continental regions, while very high AOD500 (0.39±0.07 and α380–870 values (1.27±0.09 are found over the eastern BoB. Except from the large α380–870 values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme based on the relationship between α and dα. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols (~6 %–8 % over the eastern and northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB.

  12. Aerosol deposition in the human respiratory tract

    Science.gov (United States)

    Winchester, John W.; Jones, Donald L.; Mu-tian, Bi

    1984-04-01

    Rising sulfur dioxide emissions from increased coal combustion present risks, not only of acid rain, but also to health by inhalation of the SO 2 and acid to the lung. We are investigating human inhalation of ppm SO 2 concentrations mixed with aerosol of submicrometer aqueous salt droplets to determine the effects on lung function and body chemistry. Unlike some investigators, we emphasize ammonium sulfate and trace element aerosol composition which simulates ambient air; aerosol pH, relative humidity, and temperature control to reveal gas-particle reaction mechanisms; and dose estimates from length of exposure, SO 2 concentration, and a direct measurement of respiratory deposition of aerosol as a function of particle size by cascade impactor sampling and elemental analysis by PIXE. Exposures, at rest or during exercise, are in a walk-in chamber at body temperature and high humidity to simulate Florida's summer climate. Lung function measurement by spirometry is carried out immediately after exposure. The results are significant in relating air quality to athletic performance and to public health in the southeastern United States.

  13. Aerosol effects on climate in China: a consistent picture?

    Science.gov (United States)

    Folini, Doris; Wild, Martin

    2013-04-01

    Population growth and industrialization in China in recent decades were accompanied by a substantial increase in aerosol emissions. Corresponding inventory data as well as consequences of increasing aerosol emissions are debated on the quantitative level, e.g. urbanization effects in observed data. We use transient sensitivity studies with the global atmosphere only climate model ECHAM5-HAM (aerosol emission data from NIES, the National Institute of Environmental Studies, Japan; prescribed, observation based sea surface temperatures (SSTs) from the Hadley Center) to investigate the effect of different aerosol emissions on surface solar radiation (SSR), surface air temperature (SAT), and precipitation. Observed and modeled SSR show a decrease of around -7 W/m2 in eastern parts of China, before increasing again in the late 1990s. Modeled SAT reflects the decrease in SSR in recent decades but carries also a substantial SST signature, in particular in the first half of the 20th century. Modeled precipitation decreases under the influence of increasing aerosol emissions, the 'northern drought, southern flood' pattern gets lost. We discuss how modeled changes due to increasing aerosol emissions compare with observations and what this may imply for the prescribed aerosol emissions, the model results, and the observed data.

  14. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    Science.gov (United States)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  15. Modelling the Effect of Black Carbon and Sulfate Aerosol on the Regional Meteorology Factors

    Science.gov (United States)

    Ma, X.; Wen, W.

    2017-07-01

    In this study, we focus on the effect of black carbon aerosol and sulfate aerosol on meteorology factors during heavy pollution period and non-heavy pollution period. The version of WRF/chem V3.4 was used in this work, Four Simulation scenarios are applied to simulate the effect of the effect of black carbon aerosol and sulfate aerosol on solar radiation, temperature, PBL high. The analysis results show that the effect of black carbon and sulfate aerosol cause decline on three meteorological factors in both heavy pollution and non-heavy pollution period in both January and July. The influence of two aerosols on meteorological factors are less significant than winter. During heavy pollution, black carbon aerosol cause the loss of solar radiation is 29.1W/m2; the warming effect of black carbon aerosol caused temperature to rise 0.05°C PBL height decreased by an average of 73.1m. Sulfate aerosols cause the loss of solar radiation is 21.5W/m2; Temperature fell an average of 0.89°C PBL height decreased by 66.6m. The change of three meteorological factors due to aerosol feedback in non-heavy pollution period in much smaller than heavy pollution period.

  16. Effect of ceramic veneer opacity and exposure time on the polymerization efficiency of resin cements.

    Science.gov (United States)

    Archegas, Lucí Regina Panka; de Menezes Caldas, Danillo Biazzetto; Rached, rodrigo Nunes; Soares, Paulo; Souza, Evelise Machado

    2012-01-01

    The objective of this study was to determine the degree of conversion (DC), hardness (H), and modulus of elasticity (E) of a dual-cured resin cement, a light-cured resin cement, and a flowable resin cured through opaque or translucent ceramic with different exposure times. RelyX ARC (dual), RelyX Veneer (light-cured), and Filtek Z350 Flow resin specimens 0.5 mm thick were cured for 40, 80, and 120 seconds through 1-mm thick translucent or opaque feldspathic ceramic disks (n=10). The specimens were stored at 37°C for 24 hours. Half of each specimen was used to test the DC and the other half to test H and E. The DC was determined in a Fourier transform infrared spectrometer in absorbance mode at peaks of 1638 cm(-1) and 1610 cm(-1). H and E were determined using nanoindentation with one loading cycle and a maximum load of 400 mN. The data were analyzed with three-way analysis of variance (ANOVA), the Games-Howell test, and the Pearson correlation test (α=0.05). Statistically significant differences were found for all three factors (material, opacity, and exposure time), as well as interaction between them. The opaque ceramic resulted in lower DC, H, and E than the translucent ceramic for an exposure time of 40 seconds. An exposure time of 120 seconds resulted in a similar DC for all materials, irrespective of the opacity of the ceramic. Materials cured for 120 seconds had higher H and E than those cured for 40 seconds. The exposure time and opacity of the ceramic exerted an influence on the DC, H, and E of the materials evaluated.

  17. Effect of accelerated aging on the color and opacity of resin cements.

    Science.gov (United States)

    Ghavam, Maryam; Amani-Tehran, Mohammad; Saffarpour, Mahshid

    2010-01-01

    The color stability of resin cements plays a major role in the esthetic performance of porcelain laminate veneers. Some dual-polymerizable resin cements used to bond porcelain laminates were shown to undergo color changes during service. Some recently produced cements are described as being color stable, but scientific data are not available. The current study evaluated the effect of accelerated aging on the color and opacity of resin cements. The hypothesis was that the auto-polymerizing cements would show less color and opacity stability. Forty (0.7 x 18 mm) feldspathic porcelain disks were prepared and divided into four equal groups. The resin cements were bonded to the disks by application of an identical load of 2.5 kilograms, and they were polymerized according to the manufacturer's instructions. The groups were: Variolink Veneer (light-polymerizing), Variolink II (light-polymerizing), Variolink II (dual-polymerizing) and Multilink (auto-polymerizing). A spectrophotometer was used to measure the following color parameters in the CIE L*a*b* color space on a black and white background: deltaa*, deltab*, deltaL*, deltaC, deltaH, deltaE and deltaCR (contrast ratio). The measurements were performed before and after aging. Paired t- and one-way ANOVA tests were used to analyze the data (alpha = .05). None of the groups showed significant differences in deltaE before and after aging (p > .05); deltaE remained in the range of clinical acceptance (deltaE aging. The studied cements can ensure color stability when used to cement porcelain laminate veneers, but the change in opacity can affect clinical results. Auto polymerizing cements become more opaque with aging; therefore, porcelain restorations may lose their match with other teeth.

  18. A test of lens opacity as an indicator of preclinical Alzheimer Disease.

    Science.gov (United States)

    Bei, Ling; Shui, Ying-Bo; Bai, Fang; Nelson, Suzanne K; Van Stavern, Gregory P; Beebe, David C

    2015-11-01

    Previous studies reported that characteristic lens opacities were present in Alzheimer Disease (AD) patients postmortem. We therefore determined whether cataract grade or lens opacity is related to the risk of Alzheimer dementia in participants who have biomarkers that predict a high risk of developing the disease. AD biomarker status was determined by positron emission tomography-Pittsburgh compound B (PET-PiB) imaging and cerebrospinal fluid (CSF) levels of Aβ42. Cognitively normal participants with a clinical dementia rating of zero (CDR = 0; N = 40) or with slight evidence of dementia (CDR = 0.5; N = 2) were recruited from longitudinal studies of memory and aging at the Washington University Knight Alzheimer's Disease Research Center. The age, sex, race, cataract type and cataract grade of all participants were recorded and an objective measure of lens light scattering was obtained for each eye using a Scheimpflug camera. Twenty-seven participants had no biomarkers of Alzheimer dementia and were CDR = 0. Fifteen participants had biomarkers indicating increased risk of AD, two of which were CDR = 0.5. Participants who were biomarker positive were older than those who were biomarker negative. Biomarker positive participants had more advanced cataracts and increased cortical light scattering, none of which reached statistical significance after adjustment for age. We conclude that cataract grade or lens opacity is unlikely to provide a non-invasive measure of the risk of developing Alzheimer dementia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lens opacities in Bloom syndrome: case report and review of the literature.

    Science.gov (United States)

    Cefle, Kivanc; Ozturk, Sukru; Gozum, Nilufer; Duman, Nilgun; Mantar, Ferhan; Guler, Kerim; Palanduz, Sukru

    2007-09-01

    Bloom syndrome is an autosomal recessive disorder characterized by proportionate short stature, photosensitivity, immunodeficiency, hypogonadism and a tendency to develop various malignancies. The greatly increased frequency of sister chromatid exchanges (reciprocal exchange of homologous segments between the two sister chromatids of a chromosome) is regarded as pathognomonic for BS. We describe an 18-year old girl who presented with short stature. She was diagnosed with BS based on an extremely increased frequency of sister chromatid exchanges. Ophthalmological examination revealed mild lens opacities bilaterally, which, to our knowledge, has not been previously reported to be associated with BS.

  20. CLINICAL OUTCOME OF PENETRATING KERATOPLASTY IN CORNEAL OPACITIES OF DIFFERENT AETIOLOGY- A CLINICAL STUDY

    Directory of Open Access Journals (Sweden)

    Dipak Bhuyan

    2017-01-01

    Full Text Available BACKGROUND Corneal transplantation or grafting is an operation in which abnormal corneal host tissue is replaced by healthy donor cornea. According to the World Health Organization (WHO, corneal diseases are among the major causes of vision loss and blindness in the world today after cataract and glaucoma. The aim of the study is to- 1. Evaluate the different aetiology of corneal opacity including active infective aetiology as indicated for penetrating keratoplasty. 2. Determine the clinical outcome of penetrating keratoplasty in relation to graft survival, graft rejection and peri-operative complications in different aetiology groups. 3. Determine the final visual outcome. MATERIALS AND METHODS Candidates for keratoplasty were selected from- 1. Eye Bank of Regional Institute of Ophthalmology (R.I.O. 2. R.I.O OPD. The study period was from September 2014 to August 2015. 30 cases were taken in the study. Descriptive statistics were applied to analyse the data wherever necessary. RESULTS 34.6±19.73 yrs. (mean±SD was the mean age at which transplants were done in the study. Out of total 30 cases, 13 (43.33% and 17 (56.66% were male and female, respectively. The different indications for penetrating keratoplasty are- Post ulcer corneal opacity in 14 cases (46.66%, posttraumatic corneal opacity 9 cases (30%, pseudophakic bullous keratopathy 4 cases (13.33%, corneal dystrophy in 2 cases (6.66% and non-healing corneal ulcer in 1 case (3.33%. 16 cases (53.33% showed clear graft till the last follow up while 11 (33.33% cases showed partially clear graft resulting in improved visual outcome while 3 cases (10.00% of the grafts were opaque due to graft failure. CONCLUSION The major indications for penetrating keratoplasty in this part of the world are post ulcer and posttraumatic corneal opacity and majority of them are illiterate agricultural workers who failed to get adequate treatment on time. Graft survival rate is high, which can be attributed to the

  1. Far-infrared dust opacity and visible extinction in the Polaris Flare

    OpenAIRE

    Cambresy, L.; Boulanger, F.; Lagache, G.; Stepnik, B.

    2001-01-01

    We present an extinction map of the Polaris molecular cirrus cloud derived from star counts and compare it with the Schlegel et al. (1998) extinction map derived from the far--infrared dust opacity. We find that, within the Polaris cloud, the Schlegel et al. Av values are a factor 2 to 3 higher than the star count values. We propose that this discrepancy results from a difference in $\\tau_{FIR}/ A_V$ between the diffuse atomic medium and the Polaris cloud. We use the difference in spectral en...

  2. Influence of Corneal Opacity on Intraocular Pressure Assessment in Patients with Lysosomal Storage Diseases.

    Science.gov (United States)

    Wasielica-Poslednik, Joanna; Politino, Giuseppe; Schmidtmann, Irene; Lorenz, Katrin; Bell, Katharina; Pfeiffer, Norbert; Pitz, Susanne

    2017-01-01

    To investigate an influence of mucopolysaccharidosis (MPS)- and Morbus Fabry-associated corneal opacities on intraocular pressure (IOP) measurements and to evaluate the concordance of the different tonometry methods. 25 MPS patients with or without corneal clouding, 25 Fabry patients with cornea verticillata ≥ grade 2 and 25 healthy age matched controls were prospectively included into this study. Outcome measures: Goldmann applanation tonometry (GAT); palpatory assessment of IOP; Goldmann-correlated intraocular pressure (IOPg), corneal-compensated intraocular pressure (IOPcc), corneal resistance factor (CRF) and corneal hysteresis (CH) assessed by Ocular Response Analyzer (ORA); central corneal thickness (CCT) and density assessed with Pentacam. Statistical analysis was performed using linear mixed effect models and Spearman correlation coefficients. The concordance between tonometry methods was assessed using Bland-Altman analysis. There was no relevant difference between study groups regarding median GAT, IOPg, IOPcc and CCT measurements. The limits of agreement between GAT and IOPcc/IOPg/palpatory IOP in MPS were: [-11.7 to 12.1mmHg], [-8.6 to 15.5 mmHg] and [- 5.4 to 10.1 mmHg] respectively. Limits of agreement were less wide in healthy subjects and Fabry patients. Palpatory IOP was higher in MPS than in healthy controls and Fabry patients. Corneal opacity correlated more strongly with GAT, IOPg, CH, CRF, CCT and corneal density in MPS (r = 0.4, 0.5, 0.5, 0.7, 0.6, 0.6 respectively) than in Fabry patients (r = 0.3, 0.2, -0.03, 0.1, 0.3, -0.2 respectively). In contrast, IOPcc revealed less correlation with corneal opacity than GAT in MPS (r = 0.2 vs. 0.4). ORA and GAT render less comparable IOP-values in patients suffering from MPS-associated corneal opacity in comparison to Fabry and healthy controls. The IOP seems to be overestimated in opaque MPS-affected corneas. GAT, IOPg and biomechanical parameters of the cornea correlate more strongly with the corneal

  3. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    Science.gov (United States)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  4. Critical opacity: a possible explanation of the fast thermalization times seen in BNL RHIC experiments.

    Science.gov (United States)

    Gastineau, F; Blanquier, E; Aichelin, J

    2005-07-29

    The Nambu-Jona-Lasinio Lagrangian offers an explication of the seemingly contradictory observations that (a) the energy loss in the entrance channel of heavy ion reactions is not sufficient to thermalize the system and that (b) the observed hadron cross sections are in almost perfect agreement with hydrodynamical calculations. According to this scenario, a critical opacity develops close to the chiral phase transition which equilibrates and hadronizes the expanding system very effectively. It creates as well radial flow and, if the system is not isotropic, finite upsilon2 values.

  5. Amelogenesis imperfecta with enamel opacities and taurodontism: an alternative diagnosis for 'idiopathic dental fluorosis'.

    Science.gov (United States)

    Winter, G B

    1996-09-07

    A retrospective study of 32 children (mean age 10.3 years) attending the Children's Department, Eastman Dental Hospital with enamel opacities resembling dental fluorosis in the majority showed that these changes were probably genetically determined and had a close association with taurodontism of permanent molar teeth. It seems likely that these enamel defects should be classified as hypomaturation types of amelogenesis imperfecta (AI) conveyed by mutant auto-somal genes. The clinical expression (phenotype) of these mutant genes has a greater heterogeneity than previously described.

  6. AKATSUKI-IR2 reveals unexpected opacity disruption affecting Venus's lower clouds every 9 days

    Science.gov (United States)

    Peralta, J.; Satoh, T.; Horinouchi, T.; Ogohara, K.; Kouyama, T.; Murakami, S.; Imamura, T.; McGouldrick, K.; Sato, T. M.; Limaye, S.; García-Melendo, E.; Sánchez-Lavega, A.; Hueso, R.

    2017-09-01

    The images of AKATSUKI acquired with the camera IR2 at 1.74-2.3 µm report the discovery of an equatorial disruption or "bow" between 30ºN‒30ºS of the Venus's lower clouds at 50 km. This feature appears on the night every 9 terrestrial days during more than 8 months, and introduces a dramatic and abrupt increase of the cloud opacity and reducing the thermal radiance in a factor of about 1:2 from its brightest to the darkest side.

  7. An Aerosol Physical Chemistry Model for the Upper Troposphere

    Science.gov (United States)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  8. Stratospheric benzene and hydrocarbon aerosols observed in Saturn's upper atmosphere

    Science.gov (United States)

    Guerlet, S.; Koskinen, T.

    2017-09-01

    We review recent observations of benzene and hydrocarbon aerosols in Saturn's middle and upper atmosphere by Cassini/CIRS and Cassini/UVIS. These results support the link between the precipitation of energetic electrons (ion chemistry) and the production of benzene and aerosols in Saturn's polar regions, and that solar-driven ion chemistry could also play a significant role in producing benzene at low and mid-latitudes. We also evaluate the radiative impact of the haze on Saturn's stratospheric temperatures.

  9. Aerosol Observing System Surface Meteorology (AOSMET) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kyrouac, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observing System (AOS) surface meteorology instrument is an ancillary sensor that provides temperature, relative humidity, pressure, wind speed and direction, and precipitation data relevant to the AOS. It consists of a Vaisala WXT520 Weather Transmitter mounted on top of the AOS aerosol inlet, at a height of approximately 10 meters.

  10. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    Science.gov (United States)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  11. Multilevel Analysis of Trachomatous Trichiasis and Corneal Opacity in Nigeria: The Role of Environmental and Climatic Risk Factors on the Distribution of Disease.

