WorldWideScience

Sample records for temperature-sensitive groes mutation

  1. groE mutants of Escherichia coli are defective in umuDC-dependent UV mutagenesis

    International Nuclear Information System (INIS)

    Donnelly, C.E.; Walker, G.C.

    1989-01-01

    Overexpression of the SOS-inducible umuDC operon of Escherichia coli results in the inability of these cells to grow at 30 degrees C. Mutations in several heat shock genes suppress this cold sensitivity. Suppression of umuD+C+-dependent cold sensitivity appears to occur by two different mechanisms. We show that mutations in lon and dnaK heat shock genes suppress cold sensitivity in a lexA-dependent manner. In contrast, mutations in groES, groEL, and rpoH heat shock genes suppress cold sensitivity regardless of the transcriptional regulation of the umuDC genes. We have also found that mutations in groES and groEL genes are defective in umuDC-dependent UV mutagenesis. This defect can be suppressed by increased expression of the umuDC operon. The mechanism by which groE mutations affect umuDC gene product function may be related to the stability of the UmuC protein, since the half-life of this protein is shortened because of mutations at the groE locus

  2. Myxococcus xanthus DK1622 Coordinates Expressions of the Duplicate groEL and Single groES Genes for Synergistic Functions of GroELs and GroES

    Directory of Open Access Journals (Sweden)

    Yue-zhong Li

    2017-04-01

    Full Text Available Chaperonin GroEL (Cpn60 requires cofactor GroES (Cpn10 for protein refolding in bacteria that possess single groEL and groES genes in a bicistronic groESL operon. Among 4,861 completely-sequenced prokaryotic genomes, 884 possess duplicate groEL genes and 770 possess groEL genes with no neighboring groES. It is unclear whether stand-alone groEL requires groES in order to function and, if required, how duplicate groEL genes and unequal groES genes balance their expressions. In Myxococcus xanthus DK1622, we determined that, while duplicate groELs were alternatively deletable, the single groES that clusters with groEL1 was essential for cell survival. Either GroEL1 or GroEL2 required interactions with GroES for in vitro and in vivo functions. Deletion of groEL1 or groEL2 resulted in decreased expressions of both groEL and groES; and ectopic complementation of groEL recovered not only the groEL but also groES expressions. The addition of an extra groES gene upstream groEL2 to form a bicistronic operon had almost no influence on groES expression and the cell survival rate, whereas over-expression of groES using a self-replicating plasmid simultaneously increased the groEL expressions. The results indicated that M. xanthus DK1622 cells coordinate expressions of the duplicate groEL and single groES genes for synergistic functions of GroELs and GroES. We proposed a potential regulation mechanism for the expression coordination.

  3. Differential T-cell recognition of native and recombinant Mycobacterium tuberculosis GroES

    DEFF Research Database (Denmark)

    Rosenkrands, I; Weldingh, K; Ravn, P

    1999-01-01

    Mycobacterium tuberculosis GroES was purified from culture filtrate, and its identity was confirmed by immunoblot analysis and N-terminal sequencing. Comparing the immunological recognition of native and recombinant GroES, we found that whereas native GroES elicited a strong proliferative response...

  4. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ho, K.S.Y.; Mortimer, R.K.

    1975-01-01

    X-ray survival curves for two mutations, rad54 and rad55, in the yeast Saccharomyces cerevisiae are presented. These mutations confer temperature sensitive X-ray sensitivity; that is, rad54 and rad55 strains display a wild type X-ray survival response at permissive temperatures and a radiosensitive X-ray survival response at restrictive temperatures. The survival response of cells which were shifted from a permissive to a restrictive temperature or vice versa at various post-irradiation times indicates that repair and fixation of X-ray induced lesions is largely complete three hours after X-irradiation. Experiments to determine the utilization sequence of the rad54 and rad55 gene products in the repair of X-ray induced damage suggest that the two products are required in an interdependent manner

  5. Characterization of the temperature-sensitive mutations un-7 and png-1 in Neurospora crassa.

    Science.gov (United States)

    Dieterle, Michael G; Wiest, Aric E; Plamann, Mike; McCluskey, Kevin

    2010-05-18

    The model filamentous fungus Neurospora crassa has been studied for over fifty years and many temperature-sensitive mutants have been generated. While most of these have been mapped genetically, many remain anonymous. The mutation in the N. crassa temperature-sensitive lethal mutant un-7 was identified by a complementation based approach as being in the open reading frame designated NCU00651 on linkage group I. Other mutations in this gene have been identified that lead to a temperature-sensitive morphological phenotype called png-1. The mutations underlying un-7 result in a serine to phenylalanine change at position 273 and an isoleucine to valine change at position 390, while the mutation in png-1 was found to result in a serine to leucine change at position 279 although there were other conservative changes in this allele. The overall morphology of the strain carrying the un-7 mutation is compared to strains carrying the png-1 mutation and these mutations are evaluated in the context of other temperature-sensitive mutants in Neurospora.

  6. Neighborhood properties are important determinants of temperature sensitive mutations.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Temperature-sensitive (TS mutants are powerful tools to study gene function in vivo. These mutants exhibit wild-type activity at permissive temperatures and reduced activity at restrictive temperatures. Although random mutagenesis can be used to generate TS mutants, the procedure is laborious and unfeasible in multicellular organisms. Further, the underlying molecular mechanisms of the TS phenotype are poorly understood. To elucidate TS mechanisms, we used a machine learning method-logistic regression-to investigate a large number of sequence and structure features. We developed and tested 133 features, describing properties of either the mutation site or the mutation site neighborhood. We defined three types of neighborhood using sequence distance, Euclidean distance, and topological distance. We discovered that neighborhood features outperformed mutation site features in predicting TS mutations. The most predictive features suggest that TS mutations tend to occur at buried and rigid residues, and are located at conserved protein domains. The environment of a buried residue often determines the overall structural stability of a protein, thus may lead to reversible activity change upon temperature switch. We developed TS prediction models based on logistic regression and the Lasso regularized procedure. Through a ten-fold cross-validation, we obtained the area under the curve of 0.91 for the model using both sequence and structure features. Testing on independent datasets suggested that the model predicted TS mutations with a 50% precision. In summary, our study elucidated the molecular basis of TS mutants and suggested the importance of neighborhood properties in determining TS mutations. We further developed models to predict TS mutations derived from single amino acid substitutions. In this way, TS mutants can be efficiently obtained through experimentally introducing the predicted mutations.

  7. Suppression of the Escherichia coli ssb-1 mutation by an allele of groEL.

    OpenAIRE

    Ruben, S M; VanDenBrink-Webb, S E; Rein, D C; Meyer, R R

    1988-01-01

    A series of spontaneous suppressors to the temperature-sensitive phenotype of the single-stranded DNA-binding protein mutation ssb-1 were isolated. A genomic library of EcoRI fragments from one of these suppressor strains was prepared by using pBR325 as the cloning vector. A 10.0-kilobase class of inserts was identified as carrying the ssb-1 gene itself. A second class of 8.3-kilobase inserts was shown to contain the groE region by (i) restriction analysis, (ii) Southern hybridization of the ...

  8. Temperature-sensitive leaf color mutation in rice

    International Nuclear Information System (INIS)

    Shu Qingyao; Liu Guifu; Xia Yingwu

    1996-01-01

    Studies on the leaf color appearance of 4 chlorophyll-deficient mutation lines both in field and in phytotron were carried out. The mutation lines were induced by 60 Co gamma rays, and showed that white or yellow leaves at seedling stage were quite different from their-parent 2177 S, a thermal sensitive genie male sterile line and any other rice materials. The temperature had great influence on the expression of leaf color at seedling stage in the mutation lines. the leaf color was white at 30∼35 degree C for the lines W 4 and W 11 . The chlorophyll content of 1.5-leaf-age seedlings was 0.0219 and 0.0536 mg/g FW respectively for W 4 and W 11 at 35 degree C. When the temperature dropped to 20∼25 degree C, the seedlings showed yellow or yellowish and the chlorophyll content reached to 0.2410 and 0.3431 mg/g FW at 25 degree C, respectively. However, the responses to temperature for W 17 and W 25 were just the opposite. They were white at 20∼25 degree C, but appeared greenish at 30∼35 degree C. The chlorophyll content increased from 0.0813 and 0.0172 mg/g FW at 25 degree C to 1.0570 and 1.1367 mg/g FW at 35 degree C for the lines W 1 -7 and W 25 , respectively. The parent line 2177 S showed normal green and the chlorophyll content was between 2.108 and 2.118 mg/g FW. The W 11 is exception, which showed yellow to light green in lifetime, and all the mutation lines could convert to normal green after the extension of the fourth leaf. The chlorophyll content of 3.5-leaf-age W 4 and W 17 seedlings grown under 25 degree C reached to 2.2190 and 1.993 mg/g FW, which was about 86. 6% and 81.1% of that of 2177 S at the same stage. When grown at the temperature bellow 20 degree C, W 25 maintained white and could not changed into green after the 4th leaf extension, and showed a conditional lethal status

  9. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

    Directory of Open Access Journals (Sweden)

    Sean M O'Rourke

    2011-03-01

    Full Text Available To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.

  10. Influence of mutations in some structural genes of heat-shock proteins on radiation resistance of Escherichia coli

    International Nuclear Information System (INIS)

    Verbenko, V.N.; Kuznetsova, L.V.; Bikineeva, E.G.; Kalinin, V.L.

    1992-01-01

    Lethal effects of γ-irradiation were studied in Escherichia coli strains with normal repair genotype and in radiation-resistant Gam r strains, both carrying additional mutations in the structural genes dnaK, grpE, groES or groEL. The null mutation ΔdnaK52::Cm r enhanced radiation sensitivity of wild-type cells and abolished the effect of heat induced rediation-resistance (ETIRR) and elevated radiation resistance of the Gam r strains

  11. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.

    Science.gov (United States)

    Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa

    2007-09-01

    Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.

  12. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    Science.gov (United States)

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  13. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: Implications from other RNA viruses

    Directory of Open Access Journals (Sweden)

    Shoko eNishiyama

    2015-08-01

    Full Text Available Rift Valley fever (RVF is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae. Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the United States. MP-12 displays a temperature-sensitive (ts phenotype and does not replicate at 41oC. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  14. The htpAB operon of Legionella pneumophila cannot be deleted in the presence of the groE chaperonin operon of Escherichia coli.

    Science.gov (United States)

    Nasrallah, Gheyath K; Gagnon, Elizabeth; Orton, Dennis J; Garduño, Rafael A

    2011-11-01

    HtpB, the chaperonin of the intracellular bacterial pathogen Legionella pneumophila , displays several virulence-related functions in vitro. To confirm HtpB's role in vivo, host infections with an htpB deletion mutant would be required. However, we previously reported that the htpAB operon (encoding co-chaperonin and chaperonin) is essential. We attempted here to delete htpAB in a L. pneumophila strain carrying the groE operon (encoding the Escherichia coli co-chaperonin and chaperonin). The groE operon was inserted into the chromosome of L. pneumophila Lp02, and then allelic replacement of htpAB with a gentamicin resistance cassette was attempted. Although numerous potential postallelic replacement transformants showed a correct selection phenotype, we still detected htpAB by PCR and full-size HtpB by immunoblot. Southern blot and PCR analysis indicated that the gentamicin resistance cassette had apparently integrated in a duplicated htpAB region. However, we showed by Southern blot that strain Lp02, and the Lp02 derivative carrying the groE operon, have only one copy of htpAB. These results confirmed that the htpAB operon cannot be deleted, not even in the presence of the groE operon, and suggested that attempts to delete htpAB under strong phenotypic selection result in aberrant genetic recombinations that could involve duplication of the htpAB locus.

  15. Development and application of genetic sexing systems for the Mediterranean fruit fly based on a temperature sensitive lethal mutation

    International Nuclear Information System (INIS)

    Franz, G.; Willhoeft, U.; Kerremans, P.; Hendrichs, J.; Rendon, P.

    1997-01-01

    The present status in genetic sexing for the Mediterranean fruit fly is discussed. This includes the selection of the appropriate sexing gene (which determines the feasibility and practical applicability of the sexing system) as well as the selection of the appropriate Y-autosome translocation (which determines the stability of the sexing system). A temperature sensitive lethal mutation is used to eliminate females during the egg stage. This mutation in combination with new Y-autosome translocations allowed the construction of a genetic sexing strain, named VIENNA-42, that is stable enough for large scale mass rearing. Also described are the analysis of this strain under field cage and field conditions and, in preparation for large scale tests in Guatemala, the outcrossing of VIENNA-42 with genetic material from the target area. (author)

  16. Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Bekelie, S.; Osland, A.; Miko, T. L.; Hermans, P. W.; van Soolingen, D.; Drijfhout, J. W.; Schöningh, R.; Janson, A. A.; Thole, J. E.

    1992-01-01

    In contrast to other bacterial species, mycobacteria were thus far considered to contain groEL and groES genes that are present on separate loci on their chromosomes, Here, by screening a Mycobacterium leprae lambda gt11 expression library with serum from an Ethiopian lepromatous leprosy patient,

  17. The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity.

    Science.gov (United States)

    Abbott, Jamie A; Guth, Ethan; Kim, Cindy; Regan, Cathy; Siu, Victoria M; Rupar, C Anthony; Demeler, Borries; Francklyn, Christopher S; Robey-Bond, Susan M

    2017-07-18

    Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNA His binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.

  18. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading...... temperature shift to 42 degrees C. The other mutation was a C -> T transition located 39 bp upstream of the G -> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C -> T mutation in a plasmid contained approximately three times as much PRPP...

  19. Further studies on a temperature-sensitive mutant of Escherichia coli with defective repair capacity

    International Nuclear Information System (INIS)

    Morfiadakis, I.; Geissler, E.; Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Molekularbiologie)

    1981-01-01

    A temperature-sensitive mutant of E. coli, WG24, was studied with respect to its sensitivity to photodynamic action, its capacity to perform host controlled reactivation, and its sensitivity to transduction at elevated temperatures. Mutant cells are much more sensitive than wild type cells to photodynamic action by thiopyronine and visible light at elevated temperatures. As well defined rec mutants, WG24 cells are less able to reactivate UV irradiated lambdac phages at elevated temperatures, while their ability to repair T1 phages is less impaired. Mutant cells cannot be transduced to T6 resistance at a detectable rate at elevated temperature. It is concluded, therefore, that some rec gene carries a ts mutation in this mutant. (author)

  20. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Sørlie, Therese; Johnsen, Hilde; Vu, Phuong; Lind, Guro Elisabeth; Lothe, Ragnhild; Børresen-Dale, Anne-Lise

    2005-01-01

    A protocol for detection of mutations in the TP53 gene using temporal temperature gradient gel electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques denaturing gradient gel electrophoresis (DGGE) and constant denaturant gel electrophoresis (CDGE) and eliminates some of the problems. The result is a rapid and sensitive screening technique that is robust and easily set up in smaller laboratory environments.

  1. Mutation screening of the TP53 gene by temporal temperature gel electrophoresis (TTGE).

    Science.gov (United States)

    Sørlie, Therese; Johnsen, Hilde; Vu, Phuong; Lind, Guro Elisabeth; Lothe, Ragnhild; Børresen-Dale, Anne-Lise

    2014-01-01

    A protocol for detection of mutations in the TP53 gene using temporal temperature gradient electrophoresis (TTGE) is described. TTGE is a mutation detection technique that separates DNA fragments differing by single base pairs according to their melting properties in a denaturing gel. It is based on constant denaturing conditions in the gel combined with a temperature gradient during the electrophoretic run. This method combines some of the advantages of the related techniques, denaturing gradient gel electrophoresis and constant denaturant gel electrophoresis, and eliminates some of the problems. The result is a rapid and sensitive screening technique which is robust and easily set up in smaller laboratory environments.