    Directory of Open Access Journals (Sweden)

    Jennifer L Smith

    Full Text Available The distribution of trachoma in Nigeria is spatially heterogeneous, with large-scale trends observed across the country and more local variation within areas. Relative contributions of individual and cluster-level risk factors to the geographic distribution of disease remain largely unknown. The primary aim of this analysis is to assess the relationship between climatic factors and trachomatous trichiasis (TT and/or corneal opacity (CO due to trachoma in Nigeria, while accounting for the effects of individual risk factors and spatial correlation. In addition, we explore the relative importance of variation in the risk of trichiasis and/or corneal opacity (TT/CO at different levels. Data from the 2007 National Blindness and Visual Impairment Survey were used for this analysis, which included a nationally representative sample of adults aged 40 years and above. Complete data were available from 304 clusters selected using a multi-stage stratified cluster-random sampling strategy. All participants (13,543 individuals were interviewed and examined by an ophthalmologist for the presence or absence of TT and CO. In addition to field-collected data, remotely sensed climatic data were extracted for each cluster and used to fit Bayesian hierarchical logistic models to disease outcome. The risk of TT/CO was associated with factors at both the individual and cluster levels, with approximately 14% of the total variation attributed to the cluster level. Beyond established individual risk factors (age, gender and occupation, there was strong evidence that environmental/climatic factors at the cluster-level (lower precipitation, higher land surface temperature, higher mean annual temperature and rural classification were also associated with a greater risk of TT/CO. This study establishes the importance of large-scale risk factors in the geographical distribution of TT/CO in Nigeria, supporting anecdotal evidence that environmental conditions are associated

  12. Infrared Spectroscopy and Physical Chemistry of Cryogenic Aerosols

    Science.gov (United States)

    Clapp, Mannie Lee

    1995-01-01

    Infrared spectroscopy has been used as a tool for elucidating the spectroscopic and physical properties of cryogenic aerosols. Ammonia and hydrazine aerosols have been studied using this technique under conditions designed to mimic those found in the atmosphere of Jupiter. Aerosols of water ice, nitric acid and water, and sulfuric acid and water were also studied under temperature conditions similar to those found in the Earth's stratosphere. Aerosols are generated in low temperature flow cells via homogeneous and heterogeneous nucleation of the gas phase. The technique affords information on the size, composition, number density, and in some cases shape, of the particles created. Both ammonia and hydrazine aerosols were studied over the temperature range from 180 K to 110 K. Mie theory can adequately describe the observed particle spectra in most cases. Under conditions designed to enhance particle aggregation, shape effects in the 9.4 mu m absorption band of the ammonia aerosols become apparent which can be modeled well using the Discrete Dipole Approximation. Both substances can exist as supercooled liquid droplets. Ammonia particles freeze distinctly at 155 K, while hydrazine particles freeze over the temperature range from 180 K to 170 K. Spectra of aerosols which are of mixtures of ammonia and hydrazine reveal that the inclusion of hydrazine into ammonia particles affects the spectrum of the ammonia very little, while the hydrazine absorptions are strongly perturbed. Hydrazine is not very soluble in the ammonia particles, even at very low concentrations. A new technique for determining complex refractive indices from aerosol spectra has been developed and applied to water ice and crystalline hydrazine. Comparisons with previous data indicate that the method is sound and accurate. The temperature dependence of the water ice complex refractive index has been quantified and compares well with previous results as a function of temperature. No temperature

  13. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  14. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    B. Croft

    2010-02-01

    Full Text Available A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (>90% scavenged by cloud nucleation processes for all aerosol species, except for dust (50%. The aerosol number scavenged is primarily (>90% attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds

  15. MATRIX-VBS (v1.0): implementing an evolving organic aerosol volatility in an aerosol microphysics model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-02-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  16. Opposite long-term trends in aerosols between low and high altitudes: a testimony to the aerosol-PBL feedback

    Science.gov (United States)

    Dong, Zipeng; Li, Zhanqing; Yu, Xing; Cribb, Maureen; Li, Xingmin; Dai, Jin

    2017-06-01

    Interactions between absorbing aerosols and the planetary boundary layer (PBL) play an important role in affecting air pollution near the surface. In this study, a unique feature of the aerosol-PBL interaction is identified that has important implications in monitoring and combating air pollution. Opposite trends in aerosol loading between the lower and upper PBL are shown on a wide range of timescales and data acquired by various platforms: from a short-term field experiment to decadal satellite observations and multidecadal ground observations in China. A novel method is proposed to obtain the vertical profiles of aerosol loading from passive sensors by virtue of varying elevations. The analyses of visibility, aerosol optical depth, and extinction with different temporal scales exhibit the similar trend, i.e., increasing in the lower atmosphere but decreasing in the upper atmosphere. Integration of the reversal aerosol trend below and above the PBL resulted in a much less change in the column-integrated quantities. The surface cooling effect, together with the change in the heating rate induced by the absorbing aerosol, unevenly modifies the atmospheric temperature profile, causing a more stable atmosphere inside the PBL but a destabilized atmosphere above the PBL. Such a change in the atmospheric stability favors the accumulation of pollutants near the surface and the vertical diffusion of aerosol particles in the upper atmosphere, both of which are consistent with the observed reversal aerosol trends. These findings have multiple implications in understanding and combating air pollution, especially in many developing countries with high emissions of light-absorbing aerosols.

  17. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  18. Mapping the opacity of paint layers in paintings with coloured grounds using optical coherence tomography

    Science.gov (United States)

    Liu, Ping; Hall-Aquitania, Moorea; Hermens, Erma; Groves, Roger M.

    2017-07-01

    Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.

  19. Constraining the Dust Opacity Law in Three Small and Isolated Molecular Clouds

    Science.gov (United States)

    Webb, K. A.; Di Francesco, J.; Sadavoy, S.; Thanjavur, K.; Launhardt, R.; Shirley, Y.; Stutz, A.; Abreu Vicente, J.; Kainulainen, J.

    2017-11-01

    Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, that are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the reliability of commonly used dust models. In this work, we compare Herschel-derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB 68, L 429, and L 1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, the results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well-described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.

  20. Aerosol deposition on plant leaves

    Science.gov (United States)

    James B. Wedding; Roger W. Carlson; James J. Stukel; Fakhri A. Bazzaz

    1976-01-01

    An aerosol generator and wind tunnel system designed for use in aerosol deposition is described. Gross deposition on rough pubescent leaves was nearly 7 times greater than on smooth, waxy leaves. Results suggest that aerosol deposition, on a per unit area basis, for single horizontal streamlining leaves is similar to that for arrays of leaves under similar flow...

  1. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

    Science.gov (United States)

    Vernier, J.-P.; Fairlie, T. D.; Natarajan, M.; Wienhold, F. G.; Bian, J.; Martinsson, B. G.; Crumeyrolle, S.; Thomason, L. W.; Bedka, K. M.

    2015-02-01

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of -0.1 W/m2 in the past 18 years.

  2. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  3. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    Science.gov (United States)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  4. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J.E. [Lawrence Livermore National Lab., CA (United States). Global Climate Research Div.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  5. Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality

    Science.gov (United States)

    Wang, Kai; Zhang, Yang; Yahya, Khairunnisa; Wu, Shiang-Yuh; Grell, Georg

    2015-08-01

    Atmospheric aerosols play important roles in affecting regional meteorology and air quality through aerosol direct and indirect effects. Two new chemistry-aerosol options have been developed in WRF/Chem v3.4.1 by incorporating the 2005 Carbon Bond (CB05) mechanism and coupling it with the existing aerosol module MADE with SORGAM and VBS modules for simulating secondary organic aerosol (SOA), aqueous-phase chemistry in both large scale and convective clouds, and aerosol feedback processes (hereafter CB05-MADE/SORGAM and CB05-MADE/VBS). As part of the Air Quality Model Evaluation International Initiative (AQMEII) Phase II model intercomparison that focuses on online-coupled meteorology and chemistry models, WRF/Chem with the two new options is applied to an area over North America for July 2006 episode. The simulations with both options can reproduce reasonably well most of the observed meteorological variables, chemical concentrations, and aerosol/cloud properties. Compared to CB05-MADE/SORGAM, CB05-MADE/VBS greatly improves the model performance for organic carbon (OC) and PM2.5, reducing NMBs from -81.2% to -13.1% and from -26.1% to -15.6%, respectively. Sensitivity simulations show that the aerosol indirect effects (including aqueous-phase chemistry) can reduce the net surface solar radiation by up to 53 W m-2 with a domainwide mean of 12 W m-2 through affecting cloud formation and radiation scattering and reflection by increasing cloud cover, which in turn reduce the surface temperature, NO2 photolytic rate, and planetary boundary layer height by up to 0.3 °C, 3.7 min-1, and 64 m, respectively. The changes of those meteorological variables further impact the air quality through the complex chemistry-aerosol-cloud-radiation interactions by reducing O3 mixing ratios by up to 5.0 ppb. The results of this work demonstrate the importance of aerosol indirect effects on the regional climate and air quality. For comparison, the impacts of aerosol direct effects on both

  6. Propuesta metodológica de evaluación de interfaces de OPACs. INNOPAC versus UNICORN.

    Directory of Open Access Journals (Sweden)

    Rodríguez Bravo, Blanca

    2004-03-01

    Full Text Available The aim of this paper is to present a model of academic OPACs evaluation with the objective of sharing a procedure and some parameters and indicators established. There are two fundamental parameters, the interface searching services and the characteristics of the interface: design, ergonomics and user-friendliness. The present work provides also, the main results of the evaluations of ten OPACs implemented with INNOPAC and UNICORN previously accomplished. Now we will contrast both systems. We consider that universities are institutions that demand OPACs with better services to those of other informative units. The present evaluation has considered the users needs in academic libraries.

    Los propósitos de este trabajo son presentar un modelo de evaluación de OPACs universitarios con el objetivo de compartir un procedimiento y unos parámetros e indicadores establecidos a este fin. Dos son los parámetros fundamentales, las prestaciones de búsqueda de la interfaz y las características de la propia interfaz: diseño, ergonomía y amigabilidad. El presente estudio ofrece, asimismo, los principales resultados de las evaluaciones realizadas en trabajos previos sobre diez OPACs implementados con INNOPAC y UNICORN, que nos permiten ahora contrastar ambos sistemas. Partimos de la consideración de que las universidades son instituciones que por su idiosincrasia exigen OPACs con prestaciones superiores a las de otras unidades informativas. En este sentido, la formalización de los criterios evaluativos ha considerado las necesidades de los usuarios de las bibliotecas universitarias.

  7. Esthetic management of developmental enamel opacities in young permanent maxillary incisors with two microabrasion techniques--a split mouth study.

    Science.gov (United States)

    Sheoran, Neha; Garg, Shalini; Damle, Satyawan G; Dhindsa, Abhishek; Opal, Shireen; Gupta, Shivani

    2014-01-01

    This study evaluated the effectiveness of two microabrasion materials for the removal of developmental enamel opacities in young permanent maxillary incisors. Using a split-mouth study design, 37% phosphoric acid and 18% hydrochloric acid were used for removal of visually unesthetic developmental enamel opacities of young permanent maxillary anterior teeth from 25 subjects (11-13 years old) by two microabrasion techniques for 10 and 5 seconds respectively. This procedure was repeated four to six times during each clinical appointment. The subjects were evaluated about their satisfaction with the treatment. Two blinded evaluators appraised both sides of the mouth using visual analog scale. The records were analyzed using Wilcoxon test. The majority of the subjects (approximately 97%) reported satisfaction at the end of the treatment (p = 0.001**). Statistical significant reduction in enamel opacities was observed by evaluators immediately after microabrasion technique in group 1 (81.75%) and in group 2 (81.4%) (p microabrasion techniques showed comparative highly significant successful results in esthetic management of enamel opacities clinically and in terms of subject's satisfaction. Developmental enamel defects like diffuse opacities due to high-fluoride content in water and demarcated opacities associated with positive dental history and are commonly seen in young permanent maxillary incisors of both boys and girls in their developing years. They are aware of unesthetic appearance of these newly erupted permanent anterior teeth and become highly motivated when informed about minimally invasive, patient friendly, cost-effective, and safe treatment like microabrasion for esthetic improvement. Both noninvasive microabrasion techniques using 37% phosphoric acid (group 1) and 18% hydrochloric acid (group 2) show comparatively high success results in treating enamel defects successfully to the subject's satisfaction along with their parents. © 2014 Wiley

  8. GRIP LANGLEY AEROSOL RESEARCH GROUP EXPERIMENT (LARGE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Langley Aerosol Research Group Experiment (LARGE) measures ultrafine aerosol number density, total and non-volatile aerosol number density, dry aerosol size...

  9. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    Science.gov (United States)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  10. The relative frequencies of causes of widespread ground-glass opacity: A retrospective cohort

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, Michael G., E-mail: Mike_hewitt@me.com; Miller, Wallace T., E-mail: Wallace.miller@uphs.upenn.edu; Reilly, Thomas J., E-mail: thomasjreilly@comcast.net; Simpson, Scott, E-mail: Simpson80@gmail.com

    2014-10-15

    Highlights: • The most common cause of widespread ground-glass opacities is hydrostatic pulmonary edema. • Associated findings such as air-trapping and centrilobular nodules are highly specific for hypersensitivity pneumonitis. • The clinical setting (outpatient versus inpatient) will alter the order of the differential diagnosis. - Abstract: Purpose: The purpose of our study was to determine the relative frequencies of causes of widespread ground-glass opacity (GGO) in an unselected, consecutive patient population and to identify any associated imaging findings that can narrow or reorganize the differential. Materials and methods: The study was approved by the center's IRB and is HIPPA compliant. Cases with widespread GGO in the radiology report were identified by searching the Radiology Information System. Medical records and CT scan examinations were reviewed for the causes of widespread GGO. Associations between a less dominant imaging finding and a particular diagnosis were analyzed with the chi square test. Our study group consisted of 234 examinations with 124 women and 110 men and a mean age of 53.7 years. Results: A cause was established in 204 (87.2%) cases. Hydrostatic pulmonary edema was most common with 131 cases (56%). Interstitial lung diseases (ILD) were the next most common, most often hypersensitivity pneumonitis (HP) (n = 12, 5%) and connective tissue disease related ILD (n = 7, 3%). Infection accounted for 5% (12 cases). A few miscellaneous diseases accounted for 5 cases (2.1%). The combination of septal thickening and pleural effusions had a specificity of 0.91 for hydrostatic pulmonary edema (P < .001) while centrilobular nodules and air trapping had a specificity of 1.0 for HP. In 24 (10.2%) patients, increased opacification from expiration was incorrectly interpreted as representing widespread ground glass opacity. The relative frequency of disease dramatically changed according to the setting. In the inpatient setting, diffuse

  11. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR [Argonne National Laboratory

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  12. [Anti-infective aerosols].

    Science.gov (United States)

    Diot, P; Dequin, P F; Rivoire, B; Gagnadoux, F; Faurisson, F; Diot, E; Boissinot, E; Lemarié, E

    1999-06-01

    Anti-infectious agents such as pentamidine, antibiotics (mainly colistine and aminoglycosides) and amphotericin B can be administered by aerosol. This route of administration is not officially approved and it constitutes an empirical approach which has benefited from recent research which is summarized hereafter. The most fundamental question is related to the potentially deleterious effects of nebulization processes, especially ultrasound, on the anti infectious properties of the drugs. Colimycin, which was chosen as a reference because its polypeptide structure makes it unstable a priori, proved to be resistant to high frequency ultrasound, which is encouraging for other molecules such as aminoglycosides or betalactamins. The nebulizer characteristics have also to be taken into account. An aerosol can be produced from an amphotericin B suspension and from colistine using both an ultrasonic nebulizer and a jet nebulizer. Distinction between good and bad nebulizers does not depend upon the physical process involved to nebulize the drug, but on the intrinsic characteristics of the device and its performance with a known drug. The inhaled mass of an aerosol in the respirable range must be high and dosimetric nebulizers represent a significant progress. Finally, adminnistration of anti infectious aerosols requires a new pharmacological approach to monitor treatment and urinary assays are promising.

  13. AEROSOL DISSEMINATION ASSESSMENT.

    Science.gov (United States)

    Basic performance requirements are given for a chamber assessment aerosol system to be designed, developed and fabricated for evaluating the...automated assessment system. These include light scattering particle counters and mathematical treatment of decay curves for analysis of size properties

  14. Impact of aerosols on solar energy production - Scenarios from the Sahel Zone

    Science.gov (United States)

    Neher, Ina; Meilinger, Stefanie; Crewell, Susanne

    2017-04-01

    Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on aerosol size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols. The aerosol size distribution and composition in the atmosphere is highly variable due to meteorological and land surface conditions. A quantitative assessment of aerosol effects on solar power yields and its relation to land use change is of particular interest for developing countries countries when analyzing the potential of local power production. This study aims to identify the effect of atmospheric aerosols in three different land use regimes, namely desert, urban/polluted and maritime on the tilted plane of photovoltaic energy modules. Here we focus on the Sahel zone, i.e. Niamey, Niger (13.5 N;2.1 E), located at the edge of the Sahara where also detailed measurements of the atmospheric state are available over the year 2006. Guided by observations a model chain is used to determine power yields. The atmospheric aerosol composition will be defined by using the Optical Properties of Aerosols and Clouds (OPAC) library. Direct and diffuse radiation (up- and downward component) are then calculated by the radiative transfer model libRadtran which allows to calculate the diffuse component of the radiance from different azimuth and zenith angles. Then the diffuse radiance will be analytically transformed to an east, south and west facing

  15. The Opacity of Russian-Ukrainian Energy Relations; Russie-Ukraine: opacite des reseaux energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Dubien, A.

    2007-07-01

    Energy issues lie at the heart of Ukraine's economic, political and strategic challenges. A year after the 'orange revolution', the 'gas war' served to highlight the country's vulnerable position, being 80% dependent on imports of gas and having the world's most energy hungry economy. The 2005 crisis also highlighted the extreme opacity of the country's bilateral relations with Russia, which are governed as much by the interests surrounding Gazprom's relations as by those of the state. Yanukovich's return to power in the summer of 2006 coincided with a relative appeasement of relations with Moscow and a new division of spheres of influence in the Ukrainian energy sector. (author)

  16. The Next Generation Library Catalog: A Comparative Study of the OPACs of Koha, Evergreen, and Voyager

    Directory of Open Access Journals (Sweden)

    Sharon Q. Yang

    2010-09-01

    Full Text Available Open source has been the center of attention in the library world for the past several years. Koha and Evergreen are the two major open-source integrated library systems (ILSs, and they continue to grow in maturity and popularity. The question remains as to how much we have achieved in open-source development toward the next-generation catalog compared to commercial systems. Little has been written in the library literature to answer this question. This paper intends to answer this question by comparing  the next-generation features of the OPACs of two open-source ILSs (Koha and Evergreen and one proprietary ILS (Voyager’s WebVoyage.

  17. The Impact of Web Search Engines on Subject Searching in OPAC

    Directory of Open Access Journals (Sweden)

    Holly Yu

    2017-09-01

    Full Text Available This paper analyzes the results of transaction logs at California State University, Los Angeles (CSULA and studies the effects of implementing a Web-based OPAC along with interface changes. The authors find that user success in subject searching remains problematic. A major increase in the frequency of searches that would have been more successful in resources other than the library catalog is noted over the time period 2000-2002. The authors attribute this increase to the prevalence of Web search engines and suggest that metasearching, relevance-ranked results, and relevance feedback ( "more like this" are now expected in user searching and should be integrated into online catalogs as search options.

  18. 1st oPAC Topical Workshop: Grand Challenges in Accelerator Optimisation

    CERN Document Server

    2013-01-01

    Accelerators are key instruments for fundamental research, health and industry applications. International collaboration is very important for their continued optimisation. To address this oPAC is organising this two-day international workshop on Grand Challenges in Accelerator Optimisation. The workshop will provide an overview of the current state of the art in beam physics, numerical simulations and beam instrumentation and highlight existing limitations. It will discuss research and development being undertaken and ambitions to further improve the performance of existing and future facilities. In addition to invited talks, there will be industry displays and a special seminar covering recent LHC discoveries. All participants will have an opportunity to contribute a poster.