  2. Low temperature modification of gamma-irradiation effect on peas. II.Low temperature effect on the radio-sensitivity and the chlorophyll mutations

    International Nuclear Information System (INIS)

    Najdenova, N.; Vasileva, M.

    1976-01-01

    Dry pea seeds of cv.Ramonskii 77 with 11-12% moisture were γ-irradiated by 60 Co in doses 5, 15, 20 and 30 krad. Low temperature (-78 deg C) was effected in the form of dry ice for a 24 h period prior to, at the time of and post irradiation. As control were used: (a) dry non-irradiated seeds, stored at room temperature; (b) non-irradiated seeds subjected to low temperature (-78 deg C) for a 24 h period. and (c) seeds irradiated by the named doses, stored at room temperature until the time of irradiation. Treated and control seeds were sown in the field. Germination, survival rate and sterility were recorded in M 1 , while in M 2 chlorophyll mutations were scored. Results obtained showed that low temperature modification effect on the various irradiation doses depended on the time of its application; low temperature (-78 deg C) treatment prior to seed irradiation with doses 15, 20 and 30 krad increased germination percentage, plant survival and yield components in M 1 . The post-irradiation treatment did not have a significant effect on gamma-rays; highest protection effect was obtained in case seeds were irradiated at low temperature and then received supplementary treatment at high temperature. In this way the damaging effect of radiation was reduced to a maximum degree; low temperature treatment prior to irradiation with doses of 15 and 20 krad or at the time of irradiation with doses of 15, 20 and 30 krad resulted in a considerably wider chlorophyll mutation spectrum. (author)

  3. Effect of radiation-sensitive mutations and mutagens/carcinogens on bacterial recombination and mutagenesis. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Matney, T.S.

    1978-01-01

    Progress is reported on effects of temperature sensitive DNA-initiation mutation in E. coli K-12 mutants; the use of Bacillus subtilis transforming system as an in vitro mutagenesis system; characteristics of the E. coli lysogen used to test the permeability to polycyclic aromatic hydrocarbons; and the genetic toxicology of gentian violet. (PCS)

  4. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders

    2014-01-01

    of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR......, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94...... was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC. Refinement of sensitivity for the mutation-specific antibodies is warranted to improve molecular diagnosis using EGFR immunohistochemistry....

  5. CONSTRUCTION AND ADAPTATION OF GENETIC SEXING STRAIN OF THE MEDFLY CERATITIS CAPITATA (WIED.)BASED ON TEMPERATURE SENSITIVE MUTATION IN THE EGYPTIAN FRUITFLY LABORATORIES

    International Nuclear Information System (INIS)

    SHOMAN, A.A.

    2007-01-01

    Special strains that produce only males are used now for the control of the medfly Ceratitis capitata using the sterile insect technique. The use of these strains has a major impact on the overall efficiency of SIT, by increasing significantly the amount of sterility induced in field population comparing by using bisexual strains. Genetic sexing strains (GSS) are based on the use of male-linked chromosomal translocations which enable selectable marker genes to be linked to the male sex. Two basic components are required in the medfly to construct and adapt a laboratory strain which exhibits genetic sexing properties. The first is Y-auto some translocation strain, which enables male and female pupae to be differentiated on the basis of colour and the second is temperature sensitive lethal (tsl) mutation strain, which enables females to be killed by an increase in ambient temperature

  6. Spontaneous mutation rate in Chinese hamster cell clones differing in UV-sensitivity

    International Nuclear Information System (INIS)

    Manuilova, E.S.; Bagrova, A.M.; Moskovskij Gosudarstvennyj Univ.

    1983-01-01

    The spontaneous rate of appearance of mutations to 6-mercaptopurine (6 MP) resistence in the cells of CHR2 and CHs2 clones dofferent in sensitivity to lethal and matagenous effect of UV-rays, is investigated. Increased UV-sensitivity of CHs2 clone is caused by the violation of postreplicative DNA reparation. It is established that the purity of spontaneously occuring mutations in both clones turns out to be similar, i.e. (1.5-1.8)x10 -5 for the cell pergeneration. It is shown that the effect of postreplicative DNA reparation in the cells of chinese hamster is not connected with the increase of spontaneous mutation ability. The problem on the possible role of reparation in the mechanism of appearance of spontaneous and induced mutations in the cells of Chinese hamster with increased UV-sensitivity is discussed

  7. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli

    DEFF Research Database (Denmark)

    Triman, K; Becker, E; Dammel, C

    1989-01-01

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance....... The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature......-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between...

  8. Sensitive KIT D816V mutation analysis of blood as a diagnostic test in mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Vestergaard, Hanne; Bindslev-Jensen, Carsten

    2014-01-01

    The recent progress in sensitive KIT D816V mutation analysis suggests that mutation analysis of peripheral blood (PB) represents a promising diagnostic test in mastocytosis. However, there is a need for systematic assessment of the analytical sensitivity and specificity of the approach in order...... to establish its value in clinical use. We therefore evaluated sensitive KIT D816V mutation analysis of PB as a diagnostic test in an entire case-series of adults with mastocytosis. We demonstrate for the first time that by using a sufficiently sensitive KIT D816V mutation analysis, it is possible to detect...... the mutation in PB in nearly all adult mastocytosis patients. The mutation was detected in PB in 78 of 83 systemic mastocytosis (94%) and 3 of 4 cutaneous mastocytosis patients (75%). The test was 100% specific as determined by analysis of clinically relevant control patients who all tested negative. Mutation...

  9. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2) using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/ CRISPR-associated) hom...

  10. Temperature-sensitive mutants of fowl plague virus: isolation and genetic characterization

    International Nuclear Information System (INIS)

    Almond, J.W.; McGeoch, D.; Barry, R.D.

    1979-01-01

    Forty-nine temperature-sensitive mutants of fowl plague virus (FPV) strain Rostock and four ts mutants of FPV-strain Dobson were isolated by utilizing two methods of plaque screening, after either spontaneous or chemically induced mutagenesis. Twenty-nine of the FPV-Rostock mutants were further characterized by genetic recombination studies and were found to fall into six high frequency recombination groups. The genome segment carrying the ts mutation in each group was identified by analyzing the gene composition of ts + recombinants generated from crosses between representatives of each group and ts mutants of FPV-Dobson. It was concluded that the six groups correspond to mutations in six different genome segments, namely, those coding for the P 1 , P 2 , P 3 , HA, NP, and NS proteins

  11. Modelling the effects of selection temperature and mutation on the prisoner's dilemma game on a complete oriented star.

    Directory of Open Access Journals (Sweden)

    Jianguo Ren

    Full Text Available This paper models the prisoner's dilemma game based on pairwise comparison in finite populations on a complete oriented star (COS. First, we derive a linear system on a COS for calculating the corresponding fixation probabilities that imply dependence of the selection temperature and mutation. Then we observe and analyze the effects of two parameters on fixation probability under different population sizes. In particular, it is found through the experimental results that (1 high mutation is more sensitive to the fixation probability than the low one when population size is increasing, while the opposite is the case when the number of cooperators is increasing, and (2 selection temperature demotes the fixation probability.

  12. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii.

    Science.gov (United States)

    Li, Jianwei; Handler, Alfred M

    2017-09-28

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.

  13. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    Science.gov (United States)

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    Science.gov (United States)

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  15. Inactivation of protein translocation by cold-sensitive mutations in the yajC-secDF operon

    NARCIS (Netherlands)

    Nouwen, N; Driessen, AJM

    2005-01-01

    Most mutations in the yajC-secDF operon identified via genetic screens confer a cold-sensitive growth phenotype. Here we report that two of these mutations confer this cold-sensitive phenotype by inactivating the SecDF-YajC complex in protein translocation.