  19. Lethality Index 2008-2014: Less shootings, same lethality, more opacity

    Directory of Open Access Journals (Sweden)

    Carlos Silva Forné

    2017-07-01

    Full Text Available This article evaluates the use of lethal force by Mexican federal security forces during shootings with presumed members of organized crime from 2008-2014. The authors use official data and press reports on deaths and wounded in shootings to construct indicators such as the number of dead civilians over the number of dead officials from the federal security forces and the number of dead civilians over the number of wounded civilians. In a context where certain factors that contribute to an excessive use of force become more common, the results of the study show a growing use of lethal force. This raises questions over the possible excessive use of lethal force as a normal or systematic practice. The study also shows a growing context of opacity in the infor­mation available to evaluate the use of lethal force and the general lack of a legal framework to regulate the use of lethal force in Mexico.

  20. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  1. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  2. Simulation test of aerosol generation from vessels in the pre-treatment system of fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fujine, Sachio; Kitamura, Koichiro; Kihara, Takehiro [Japan Atomic Energy Research Institute (JAERI), Ibaraki-ken (Japan)

    1997-08-01

    Aerosol concentration and droplet size are measured in off-gas of vessel under various conditions by changing off-gas flow rate, stirring air flow rate, salts concentration and temperature of nitrate solution. Aerosols are also measured under evaporation and air-lift operation. 4 refs., 6 figs.

  3. Efficient blood flow visualization using flowline extraction and opacity modulation based on vascular structure analysis.

    Science.gov (United States)

    Kwon, Ohjae; Lee, Jeongjin; Kim, Bohyoung; Shin, Juneseuk; Shin, Yeong-Gil

    2017-03-01

    With the recent advances regarding the acquisition and simulation of blood flow data, blood flow visualization has been widely used in medical imaging for the diagnosis and treatment of pathological vessels. In this paper, we present a novel method for the visualization of the blood flow in vascular structures. The vessel inlet or outlet is first identified using the orthogonality metric between the normal vectors of the flow velocity and vessel surface. Then, seed points are generated on the identified inlet or outlet by Poisson disk sampling. Therefore, it is possible to achieve the automatic seeding that leads to a consistent and faster flow depiction by skipping the manual location of a seeding plane for the initiation of the line integration. In addition, the early terminated line integration in the thin curved vessels is resolved through the adaptive application of the tracing direction that is based on the flow direction at each seed point. Based on the observation that blood flow usually follows the vessel track, the representative flowline for each branch is defined by the vessel centerline. Then, the flowlines are rendered through an opacity assignment according to the similarity between their shape and the vessel centerline. Therefore, the flowlines that are similar to the vessel centerline are shown transparently, while the different ones are shown opaquely. Accordingly, the opacity modulation method enables the flowlines with an unusual flow pattern to appear more noticeable, while the visual clutter and line occlusion are minimized. Finally, Hue-Saturation-Value color coding is employed for the simultaneous exhibition of flow attributes such as local speed and residence time. The experiment results show that the proposed technique is suitable for the depiction of the blood flow in vascular structures. The proposed approach is applicable to many kinds of tubular structures with embedded flow information. Copyright © 2017 Elsevier Ltd. All rights

  4. Effect of resin shades on opacity of ceramic veneers and polymerization efficiency through ceramics.

    Science.gov (United States)

    Öztürk, Elif; Chiang, Yu-Chih; Coşgun, Erdal; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-11-01

    The aim of this study was to assess the effect of different resin cement shades on the opacity and color difference of ceramics and to determine the polymerization efficiency of the resin cement at different shades after curing through ceramics. Two different ceramics (IPS e.max Press and IPS Empress(®)CAD, Ivoclar Vivadent) were used for this study. A light-cured veneer luting resin (Variolink Veneer, Ivoclar Vivadent) in four different shades of HV+1, HV+3, LV-1, and LV-3 was used for the colorimetric measurements. The color and spectral reflectance of the ceramics were measured according to the CIELab color scale relative to the standard illuminant D65 on a reflection spectrophotometer (ColorEye7000A, USA). Color differences (ΔE values) and the contrast ratios (CR) of the different groups of samples were calculated. In order to analyse the polymerization efficiency of the resin cements, the micromechanical properties of the resins were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). The results were analysed using one-way ANOVA and Tukey's HSD post hoc tests (SPSS 18.0). The one-way ANOVA test showed that the values of ΔE and CR of the different specimen groups were significantly different (presin cement) exhibited the highest and group 10 (14.8 ± 0.5) (e.max:HV+3) exhibited the lowest ΔE value. Significant differences in the micromechanical properties were identified among the tested resin cements in different shades (pResin cement shade is an important factor for the opacity of a restoration. Furthermore, the resin shade affects the micromechanical properties of the underlying resin cement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Repeatability of pachymetric mapping using fourier domain optical coherence tomography in corneas with opacities.

    Science.gov (United States)

    Samy El Gendy, Nehal M; Li, Yan; Zhang, Xinbo; Huang, David

    2012-04-01

    To evaluate the repeatability of Fourier domain optical coherence tomography (OCT) pachymetric mapping in patients with corneal opacities and to assess the reliability of Fourier domain OCT with 830 nm wavelength as a pachymetric measurement tool in opaque corneas. A Fourier domain OCT system was used to map the corneal thickness of patients with corneal scars or dystrophy. A retrospective study of a consecutive series was conducted. The repeatability was measured using pooled standard deviation of repeated measurements. A slit-scanning tomography device provided pachymetric mapping for comparison. Seventeen eyes of 12 patients with corneal scars (7 trauma and 3 post infection) or dystrophy (2 Reis-Bucklers and 5 granular dystrophy) were included. The posterior corneal boundary was detectable in all cases. The average corneal thickness measured by OCT was 536 ± 89 μm in central 2 mm area, 553 ± 76 μm in pericentral 2- to 5-mm area, and 508 ± 93 μm for the minimum corneal thickness. The slit-scanning tomography central corneal thickness, 433 ± 111 μm, was significantly lower than OCT readings (mean difference -91.1 ± 33.3 μm, P = 0.002). Repeatability of the OCT measurements was 2.1 μm centrally and 1.2 μm pericentrally. Pachymetric mapping with Fourier domain OCT was highly repeatable. Fourier domain OCT is a reliable pachymetric tool in opaque corneas. In comparison, corneal thickness measured by the slit-scanning tomography is significantly thinner than those measured by the Fourier domain OCT in the presence of corneal opacities.

  6. MINIMUM CORE MASSES FOR GIANT PLANET FORMATION WITH REALISTIC EQUATIONS OF STATE AND OPACITIES

    Energy Technology Data Exchange (ETDEWEB)

    Piso, Ana-Maria A.; Murray-Clay, Ruth A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Youdin, Andrew N., E-mail: apiso@cfa.harvard.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2015-02-20

    Giant planet formation by core accretion requires a core that is sufficiently massive to trigger runaway gas accretion in less than the typical lifetime of protoplanetary disks. We explore how the minimum required core mass, M {sub crit}, depends on a non-ideal equation of state (EOS) and on opacity changes due to grain growth across a range of stellocentric distances from 5-100 AU. This minimum M {sub crit} applies when planetesimal accretion does not substantially heat the atmosphere. Compared to an ideal gas polytrope, the inclusion of molecular hydrogen (H{sub 2}) dissociation and variable occupation of H{sub 2} rotational states increases M {sub crit}. Specifically, M {sub crit} increases by a factor of ∼2 if the H{sub 2} spin isomers, ortho- and parahydrogen, are in thermal equilibrium, and by a factor of ∼2-4 if the ortho-to-para ratio is fixed at 3:1. Lower opacities due to grain growth reduce M {sub crit}. For a standard disk model around a Solar mass star, we calculate M {sub crit} ∼ 8 M {sub ⊕} at 5 AU, decreasing to ∼5 M {sub ⊕} at 100 AU, for a realistic EOS with an equilibrium ortho-to-para ratio and for grain growth to centimeter-sizes. If grain coagulation is taken into account, M {sub crit} may further reduce by up to one order of magnitude. These results for the minimum critical core mass are useful for the interpretation of surveys that find exoplanets at a range of orbital distances.

  7. Asymptotic giant branch stars at low metallicity: the challenging interplay between the mass-loss and molecular opacities

    Science.gov (United States)

    Ventura, P.; Marigo, P.

    2010-11-01

    We investigate the main physical properties of low-metallicity asymptotic giant branch (AGB) stars with the aim of quantifying the uncertainties that presently affect the predicted chemical yields of these stars, associated with the mass-loss and description of molecular opacities. We find that above a threshold mass, M ~= 3.5Msolar for Z = 0.001, the results are little dependent on the opacity treatment, as long as the hot-bottom burning (HBB) prevents the surface C/O ratio from exceeding unity; the yields of these massive AGB stars are expected to be mostly determined by the efficiency of convection, with a relatively mild dependence on the mass-loss description. A much higher degree of uncertainty is associated with the yields of less-massive models, which critically depend on the adopted molecular opacities. An interval of masses exists, say, 2.0-3.0Msolar (the exact range depends on the mass-loss), in which the HBB may be even extinguished following the cooling produced by the opacity of C-bearing molecules. The yields of these stars are the most uncertain, the variation range being the largest (up to ~2dex) for the nitrogen and sodium yields. For very low mass models, not experiencing the HBB (M <= 1.5Msolar), the description of mass-loss and the treatment of the convective boundaries are crucial for the occurrence of the third dredge-up, with a sizeable impact on the CNO yields.

  8. A high en-face resolution AS-OCT providing quantitative ability to measure layered corneal opacities

    Science.gov (United States)

    Chiu, Yu-Kuang; Chen, Wei-Li; Tsai, Cheng-Tsung; Yang, Chang-Hao; Huang, Sheng-Lung

    2017-07-01

    An in-vivo anterior-segment optical coherence tomography with sub-micron isotropic resolutions is demonstrated on rat cornea. The opacity of the layered cornea was quantitatively analyzed. The morphology of corneal layers was well-depicted by the en-face image.

  9. Aerosols optical properties in Titan's detached haze layer before the equinox

    Science.gov (United States)

    Seignovert, Benoît; Rannou, Pascal; Lavvas, Panayotis; Cours, Thibaud; West, Robert A.

    2017-08-01

    UV observations with Cassini ISS Narrow Angle Camera of Titan's detached haze is an excellent tool to probe its aerosols content without being affected by the gas or the multiple scattering. Unfortunately, its low extent in altitude requires a high resolution calibration and limits the number of images available in the Cassini dataset. However, we show that it is possible to extract on each profile the local maximum of intensity of this layer and confirm its stability at 500 ± 8 km during the 2005-2007 period for all latitudes lower than 45°N. Using the fractal aggregate scattering model of Tomasko et al. (2008) and a single scattering radiative transfer model, it is possible to derive the optical properties required to explain the observations made at different phase angles. Our results indicates that the aerosols have at least ten monomers of 60 nm radius, while the typical tangential column number density is about 2 · 1010 agg m-2. Moreover, we demonstrate that these properties are constant within the error bars in the southern hemisphere of Titan over the observed time period. In the northern hemisphere, the size of the aerosols tends to decrease relatively to the southern hemisphere and is associated with a higher tangential opacity. However, the lower number of observations available in this region due to the orbital constraints is a limiting factor in the accuracy of these results. Assuming a fixed homogeneous content we notice that the tangential opacity can fluctuate up to a factor 3 among the observations at the equator. These variations could be linked with short scale temporal and/or longitudinal events changing the local density of the layer.

  10. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing

    Science.gov (United States)

    Wang, Hai; Xie, Shang-Ping; Tokinaga, Hiroki; Liu, Qinyu; Kosaka, Yu

    2016-04-01

    Anthropogenic aerosols are a major driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

  11. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    Science.gov (United States)

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  12. Evidence of Aerosol's Influence on Climate from Beijing Olympics

    Science.gov (United States)

    Chen, S.; Fu, Q.; Huang, J.; Ge, J.; Su, J.

    2009-12-01

    Air pollution is a difficult problem during the process of industrialization in most developing countries. In China, the main air pollutants are inhaled aerosol particles. Because of the extremely high loading and rapid development, Beijing became a heavily polluted city, with a population of more than 16 million. The 2008 Olympic Summer Games provided a unique opportunity for the study of climate effects of aerosols due to many measurements taken to fight pollution caused by industrialization and economic growth.Surface temperature is the most intuitive meteorological factor and easy to get. Therefore, aerosol’s radiative effects on regional climate can be known by studying the relationship between aerosols and surface temperature in Beijing city in August 2008. However, many factors can affect the surface temperature and cloud is considered as a very important meteorological element in radiation balance. In order to remove the impact of clouds on surface temperature, here the ground temperature in clear sky days (when cloud cover is less than 2) are selected. Aerosol data from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Earth Observing System (EOS) Aqua shows that aerosol concentration decreased significantly in the area of Olympic venues in August 2008. Meanwhile, the ground-based observation data shows the surface temperature during the day (14LT) and night (02LT) in August 2008 is higher and lower than the mean temperature in August from 2002 to 2008, respectively. It is discovered that the distribution of satellite-retrieved aerosol optical Depth (AOD) in the whole area of Beijing in August of 2003 and 2004 is similar to that in 2008. We chosen four meteorological stations to analyze surface temperature and found that the diurnal changes of surface temperature are consistent with that in August of 2003, 2004 and 2008. Meanwhile, the decrease of AOD in the area of Olympic venues in August 2008 leads to the increase of precipitation

  13. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing.

    Science.gov (United States)

    Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado

    2011-11-01

    Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔEcolour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  15. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  16. Photothermal spectroscopy of aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 ..mu..m were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO/sub 2/ laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m/sup 2//g at 1087 cm/sup -1/. The absorption coefficient sensitivity of this scheme was less than or equal to 10/sup -8/ cm/sup -1/. The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations.

  17. Caribbean coral growth influenced by anthropogenic aerosol emissions

    Science.gov (United States)

    Kwiatkowski, Lester; Cox, Peter M.; Economou, Theo; Halloran, Paul R.; Mumby, Peter J.; Booth, Ben B. B.; Carilli, Jessica; Guzman, Hector M.

    2013-05-01

    Coral growth rates are highly dependent on environmental variables such as sea surface temperature and solar irradiance. Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years, and linked to variations in Atlantic sea surface temperatures. Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing. Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.

  18. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-05-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. At remote and rural sites, fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 5 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate may be more susceptible to sampling artifacts, nitrate also showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, precipitation, or other meteorological variables should look for causes more in light-absorbing particles and possible ice nucleation by dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  19. A new feedback mechanism linking forests, aerosols, and climate

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2004-01-01

    Full Text Available The possible connections between the carbon balance of ecosystems and aerosol-cloud-climate interactions play a significant role in climate change studies. Carbon dioxide is a greenhouse gas, whereas the net effect of atmospheric aerosols is to cool the climate. Here, we investigated the connection between forest-atmosphere carbon exchange and aerosol dynamics in the continental boundary layer by means of multiannual data sets of particle formation and growth rates, of CO2 fluxes, and of monoterpene concentrations in a Scots pine forest in southern Finland. We suggest a new, interesting link and a potentially important feedback among forest ecosystem functioning, aerosols, and climate: Considering that globally increasing temperatures and CO2 fertilization are likely to lead to increased photosynthesis and forest growth, an increase in forest biomass would increase emissions of non-methane biogenic volatile organic compounds and thereby enhance organic aerosol production. This feedback mechanism couples the climate effect of CO2 with that of aerosols in a novel way.

  20. Aerosol Data Assimilation at GMAO

    Science.gov (United States)

    da Silva, Arlindo M.; Buchard, Virginie

    2017-01-01

    This presentation presents an overview of the aerosol data assimilation work performed at GMAO. The GMAO Forward Processing system and the biomass burning emissions from QFED are first presented. Then, the current assimilation of Aerosol Optical Depth (AOD), performed by means of the analysis splitting method is briefly described, followed by some results on the quality control of observations using a Neural Network trained using AERONET AOD. Some applications are shown such as the Mount Pinatubo eruption in 1991 using the MERRA-2 aerosol dataset. Finally preliminary results on the EnKF implementation for aerosol assimilation are presented.

  1. Topics in current aerosol research

    CERN Document Server

    Hidy, G M

    1971-01-01

    Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form

  2. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  3. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  4. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  5. Overview of the Cumulus Humilis Aerosol Processing Study.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

    2009-11-01

    convergence pattern caused by the city. Recently, the New England Air Quality Study (NEAQS), and the 2004 International Consortium for Atmospheric Research on Transport and Transformation, which were conducted during the summer of 2004, examined the transport of pollutants and aerosols eastward from New England over the Atlantic Ocean. The Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) also looked at relationships between clouds and aerosols in polluted conditions around Houston, Texas. In contrast to these recent studies near large or very dirty cities, CHAPS was conducted near a moderately sized city that is representative of a large number of cities around the United States. CHAPS was also one of the first times that a Aerodyne aerosol mass spectrometer was used in conjunction with a counterflow virtual impactor (CVI) inlet on an aircraft. The AMS provides information on the nonrefractory (i.e., materials that are chemically and physically unstable at high temperatures) composition of aerosols, while the CVI uses a counterflow relative to the main incoming airstream to exclude small droplets and nonactivated particles from the inlet, allowing only larger cloud droplets to enter the inlet. The combination of the CVI and AMS allow the examination of the chemical composition of the dried aerosol kernel from the cloud droplets. A key objective of the U.S. Department of Energy's (DOE)'s Atmospheric Sciences Program (ASP) is to improve the understanding of aerosol radiative effects on climate. This objective encompasses not only clear sky observations but also studies relating the effects of both aerosols on clouds and clouds on aerosols - in particular, how clouds affect the chemical and optical properties of aerosols. The latter was the science driver in the design of CHAPS. The measurement strategy for CHAPS was intended to provide measurements relevant to four questions associated with the aerosol radiative forcing

  6. Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities

    Science.gov (United States)

    Starrfield, S.; Truran, J. W.; Wiescher, M. C.; Sparks, W. M.

    1998-05-01

    The outburst of Nova V1974 Cyg 1992 is arguably the best observed of this century, with realistic estimates now available for the amount of mass ejected, the composition of the ejecta and the total energy budget. These data strongly support the conclusion that this was indeed a `neon' nova that occurred on an oxygen, neon, magnesium white dwarf. In addition, X-ray studies of its outburst imply that the mass of the white dwarf is about 1.25Msolar. We, therefore, report on the results of new calculations of thermonuclear runaways on 1.25-Msolar oxygen, neon, magnesium white dwarfs, using our one-dimensional, fully implicit, hydrodynamic stellar evolution code that includes a large nuclear reaction network. We have updated the nuclear reaction network, with the inclusion of new and improved experimental and theoretical determinations of the nuclear reaction rates. We have also incorporated the OPAL carbon rich tables and have investigated the effects of changes in convective efficiency on the evolution. Our results show that the changes in the reaction rates and opacities that we have introduced produce important changes with respect to our previous studies. For example, relevant to nucleosynthesis considerations, a smaller amount of ^26Al is produced, while the abundances of ^31P and ^32S increase by factors of more than two. This change is attributed to the increased proton-capture reaction rates for some of the intermediate mass nuclei near ^26Al and beyond, such that nuclear fusion to higher mass nuclei is enhanced. The characteristics of our models are then compared to observations of the outburst of V1974 Cyg 1992 and we find that the predicted amount of mass ejected is at least a factor of 10 less than observed. The low values for the amount of ejected mass are a consequence of the fact that the OPAL opacities are larger than those we previously used, which results in less mass being accreted on to the white dwarf. This is a general problem with respect to the

  7. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier

    2007-10-01

    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from −0.79 to −0.53 W m−2 (33% and all-sky from −0.47 to −0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  8. Decadal scale, seasonal climate effects of aerosols in China

    Science.gov (United States)

    Folini, Doris; Wild, Martin

    2014-05-01

    China is a hot spot in terms of population growth and industrialization. This development is accompanied by a substantial increase in aerosol emissions. We investigate associated impacts of different aerosol emissions on surface solar radiation (SSR), surface air temperature (SAT), and precipitation by means of the global atmosphere only climate model ECHAM5-HAM (aerosol emission data from NIES, the National Institute of Environmental Studies, Japan; prescribed, observation based sea surface temperatures (SSTs) from the Hadley Center). Ensembles of transient (1870 - 2005) sensitivity experiments are performed and analyzed on a seasonal basis. We discuss corresponding findings, among them that inclusion of aerosol emissions leads to a decrease of modeled SSR of around -7 W/m2 in eastern parts of China in recent decades, in good agreement with in situ observations of SSR changes. The associated cooling leads to better agreement between modeled and measures SAT time series, especially in summer. By contrast, the precipitation reduction brought about by aerosols in the model is rather strong compared to observations.

  9. Geo-Engineering Climate Change with Sulfate Aerosol

    Science.gov (United States)

    Rasch, P. J.; Crutzen, P. J.

    2006-12-01

    We explore the impact of injecting a precursor of sulfate aerosols into the middle atmosphere where they would act to increase the planetary albedo and thus counter some of the effects of greenhouse gase forcing. We use an atmospheric general circulation model (CAM, the Community Atmosphere Model) coupled to a slab ocean model for this study. Only physical effects are examined, that is we ignore the biogeochemical and chemical implications of changes to greenhouse gases and aerosols, and do not explore the important ethical, legal, and moral issues that are associated with deliberate geo-engineering efforts. The simulations suggest that the sulfate aerosol produced from the SO2 source in the stratosphere is sufficient to counterbalance most of the warming associated with the greenhouse gas forcing. Surface temperatures return to within a few tenths of a degree(K) of present day levels. Sea ice and precipitation distributions are also much closer to their present day values. The polar region surface temperatures remain 1-3 degrees warm in the winter hemisphere than present day values. This study is very preliminary. Only a subset of the relevant effects have been explored. The effect of such an injection of aerosols on middle atmospheric chemistry, and the effect on cirrus clouds are obvious missing components that merit scrutiny. There are probably others that should be considered. The injection of such aerosols cannot help in ameliorating the effects of CO2 changes on ocean PH, or other effects on the biogeochemistry of the earth system.

  10. Coalescence Sampling and Analysis of Aerosols using Aerosol Optical Tweezers.

    Science.gov (United States)

    Haddrell, Allen E; Miles, Rachael E H; Bzdek, Bryan R; Reid, Jonathan P; Hopkins, Rebecca J; Walker, Jim S

    2017-02-21

    We present a first exploratory study to assess the use of aerosol optical tweezers as an instrument for sampling and detecting accumulation- and coarse-mode aerosol. A subpicoliter aqueous aerosol droplet is captured in the optical trap and used as a sampling volume, accreting mass from a free-flowing aerosol generated by a medical nebulizer or atomizer. Real-time measurements of the initial stability in size, refractive index, and composition of the sampling droplet inferred from Raman spectroscopy confirm that these quantities can be measured with high accuracy and low noise. Typical standard deviations in size and refractive index of the sampling droplet over a period of 200 s are droplet as discrete coalescence events. With accumulation-mode aerosol, we show that fluxes as low as 0.068 pg s -1 can be detected over a 50 s period, equivalent to ∼3 pg of sampled material.

  11. Evaluation of optimized digital fundus reflex photographs for lens opacities in the age-related eye disease study 2: AREDS2 report 7.

    Science.gov (United States)

    Domalpally, Amitha; Danis, Ronald P; Chew, Emily Y; Clemons, Traci E; Reed, Susan; Sangiovanni, John Paul; Ferris, Frederick L

    2013-09-05

    We described the system for grading lens opacities using stereoscopic digital fundus reflex photographs in the Age-Related Eye Disease Study 2 (AREDS2) and compared reproducibility with the AREDS lens grading system, which used retroillumination film images. Stereoscopic fundus reflex photographs were acquired in a standardized fashion at baseline and annually. Images were enhanced and evaluated in the red channel at a central reading center. Percentage involvement of cortical and posterior subcapsular (PSC) lens opacities within the central 5 mm diameter zone of a modified AREDS lens grid was estimated. Reproducibility was assessed for contemporaneous variability (ongoing, monthly regrade on 5% of submissions, n = 777 eyes) and temporal drift (regrading a subset of baseline photographs annually, n = 88). In the contemporaneous exercise, the agreement for presence of cortical opacities was 93% (κ = 0.86) and for PSC opacities it was 97% (κ = 0.83). Intraclass correlation (ICC) for area of central zone involvement was 0.95 for cortical and 0.99 for PSC opacities. Historic data for contemporaneous regrading of film-based images in AREDS showed an ICC of 0.94 for cortical and 0.82 for PSC. The final annual temporal drift exercise had a reproducibility of 95% for cortical and PSC opacities. Digital grading using fundus reflex images with image enhancing tools has reproducibility comparable to film-based retroillumination images, and may be useful for centralized objective lens opacity assessment in clinical trials using widely available fundus cameras. Red reflex images limit evaluation to cortical and PSC opacities, and do not permit assessment of nuclear opacities. (ClinicalTrials.gov number, NCT00345176.).

  12. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2010-09-01

    Full Text Available A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM. Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models.

    The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where

  13. Do anthropogenic aerosols enhance CO2 uptake by plants?

    Science.gov (United States)

    Strada, S.; Unger, N.

    2013-12-01

    Plant productivity (photosynthesis) is tightly connected to the supply of solar radiation and water and to surface temperature. Solar radiation reaching the Earth's surface and the water cycle are strongly modified by anthropogenic aerosols. Aerosols reduce the amount of global radiation and surface temperature, and they modify the partitioning between direct and diffuse radiation. Moreover, they modify cloud radiative properties and lifetime. These aerosols effects may influence Gross Primary Productivity (GPP): (1) by intensifying the diffuse-radiation fertilization effect (i.e. plant productivity is more efficient under diffuse light whose amount may increase due to aerosol loading); (2) by modifying water supply through suppression/enhancement of rainfall; (3) by reducing surface temperature. Among aerosol impacts on GPP, it is unclear if there exists a prevailing one, or if the prevailing impact varies across ecosystems. Feedbacks to GPP from the effects of biogenic secondary organic aerosol (BSOA) formed from vegetation reactive carbon emissions have not been investigated. Moreover, human-made pollution and biomass burning induce high ozone concentrations that simultaneously reduce plant productivity. We apply satellite observations and global model simulations to investigate the spatial pattern in the relationship between aerosols and plant productivity across different ecosystems, and whether plants control their diffuse radiation environment through the reactive carbon emissions. We quantify the correlation between MODIS GPP and: (1) fine-fraction Aerosol Optical Depth from MODIS (fAOD); (2) ozone levels in the middle troposphere from TES. The analysis of satellite data reveals strong positive correlation between GPP and fAOD in temperate and boreal ecosystems, and strong negative correlation in tropical ecosystems. The tropical ecosystem also presents strong negative correlation between GPP and O3. Simulations using Yale-E2 global carbon

  14. Aerosol dynamics in porous media

    NARCIS (Netherlands)

    Ghazaryan, L.

    2014-01-01

    In this thesis, a computational model was developed for the simulation of aerosol formation through nucleation, followed by condensation and evaporation and filtration by porous material. Understanding aerosol dynamics in porous media can help improving engineering models that are used in various

  15. Aerosol therapy in young children

    NARCIS (Netherlands)

    H.M. Janssens (Hettie)

    2001-01-01

    textabstractInhalation of aerosolized drugs has become an established means for treatment of pulmonary diseases in the last fifiy years. The majoriry of aerosol therapy in childhood concerns inhaled corticosteroids and bronchodilators in the management of asthma. Administration of drugs via the

  16. Preventive effect of diethyldithiocarbamate on selenite-induced opacity in cultured rat lenses.

    Science.gov (United States)

    Ito, Y; Cai, H; Terao, M; Tomohiro, M

    2001-01-01

    Increasing evidence suggests the involvement of reactive oxygen species in the development of cataracts. In this study, we investigated the preventive effect of diethyldithiocarbamate (DDC) on the selenite-induced opacification of cultured rat lenses. Lens opacity was produced by incubation with 0.2 mM selenite for 24 h, which resulted in an increase in selenium content in the cultured lenses. The increase in selenium content and the onset of opacification and lens membrane damage were inhibited by preincubation with DDC. It is reasonable to assume that DDC contributed to anticataract ability. In addition, selenite resulted in a significant decrease in glutathione and protein thiol content and an increase in lipid peroxidation levels in the lenses. These alterations were also depressed by DDC, suggesting a contribution of an antioxidative effect by DDC in the inhibition of lens opacification. At the same lens selenium content, DDC treatment inhibited opacification and lipid peroxide. In conclusion, we propose that the antioxidative properties of DDC play a major role in its contribution to the anticataract effect. Copyright 2001 S. Karger AG, Basel

  17. Preoperative computed tomography-guided percutaneous localization of ground glass pulmonary opacity with polylactic acid injection.

    Science.gov (United States)

    Hu, Mu; Zhi, Xiuyi; Zhang, Jian

    2015-07-01

    Localization of a ground glass nodule is a difficult challenge for thoracic surgeons, especially for ground glass opacities (GGOs) less than 10 mm in diameter. In this study we implement a new method for preoperative localization of pulmonary (GGOs). From October 2013 to December 2014, computed tomography-guided percutaneous polylactic acid injection localizations were performed for five pulmonary nodules in five patients (2 men and 3 women; mean age, 59.8 years; range, 54-65 years). The injection was feasible in all patients and the localization effect was excellent. The total procedure duration was 12.6 minutes (range; 10-15) and the volume of polylactic acid injected was 0.38 mL. The wedge resections were easily and successfully performed in all five cases. The cutting margin was no less than 2 cm from the lesion. This technique is promising for the determination of GGO location in thoracoscopic surgery for wedge resection.

  18. Vitrectomy for primary symptomatic vitreous opacities: an evidence-based review

    Science.gov (United States)

    Ivanova, T; Jalil, A; Antoniou, Y; Bishop, P N; Vallejo-Garcia, J L; Patton, N

    2016-01-01

    Floaters are a common ocular condition which form as a consequence of aging changes in the vitreous. Although in most patients the symptoms are minimal, they can cause significant impairment in vision-related quality of life in a small population of patients. Recently there has been an increase in awareness of the visual disability caused by floaters, and the evidence-base for treatment of this condition using small-gauge vitrectomy has increased. In this review, we define the term ‘floaters' as symptomatic vitreous opacities (SVO). We suggest a classification dependent on the presence or absence of posterior vitreous detachment and discuss their pathogenesis and natural history. We review their impact on patients' quality of life related to visual function. We review the psychological factors that may have a role in some patients who appear to be affected by SVO to the extent that they pursue all options including surgery with all its attendant risks. We summarise the available evidence-base of treatment options available for SVO with special emphasis on the safety and efficacy of vitrectomy for this condition. PMID:26939559

  19. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-Driven Convection

    Science.gov (United States)

    Keek, L.; Heger, A.

    2017-01-01

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of approximately 30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  20. CT characteristics of resolving ground-glass opacities in a lung cancer screening programme

    Energy Technology Data Exchange (ETDEWEB)

    Felix, L.; Serra-Tosio, G. [Clinique Universitaire de Radiologie et Imagerie Medicale, Universite Grenoble I, CHU Grenoble (France); Lantuejoul, S. [Departement d' anatomie Pathologique, Universite Grenoble I, CHU Grenoble (France); INSERM U823, A Bonniot Institute, La Tronche (France); Timsit, J.F. [INSERM U823, A Bonniot Institute, La Tronche (France); Moro-Sibilot, D.; Brambilla, C. [INSERM U823, A Bonniot Institute, La Tronche (France); Clinique Universitaire Pneumologique, Universite Grenoble I, CHU Grenoble (France); Ferretti, G.R., E-mail: gferretti@chu-grenoble.fr [Clinique Universitaire de Radiologie et Imagerie Medicale, Universite Grenoble I, CHU Grenoble (France); INSERM U823, A Bonniot Institute, La Tronche (France)

    2011-03-15

    Purpose: This study aimed at evaluating the computed tomography (CT) characteristics of resolving localized ground-glass opacities (GGOs) in a screening programme for lung cancer. Material and methods: 280 patients at high-risk for lung cancer (221 men, 59 women; mean age, 58.6 years), divided into four groups (lung cancer history (n = 83), head and neck cancer history (n = 63), symptomatic (n = 88) and asymptomatic (n = 46) cigarette smokers), were included in a prospective trial with annual low-dose CT for lung cancer screening. We retrospectively reviewed all localized GGOs, analyzed the CT characteristics on initial CT scans and changes during follow-up (median 29.1 months). Variables associated with resolution of GGOs were tested using chi-square or Mann-Whitney tests. Results: A total of 75 GGOs were detected in 37 patients; 54.7% were present at baseline and 45.3% appeared on annual CT. During follow-up, 56.2% persisted and 43.8% disappeared. The resolving localized GGOs were significantly more often lobular GGOs (p = 0.006), polygonal in shape (p = 0.02), mixed (p = 0.003) and larger (p < 0.0001) than non-resolving localized GGOs. Conclusion: Localized GGOs are frequent and many disappeared on follow-up. CT characteristics of resolving GGOs show significant differences compared to persistent ones. This study emphasizes the importance of short-term CT follow-up in subjects with localized GGOs.

  1. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    Energy Technology Data Exchange (ETDEWEB)

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  2. HOT AEROSOL FIRE EXTINGUISHING AGENTS AND THE ASSOCIATED TECHNOLOGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2015-09-01

    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  3. Los catálogos en línea de acceso público (OPACs: un estado de la cuestión = Public Access Online Catalogs (OPACs: A State of the Art

    Directory of Open Access Journals (Sweden)

    C. Nicolás Rucks

    1999-12-01

    Full Text Available Revisión bibliográfica sobre los catálogos en línea de acceso público, más conocidos por su sigla en inglés, OPAC (Online Public Access Catalogs. Se plantean las principales dificultades que tienen sus usuarios. Se hace un diagnóstico de la situación basado en la literatura especializada, concluyendo que se está todavía lejos de lo deseable. La revisión cubre bibliografía, principalmente de los Estados Unidos de América, desde 1994 hasta 1998 = Review on the Online Public Access Catalogs, (OPAC. It explains the main difficulties the patron has to use the OPAC A diagnosis of the situation is made based on the specialized literature, concluding that we are still far from what is desirable. The review covers bibliography from 1994 to 1998, mainly from the USA.

  4. The Climatology of Australian Aerosol

    Science.gov (United States)

    Mitchell, Ross M.; Forgan, Bruce W.; Campbell, Susan K.

    2017-04-01

    Airborne particles or aerosols have long been recognised for their major contribution to uncertainty in climate change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in timescale, totalling 207 station-years. Monthly climatologies are given at all stations. Spectral decomposition shows that the time series can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its second and third harmonics. Their relative amplitudes and phase relationships lead to sawtooth-like waveforms sharply rising to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are used to separate the periodic and episodic components of the aerosol time series. An exploratory classification of the aerosol types is undertaken based on (a) the relative periodic amplitudes of the Ångström exponent and aerosol optical depth, (b) the relative amplitudes of the 6- and 4-month harmonic components of the aerosol optical depth, and (c) the ratio of episodic to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes: tropical, arid and temperate. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently small

  5. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

    Science.gov (United States)

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-01-01

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of −0.1 W/m2 in the past 18 years. Key Points Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of −0.1 W/m2 PMID:26691186

  6. APLIKASI ONLINE PUBLIC ACCESS CATALOQUE (OPAC BERBASIS ANDROID SEBAGAI SARANA TEMU KEMBALI INFORMASI DI PERPUSTAKAAN UNIVERSITAS PENDIDIKAN GANESHA

    Directory of Open Access Journals (Sweden)

    Putu Tika Parmawati

    2016-08-01

    Full Text Available Abstrak Penelitian ini bertujuan untuk mengembangkan perangkat lunak aplikasi Online Public Access Cataloque (OPAC berbasis android. Jenis penelitian ini merupakan Research and Development (R & D dengan metode pengembangan menggunakan model prototyping. Pengembangan sistem informasi layanan audio visual berbasis video streaming dengan enam tahap, yaitu : 1 Tahap pengumpulan kebutuhan dan perbaikan, 2 Tahap perancangan desain cepat (desain awal, 3 Tahap membangun prototipe, 4 Tahap evaluasi prototype, 5 Tahap perbaikan prototype, dan 6 Tahap rekayasa produk. Penentuan tingkat kelayakan aplikasi Online Public Access Cataloque (OPAC berbasis android berdasarkan uji validasi ahli bidang teknologi informasi dan uji coba terbatas pada pengguna. Hasil uji coba sebagai berikut : 1 Pengembangan aplikasi Online Public Access Cataloque (OPAC berbasis android sudah sesuai dengan spesifikasi yang telah ditentukan sebagai aplikasi penelusuran informasi koleksi buku teks umum secara online melalui smartphone. 2 Indikator penilaian dari program ini adalah kebenaran atau ketepatan operasional sistem, ketegaran, keterluasan, keterpakaian ulang, efisiensi atau kinerja, portabilitas, integritas, modularitas, keterbacaan mendapat kualifikasi cukup baik, sedangkan verifikasi mendapat kualifikasi baik. 3 Secara umum dari hasil penilaian tersebut aplikasi OPAC berbasis android ini cukup layak untuk digunakan sebagai alternatif pelengkap pemberian layanan penelusuran informasi koleksi buku teks umum di Perpustakaan Undiksha. Kata Kunci: OPAC, android, dan temu kembali informasi Abstract Aim of this study to develop the software of Online Public Access Cataloque (OPAC based on android. Research and Development (R & D design was applied in this study which was developed through prototyping models. The software was constructed through six stages, namely: 1 needs analysis and repairment, 2 rapid design (preliminary design, 3 prototypes building, 4 prototype evaluation, 5

  7. Remote sensing constraints on aerosol sources, physical properties and direct radiative forcing

    Science.gov (United States)

    Henze, D. K.; Meland, B. S.; Xu, X.; Wang, J.; Akhtar, F.; Hemming, B.; Pinder, R. W.; Loughlin, D.