  16. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    Science.gov (United States)

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  17. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    Science.gov (United States)

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  18. Electrocutaneous sensitivity: effects of skin temperature.

    Science.gov (United States)

    Larkin, W D; Reilly, J P

    1986-01-01

    The effect of human skin temperature on electrocutaneous sensitivity was examined using brief capacitive discharges. Stimuli were designed to ensure that sensory effects would be independent of skin resistance and would reflect underlying neural excitability as closely as possible. Skin temperature was manipulated by immersing the forearm in circulating hot or cold air. Detection thresholds on the arm and fingertip were raised by cooling, but were not altered by heating. Temperature-related sensitivity shifts were described by the same multiplicative factors for both threshold and suprathreshold levels. The temperature coefficient (Q10) for cutaneous sensitivity under these conditions was approximately 1.3.

  19. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari...... the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis......., by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  1. Mitotic catastrophe is the mechanism of lethality for mutations that confer mutagen sensitivity in Aspergillus nidulans.

    Science.gov (United States)

    Denison, S H; May, G S

    1994-01-16

    We have examined the consequences of treatment with DNA-damaging agents of uvs mutants and the bimD6 mutant of Aspergillus nidulans. We first established that wild-type Aspergillus undergoes a cell cycle delay following treatment with the DNA-damaging agents methyl methanesulfonate (MMS) or ultraviolet light (UV). We have also determined that strains carrying the bimD6, uvsB110, uvsH77, uvsF201 and the uvsC114 mutations, all of which cause an increased sensitivity to DNA-damaging agents, undergo a cell-cycle delay following DNA damage. These mutations therefore do not represent nonfunctional checkpoints in Aspergillus. However, all of the mutant strains accumulated nuclear defects after a period of delay following mutagen treatment. The nuclear defects in the uvsB110 and bimD6 strains following MMS treatment were shown to be dependent on passage through mitosis after DNA damage, as the defects were prevented with benomyl. Checkpoint controls responding to DNA damage thus only temporarily halt cell-cycle progression in response to DNA damage. The conditional bimD6 mutation also results in a defective mitosis at restrictive temperatures. This mitotic defect is similar to that seen with MMS treatment at temperatures permissive for the mitotic defect. Thus the bimD gene product may perform dual roles, one in DNA repair and the other during the mitotic cell cycle in the absence of damage.

  2. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  3. Effects of Mutagen-Sensitive Mus Mutations on Spontaneous Mitotic Recombination in Aspergillus

    OpenAIRE

    Zhao, P.; Kafer, E.

    1992-01-01

    Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus(+) controls in both tests. Two mutations, musK and musL, reduced reco...

  4. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  5. Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles

    Directory of Open Access Journals (Sweden)

    Olson Daniel G

    2012-05-01

    Full Text Available Abstract Background Temperature-sensitive (Ts plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein using an algorithm designed by Varadarajan et al. (1996 for predicting Ts mutants based on the amino-acid sequence of the protein. Results A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A was compared with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C. Conclusions The plasmid described in this work could be useful in future efforts to genetically engineer C. thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

  6. Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome.

    Science.gov (United States)

    McLarren, Keith W; Severson, Tesa M; du Souich, Christèle; Stockton, David W; Kratz, Lisa E; Cunningham, David; Hendson, Glenda; Morin, Ryan D; Wu, Diane; Paul, Jessica E; An, Jianghong; Nelson, Tanya N; Chou, Athena; DeBarber, Andrea E; Merkens, Louise S; Michaud, Jacques L; Waters, Paula J; Yin, Jingyi; McGillivray, Barbara; Demos, Michelle; Rouleau, Guy A; Grzeschik, Karl-Heinz; Smith, Raffaella; Tarpey, Patrick S; Shears, Debbie; Schwartz, Charles E; Gecz, Jozef; Stratton, Michael R; Arbour, Laura; Hurlburt, Jane; Van Allen, Margot I; Herman, Gail E; Zhao, Yongjun; Moore, Richard; Kelley, Richard I; Jones, Steven J M; Steiner, Robert D; Raymond, F Lucy; Marra, Marco A; Boerkoel, Cornelius F

    2010-12-10

    CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  8. Simple PCR assays improve the sensitivity of HIV-1 subtype B drug resistance testing and allow linking of resistance mutations.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Johnson

    Full Text Available BACKGROUND: The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant subpopulations, however, requires simple and practical methods for routine testing. METHODOLOGY: We developed highly-sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to 67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified by clonal sequencing. SIGNIFICANCE: Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations.

  9. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    Science.gov (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  10. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  11. KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Lin

    Full Text Available Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC, but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1(G13D and SW480(G12V by small interfering RNAs (siRNA and overexpressed in KRAS-wild-type CRC cells (COLO320DM by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR. In KRAS-wild-type CRC cells (COLO320DM, KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1 downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1(G13D and SW480(G12V, KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.

  12. Highly sensitive detection of ESR1 mutations in cell-free DNA from patients with metastatic breast cancer using molecular barcode sequencing.

    Science.gov (United States)

    Masunaga, Nanae; Kagara, Naofumi; Motooka, Daisuke; Nakamura, Shota; Miyake, Tomohiro; Tanei, Tomonori; Naoi, Yasuto; Shimoda, Masafumi; Shimazu, Kenzo; Kim, Seung Jin; Noguchi, Shinzaburo

    2018-01-01

    We aimed to develop a highly sensitive method to detect ESR1 mutations in cell-free DNA (cfDNA) using next-generation sequencing with molecular barcode (MB-NGS) targeting the hotspot segment (c.1600-1713). The sensitivity of MB-NGS was tested using serially diluted ESR1 mutant DNA and then cfDNA samples from 34 patients with metastatic breast cancer were analyzed with MB-NGS. The results of MB-NGS were validated in comparison with conventional NGS and droplet digital PCR (ddPCR). MB-NGS showed a higher sensitivity (0.1%) than NGS without barcode (1%) by reducing background errors. Of the cfDNA samples from 34 patients with metastatic breast cancer, NGS without barcode revealed seven mutations in six patients (17.6%) and MB-NGS revealed six additional mutations including three mutations not reported in the COSMIC database of breast cancer, resulting in total 13 ESR1 mutations in ten patients (29.4%). Regarding the three hotspot mutations, all the patients with mutations detected by MB-NGS had identical mutations detected by droplet digital PCR (ddPCR), and mutant allele frequency correlated very well between both (r = 0.850, p < 0.01). Moreover, all the patients without these mutations by MB-NGS were found to have no mutations by ddPCR. In conclusion, MB-NGS could successfully detect ESR1 mutations in cfDNA with a higher sensitivity of 0.1% than conventional NGS and was considered as clinically useful as ddPCR.

  13. Association of mutator activity with UV sensitivity in an aphidicolin-resistant mutant of Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Liu, P.K.; Chang, C.; Trosko, J.E.

    1982-01-01

    The spontaneous mutation rates of an ultraviolet light (UV)-sensitive aphidicolin-resistant mutant (aphsup(r)-4-2) and its revertants have been determined by 2 techniques. By using the fluctuation analysis, the mutant and its thymidine (TdR)-prototrophic 'revertant' were found to exhibit elevated spontaneous mutation rates at the 6-thioguanine- and diphtheria-toxin-resistant loci. In contrast, the TdR-auxotrophic 'revertant' did not show this property. Similar results were obtained by the multiple replating technique. From these comparative studies and other previous characterizations, it appears that a single gene mutation is responsible for the following pleiotropic phenotype: slow growth, UV sensitivity, high UV-induced mutability, high frequency of site-specific bromodeoxyuridine (BrdU)-dependent chromosome breaks and enhanced spontaneous mutation rate. Recent studies indicate that the mutation may be on the gene for DNA polymerase α. The results further indicate that thymidine auxotrophy or imbalance in nucleotide pools is not necessarily associated with the mutator activity in mammalian cells. (orig.)

  14. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  15. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+

    Science.gov (United States)

    Ranatunga, Nimna S.; Forsburg, Susan L.

    2016-01-01

    The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+. Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure. PMID:27473316

  16. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis.

    Science.gov (United States)

    Zou, Bin; Lee, Victor H F; Yan, Hong

    2018-03-07

    Non-small cell lung cancer (NSCLC) with activating EGFR mutations, especially exon 19 deletions and the L858R point mutation, is particularly responsive to gefitinib and erlotinib. However, the sensitivity varies for less common and rare EGFR mutations. There are various explanations for the low sensitivity of EGFR exon 20 insertions and the exon 20 T790 M point mutation to gefitinib/erlotinib. However, few studies discuss, from a structural perspective, why less common mutations, like G719X and L861Q, have moderate sensitivity to gefitinib/erlotinib. To decode the drug sensitivity/selectivity of EGFR mutants, it is important to analyze the interaction between EGFR mutants and EGFR inhibitors. In this paper, the 30 most common EGFR mutants were selected and the technique of protein-ligand interaction fingerprint (IFP) was applied to analyze and compare the binding modes of EGFR mutant-gefitinib/erlotinib complexes. Molecular dynamics simulations were employed to obtain the dynamic trajectory and a matrix of IFPs for each EGFR mutant-inhibitor complex. Multilinear Principal Component Analysis (MPCA) was applied for dimensionality reduction and feature selection. The selected features were further analyzed for use as a drug sensitivity predictor. The results showed that the accuracy of prediction of drug sensitivity was very high for both gefitinib and erlotinib. Targeted Projection Pursuit (TPP) was used to show that the data points can be easily separated based on their sensitivities to gefetinib/erlotinib. We can conclude that the IFP features of EGFR mutant-TKI complexes and the MPCA-based tensor object feature extraction are useful to predict the drug sensitivity of EGFR mutants. The findings provide new insights for studying and predicting drug resistance/sensitivity of EGFR mutations in NSCLC and can be beneficial to the design of future targeted therapies and innovative drug discovery.

  17. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    OpenAIRE

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and sev...

  18. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  19. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Science.gov (United States)

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  20. Combination of the mutation process with the sensitization and repair processes leading to increased frequencies of mutations in algal populations

    International Nuclear Information System (INIS)

    Necas, J.

    1977-01-01

    The possibility of combining the mutation process with the induction of the repair processes was studied to increase the mutation frequencies in algal populations after UV treatment. The repair process induced by visible light was found to be much more effective than the dark repair processes in the chlorococcal algae used. In these algae, visible light possibly does not induce only those repair processes which affect their DNA, but probably also certain recovery processes which affect their damaged structures and physiological functions. A suitable combination of the sensitization of algae cells by a DNA-base analogue before UV treatment and the induction of the light repair and recovery processes resulted in a rather high increase of viable mutations in chlorococcal algae. These findings may be useful in breeding chlorococcal algae, which have no possibility of hybridization other than somatic. (author)

  1. Genetic modifiers of comatose mutations in Drosophila: insights into neuronal NSF (N-ethylmaleimide-sensitive fusion factor) functions.

    Science.gov (United States)

    Sanyal, Subhabrata; Krishnan, K S

    2012-09-01

    By the middle of the 20th century, development of powerful genetic approaches had ensured that the fruit fly would remain a model organism of choice for genetic and developmental studies. But in the 1970s, a few pioneering groups turned their attention to the prospect of using the fly for neurophysiological experiments. They proposed that in a poikilothermic organism such as Drosophila, temperature-sensitive or "ts" mutations in proteins that controlled nerve function would translate to a "ts" paralytic phenotype. This was by no means an obvious or even a likely assumption. However, following directed screens these groups soon reported dramatic demonstrations of reversible ts paralysis in fly mutants. Resultantly, these "simple" experiments led to the isolation of a number of conditional mutations including shibire, paralytic, and comatose. All have since been cloned and have enabled deep mechanistic insights into synaptic transmission and nerve conduction. comatose (comt) mutations, for example, were found to map to missense changes in dNSF1, a neuron-specific fly homolog of mammalian NSF (N-ethylmaleimide-sensitive fusion factor). Studies on comt were also some of the first to discriminate between nuanced models of NSF function during presynaptic transmitter release that have since been borne out by experiments in multiple preparations. Here, the authors present an overview of NSF function as it is understood today, with an emphasis on contributions from Drosophila beginning with experiments carried out by Obaid Siddiqi in the Benzer laboratory. The authors also outline initial results from a genetic screen for phenotypic modifiers of comt that hold the promise of further elucidating NSF function at the synapse. Over the years, the neuromuscular system of Drosophila has served as a uniquely accessible model to unravel mechanisms underlying synaptic transmission. To this day, ts paralysis remains one of the most emphatic demonstrations of nerve function in an

  2. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  3. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  4. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    Science.gov (United States)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  5. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Science.gov (United States)

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  6. Constitutive insulin sensitivity and obesity my be caused by PTEN mutations

    Directory of Open Access Journals (Sweden)

    E A Pigarova

    2012-12-01

    Full Text Available Реферат по статье: Pal A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, Cooper NS, Linden H, Levy JC, Wakelam MJ, Walker L, Karpe F, Gloyn AL. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med. 2012 Sep 13;367(11:1002-11.

  7. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  8. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  9. Mutations in Escherichia coli that effect sensitivity to oxygen

    International Nuclear Information System (INIS)

    Jamison, C.S.; Adler, H.I.

    1987-01-01

    Fifteen oxygen-sensitive (Oxy/sup s/) mutants of Escherichia coli were isolated after exposure to UV light. The mutants did not form macroscopic colonies when plated aerobically. They did form macroscopic colonies anaerobically. Oxygen, introduced during log phase, inhibited the growth of liquid cultures. The degree of inhibition was used to separate the mutants into three classes. Class I mutants did not grow after exposure to oxygen. Class II mutants were able to grow, but at a reduced rate and to a reduced final titer, when compared with the wild-type parent. Class III mutants formed filaments in response to oxygen. Genetic experiments indicated that the mutations map to six different chromosomal regions. The results of enzymatic assays indicated that 7 of the 10 class I mutants have low levels of catalase, peroxidase, superoxide dismutase, and respiratory enzymes when compared with the wild-type parent. Mutations in five of the seven class I mutants which have the low enzyme activities mapped within the region 8 to 13.5 min. P1 transduction data indicated that mutations in three of these five mutants, Oxy/sup s/-6, Oxy/sup s/-14, and Oxy/sup s/-17, mapped to 8.4 min. The correlation of low enzyme levels and mapping data suggest that a single gene may regulate several enzymes in response to oxygen. The remaining three class I mutants had wild-type levels of catalase, peroxidase, and superoxide dismutase, but decreased respiratory activity. The class II and III mutants had enzyme activities similar to those of the wild-type parent

  10. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Hudman, Deborah A. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States); White, Steven J. [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Fowler, Robert G., E-mail: rfowler@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192 (United States); Sargentini, Neil J. [Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501 (United States)

    2014-05-15

    Highlights: • We describe Δ(dinB-yafN)883(::kan), a novel dinB allele, referred to as ΔdinB883, a deletion that sensitizes E. coli cells to UV irradiation. • This UV radiation sensitivity is most acute in the early logarithmic phase of culture growth. • This UV radiation sensitivity is completely dependent upon a functional umuDC operon. • Sequencing reveals ΔdinB883 retains the proximal 161 nucleotides, i.e., 54 amino acids, of the wild-type sequence. • The ΔdinB883 mutant is hypothesized to produce a peptide of 83 amino acids, DinB883, that compromises UmuDC function. - Abstract: The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvr

  11. Relative autonomy of manifestation of welt mutation in imaginal discs of Drosophila

    International Nuclear Information System (INIS)

    Vikulova, V.K.