    2012-12-01

    Aerosols contribute to air pollution and climate change, yet their origins, physical properties and fates in the atmosphere are often uncertain. Here we present constraints on aerosol sources and their physical properties that may be obtained from remote sensing observations through application of an adjoint chemical transport model (GEOS-Chem) for sensitivity and data assimilation applications. We first consider the information content of remote sensing of light scattering intensity, such as from MODIS, and compare this to the value of hypothetical polarimetric measurements from an instrument such as APS. The degree to which these types of observations are capable of constraining sources, or sources versus microphysical properties such as aerosol size and refractive index, are considered. Model-derived source attributions of aerosol direct radiative forcing from individual aerosol and aerosol precursor emissions are presented next. These are combined with metrics of absolute regional temperature potentials to map the relationship between aerosol sources and global surface temperature. This mapping quantifies the potential of future assimilation and measurement studies to reduce uncertainty in understanding aerosol impacts on climate.

  8. Effect of the Urban Heat Island on Aerosol pH.

    Science.gov (United States)

    Battaglia, Michael A; Douglas, Sarah; Hennigan, Christopher J

    2017-11-21

    The urban heat island (UHI) is a widely observed phenomenon whereby urban environments have higher temperatures and different relative humidities than surrounding suburban and rural areas. Temperature (T) and relative humidity (RH) strongly affect the partitioning of semivolatile species found in the atmosphere, such as nitric acid, ammonia, and water. These species are inherently tied to aerosol pH, which is a key parameter driving some atmospheric chemical processes and environmental effects of aerosols. In this study, we characterized the effect of the UHI on aerosol pH in Baltimore, MD, and Chicago, IL. The T and RH differences that define the UHI lead to substantial differences in aerosol liquid water (ALW) content. The ALW differences produce urban aerosol pH that is systematically lower (more acidic) than rural aerosol pH for identical atmospheric composition. The UHI in Baltimore and Chicago are most intense during the summer and at night, with urban-rural aerosol pH differences in excess of 0.8 and 0.65 pH units, respectively. The UHI has been observed in cities of all sizes: the similarity of our results for cities with different climatologies and aerosol compositions suggests that these results have broad implications for chemistry occurring in and around urban atmospheres globally.

  9. Corneal opacity due to Setaria digitata in a Jersey cross-bred Cow and its surgical management

    OpenAIRE

    K. Mohan; K. J. Ananda; N. B. Shridhar; G.C. Puttalakshmamma and Placid E. D’Souza

    2009-01-01

    A Jersey cross bred cow brought to the peripheral hospital, Uttara Kannada with clinical signs of lacrimation, corneal opacity, bleophorospasm and presence of white thread like worm in its anterior chamber of the right eye. The worm was surgically removed by limbal incision and an adequate post operative care was taken for early recovery. The worm was morphologically identified as Setaria digitata. The cow attains normal sight in 3 weeks postoperatively. [Vet. World 2009; 2(2.000): 69-70

  10. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2012-11-01

    Full Text Available Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known.

    In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.

  11. Huygens/ASI plasma wave analyzer capabilities for aerosol measurement

    Science.gov (United States)

    Borucki, William J.; Fulchignoni, Marcello

    1992-01-01

    The capabilities of the Huygens Atmospheric Structure Instrument (HASI) are described. These include measurement of atmospheric electrical conductivity by the plasma wave analyzer. How measurement of the atmospheric conductivity can lead to an estimate or the total surface area of the aerosols as a function of altitude is outlined. It is concluded that since the ASI is designed to measure the electrical conductivity as well as the pressure and temperature as a function of altitude, its results should provide a useful check on other instruments that are designed to measure the abundance of aerosols in a limited range of sizes.

  12. Volatile properties of atmospheric aerosols during nucleation events at Pune, India

    Science.gov (United States)

    Murugavel, P.; Chate, D. M.

    2011-06-01

    Continuous measurements of aerosol size distributions in the mid-point diameter range 20.5-500 nm were made from October 2005 to March 2006 at Pune (18°32'N, 73°51'E), India using Scanning Mobility Particle Sizer (SMPS). Volatilities of atmospheric aerosols were also measured at 40°, 125°, 175°, 300° and 350°C temperatures with Thermodenuder-SMPS coupled system to determine aerosol volatile fractions. Aerosols in nucleated, CCN and accumulated modes are characterized from the measured percentage of particles volatized at 40°, 125°, 175°, 300° and 350°C temperatures. Averaged monthly aerosol concentration is at its maximum in November and gradually decreases to its minimum at the end of March. The diurnal variations of aerosol concentrations gradually decrease in the night and in early morning hours (0400-0800 hr). However, concentration attains minimum in its variations in the noon (1400-1600 hr) due to higher ventilation factor (product of mixing height and wind speed). The half an hour averaged diurnal variation of aerosol number concentration shows about 5 to 10-fold increase despite the ventilation factor at higher side before 1200 hr. This sudden increase in aerosol concentrations is linked with prevailing conditions for nucleation bursts. The measurement of volatile fraction of ambient aerosols reveals that there are large number of highly volatile particles in the Aitken mode in the morning hours and these volatile fractions of aerosols at temperatures <150°C are of ammonium chloride and ammonium sulfate, acetic and formic acids.

  13. Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2013-09-01

    Full Text Available An eight-member ensemble of ECHAM5-HAMMOZ simulations for a boreal summer season is analysed to study the transport of aerosols in the upper troposphere and lower stratosphere (UTLS during the Asian summer monsoon (ASM. The simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September, when convective activity over the Indian subcontinent is highest, indicating that boundary layer aerosol pollution is the source of this UTLS aerosol layer. The simulations identify deep convection and the associated heat-driven circulation over the southern flanks of the Himalayas as the dominant transport pathway of aerosols and water vapour into the tropical tropopause layer (TTL. Comparison of model simulations with and without aerosols indicates that anthropogenic aerosols are central to the formation of this transport pathway. Aerosols act to increase cloud ice, water vapour, and temperature in the model UTLS. Evidence of ASM transport of aerosols into the stratosphere is also found, in agreement with aerosol extinction measurements from the Halogen Occultation Experiment (HALOE and Stratospheric Aerosol and Gas Experiment (SAGE II. As suggested by the observations, aerosols are transported into the Southern Hemisphere around the tropical tropopause by large-scale mixing processes. Aerosol-induced circulation changes also include a weakening of the main branch of the Hadley circulation and a reduction of monsoon precipitation over India.

  14. Influence of Projection Operator on Oxygen Line Shapes and its effect on Rosseland-Mean Opacity in Stellar Interiors

    Science.gov (United States)

    Gomez, Thomas; Nagayama, Taisukue; Kilcrease, David; Hansen, Stephanie; Montgomery, Mike; Winget, Don

    2018-01-01

    The Rosseland-Mean opacity (RMO) is an important quantity in determining radiation transport through stars. The solar-convection-zone boundary predicted by the standard solar model disagrees with helioseismology measurements by many sigma; a 14% increase in the RMO would resolve this discrepancy. Experiments at Sandia National Laboratories are now measuring iron opacity at solar-interior conditions, and significant discrepancies are already observed. Highly-ionized oxygen is one of the dominant contributions to the RMO. The strongest line, Lyman alpha, is at the peak of the Rosseland weighting function. The accuracy of line-broadening calculations has been called into question due to various experimental results and comparisons between theory. We have developed an ab-initio calculation to explore different physical effects, our current focus is treating penetrating collisions explicitly. The equation of motion used to calculate line shapes within the relaxation and unified theories includes a projection operator, which performs an average over plasma electron states; this is neglected due to past calculations approximate treatment of penetrations. We now include this projection term explicitly, which results in a significant broadening of spectral lines from highly-charged ions (low-Z elements are not much affected). The additional broadening raises the O Ly-alpha wing opacity by a factor of 5; we examine the consequences of this additional broadening on the Rosseland mean.

  15. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  16. Storm Aerosol Environments and Aerosol Sources in Subtropical South America

    Science.gov (United States)

    Cancelada, M.; Salio, P. V.; Nesbitt, S. W.

    2016-12-01

    Several studies have shown a strong interaction in the subtropical area of Southeastern South America (SESA) between deep moist convection and the presence of the South American low level jet (SALLJ), which advects humidity and heat from tropical latitudes creating ideal conditions in the environment for convective activity. Moreover, the SALLJ is considered an important mechanism for transport of gases and particulate matter emitted in tropical South America. Biomass burning season associated with deforestation and land clearing for agricultural use is observed in these regions principally from August to October. Past studies have shown, through modeling and in-situ measurements, an increase in optical depth and Angstrom exponent during SALLJ events. Evidence of an increase in aerosol loading during burning biomass season, along with favorable conditions for deep moist convection activity, supports the hypothesis of an indirect effect from aerosols in convective development in SESA. The objective of this work is to characterize aerosol environments in SESA associated with the presence of mesoscale convective system development. High aerosol concentration events during biomass burning season from 2002 to 2015 were detected using corrected aerosol optical depth (CAOD) with 10-km horizontal resolution from Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products. Environmental variables from NCEP Climate Forecast System Reanalysis (CFSR) were examined to detect SALLJ events and deep moist convection development was observed through infrared channel from GOES. This combination of aerosol data and SALLJ presence determined a data-set for polluted and non-polluted environments. A remarkable correlation between higher values of CAOD in central Argentina and SALLJ was found. A case of study with evidence of SALLJ, high CAOD values and strong convection development was examined. A Weather Research and Forecasting (WRF) simulation has been performed in order

  17. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  18. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  19. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  20. Characterizing the formation of secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa; Black, Douglas; Brown, Nancy

    2004-02-01

    concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the

  1. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  2. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films

    DEFF Research Database (Denmark)

    Tricoli, Antonio; Elmøe, Tobias Dokkedal

    2012-01-01

    The assembly of nanoparticle films by flame spray pyrolysis (FSP) synthesis and deposition on temperature‐controlled substrates (323–723 K) was investigated for several application‐relevant conditions. An exemplary SnO2 nanoparticle aerosol was generated by FSP and its properties (e.g., particle...... size distribution), and deposition dynamics were studied in details aiming to a simple correlation between process settings and film growth rate. At high precursor concentrations (0.05–0.5·mol/L), typically used for FSP synthesis, the nanoparticles agglomerated rapidly in the aerosol leading to large...... (>100 nm) fractal‐like structures with low diffusivity. As a result, thermophoresis was confirmed as the dominant nanoparticle deposition mechanism down to small (≈40 K) temperature differences (ΔT) between the aerosol and the substrate surface. For moderate‐high ΔT (>120 K), thermal equilibrium...

  3. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    Science.gov (United States)

    Cappa, C. D.; Wilson, K. R.

    2011-03-01

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from diffusivity within the αP particles being sufficiently slow that they do not exhibit the expected liquid-like behavior and perhaps exist in a glassy state. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that, although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  4. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    Energy Technology Data Exchange (ETDEWEB)

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  5. An analysis of couplings between solar activity and atmospheric opacity at the South Pole

    Science.gov (United States)

    Frederick, John E.

    2017-11-01

    A spectral radiometer located at the South Pole has obtained a long-term record of ground-level solar irradiance at wavelengths from 315 to 600 nm. Data acquired during the sunlit periods from 1992 to 2016 provide information on the scattering properties of the atmosphere and their variation covering more than two solar cycles. Prior to the late 1990s the time-integrated solar energy received over an entire observing season, September to March, displayed no organized trend. However, between 1996 and 2000 the irradiances began a decline which persisted through the end of the record. The observations imply a small systematic increase in attenuation at the South Pole, presumably associated with cloudiness, during the current century. The dataset allows a search for links between atmospheric opacity and solar activity. There is no significant correlation between seasonally-integrated irradiances and the 11-year solar cycle as measured by the 10.7 cm radio flux or the ground-level neutron count. On a much shorter timescale, a statistically significant positive relationship exists between the geomagnetic activity index Ap on one day and ground-level irradiance on the following day. Two days that differ in Ap by 10 units are followed by days whose irradiances differ, on average, by about 0.25 ± 0.19% in the wavelength band 400-600 nm. The wavelength dependence of this effect from the near-ultraviolet into the visible is consistent with a small decrease in the optical thickness of tropospheric clouds or of scattering layers at higher altitudes following magnetic disturbances.

  6. The role of opacity and transparency in achieving strategic stability in South Asia.

    Energy Technology Data Exchange (ETDEWEB)

    Rajain, Arpit (New Delhi, India); Ashraf, Tariq Mahmud (Islamabad, Pakistan)

    2005-08-01

    According to international relations theory, deterrence can be used as a tool to achieve stability between potentially hostile nations. India and Pakistan's long history of periodic crises raises the question of how they can achieve deterrence stability. 'Transparency' describes the flow of information between parties and plays a key role in establishing a deterrence relationship. This paper studies the balance needed between opacity and transparency in nuclear topics for the maintenance of deterrence stability between India and Pakistan. States with nuclear weapons are postulated to implement transparency in four categories: potential, capability, intent, and resolve. The study applies these categories to the nuclear components of the ongoing India-Pakistan Composite Dialogue Working Group for Peace and Security including CBMs. To focus our efforts, we defined four scenarios to characterize representative strategic/military/political conditions. The scenarios are combinations of these two sets of opposite poles: competition - cooperation; extremism - moderation (to be understood primarily in a religious/nationalistic sense). We describe each scenario in terms of select focal areas (nuclear doctrine, nuclear command and control, nuclear stockpile, nuclear delivery/defensive systems, and conventional force posture). The scenarios help frame the realm of possibilities, and have been described in terms of expected conditions for the focal areas. We then use the conditions in each scenario to prescribe a range of information-sharing actions that the two countries could take to increase stability. We also highlight the information that should not be shared. These actions can be political (e.g., declarations), procedural (e.g., advance notice of certain military activities), or technologically based (e.g., seismic monitoring of the nuclear test moratorium).

  7. What Can We Learn From Laboratory Studies of Inorganic Sea Spray Aerosol?

    Science.gov (United States)

    Salter, M. E.; Zieger, P.; Acosta Navarro, J. C.; Grythe, H.; Kirkevag, A.; Rosati, B.; Riipinen, I.; Nilsson, E. D.

    2015-12-01

    Since 2013 we have been operating a temperature-controlled plunging-jet sea spray aerosol chamber at Stockholm University using inorganic artificial seawater. Using size-resolved measurements of the foam bubbles responsible for the aerosol production we were able to show that it is changes to these foam bubbles which drive the observed changes in aerosol production and size distribution as water temperature changes (Salter et al., 2014). Further, by combining size-resolved measurements of aerosol production as a function of water temperature with measurements of air entrainment by the plunging-jet we have developed a temperature-dependent sea spray source function for deployment in large-scale models (Salter et al., 2015). We have also studied the hygroscopicity, morphology, and chemical composition of the inorganic sea spray aerosol produced in the chamber. The sea spray aerosol generated from artificial seawater exhibited lower hygroscopic growth than both pure NaCl and output from the E-AIM aerosol thermodynamics model when all relevant inorganic ions in the sea salt were included. Results from sensitivity tests using a large-scale earth system model suggest that the lower hygroscopicity observed in our laboratory measurements has important implications for calculations of the radiative balance of the Earth. In addition, size-dependent chemical fractionation of several inorganic ions was observed relative to the artificial seawater with potentially important implications for the chemistry of the marine boundary layer. Each of these studies suggest that there is still much to be learned from rigorous experiments using inorganic seawater proxies. Salter et al., (2014), On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J. Geophys. Res. Atmos., 119, 9052-9072, doi: 10.1002/2013JD021376 Salter et al., (2015), An empirically derived inorganic sea spray source function incorporating sea surface temperature. Atmos

  8. The opacity of the universe for high and very high energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Manuel

    2013-08-15

    }{sub {gamma}{gamma}}<1 to {tau}{sub {gamma}{gamma}}{>=}2 is investigated. The absorption-corrected spectra consistently show an upturn at high optical depths, significant at the 4{sigma} level. A source intrinsic effect is unlikely to produce such a feature, since the transition to the {tau}{sub {gamma}{gamma}}{>=}2 regime occurs at different energies for each source. Systematic uncertainties that could mimic the effect are studied but found unlikely as a possible explanation. A similar study is conducted for photons detected with the Fermi-LAT. To this end, the number of expected photons in the optical thick regime is compared to the number of photons observed with the LAT. Above {tau}{sub {gamma}{gamma}}{>=}2, three photons are associated with AGN with high confidence. Under the assumption of certain EBL models, extrapolating the unattenuated spectrum from low to high energies results in a probability of 1.2 x 10{sup -4} to observe these photons. However, the probability for detecting the high optical depth photons when all LAT detected AGN with known redshift are considered sensitively depends on the choice of the intrinsic spectral model. The indication for a reduced opacity might be explained by the oscillation of photons into hypothetical axion-like particles (ALPs) in ambient magnetic fields. Such particles propagate unimpeded over cosmological distances, thereby reducing the {gamma}-ray opacity. Photon-ALP conversions are studied in different magnetic field configurations, including intracluster and intergalactic magnetic fields, as well as the field of the Milky Way. Optimistic values of the field strength and coherence length result in lower limits on the photon-ALP coupling, g{sub a{gamma}}>or similar 10{sup -12} GeV{sup -1}. For more realistic magnetic field parameters, couplings above g{sub a{gamma}}>or similar 2 x 10{sup 11} GeV{sup -1} are necessary to explain the indication for the reduced opacity. The lower limits are in reach of future dedicated ALP

  9. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  10. eDPS Aerosol Collection

    Energy Technology Data Exchange (ETDEWEB)

    Venzie, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  11. Precipitation changes due to anthropogenic aerosols and greenhouse gases in MLO experiments

    Science.gov (United States)

    Folini, Doris; Dallafior, Tanja; Wild, Martin; Knutti, Reto

    2016-04-01

    We analyze mixed layer ocean (MLO) equilibria from time slice experiments with the global climate model ECHAM6.1, combined with the Hamburg aerosol module HAM2.2. For each first year of each decade from 1870 to 2000, three MLO experiments were carried out: aerosols and greenhouse gases (GHGs) of that year, only aerosols of that year and GHGs of 1850, only GHGs of that year and aerosols of 1850. We quantify how total precipitation as well as its composites (convective and large scale) change through these experiments on global and regional scales. Special emphasis is given to differences in precipitation response to either aerosol or GHG forcing, despite similar (absolute value) global mean temperature response. Finally, we address the role of the prescribed deep ocean heat flux.

  12. Aerosol Transmission of Filoviruses

    Directory of Open Access Journals (Sweden)

    Berhanu Mekibib

    2016-05-01

    Full Text Available Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire and Sudan, the 2013–2015 western African Ebola virus disease (EVD outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses.

  13. Aerosol Transmission of Filoviruses.

    Science.gov (United States)

    Mekibib, Berhanu; Ariën, Kevin K

    2016-05-23

    Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire) and Sudan, the 2013-2015 western African Ebola virus disease (EVD) outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s) in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses.