    1988-01-01

    Autonomy of manifestation of the temperature-sensitive lethal welt mutation was investigated during transplantation of imaginal discs of mutant larvae into normal recipients and in large clones of cells homozygous for welt induced by γ-irradiation in a dose of 1000 rd in y; fj wt/M(2)S7 T(1;2)sc s 2 heterozygotes. Three temperature regimes were used: 17 degree C, at which the welt mutation is not manifested; 29 degree C, at which it is manifested better; and 25 degree C. It was established that the welt mutation operates autonomously, but in restricted regions of imaginal discs. The possibility is discussed of nonautonomous manifestation of the mutation with direct contact of wt/wt cells with heteroxygous wt/+ tissue

  12. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    Directory of Open Access Journals (Sweden)

    William Amos

    2014-11-01

    Full Text Available Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate.

  13. Low incidence of minor BRAF V600 mutation-positive subclones in primary and metastatic melanoma determined by sensitive and quantitative real-time PCR

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Clemmensen, Ole; Hoejberg, Lise

    2013-01-01

    BRAF V600 mutation is an important biological marker for therapeutic guidance in melanoma, where mutation-positive cases are candidates for therapy targeting mutant B-Raf. Recent studies showing intratumor variation in BRAF mutation status have caused concern that sensitive mutation analysis can ...

  14. Mms Sensitivity of All Amino Acid-Requiring Mutants in Aspergillus and Its Suppression by Mutations in a Single Gene

    OpenAIRE

    Käfer, Etta

    1987-01-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regula...

  15. Highly sensitive detection of the PIK3CAH1047R mutation in colorectal cancer using a novel PCR-RFLP method

    International Nuclear Information System (INIS)

    Li, Wan-Ming; Hu, Ting-Ting; Zhou, Lin-Lin; Feng, Yi-Ming; Wang, Yun-Yi; Fang, Jin

    2016-01-01

    The PIK3CA H1047R mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA H1047R mutation in high effectiveness. A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA H1047R was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA H1047R mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA H1047R mutation and the patients’ age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA H1047R mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy

  16. Temperature-sensitive defects of the GSP1gene, yeast Ran homologue, activate the Tel1-dependent pathway

    International Nuclear Information System (INIS)

    Hayashi, Naoyuki; Murakami, Seishi; Tsurusaki, Susumu; Nagaura, Zen-ichiro; Oki, Masaya; Nishitani, Hideo; Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Nishimoto, Takeharu

    2007-01-01

    RanGTPase is involved in many cellular processes. It functions in nuclear-cytosolic transport and centrosome formation. Ran also localizes to chromatin as RCC1 does, its guanine nucleotide exchange factor, but Ran's function on chromatin is not known. We found that gsp1, a temperature-sensitive mutant of GSP1, a Saccharomyces cerevisiae Ran homologue, suppressed the hydroxyurea (HU) and ultra violet (UV) sensitivities of the mec1 mutant. In UV-irradiated mec1 gsp1 cells, Rad53 was phosphorylated despite the lack of Mec1. This suppression depended on the TEL1 gene, given that the triple mutant, mec1 gsp1 tel1, was unable to grow. The gsp1 mutations also suppressed the HU sensitivity of the rad9 mutant in a Tel1-dependent manner, but not the HU sensitivity of the rad53 mutant. These results indicated that Rad53 was activated by the Tel1 pathway in mec1 gsp1 cells, suggesting that Gsp1 helps regulate the role switching the ATM family kinases Mec1 and Tel1

  17. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  18. A nuclear mutation defective in mitochondrial recombination in yeast.

    Science.gov (United States)

    Ling, F; Makishima, F; Morishima, N; Shibata, T

    1995-08-15

    Homologous recombination (crossing over and gene conversion) is generally essential for heritage and DNA repair, and occasionally causes DNA aberrations, in nuclei of eukaryotes. However, little is known about the roles of homologous recombination in the inheritance and stability of mitochondrial DNA which is continuously damaged by reactive oxygen species, by-products of respiration. Here, we report the first example of a nuclear recessive mutation which suggests an essential role for homologous recombination in the stable inheritance of mitochondrial DNA. For the detection of this class of mutants, we devised a novel procedure, 'mitochondrial crossing in haploid', which has enabled us to examine many mutant clones. Using this procedure, we examined mutants of Saccharomyces cerevisiae that showed an elevated UV induction of respiration-deficient mutations. We obtained a mutant that was defective in both the omega-intron homing and Endo.SceI-induced homologous gene conversion. We found that the mutant cells are temperature sensitive in the maintenance of mitochondrial DNA. A tetrad analysis indicated that elevated UV induction of respiration-deficient mutations, recombination deficiency and temperature sensitivity are all caused by a single nuclear mutation (mhr1) on chromosome XII. The pleiotropic characteristics of the mutant suggest an essential role for the MHR1 gene in DNA repair, recombination and the maintenance of DNA in mitochondria.

  19. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20 produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues, pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  20. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    Science.gov (United States)

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  1. Mutation screening of the CDKL5 gene in cryptogenic infantile intractable epilepsy and review of clinical sensitivity.

    Science.gov (United States)

    Intusoma, Utcharee; Hayeeduereh, Fadell; Plong-On, Oradawan; Sripo, Thanya; Vasiknanonte, Punnee; Janjindamai, Supachai; Lusawat, Apasri; Thammongkol, Sasipa; Visudtibhan, Anannit; Limprasert, Pornprot

    2011-09-01

    To perform CDKL5 mutation screening in Thai children with cryptogenic infantile intractable epilepsy and to determine the clinical sensitivity of CDKL5 screening when different inclusion criteria were applied. Children with cryptogenic infantile intractable epilepsy were screened for CDKL5 mutation using multiplex ligation-dependent probe amplification and DNA sequencing. The clinical sensitivity was reviewed by combining the results of studies using similar inclusion screening criteria. Thirty children (19 girls and 11 boys) with a median seizure onset of 7 months were screened. Almost a half had infantile spasms and one fifth had stereotypic hand movements. A novel c.2854C>T (p.R952X) was identified in an ambulatory girl who had severe mental retardation, multiple types of seizures without Rett-like features. Her mother had a mild intellectual disability, yet her grandmother and half sister were normal despite having the same genetic alteration (random X-inactivation patterns). The pathogenicity of p.R952X identified here was uncertain since healthy relatives and 6 female controls also harbor this alteration. The clinical sensitivity of CDKL5 mutation screening among females with Rett-like features and negative MECP2 screening was 7.8% while the clinical sensitivity among females having cryptogenic intractable seizures with an onset before the ages of 12, 6 and 3 months were 4.7, 11.6 and 14.3%, respectively. Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Effects of mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus.

    Science.gov (United States)

    Zhao, P; Kafer, E

    1992-04-01

    Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.

  3. Avoiding dangerous missense: thermophiles display especially low mutation rates.

    Directory of Open Access Journals (Sweden)

    John W Drake

    2009-06-01

    Full Text Available Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003-0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 10(4-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate.

  4. Comparison of poliovirus recombinants: accumulation of point mutations provides further advantages.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Samoilovich, Elena; Kahelin, Heidi; Hiekka, Anna-Kaisa; Hovi, Tapani; Roivainen, Merja

    2009-08-01

    The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I-->T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I-->T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I-->T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the cis-acting replicating element. The recombination site was in the 5' end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.