  14. Accelerator-based chemical and elemental analysis of atmospheric aerosols

    Science.gov (United States)

    Mentes, Besim

    Aerosol particles have always been present in the atmosphere, arising from natural sources. But it was not until recently when emissions from anthropogenic (man made) sources began to dominate, that atmospheric aerosols came into focus and the aerosol science in the environmental perspective started to grow. These sources emit or produce particles with different elemental and chemical compositions, as well as different sizes of the individual aerosols. The effects of increased pollution of the atmosphere are many, and have different time scales. One of the effects known today is acid rain, which causes problems for vegetation. Pollution is also a direct human health risk, in many cities where traffic driven by combustion engines is forbidden at certain times when the meteorological conditions are unfavourable. Aerosols play an important role in the climate, and may have both direct and indirect effect which cause cooling of the planet surface, in contrast to the so-called greenhouse gases. During this work a technique for chemical and elemental analysis of atmospheric aerosols and an elemental analysis methodology for upper tropospheric aerosols have been developed. The elemental analysis is performed by the ion beam analysis (IBA) techniques, PIXE (elements heavier than Al). PESA (C, N and O), cPESA (H) and pNRA (Mg and Na). The chemical speciation of atmospheric aerosols is obtained by ion beam thermography (IBT). During thermography the sample temperature is stepwise increased and the IBA techniques are used to continuously monitor the elemental concentration. A thermogram is obtained for each element. The vaporisation of the compounds in the sample appears as a concentration decrease in the thermograms at characteristic vaporisation temperatures (CVTs). Different aspects of IBT have been examined in Paper I to IV. The features of IBT are: almost total elemental speciation of the aerosol mass, chemical speciation of the inorganic compounds, carbon content

  15. Distinct impact of different types of aerosols on surface solar radiation in China

    Science.gov (United States)

    Yang, Xin; Zhao, Chuanfeng; Zhou, Lijing; Wang, Yang; Liu, Xiaohong

    2016-06-01

    Observations of surface direct solar radiation (DSR) and visibility, particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), together with the aerosol optical thickness (AOT) taken from Moderate-Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer, were investigated to gain insight into the impact of aerosol pollution on surface solar radiation in China. The surface DSR decreased during 2004-2014 compared with 1993~2003 over eastern China, but no clear reduction was observed in remote regions with cleaner air. Significant correlations of visibility, PM2.5, and regionally averaged AOT with the surface DSR over eastern China indicate that aerosol pollution greatly affects the energy available at the surface. The net loss of surface solar radiation also reduces the surface ground temperature over eastern China. However, the slope of the linear variation of the radiation with respect to atmospheric visibility is distinctly different at different stations, implying that the main aerosol type varies regionally. The largest slope value occurs at Zhengzhou and indicates that the aerosol absorption in central China is the highest, and lower slope values suggest relatively weakly absorbing types of aerosols at other locations. The spatial distribution of the linear slopes agrees well with the geographical distribution of the absorbing aerosols derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and Ozone Monitoring Instrument over China. The regional correlation between a larger slope value and higher absorbance properties of aerosols indicates that the net effects of aerosols on the surface solar energy and corresponding climatic effects are dependent on both aerosol amount and optical properties.

  16. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology

    Directory of Open Access Journals (Sweden)

    Chia Wang

    2017-11-01

    Full Text Available In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30–250 °C sensitively (B value of ~4310 K without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.

  17. Aerosol Size Distributions In Auckland.

    Czech Academy of Sciences Publication Activity Database

    Coulson, G.; Olivares, G.; Talbot, Nicholas

    2016-01-01

    Roč. 50, č. 1 (2016), s. 23-28 E-ISSN 1836-5876 Institutional support: RVO:67985858 Keywords : aerosol size distribution * particle number concentration * roadside Subject RIV: CF - Physical ; Theoretical Chemistry

  18. Earth Observatory Aerosol Optical Depth

    Data.gov (United States)

    National Aeronautics and Space Administration — Tiny solid and liquid particles suspended in the atmosphere are called aerosols. Windblown dust, sea salts, volcanic ash, smoke from wildfires, and pollution from...

  19. Eulerian modeling of aerosol dynamics

    NARCIS (Netherlands)

    Frederix, E.M.A.

    2016-01-01

    We explore the feasibility and applicability of the Eulerian approach in the mathematical modeling of aerosol dynamics including droplet nucleation, condensation, drift, diffusion and deposition. Both the methodology as well as a number of illustrating applications are contained, establishing the

  20. Hygroscopic organic aerosols during BRAVO?

    Science.gov (United States)

    Lowenthal, Douglas H; Kumar, Naresh; Hand, Jenny; Day, Derek; Kreidenweis, Sonia; Collett, Jeffrey; Lee, Taehyoung; Ashbaugh, Lowell

    2003-10-01

    The hygroscopic properties of the organic fraction of aerosols are poorly understood. The ability of organic aerosols to absorb water as a function of relative humidity (RH) was examined using data collected during the 1999 Big Bend Regional Aerosol and Visibility Observational Study (BRAVO). (On average, organics accounted for 22% of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) mass). Hourly RH exceeded 80% only 3.5% of the time and averaged 44%. BRAVO aerosol chemical composition and dry particle size distributions were used to estimate PM2.5 light scattering (Bsp) at low and high ambient RH. Liquid water growth associated with inorganic species was sufficient to account for measured Bsp for RH between 70 and 95%.

  1. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  2. Background stratospheric aerosol reference model

    Science.gov (United States)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  3. Modeling urban and regional aerosols

    Science.gov (United States)

    Sun, Qing

    Aerosol particles in Earth's atmosphere have long been associated with adverse human health effects. They also play an important role in visibility reduction and global climate change. Atmospheric formation and removal of particles are governed by a number of complex dynamic processes which make the aerosol modeling a far more challenging task than the modeling of gas-phase species. Wexler et al. (1994) identified and analyzed the atmospheric aerosol processes that govern particulate mass concentrations and estimated the relative importance of each term using typical atmospheric conditions. In this thesis I start from the general dynamic equation resulted from their analysis and develop a working and optimized aerosol model that can be incorporated into a host Eulerian air quality model to simulate particulate pollution on an urban or a regional scale. Chapter 1 presents the background of the model and highlights the important issues that need to be addressed. Chapter 2 presents the mathematical representation of the aerosol model and introduces an acid equilibrium assumption, that is, when the aerosol particles are close to acid neutral the aerosol hydrogen ion concentration can be assumed to be in equilibrium with the gas-phase acidity. This assumption greatly reduced the CPU requirement of the aerosol model and hence enable us to complete the simulation of an particulate pollution episode in a reasonable time. In Chapter 3 the aerosol model IS incorporated into the Urban Airshed Model to predict the size and composition distribution of particulate matter (PM) during the June 24-25 1987 SCAQS episode. The predicted size distribution is compared to available SCAQS measurement data. In Chapter 4 the aerosol model is further optimized and incorporated into MCNC's Multiscale Air Quality Simulation Platform (MAQSIP) to investigate the particulate pollution in eastern United States using a July 9-13 1995 episode. A cloud model is modified for the sectional

  4. The MERRA-2 Aerosol Reanalysis

    Science.gov (United States)

    da Silva, A.; Randles, C. A.; Buchard, V.; Darmenov, A.; Colarco, P. R.

    2015-12-01

    MERRA-2 is NASA's latest reanalysis for the satellite era (1980-present) using GEOS-5 earth system model. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales, and includes interactive aerosols for the entire period. MERRA-2 provides several improvements over its predecessor MERRA reanalysis, including: 1) modern satellite observing systems not available with MERRA, 2) reduction in discontinuities associated with a changing observing system, and 3) reduced biases and imbalances in the hydrologic cycle. As another step towards an integrated Earth System Analysis (IESA), MERRA-2 includes for the first time aerosols in a reanalysis, improves the representation of stratospheric ozone, and better characterizes cryospheric processes. In this talk we will present results relating to the introduction of aerosols in MERRA-2. The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS and AVHRR radiances into AERONET calibrated AOD. The system also assimilates MISR and AERONET AOD observations. For the EOS period (2000-present) GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals using the so-called QFED emissions. Historical emissions are calibrated as to minimize discontinuities the EOS/pre-EOS boundaries. MERRA-2 aerosols are also driven by historical anthropogenic and volcanic emissions. We will present a summary of our efforts to validate the MERRA-2 aerosols. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements. In order to assess aerosol absorption on a global scale, we perform a detailed radiative transfer calculation to simulate the UV aerosol index, comparing our results to OMI measurements. By simulating aerosol-attenuated backscatter, we use CALIPSO measurements

  5. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    Science.gov (United States)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  6. Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations

    Science.gov (United States)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Zhang, Gen; Yan, Yan; He, Jing

    2017-09-01

    The Beijing-Tianjin-Hebei (BTH) region experiences heavy aerosol pollution, which is found to have close relationships with the synoptic- and local-scale atmospheric circulations. However, how and to what extent these multi-scale circulations interplay to modulate aerosol transport have not been fully understood. To this end, this study comprehensively investigated the impacts of these circulations on aerosol transport in BTH by focusing on an episode occurred on 1 June 2013 through combining both observations and three-dimensional simulations. It was found that during this episode, the Bohai Sea acted as a transfer station, and the high-pressure system over the Yellow Sea and sea-breeze in BTH took turns to affect the transport of aerosols. In the morning, influenced by the high-pressure system, lots of aerosols emitted from Shandong and Jiangsu provinces were first transported to the Bohai Sea. After then, these aerosols were brought to the BTH region in the afternoon through the inland penetration of sea-breeze, significantly exacerbating the air quality in BTH. The inland penetration of sea-breeze could be identified by the sharp changes in ground-based observed temperature, humidity, and wind when the sea-breeze front (SBF) passed by. Combining observations with model outputs, the SBF was found to be able to advance inland more than ∼150 km till reaching Beijing. This study has important implications for better understanding the aerosol transport in BTH, and improving the forecast of such aerosol pollution.

  7. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    Science.gov (United States)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  8. Optical Properties of Biological Aerosols

    Science.gov (United States)

    2006-01-01

    biologi al aerosols, i.e. aerosols omposed of biologi al sporesand other organi ompounds, presents unique diÆ ulties both on the experimental and on...thetheoreti al side. On the experimental side, we ite, as an example, the fa t that all organi materials,both spores and organi ompounds present a...ORGANIZATION NAME(S) AND ADDRESS(ES) Universita di Messina Dipartimento di Fisica Della Materia e TEcnologie Fische Avanzate, Salita Sperone, 31

  9. Exploiting the favourable alignment of CALIPSO's descending orbital tracks over Sweden to study aerosol characteristics

    Directory of Open Access Journals (Sweden)

    Manu Anna Thomas

    2013-10-01

    Full Text Available One of the key knowledge gaps when estimating aerosol forcing and their role in air quality is our limited understanding of their vertical distribution. As an active lidar in space, the CALIOP-CALIPSO is helping to close this gap. The descending orbital track of CALIPSO follows elongated semi-major axis of Sweden, slicing its atmosphere every 2–3 d, thus providing a unique opportunity to characterise aerosols and their verticality in all seasons irrespective of solar conditions. This favourable orbital configuration of CALIPSO over Sweden is exploited in the present study. Using five years of night-time aerosol observations (2006–2011, we investigated the vertical distribution of aerosols. The role of temperature inversions and winds in governing this distribution is additionally investigated using collocated AIRS-Aqua and ERA-Interim Reanalysis data. It is found that the majority of aerosols (up to 70% are located within 1 km above the surface in the lowermost troposphere, irrespective of the season. In summer, convection and stronger mixing lift aerosols to slightly higher levels, but their noticeable presence in the upper free troposphere is observed in the winter half of the year, when the boundary layer is decoupled due to strong temperature inversions separating local sources from the transport component. When southerly winds prevail, two or more aerosol layers are most frequent over southern Sweden and the polluted air masses have higher AOD values. The depolarisation ratio and integrated attenuated backscatter of these aerosol layers are also higher. About 30–50% of all aerosol layers are located below the level where temperature inversions peak. On the other hand, relatively cleaner conditions are observed when the winds have a northerly component.

  10. Impact of geoengineered aerosols on the troposphere and stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tilmes, S.; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, A.; Rasch, Philip J.

    2009-06-27

    A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth’s climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.

  11. Could aerosol emissions be used for regional heat wave mitigation?

    Science.gov (United States)

    Bernstein, D. N.; Neelin, J. D.; Li, Q. B.; Chen, D.

    2013-07-01

    Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here a potential regional-scale application to offset the impacts of heat waves is critically examined. Using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem), the effect of regional-scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave is used to quantify potential reductions in surface temperature as a function of emission rates in a layer at 12 km altitude. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m-2 s-1 of sulfate aerosols (with standard WRF-Chem size distribution) over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the areas hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design considerations for regional applications, such as a preference for injection at a level of relatively low wind speed, differ from those for global applications. The size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional-scale application is thus consistent with global model evaluations, emphasizing that mitigation via reduction of fossil fuels

  12. Could aerosol emissions be used for regional heat wave mitigation?

    Directory of Open Access Journals (Sweden)

    D. N. Bernstein

    2013-07-01

    Full Text Available Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here a potential regional-scale application to offset the impacts of heat waves is critically examined. Using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem, the effect of regional-scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave is used to quantify potential reductions in surface temperature as a function of emission rates in a layer at 12 km altitude. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m−2 s−1 of sulfate aerosols (with standard WRF-Chem size distribution over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the areas hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design considerations for regional applications, such as a preference for injection at a level of relatively low wind speed, differ from those for global applications. The size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional-scale application is thus consistent with global model evaluations, emphasizing that mitigation via

  13. The direct radiative forcing effects of aerosols on the climate in California

    Science.gov (United States)

    Du, Hui

    The Weather Research and Forecast (WRF) model is used to explore the influence of aerosol direct radiative effects on regional climate of California. Aerosol data is provided by the MOZART global chemistry transport model and includes sulfate, black carbon, organic carbon, dust and sea salt. To investigate the sensitivity of aerosol radiative effects to different aerosol species and to the quantity of sulfate and dust, tests are conducted by using different combinations of aerosols and by resetting the quantity of sulfate and dust. The model results show that all the considered aerosols could have a cooling effect of one half to one degree in terms of temperature and that dust and sulfate are the most important aerosols. However, large uncertainties exist. The results suggest that the dust from MOZART is greatly overestimated over the simulation domain. The single scattering albedo (SSA) values of dust used in some global climate models are likely underestimated compared to recent studies on dust optical properties and could result in overestimating the corresponding cooling effects by approximately 0.1 degree. Large uncertainties exist in estimating the roles of different forcing factors which are causing the observed temperature change in the past century in California.

  14. ULTRASOUND MEASUREMENTS OF THE DISTANCE BETWEEN LIMBUS AND RETINAL BREAK IN EYES WITH MEDIA OPACITIES.

    Science.gov (United States)

    Vaiano, Agostino S; Coronado Quitllet, Elisabet; Zinzanella, Gaetano; De Benedetti, Giacomo; Caramello, Guido

    2017-07-01

    in eyes with media opacities by identifying the meridian and corneoscleral limbus-retinal break distance.

  15. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Min [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K. [Department of Atmospheric, Oceanic, and Planetary Physics, University of Oxford, OX1 3PU Oxford (United Kingdom); Heng, Kevin, E-mail: lee@physik.uzh.ch [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  16. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    Science.gov (United States)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  17. Gas/Aerosol partitioning: a simplified method for global modeling

    NARCIS (Netherlands)

    Metzger, S.M.

    2000-01-01

    The main focus of this thesis is the development of a simplified method to routinely calculate gas/aerosol partitioning of multicomponent aerosols and aerosol associated water within global atmospheric chemistry and climate models. Atmospheric aerosols are usually multicomponent mixtures,

  18. A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

    2010-05-01

    For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from α-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

  19. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  20. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  1. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    Science.gov (United States)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  2. Synoptic Scale Features Associated with Vertical Distributions of IR Aerosol Extinction.

    Science.gov (United States)

    1981-03-01

    descriptions were obeained from temperature and humidity pro - files obtained from aircraft spiral ascents and shipboard and shoreline radiosonde launches. The...zIe .-a t re c~ th c a r ierg ion . Aerosol extinctIcn Pro .1iles were cal culnted f’r c: aerosol sizae 4istrit-utirns measured frc:- an aircra-_ft Lth...32 marit-ime model (-) U 04j NI. ILII (b s in. (z c L in ( a) xc no constn alt i ude aircraft ani~ T !gure 1. H-ughes aerosol extinctio *Ln coc’f’ic

  3. Are anthropogenic aerosols affecting rainfall?

    Science.gov (United States)

    Junkermann, Wolfgang; Hacker, Jorg

    2013-04-01

    Modification of cloud microphysics by anthropogenic aerosols is well known since several decades. Whether the underlying processes leads to changes in precipitation is by far less confirmed. Several different factors affect the production of rain in a way that a causality between increasing aerosol load in the atmosphere and a change of annual rainfall is very difficult to confirm. What would be expected as an effect of additional cloud condensation nuclei is a shift in the spatial and temporal rainfall distribution towards a lower number of days with low rain intensity and more frequent or more vigorous single events. In fact such a shift has been observed in several locations worldwide and has been suggested to be caused by increasing aerosol load, however, without further specification of the nature and number of the aerosols involved. Measurements of aerosols which might be important for cloud properties are extremely sparse and no long term monitoring data sets are available up to now. The problem of missing long term aerosol data that could be compared to available long term meteorological data sets can possibly be resolved in certain areas where well characterized large anthropogenic aerosol sources were installed in otherwise pristine areas without significant changes in land use over several decades. We investigated aerosol sources and current aerosol number, size and spatial distributions with airborne measurements in the planetary boundary layer over two regions in Australia that are reported to suffer from extensive drought despite the fact that local to regional scale water vapor in the atmosphere is slowly and constantly increasing. Such an increase of the total water in the planetary boundary layer would imply also an increase in annual precipitation as observed in many other locations elsewhere. The observed decline of rainfall in these areas thus requires a local to regional scale physical process modifying cloud properties in a way that rain

  4. Dust layer profiling using an aerosol dropsonde

    Science.gov (United States)

    Ulanowski, Zbigniew; Kaye, Paul Henry; Hirst, Edwin; Wieser, Andreas; Stanley, Warren

    2015-04-01

    Routine meteorological data is obtained in the atmosphere using disposable radiosondes, giving temperature, pressure, humidity and wind speed. Additional measurements are obtained from dropsondes, released from research aircraft. However, a crucial property not yet measured is the size and concentration of atmospheric particulates, including dust. Instead, indirect measurements are employed, relying on remote sensing, to meet the demands from areas such as climate research, air quality monitoring, civil emergencies etc. In addition, research aircraft can be used in situ, but airborne measurements are expensive, and aircraft use is restricted to near-horizontal profiling, which can be a limitation, as phenomena such as long-range transport depend on the vertical distribution of aerosol. The Centre for Atmospheric and Instrumentation Research at University of Hertfordshire develops light-scattering instruments for the characterization of aerosols and cloud particles. Recently a range of low-cost, miniature particle counters has been created, intended for use with systems such as disposable balloon-borne radiosondes, dropsondes, or in dense ground-based sensor networks. Versions for different particle size ranges exist. They have been used for vertical profiling of aerosols such as mineral dust or volcanic ash. A disadvantage of optical particle counters that sample through a narrow inlet is that they can become blocked, which can happen in cloud, for example. Hence, a different counter version has been developed, which can have open-path geometry, as the sensing zone is defined optically rather than being delimited by the flow system. This counter has been used for ground based air-quality monitoring around Heathrow airport. The counter has also been adapted for use with radiosondes or dropsondes. The dropsonde version has been successfully tested by launching it from research aircraft together with the so-called KITsonde, developed at the Karlsruhe Institute of

  5. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    Science.gov (United States)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; hide

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  6. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008

    Directory of Open Access Journals (Sweden)

    Y. P. Li

    2013-07-01

    Full Text Available The formation of Secondary organic aerosol (SOA was simulated with the Secondary ORGanic Aerosol Model (SORGAM by a classical gas-particle partitioning concept, using the two-product model approach, which is widely used in chemical transport models. In this study, we extensively updated SORGAM including three major modifications: firstly, we derived temperature dependence functions of the SOA yields for aromatics and biogenic VOCs (volatile organic compounds, based on recent chamber studies within a sophisticated mathematic optimization framework; secondly, we implemented the SOA formation pathways from photo oxidation (OH initiated of isoprene; thirdly, we implemented the SOA formation channel from NO3-initiated oxidation of reactive biogenic hydrocarbons (isoprene and monoterpenes. The temperature dependence functions of the SOA yields were validated against available chamber experiments, and the updated SORGAM with temperature dependence functions was evaluated with the chamber data. Good performance was found with the normalized mean error of less than 30%. Moreover, the whole updated SORGAM module was validated against ambient SOA observations represented by the summed oxygenated organic aerosol (OOA concentrations abstracted from aerosol mass spectrometer (AMS measurements at a rural site near Rotterdam, the Netherlands, performed during the IMPACT campaign in May 2008. In this case, we embedded both the original and the updated SORGAM module into the EURopean Air pollution and Dispersion-Inverse Model (EURAD-IM, which showed general good agreements with the observed meteorological parameters and several secondary products such as O3, sulfate and nitrate. With the updated SORGAM module, the EURAD-IM model also captured the observed SOA concentrations reasonably well especially those during nighttime. In contrast, the EURAD-IM model before update underestimated the observations by a factor of up to 5. The large improvements of the modeled

  7. Corneal opacity due to Setaria digitata in a Jersey cross-bred Cow and its surgical management

    Directory of Open Access Journals (Sweden)

    K. Mohan

    2009-04-01

    Full Text Available A Jersey cross bred cow brought to the peripheral hospital, Uttara Kannada with clinical signs of lacrimation, corneal opacity, bleophorospasm and presence of white thread like worm in its anterior chamber of the right eye. The worm was surgically removed by limbal incision and an adequate post operative care was taken for early recovery. The worm was morphologically identified as Setaria digitata. The cow attains normal sight in 3 weeks postoperatively. [Vet. World 2009; 2(2.000: 69-70

  8. AERONET - Aerosol Climatology From Megalopolis Aerosol Source Regions

    Science.gov (United States)

    Holben, B. N.; Eck, T. F.; Dubovik, O.; Smirnov, A.; Slutsker, I.; Artaxo, P.; Leyva, A.; Lu, D.; Sano, I.; Singh, R. P.; Quel, E.; Tanre, D.; Zibordi, G.

    2002-05-01

    AERONET is a globally distributed network of ~170 identical sun and sky scanning spectral radiometers expanded by federation with collaborating investigators that contribute to the AERONET public domain data-base. We will detail the current distribution and plans for expanded collaboration. Recent products available through the project database are important for assessment of human health as well as climate forcing issues. We will illustrate a summary of aerosol optical properties measured in Indian, East Asian, North American, South American and European megalopolis source regions. We will present monthly mean fine and coarse particle aerosol optical depth, particle size distributions and single scattering albedos. Each region represents a population in excess of 10 million inhabitants within a 200 km radius of the observation site that dictate the anthropogenic aerosol sources contributing to significantly diverse aerosol properties as a function of economic development and seasonally dependent meteorological processes. The diversity of the measured optical properties of urban aerosols illustrates the need for long-term regional monitoring that contribute to comparative assessments for health and climate change investigations.

  9. Radon and aerosol release from open-pit uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.W.; Nielson, K.K.; Mauch, M.L.

    1982-08-01

    The quantity of /sup 222/Rn (hereafter called radon) released per unit of uranium produced from open pit mining has been determined. A secondary objective was to determine the nature and quantity of airborne particles resulting from mine operations. To accomplish these objectives, a comprehensive study of the release rates of radon and aerosol material to the atmosphere was made over a one-year period from April 1979 to May 1980 at the Morton Ranch Mine which was operated by United Nuclear Corporation (UNC) in partnership with Tennessee Valley Authority (TVA). The mine is now operated for TVA by Silver King Mines. Morton Ranch Mine was one of five open pit uranium mines studied in central Wyoming. Corroborative measurements were made of radon flux and /sup 226/Ra (hereafter called radium) concentrations of various surfaces at three of the other mines in October 1980 and again at these three mines plus a fourth in April of 1981. Three of these mines are located in the Powder River Basin, about 80 kilometers east by northeast of Casper. One is located in the Shirley Basin, about 60 km south of Casper, and the remaining one is located in the Gas Hills, approximately 100 km west of Casper. The one-year intensive study included simultaneous measurement of several parameters: continuous measurement of atmospheric radon concentration near the ground at three locations, monthly 24-hour radon flux measurements from various surfaces, radium analyses of soil samples collected under each of the flux monitoring devices, monthly integrations of aerosols on dichotomous aerosol samplers, analysis of aerosol samplers for total dust loading, aerosol elemental and radiochemical composition, aerosol elemental composition by particle size, wind speed, wind direction, temperature, barometric pressure, and rainfall.

  10. Distinguishing Aerosol Impacts on Climate Over the Past Century

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  11. Organic aerosol mixing observed by single-particle mass spectrometry.

    Science.gov (United States)

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.

  12. Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network 2002-2013

    National Research Council Canada - National Science Library

    Che, H; Zhang, X.-Y; Xia, X; Goloub, P; Holben, B; Zhao, H; Wang, Y; Zhang, X.-C; Wang, H; Blarel, L; Damiri, B; Zhang, R; Deng, X; Ma, Y; Wang, T; Geng, F; Qi, B; Zhu, J; Yu, J; Chen, Q; Shi, G

    2015-01-01

      Long-term measurements of aerosol optical depths (AODs) at 440 nm and Ångström exponents (AE) between 440 and 870 nm made for CARSNET were compiled into a climatology of aerosol optical properties for China...

  13. Classifying aerosol type using in situ surface spectral aerosol optical properties

    Science.gov (United States)

    Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao

    2017-10-01

    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites

  14. Classifying aerosol type using in situ surface spectral aerosol optical properties

    Directory of Open Access Journals (Sweden)

    L. Schmeisser

    2017-10-01

    Full Text Available Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE, absorption Ångström exponent (AAE and single scattering albedo (SSA from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol, marine polluted (carbonaceous aerosol mixed with sea salt and continental dust

  15. Observational insights into aerosol formation from isoprene.

    Science.gov (United States)

    Worton, David R; Surratt, Jason D; Lafranchi, Brian W; Chan, Arthur W H; Zhao, Yunliang; Weber, Robin J; Park, Jeong-Hoo; Gilman, Jessica B; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar; Beaver, Melinda; Clair, Jason M St; Crounse, John; Wennberg, Paul; Wolfe, Glenn M; Harrold, Sara; Thornton, Joel A; Farmer, Delphine K; Docherty, Kenneth S; Cubison, Michael J; Jimenez, Jose-Luis; Frossard, Amanda A; Russell, Lynn M; Kristensen, Kasper; Glasius, Marianne; Mao, Jingqiu; Ren, Xinrong; Brune, William; Browne, Eleanor C; Pusede, Sally E; Cohen, Ronald C; Seinfeld, John H; Goldstein, Allen H

    2013-10-15

    Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.

  16. The Formation of Hydrochloric Acid Aerosol from the Interaction of the Space Shuttle Rocket Exhaust with the Atmosphere

    Science.gov (United States)

    Rhein, R. A.

    1973-01-01

    A description is given of conditions of atmospheric temperature and relative humidity under which hydrochloric acid aerosol is expected upon interaction of the proposed space shuttle rocket exhaust products with the atmosphere.

  17. Aerosol infection of calves with Histophilus somni.

    Science.gov (United States)

    Jánosi, Katalin; Stipkovits, László; Glávits, Róbert; Molnár, Tamás; Makrai, László; Gyuranecz, Miklós; Varga, János; Fodor, László

    2009-09-01

    The purpose of this study was to develop and evaluate an aerosol infection method with Histophilus somni that closely resembles the natural way of infection of calves. Another aim was to compare the virulence of two H. somni strains by collecting clinical and postmortem data of experimentally infected and control animals. Seventeen conventionally reared 3-month-old calves were divided into three groups. Two groups of six animals each were exposed to suspensions containing H. somni on three consecutive days using a vaporiser mask. The third group of five animals was used as control. The data of individual clinical examination were recorded daily. All animals were exterminated, and gross pathology of all lungs was evaluated on the 15th day after the first infection. Both H. somni strains caused an increase of rectal temperature, respiratory signs, decrease of weight gain, and severe catarrhal bronchopneumonia in both infected groups. Although some chronic lesions were detected in the lungs of the control animals as well, the histopathological findings in the infected and control groups were different. H. somni was recultured from all lungs in the challenged groups but it could not be reisolated or detected by PCR examination in the control group. This is the first paper on aerosol challenge of calves with H. somni using repeated infection and verified by detailed pathological, bacteriological and histopathological examination. The infection method proved to be successful. There was no difference in the virulence of the two H. somni strains used in the trial.

  18. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  19. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    Science.gov (United States)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    -surface inversion. When totally entrained in the CBL, we observe a strong dependence of the afternoon CBL evolution on the single scattering albedo. We find that scattering aerosols are associated to smaller heating rates and therefore cooler and shallower CBLs. In contrast, moderate to strong absorbing aerosols increase the heating rate, contributing positively to deepen the afternoon CBL, and to increase the potential temperature and evaporative fraction. The two prototype clear-sky days studied here are ideally suited to evaluate parameterizations for shortwave radiation, land-surface and boundary-layer schemes that are implemented in mesoscale or global chemistry transport models.

  20. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    Science.gov (United States)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  1. Aerosol Emission during Human Speech

    Science.gov (United States)

    Asadi, Sima; Ristenpart, William

    2016-11-01

    The traditional emphasis for airborne disease transmission has been on coughing and sneezing, which are dramatic expiratory events that yield easily visible droplets. Recent research suggests that normal speech can release even larger quantities of aerosols that are too small to see with the naked eye, but are nonetheless large enough to carry a variety of pathogens (e.g., influenza A). This observation raises an important question: what types of speech emit the most aerosols? Here we show that the concentration of aerosols emitted during healthy human speech is positively correlated with both the amplitude (loudness) and fundamental frequency (pitch) of the vocalization. Experimental measurements with an aerodynamic particle sizer (APS) indicate that speaking in a loud voice (95 decibels) yields up to fifty times more aerosols than in a quiet voice (75 decibels), and that sounds associated with certain phonemes (e.g., [a] or [o]) release more aerosols than others. We interpret these results in terms of the egressive airflow rate associated with each phoneme and the corresponding fundamental frequency, which is known to vary significantly with gender and age. The results suggest that individual speech patterns could affect the probability of airborne disease transmission.

  2. Filtração de aerossóis em altas temperaturas utilizando filtros cerâmicos de dupla camada: influência do diâmetro de partícula na eficiência de coleta Filtration of aerosols at high temperatures using a double layer ceramic filter: influence of the particle diameter in the collection efficiency

    Directory of Open Access Journals (Sweden)

    N. L de Freitas

    2004-12-01

    Full Text Available Neste trabalho foram utilizados filtros cerâmicos para filtração de aerossóis, constituídos por dupla camada, onde a primeira camada é formada por um suporte celular de elevada porosidade com diâmetro de poro controlado e a segunda formada por uma película filtrante. A camada suporte foi obtida pela técnica de replicação cerâmica de espuma poliuretânica, por meio da impregnação de uma suspensão aquosa de Al2O3. Foram utilizados suportes de 45 e 75 poros/polegada. A membrana filtrante (Al2O3 e argila foi a mesma para ambos os suportes, sendo composta por uma massa granular cerâmica de baixa porosidade. Os experimentos de filtração foram realizados em temperaturas de 25 a 700 ºC onde mediu-se a capacidade dos filtros de limpar um aerossol de partículas finas polidispersas (diâmetro mediano de 4,6 µm e calculou-se a eficiência de coleta para diâmetros de partícula entre 0,4 e 8,5 µm. Os resultados mostraram que a eficiência diminuiu com o aumento da temperatura e aumentou com o diâmetro da partícula.In this work, ceramic filters were used for aerosol filtration. The filters were constituted by two layers, where the first layer was formed by of a highly porous ceramic support with controlled pore size and the second layer constituted by a fine membrane. The ceramic support was obtained from polymeric foams utilizing a technique of alumina impregnation. The supports had 45 and 75 pores per inch (ppi. The membrane (a mixture of alumina and clay was the same for the two supports, with much smaller pore sizes. The filtration experiments were accomplished at temperatures varying from 25 to 700 ºC, where the ability of the filters for cleaning an aerosol constituted by fine particles (median diameter of 4.6 µm was measured. The collection efficiency was calculated for particle diameters between 0.4 and 8.5 µm. The results showed that the collection efficiency decreased with the increase of the temperature and increased

  3. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; hide

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  4. Miniature Sensor for Aerosol Mass Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  5. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  6. MISR Aerosol Climatology Product V001

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Aerosol Climatology Product is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure...

  7. Preliminary Results from the Smoke Aerosol Measurement Experiment - Reflight

    Science.gov (United States)

    Urban, D. L.; Ruff, G. A.; Mulholland, G. W.; Yuan, Z.; Cleary, T.; Yang, J.; Meyer, M. E.; Bryg, V. M.

    2012-01-01

    Preliminary results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME- R) which was conducted during Expedition 24 (July- September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. Particle size determinations were made using aerosol instruments and by capturing particles for ground based examination in a Transmission Electron Microscope (TEM). Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the some of the quiescent cases producing substantially larger particles. When combined with particle morphology data from the TEM analysis, these results can be used to guide the design of future smoke detectors.

  8. Influence of Functional Groups on the Viscosity of Organic Aerosol.

    Science.gov (United States)

    Rothfuss, Nicholas E; Petters, Markus D

    2017-01-03

    Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO2) > carbonyl (CO) ≈ ester (COO) > methylene (CH2). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.

  9. Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models

    Science.gov (United States)

    Guo, L.; Turner, A. G.; Highwood, E. J.

    2015-06-01

    Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the 24 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus, while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions also

  10. Opacity-driven volume clipping for slice of interest (SOI) visualisation of multi-modality PET-CT volumes.

    Science.gov (United States)

    Jung, Younhyun; Kim, Jinman; Fulham, Michael; Feng, David Dagan

    2014-01-01

    Multi-modality positron emission tomography and computed tomography (PET-CT) imaging depicts biological and physiological functions (from PET) within a higher resolution anatomical reference frame (from CT). The need to efficiently assimilate the information from these co-aligned volumes simultaneously has resulted in 3D visualisation methods that depict e.g., slice of interest (SOI) from PET combined with direct volume rendering (DVR) of CT. However because DVR renders the whole volume, regions of interests (ROIs) such as tumours that are embedded within the volume may be occluded from view. Volume clipping is typically used to remove occluding structures by `cutting away' parts of the volume; this involves tedious trail-and-error tweaking of the clipping attempts until a satisfied visualisation is made, thus restricting its application. Hence, we propose a new automated opacity-driven volume clipping method for PET-CT using DVR-SOI visualisation. Our method dynamically calculates the volume clipping depth by considering the opacity information of the CT voxels in front of the PET SOI, thereby ensuring that only the relevant anatomical information from the CT is visualised while not impairing the visibility of the PET SOI. We outline the improvements of our method when compared to conventional 2D and traditional DVR-SOI visualisations.

  11. Interannual Variability of Dust and Ice in the Mars Atmosphere: Comparison of MRO Mars Climate Sounder Retrievals with MGS-TES Limb Sounding Retrievals

    Science.gov (United States)

    Shirley, J. H.; McConnochie, T. H.; Kleinbohl, A.; Schofield, J. T.; Kass, D.; Heavens, N. G.; Benson, J.; McCleese, D. J.

    2011-01-01

    Dust and ice play important roles in Martian atmospheric dynamics on all time scales. Dust loading in particular exerts an important control on atmospheric temperatures and thereby on the strength of the atmospheric circulation in any given year. We present the first comparisons of MGS-TES aerosol opacity profiles with MRO-MCS aerosol opacity profiles. While the differences in vertical resolution are significant (a factor of 2), we find good agreement at particular seasons between nightside zonal average dust opacity profiles from the two instruments. Derived water ice opacities are likewise similar but show greater variability.

  12. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  13. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  14. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    Full Text Available Within the ESA Climate Change Initiative (CCI project Aerosol_cci (2010–2013, algorithms for the production of long-term total column aerosol optical depth (AOD datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1 a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2 a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome applied to four months of global data to identify mature algorithms, and (3 a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008 of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun

  15. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  16. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...

  17. Aerosol processes relevant for the Netherlands

    NARCIS (Netherlands)

    Brugh, Aan de J.M.J.

    2013-01-01

    Particulate matter (or aerosols) are particles suspended in the atmosphere. Aerosols are believed to be the most important pollutant associated with increased human mortality and morbidity. Therefore, it is important to investigate the relationship between sources of aerosols (such as industry) and

  18. DARE: a dedicated aerosols retrieval instrument

    NARCIS (Netherlands)

    Court, A.J.; Smorenburg, K.; Courrèges-Lacoste, G.B.; Visser, H.; Leeuw, G. de; Decae, R.

    2004-01-01

    Satellite remote sensing of aerosols is a largely unresolved problem. A dedicated instrument aimed at aerosols would be able to reduce the large uncertainties connected to this kind of remote sensing. TNO is performing a study of a space based instrument for aerosol measurements, together with the

  19. [Hourly measurement on aerosol NH3 and gas NO(x) emission in the rice field].

    Science.gov (United States)

    Gong, Wei-Wei; Luan, Sheng-Ji

    2012-11-01

    Aerosol NH3 and gas NO(x) are the major components in atmospheric particles and precipitation, which are key precursors to form aerosols. The intensive N fertilization in arable land is an important source of aerosol NH3 and gas NO(x), which have not been well characterized yet. During May to October in 2010, the characteristics of aerosol NH3 and gas NO(x) emission from rice field after urea application were investigated. The time resolutions of measurements were set to be one hour. The aerosol NH3 emission and metrological factors within 20 d of continuous sampling after fertilization in four experiments were monitored. The experiment on gas NO(x) emission and metrological factors influencing the emission were carried out from the beginning of the forth test, which lasted for 47 days. Results indicated that the aerosol NH3 emission factors of four tests were 2.6%, 5.5%, 4.0% and 1.6%, respectively. The corresponding aerosol NH3 emission flux of four tests were 3.97, 2.08, 1.52 and 1.22 kg x hm(-2), respectively. Temperature (air temperature and soil temperature) was found to be the main factor influencing aerosol NH3 emission in rice fields after fertilization, while the impacts of air humidity and soil moisture were not clear. After analyzing the monitoring data, it can be concluded that the ratio of the emission amount of NO2 -N and NO-N in rice fields after fertilization was 9/4; the emission factor and the emission flux of gas NO(x) were 0.14% and 0.30 kg x hm(-2), respectively. The relationship between metrological factors and gas NO(x) emission flux was also examined.