  5. Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template

    Directory of Open Access Journals (Sweden)

    Noel Peter Bengzon Tan

    2015-12-01

    Full Text Available This data article describes the synthesis of temperature-sensitive and amine-rich microgel particle as a dual reductant and template to generate smart gold/polymer nanocomposite particle. TEM images illustrate the influence of reaction temperature on the formation and in-site encapsulation of gold nanoparticles using the temperature-sensitive microgel template. Thermal stability of the resultant gold/polymer composite particles was also examined.

  6. Greater temperature sensitivity of plant phenology at colder sites

    DEFF Research Database (Denmark)

    Prevey, Janet; Vellend, Mark; Ruger, Nadja

    2017-01-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance...

  7. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    International Nuclear Information System (INIS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Wan Ali, Wan Khairuddin

    2012-01-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  8. SENSITIVITY TEMPERATURE DEPENDENCE RESEARCH OF TV-CAMERAS BASED ON SILICON MATRIXES

    Directory of Open Access Journals (Sweden)

    Alexey N. Starchenko

    2017-07-01

    Full Text Available Subject of Research. The research is dedicated to the analysis of sensitivity change patterns of the cameras based on silicon CMOS-matrixes in various ambient temperatures. This information is necessary for the correct camera application for photometric measurements in-situ. The paper deals with studies of sensitivity variations of two digital cameras with different silicon CMOS matrixes in visible and near IR regions of the spectrum at temperature change. Method. Due to practical restrictions the temperature changes were recorded in separate spectral intervals important for practical use of the cameras. The experiments were carried out with the use of a climatic chamber, providing change and keeping the temperature range from minus 40 to plus 50 °C at a pitch of 10 о С. Two cameras were chosen for research: VAC-135-IP with OmniVision OV9121 matrix and VAC-248-IP with OnSemiconductor VITA2000 matrix. The two tested devices were placed in a climatic chamber at the same time and illuminated by one radiation source with a color temperature about 3000 K in order to eliminate a number of methodological errors. Main Results. The temperature dependence of the signals was shown to be linear and the matrixes sensitivities were determined. The results obtained are consistent with theoretical views, in general. The coefficients of thermal sensitivity were computed by these dependencies. It is shown that the greatest affect of temperature on the sensitivity occurs in the area (0.7–1.1 mkm. Temperature coefficients of sensitivity increase with the downward radiation wavelength increase. The experiments carried out have shown that it is necessary to take into account the changes in temperature sensitivity of silicon matrixes in the red and near in IR regions of the spectrum. The effect reveals itself in a clearly negative way in cameras with an amplitude resolution of 10-12 bits used for aerospace and space spectrozonal photography. Practical Relevance

  9. MMS sensitivity of all amino acid-requiring mutants in aspergillus and its suppression by mutations in a single gene.

    Science.gov (United States)

    Käfer, E

    1987-04-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regulation of amino acid biosynthesis than MMS uptake, since a variety of pathway interactions were clearly modified by smsA suppressors in the absence of MMS.

  10. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2014-04-01

    Full Text Available A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage’s sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption.

  11. Sensitivity and Frequencies of Dystrophin Gene Mutations in Thai DMD/BMD Patients As Detected by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Thanyachai Sura

    2008-01-01

    Full Text Available Background: Duchenne muscular dystrophy (DMD, a lethal X-linked disease affecting 1 in 3500 male births, and its more benign variant, Becker muscular dystrophy (BMD, are caused by mutations in the dystrophin gene. Because of its large size, analysing the whole gene is impractical. Methods have been developed to detect the commonest mutations i.e. the deletions of the exons. Although these tests are highly specific, their sensitivity is inherently limited by the prevalence of deletions, which differs among different populations.

  12. The scid mutation does not affect slowly repairing potentially lethal damage that is sensitive to 0.23 M NaCl

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Ikebuchi, Makoto; Fushiki, Masato; Komatsu, Kenshi.

    1996-01-01

    The repair of slowly repairing potentially lethal damage (PLD) in radiosensitive cells from the severe combined immunodeficient (scid) mouse was compared with that in Balb/c 3T3 cells with ''wild-type'' radiosensitivity and that in RD13B2 cells derived from scid cells whose sensitivity is normal because of the presence of fragments of human chromosome 8. Treatment with 0.23 M NaCl was used for fixation of slowly repairing PLD. The scid cells repaired PLD sensitive to 0.23 M NaCl to a great extent whin 3-4 h, similarly to Balb/c 3T3 and RD13B2 cells. This indicates that the scid mutation hardly affects the repair of PLD sensitive to 0.23 M NaCl. On the other hand, as reported previously, the rapidly repairing PLD that is sensitive to 0.5 M NaCl was repaired only slowly (3-4 h) in scid cells, in contrast to the rapid repair (within 1 h) seen with Balb/c 3T3 and RD13B2. This suggests that scid mutation is responsible for this repair at reduced rate. To confirm the independence of repair of 0.23 M NaCl-sensitive PLD from that of 0.5 M NaCl-sensitive PLD, both treatments with 0.23 M NaCl and 0.5 M NaCl were combined in each line. It is found that the repair of either PLD was not affected by the other treatment. The scid mutation impaired only the repair of 0.5 M NaCl-sensitive PLD. (author)

  13. A mutation in the dam gene of Vibrio cholerae: 2-aminopurine sensitivity with intact GATC methylase activity

    International Nuclear Information System (INIS)

    Bandyopadhyay, R.; Sengupta, A.; Das, J.

    1989-01-01

    Vibrio cholerae mutants sensitive to 2-aminopurine (2AP) but with DNA adenine methylase activity similar to parental cells have been isolated. The mutant strains were sensitive to ultraviolet light (UV), methyl methanesulfonate (MMS) and 9-aminoacridine. The spontaneous mutation frequency of the mutants were not significantly affected. Attempts to isolate dam V. cholerae cells by screening 2AP sensitive cells have not been successful. All the mutant phenotypes could be suppressed by introducing the plasmid pRB103 carrying the dam gene of Escherichia coli into the mutant cells

  14. Temperature sensitive riboflavin mutants of Penicillium vermiculatum Dangeard

    International Nuclear Information System (INIS)

    Mitra, J.; Chaudhari, K.L.

    1974-01-01

    Two temperature sensitive UV induced riboflavin mutants rib 1 and rib 6 have been physiologically and genetically characterized. The two mutants behave differently with regard to their temperature sensitivity. The rib 1 mutant exhibits a leaky growth in minimal medium between 15 0 C and 30 0 C but grows well when the medium is supplemented with riboflavin. At 35 0 C the growth response of the mutant is at its max. and at 40 0 C and below 15 0 C it ceases to grow. The rib 6 mutant which is red brown in colour shows wild type character at temp. below 25 0 C in minimal medium but requires riboflavin at 30 0 C and above. Heterokaryotic analysis revealed the nonallelic nature of the two temperature mutants. Genetic tests of allelic relationship between riboflavin markers by crossing were also done. (author)

  15. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    Science.gov (United States)

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  16. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    OpenAIRE

    Wu, B; Georgopoulos, C; Ang, D

    1992-01-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of on...

  17. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine

    DEFF Research Database (Denmark)

    Kandimalla, Raju; Masius, Roy; Beukers, Willemien

    2013-01-01

    is to determine the sensitivity and specificity of a urine assay for the diagnosis of recurrences in patients with a previous primary NMIBC G1/G2 by using cystoscopy as the reference standard. Experimental Design: We selected eight CpG islands (CGI) methylated in bladder cancer from our earlier genome-wide study......Purpose: DNA methylation is associated with bladder cancer and these modifications could serve as useful biomarkers. FGFR3 mutations are present in 60% to 70% of non–muscle invasive bladder cancer (NMIBC). Low-grade bladder cancer recurs in more than 50% of patients. The aim of this study......, and nonmalignant urines (n = 130). Results: The 3-plex assay identified recurrent bladder cancer in voided urine with a sensitivity of 74% in the validation set. In combination with the FGFR3 mutation assay, a sensitivity of 79% was reached (specificity of 77%). Sensitivity of FGFR3 and cytology was 52% and 57...