  20. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  1. ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA

    Directory of Open Access Journals (Sweden)

    S. L. Capps

    2012-01-01

    Full Text Available We present the development of ANISORROPIA, the discrete adjoint of the ISORROPIA thermodynamic equilibrium model that treats the Na+-SO42−- HSO4-NH4+ -NO3-Cl-H2O aerosol system, and we demonstrate its sensitivity analysis capabilities. ANISORROPIA calculates sensitivities of an inorganic species in aerosol or gas phase with respect to the total concentrations of each species present with less than a two-fold increase in computational time over the concentration calculations. Due to the highly nonlinear and discontinuous solution surface of ISORROPIA, evaluation of the adjoint required a new, complex-variable version of the model, which determines first-order sensitivities with machine precision and avoids cancellation errors arising from finite difference calculations. The adjoint is verified over an atmospherically relevant range of concentrations, temperature, and relative humidity. We apply ANISORROPIA to recent field campaign results from Atlanta, GA, USA, and Mexico City, Mexico, to characterize the inorganic aerosol sensitivities of these distinct urban air masses. The variability in the relationship between fine mode inorganic aerosol mass and precursor concentrations shown has important implications for air quality and climate.

  2. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    Science.gov (United States)

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-08

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Concentration Standard Aerosol Generator.

    Science.gov (United States)

    1985-07-31

    through entrances (1) and (3) so as to attain an anular flow of aerosol. The merging flow is then accelerated by the narrowing cross-section of the duct...tration (if a lower flow or a wider size distribution is acceptable and 2) precautions and suggestions for use of different aerosol materials. Additional...particles of interest. The flow split in both VPI and VP2 is 10% so that 4 slpm exits through the token flow Q2T of VP2. A venturi is utilized to

  4. Assessing the Dynamics of Organic Aerosols over the North Atlantic Ocean.

    Science.gov (United States)

    Kasparian, Jérôme; Hassler, Christel; Ibelings, Bas; Berti, Nicolas; Bigorre, Sébastien; Djambazova, Violeta; Gascon-Diez, Elena; Giuliani, Grégory; Houlmann, Raphaël; Kiselev, Denis; de Laborie, Pierric; Le, Anh-Dao; Magouroux, Thibaud; Neri, Tristan; Palomino, Daniel; Pfändler, Stéfanie; Ray, Nicolas; Sousa, Gustavo; Staedler, Davide; Tettamanti, Federico; Wolf, Jean-Pierre; Beniston, Martin

    2017-03-31

    The influence of aerosols on climate is highly dependent on the particle size distribution, concentration, and composition. In particular, the latter influences their ability to act as cloud condensation nuclei, whereby they impact cloud coverage and precipitation. Here, we simultaneously measured the concentration of aerosols from sea spray over the North Atlantic on board the exhaust-free solar-powered vessel "PlanetSolar", and the sea surface physico-chemical parameters. We identified organic-bearing particles based on individual particle fluorescence spectra. Organic-bearing aerosols display specific spatio-temporal distributions as compared to total aerosols. We propose an empirical parameterization of the organic-bearing particle concentration, with a dependence on water salinity and sea-surface temperature only. We also show that a very rich mixture of organic aerosols is emitted from the sea surface. Such data will certainly contribute to providing further insight into the influence of aerosols on cloud formation, and be used as input for the improved modeling of aerosols and their role in global climate processes.

  5. The Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol Particles

    Science.gov (United States)

    Grzinic, G.; Bartels-Rausch, T.; Tuerler, A.; Ammann, M.

    2013-12-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. The heterogeneous loss of N2O5 to aerosol particles has remained uncertain, and reconciling lab and field data has demonstrated some gaps in our understanding of the detailed mechanism. We used the short-lived radioactive tracer 13N to study N2O5 uptake kinetics on aerosol particles in an aerosol flow reactor at ambient pressure, temperature and relative humidity. Citric acid, representing strongly oxidized polyfunctional organic compounds in atmospheric aerosols, has been chosen as a proxy due to its well established physical properties. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 15-75 % RH, within which the uptake coefficient varies between about 0.001 and about 0.02. Taking into account the well established hygroscopic properties of citric acid, we interpret uptake in terms of disproportionation of N2O5 into nitrate ion and nitronium ion and reaction of the latter with liquid water.

  6. Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011

    Directory of Open Access Journals (Sweden)

    J. L. Fry

    2013-09-01

    Full Text Available At the Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS field campaign in the Colorado front range, July–August 2011, measurements of gas- and aerosol-phase organic nitrates enabled a study of the role of NOx (NOx = NO + NO2 in oxidation of forest-emitted volatile organic compounds (VOCs and subsequent aerosol formation. Substantial formation of peroxy- and alkyl-nitrates is observed every morning, with an apparent 2.9% yield of alkyl nitrates from daytime RO2 + NO reactions. Aerosol-phase organic nitrates, however, peak in concentration during the night, with concentrations up to 140 ppt as measured by both optical spectroscopic and mass spectrometric instruments. The diurnal cycle in aerosol fraction of organic nitrates shows an equilibrium-like response to the diurnal temperature cycle, suggesting some reversible absorptive partitioning, but the full dynamic range cannot be reproduced by thermodynamic repartitioning alone. Nighttime aerosol organic nitrate is observed to be positively correlated with [NO2] × [O3] but not with [O3]. These observations support the role of nighttime NO3-initiated oxidation of monoterpenes as a significant source of nighttime aerosol. Nighttime production of organic nitrates is comparable in magnitude to daytime photochemical production at this site, which we postulate to be representative of the Colorado front range forests.

  7. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-11-01

    Full Text Available The biosphere emits volatile organic compounds (BVOCs which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used. MEGAN2 shows a 25% increase while LPJ-GUESS shows a slight decrease in global BVOC emission between years 2000 and 2100. The change of shortwave cloud forcing from year 1750 to 2000 ranges from −1.4 to −1.8 W m−2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m−2. Although increasing future BVOC emissions provide 3–5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future.

  8. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D. [Hadley Center for Climate Predictions & Research, Exeter (United Kingdom)

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  9. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  10. The aerosol optical properties and PM2.5 components over the world's largest industrial zone in Tangshan, North China

    Science.gov (United States)

    Zhang, Kequan; Ma, Yongjing; Xin, Jinyuan; Liu, Zirui; Ma, Yining; Gao, Dongdong; Wu, Junsong; Zhang, Wenyu; Wang, Yuesi; Shen, Pengke

    2018-03-01

    To achieve an in-depth understanding of the aerosol optical properties in the highly-industrial region of Tangshan, we provided systematic aerosol optical properties analysis in this largest industrial zone for the first time. The aerosol optical datasets (2013.05-2015.04) and chemical component data of PM2.5 (2014-2015) obtained from the Tangshan site of the campaign on atmospheric aerosol research (CARE-China) network were analyzed. The results showed that the Tangshan region was seriously affected by fine-mode industrial aerosols all year, which would promote the accumulation of pollutants and influence the atmospheric circulation through changing the vertical temperature gradient. The annual average aerosol optical depth (AOD) and Ångstrӧm exponent (α) were 0.80 ± 0.26 and 1.05 ± 0.10, respectively. The aerosol optical properties revealed significant seasonal characteristics. The maximum seasonal average AOD (1.03 ± 0.62) and α (1.12 ± 0.19) accompanied the highest seasonal secondary inorganic aerosol concentrations (SIA: SO42 -, NO3-, NH4+), 53.33 μg/m3, occurred in summer, and this phenomenon was attributed to the photochemical reactions favored by the high temperature and humidity. During the spring, frequent dust events led to the maximum Ca2 + concentration of 6.57 μg/m3 and the lowest seasonal α of 0.98 ± 0.31. Coal was used for generating heat in winter, resulting in the highest levels of pollutant emissions (Cl-, Elemental carbon (EC) and organic carbon (OC)). The aerosol type classifications showed that the industrial aerosols were the main controls in the summer and fall, representing 56%-58% of the total aerosols. While for spring and winter, mixed aerosols represented 53%-54% of the total aerosols. Hygroscopic growth effect of aerosols existed all year, which could enhance the negative radiative forcing and eventually cool the earth-atmosphere system. The classification Wing for Tangshan data showed high AOD values (> 0.70) were mainly

  11. Characterization of flashing jet aerosols with a phase-doppler anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Sutradhar, S.C. [Atomic Energy of Canada Limited., Chalk River, Ontario (Canada)

    2006-07-01

    A phase-Doppler anemometer (PDA) was used successfully to measure aerosol size distribution and velocity in high-pressure, high-temperature flashing jets discharging from a nozzle simulating a hypothetical break in the reactor heat-transport system. The basic operating principles of the PDA and the thermodynamics of flashing jets are discussed. The measurements indicate that the velocity decreased, and the smaller aerosols prevailed, as the jet diverged away from the break. The larger aerosols had the tendency to settle below the lower half of the jet axis due to gravitational agglomeration and settling. Higher operating pressures upstream of the break produced higher jet velocity as well as larger aerosols. (author)

  12. Dust-wind interactions can intensify aerosol pollution over eastern China

    Science.gov (United States)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2017-05-01

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (+/-0.05) m s-1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

  13. Biomass burning aerosol impact on surface winds during the 2010 Russian heat wave

    Science.gov (United States)

    Baró, R.; Lorente-Plazas, R.; Montávez, J. P.; Jiménez-Guerrero, P.

    2017-01-01

    This paper elucidates the impact of biomass burning aerosols (BB) on surface winds for the Russian fires episode during 25 July to 15 August 2010. The methodology consists of three Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulations over Europe differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The presence of BB reduces the 10 m wind speed over Russia during this fire event by 0.2 m s-1 (10%). Aerosol interactions imply a decrease of the shortwave downwelling radiation at the surface leading to a reduction of the 2 m temperature. This decrease reduces the turbulence flux, developing a more stable planetary boundary layer. Moreover, cooling favors an increase of the surface pressure over Russian area and also it extends nearby northern Europe.

  14. Sampling and measurement methods for diesel exhaust aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ristimaeki, J.

    2006-07-01

    Awareness of adverse health effects of urban aerosols has increased general interest in aerosol sources. As diesel engines are one significant urban anthropogenic particle source, diesel aerosols have been under intense research during the last decades. This thesis discusses the measurement issues related to the diesel exhaust particles, focusing on the effective density measurement with Elpi-Sumps and Tda-Elpi methods and presents some additional performance issues not discussed in the papers. As the emergence of volatile nanoparticles in the diesel exhaust is sensitive to prevailing circumstances there is a need to properly control the dilution parameters in laboratory measurements in order to obtain repeatable and reproducible results. In addition to the dilution parameters, the effect of ambient temperature on the light duty vehicle exhaust particulate emission was studied. It was found that turbo charged diesel engines were relatively insensitive to changes in ambient temperature whereas particle emissions from naturally aspirated gasoline vehicles were significantly increased at low temperatures. The measurement of effective density and mass of aerosol particles with Dma and impactor was studied and applied to characterisation of diesel exhaust particles. The Tda-Elpi method was used for determination of the volatile mass of diesel exhaust particles as a function of particle size. Based on the measurement results, condensation was suggested to be the main phenomena driving volatile mass transfer to the exhaust particles. Identification of the process and the separation of volatile and solid mass may become important as some health effect studies suggest the volatile fraction to be a key component causing the biological effects of diesel exhaust particles. (orig.)

  15. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  16. NASA's Aerosol Sampling Experiment Summary

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  17. Near UV Aerosol Group Report

    Science.gov (United States)

    Torres, Omar

    2013-01-01

    2012-13 Report of research on aerosol and cloud remote sensing using UV observations. The document was presented at the 2013 AEROCENTER Annual Meeting held at the GSFC Visitors Center, May 31, 2013. The Organizers of the meeting are posting the talks to the public Aerocentr website, after the meeting.

  18. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Science.gov (United States)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  19. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Directory of Open Access Journals (Sweden)

    S. Strada

    2016-04-01

    Full Text Available A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse by  ∼ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources enhance GPP by +5–8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2–5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5–8 %. The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of −2 to −12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  20. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    Science.gov (United States)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  1. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  2. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

    Directory of Open Access Journals (Sweden)

    Deepti Sharma

    2012-01-01

    Full Text Available Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as 1.00±0.51 and 0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF over Patiala. The ARF at surface (SRF and top of atmosphere (TOA ranges from ∼−50 to −100 Wm−2 and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM, ranging between ∼+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.

  3. On the Specification of Smoke Injection Heights for Aerosol Forecasting

    Science.gov (United States)

    da Silva, A.; Schaefer, C.; Randles, C. A.

    2014-12-01

    The proper forecasting of biomass burning (BB) aerosols in global or regional transport models requires not only the specification of emission rates with sufficient temporal resolution but also the injection layers of such emissions. While current near realtime biomass burning inventories such as GFAS, QFED, FINN, GBBEP and FLAMBE provide such emission rates, it is left for each modeling system to come up with its own scheme for distributing these emissions in the vertical. A number of operational aerosol forecasting models deposits BB emissions in the near surface model layers, relying on the model's parameterization of turbulent and convective transport to determine the vertical mass distribution of BB aerosols. Despite their simplicity such schemes have been relatively successful reproducing the vertical structure of BB aerosols, except for those large fires that produce enough buoyancy to puncture the PBL and deposit the smoke at higher layers. Plume Rise models such as the so-called 'Freitas model', parameterize this sub-grid buoyancy effect, but require the specification of fire size and heat fluxes, none of which is readily available in near real-time from current remotely-sensed products. In this talk we will introduce a bayesian algorithm for estimating file size and heat fluxes from MODIS brightness temperatures. For small to moderate fires the Freitas model driven by these heat flux estimates produces plume tops that are highly correlated with the GEOS-5 model estimate of PBL height. Comparison to MINX plume height estimates from MISR indicates moderate skill of this scheme predicting the injection height of large fires. As an alternative, we make use of OMPS UV aerosol index data in combination with estimates of Overshooting Convective Tops (from MODIS and Geo-stationary satellites) to detect PyCu events and specify the BB emission vertical mass distribution in such cases. We will present a discussion of case studies during the SEAC4RS field campaign in

  4. Opacity probability distribution functions for electronic systems of CN and C2 molecules including their stellar isotopic forms.

    Science.gov (United States)

    Querci, F.; Kunde, V. G.; Querci, M.

    1971-01-01

    The basis and techniques are presented for generating opacity probability distribution functions for the CN molecule (red and violet systems) and the C2 molecule (Swan, Phillips, Ballik-Ramsay systems), two of the more important diatomic molecules in the spectra of carbon stars, with a view to including these distribution functions in equilibrium model atmosphere calculations. Comparisons to the CO molecule are also shown. T he computation of the monochromatic absorption coefficient uses the most recent molecular data with revision of the oscillator strengths for some of the band systems. The total molecular stellar mass absorption coefficient is established through fifteen equations of molecular dissociation equilibrium to relate the distribution functions to each other on a per gram of stellar material basis.

  5. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    Directory of Open Access Journals (Sweden)

    K. Pistone

    2016-04-01

    Full Text Available There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV and the liquid water path (LWP of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV  < 40 kg m−2, a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the

  6. Development of aerosol assisted chemical vapor deposition for thin film fabrication

    Science.gov (United States)

    Maulana, Dwindra Wilham; Marthatika, Dian; Panatarani, Camellia; Mindara, Jajat Yuda; Joni, I. Made

    2016-02-01

    Chemical vapor deposition (CVD) is widely used to grow a thin film applied in many industrial applications. This paper report the development of an aerosol assisted chemical vapor deposition (AACVD) which is one of the CVD methods. Newly developed AACVD system consists of a chamber of pyrex glass, two wire-heating elements placed to cover pyrex glass, a substrate holder, and an aerosol generator using an air brush sprayer. The temperature control system was developed to prevent condensation on the chamber walls. The control performances such as the overshoot and settling time were obtained from of the developed temperature controller. Wire-heating elements were controlled at certain setting value to heat the injected aerosol to form a thin film in the substrate. The performance of as-developed AACVD system tested to form a thin film where aerosol was sprayed into the chamber with a flow rate of 7 liters/minutes, and vary in temperatures and concentrations of precursor. The temperature control system have an overshoot around 25 °C from the desired set point temperature, very small temperature ripple 2 °C and a settling time of 20 minutes. As-developed AACVD successfully fabricated a ZnO thin film with thickness of below 1 µm. The performances of system on formation of thin films influenced by the generally controlled process such as values of setting temperature and concentration where the aerosol flow rate was fixed. Higher temperature was applied, the more uniform ZnO thin films were produced. In addition, temperature of the substrate also affected on surface roughness of the obtained films, while concentration of ZnO precursor determined the thickness of produce films. It is concluded that newly simple AACVD can be applied to produce a thin film.

  7. Occupational cataracts and lens opacities in interventional cardiology (O'CLOC study: are X-Rays involved?

    Directory of Open Access Journals (Sweden)

    Jacob Sophie

    2010-09-01

    Full Text Available Abstract Background The eye is well known to be sensitive to clearly high doses (>2 Gy of ionizing radiation. In recent years, however, cataracts have been observed in populations exposed to lower doses. Interventional cardiologists are repeatedly and acutely exposed to scattered ionizing radiation (X-rays during the diagnostic and therapeutic procedures they perform. These "low" exposures may cause damage to the lens of the eye and induce early cataracts, known as radiation-induced cataracts. The O'CLOC study (Occupational Cataracts and Lens Opacities in interventional Cardiology was designed to test the hypothesis that interventional cardiologists, compared with an unexposed reference group of non-interventional cardiologists, have an increased risk of cataracts. Method/Design The O'CLOC study is a cross-sectional study that will include a total of 300 cardiologists aged at least 40 years: one group of exposed interventional cardiologists and another of non-interventional cardiologists. The groups will be matched for age and sex. Individual information, including risk factors for cataracts (age, diabetes, myopia, etc., will be collected during a telephone interview. A specific section of the questionnaire for the exposed group focuses on occupational history, including a description of the procedures (type, frequency, radiation protection tool used. These data will be used to classify subjects into "exposure level" groups according to cumulative dose estimates. Eye examinations for all participants will be performed to detect cataracts, even in the early stages (lens opacities, according to LOCS III, the international standard classification. The analysis will provide an estimation of the cataract risk in interventional cardiology compared with the unexposed reference group, while taking other risk factors into account. An analysis comparing the risks according to level of exposure is also planned. Discussion This epidemiological study will

  8. A 'Fish-eye disease' familial condition with massive corneal opacities and hypoalphalipoproteinaemia: clinical, biochemical and genetic features.

    Science.gov (United States)