  18. Genotypic evaluation of etravirine sensitivity of clinical human immunodeficiency virus type 1 (HIV-1) isolates carrying resistance mutations to nevirapine and efavirenz.

    Science.gov (United States)

    Oumar, A A; Jnaoui, K; Kabamba-Mukadi, B; Yombi, J C; Vandercam, B; Goubau, P; Ruelle, J

    2010-01-01

    Etravirine is a second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) with a pattern of resistance mutations quite distinct from the current NNRTIs. We collected all routine samples of HIV-1 patients followed in the AIDS reference laboratory of UCLouvain (in 2006 and 2007) carrying resistance-associated mutations to nevirapine (NVP) or efavirenz (EFV). The sensitivity to Etravirine was estimated using three different drug resistance algorithms: ANRS (July 2008), IAS (December 2008) and Stanford (November 2008). We also verified whether the mutations described as resistance mutations are not due to virus polymorphisms by the study of 58 genotypes of NNRTI-naive patients. Sixty one samples harboured resistance to NVP and EFV: 41/61 had at least one resistance mutation to Etravirine according to ANRS-IAS algorithms; 42/61 samples had at least one resistance mutation to Etravirine according to the Stanford algorithm. 48 and 53 cases were fully sensitive to Etravirine according to ANRS-IAS and Stanford algorithms, respectively. Three cases harboured more than three mutations and presented a pattern of high-degree resistance to Etravirine according to ANRS-IAS algorithm, while one case harboured more than three mutations and presented high degree resistance to Etravirine according to the Stanford algorithm. The V1061 and V179D mutations were more frequent in the ARV-naive group than in the NNRTI-experienced one. According to the currently available algorithms, Etravirine can still be used in the majority of patients with virus showing resistance to NVP and/or EFV, if a combination of other active drugs is included.

  19. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  20. On the sensitivity of annual streamflow to air temperature

    Science.gov (United States)

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  1. Ultraviolet-irradiated simian virus 40 activates a mutator function in rat cells under conditions preventing viral DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, J.; Su, Z.Z.; Dinsart, C.; Rommelaere, J. (Universite libre de Bruxelles, Rhode St Genese (Belgium))

    The UV-irradiated temperature-sensitive early SV40 mutant tsA209 is able to activate at the nonpermissive temperature the expression of mutator and recovery functions in rat cells. Unirradiated SV40 activates these functions only to a low extent. The expression of these mutator and recovery functions in SV40-infected cells was detected using the single-stranded DNA parvovirus H-1 as a probe. Because early SV40 mutants are defective in the initiation of viral DNA synthesis at the nonpermissive temperature, these results suggest that replication of UV-damaged DNA is not a prerequisite for the activation of mutator and recovery functions in mammalian cells. The expression of the mutator function is dose-dependent, i.e., the absolute number of UV-irradiated SV40 virions introduced per cell determines its level. Implications for the interpretation of mutation induction curves in the progeny of UV-irradiated SV40 in permissive host cells are discussed.

  2. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Li eFu

    2015-02-01

    Full Text Available Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this Zoige wetland sample. It appears that the aceticlastic methanogenesis dominated at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.

  3. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  4. The relationship between virtual body ownership and temperature sensitivity

    Science.gov (United States)

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  5. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Isaure Chauvot de Beauchêne

    2014-07-01

    Full Text Available Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D localized in crucial regulatory segments, the juxtamembrane region (JMR and the activation (A- loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.

  6. Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.

    1996-01-01

    Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content

  7. The spectrum of mutation produced by low dose radiation

    International Nuclear Information System (INIS)

    Morley, Alexander A.; Turner, David R.

    2004-01-01

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  8. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    Science.gov (United States)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  9. A novel approach to detect KRAS/BRAF mutation for colon cancer: Highly sensitive simultaneous detection of mutations and simple pre-treatment without DNA extraction.

    Science.gov (United States)

    Suzuki, Shun-Ichi; Matsusaka, Satoshi; Hirai, Mitsuharu; Shibata, Harumi; Takagi, Koichi; Mizunuma, Nobuyuki; Hatake, Kiyohiko

    2015-07-01

    It has been reported that colon cancer patients with KRAS and BRAF mutations that lie downstream of epidermal growth factor receptor (EGFR) acquire resistance against therapy with anti‑EGFR antibodies, cetuximab and panitumumab. On the other hand, some reports say KRAS codon 13 mutation (p.G13D) has lower resistance against anti-EGFR antibodies, thus there is a substantial need for detection of specific KRAS mutations. We have established a state-of-the-art measurement system using QProbe (QP) method that allows simultaneous measurement of KRAS codon 12/13, p.G13D and BRAF mutation, and compared this method against Direct Sequencing (DS) using 182 specimens from colon cancer patients. In addition, 32 biopsy specimens were processed with a novel pre-treatment method without DNA purification in order to detect KRAS/BRAF. As a result of KRAS mutation measurement, concordance rate between the QP method and DS method was 81.4% (144/177) except for the 5 specimens that were undeterminable. Among them, 29 specimens became positive with QP method and negative with DS method. BRAF was measured with QP method only, and the mutation detection rate was 3.9% (6/153). KRAS measurement using a simple new pre-treatment method without DNA extraction resulted in 31 good results out of 32, all of them matching with the DS method. We have established a simple but highly sensitive simultaneous detection system for KRAS/BRAF. Moreover, introduction of the novel pre-treatment technology eliminated the inconvenient DNA extraction process. From this research achievement, we not only anticipate quick and accurate results returned in the clinical field but also contribution in improving the test quality and work efficiency.

  10. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  11. A Mutation in the Bacillus subtilis rsbU Gene That Limits RNA Synthesis during Sporulation.

    Science.gov (United States)

    Rothstein, David M; Lazinski, David; Osburne, Marcia S; Sonenshein, Abraham L

    2017-07-15

    Mutants of Bacillis subtilis that are temperature sensitive for RNA synthesis during sporulation were isolated after selection with a 32 P suicide agent. Whole-genome sequencing revealed that two of the mutants carried an identical lesion in the rsbU gene, which encodes a phosphatase that indirectly activates SigB, the stress-responsive RNA polymerase sigma factor. The mutation appeared to cause RsbU to be hyperactive, because the mutants were more resistant than the parent strain to ethanol stress. In support of this hypothesis, pseudorevertants that regained wild-type levels of sporulation at high temperature had secondary mutations that prevented expression of the mutant rsbU gene. The properties of these RsbU mutants support the idea that activation of SigB diminishes the bacterium's ability to sporulate. IMPORTANCE Most bacterial species encode multiple RNA polymerase promoter recognition subunits (sigma factors). Each sigma factor directs RNA polymerase to different sets of genes; each gene set typically encodes proteins important for responses to specific environmental conditions, such as changes in temperature, salt concentration, and nutrient availability. A selection for mutants of Bacillus subtilis that are temperature sensitive for RNA synthesis during sporulation unexpectedly yielded strains with a point mutation in rsbU , a gene that encodes a protein that normally activates sigma factor B (SigB) under conditions of salt stress. The mutation appears to cause RsbU, and therefore SigB, to be active inappropriately, thereby inhibiting, directly or indirectly, the ability of the cells to transcribe sporulation genes. Copyright © 2017 American Society for Microbiology.

  12. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal

  13. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    Science.gov (United States)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  14. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers.

    Science.gov (United States)

    Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc

    2016-12-15

    The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. A preliminary study on induction and identification of chlorophyll mutants of indica type temperature sensitive genie male-sterile rice

    International Nuclear Information System (INIS)

    Xia Yingwu; Liu Guifu; Shu Qingyao; Jiang Ronghua; Xie Jiahua

    1995-01-01

    Chlorophyll mutants of different type were obtained from indica type temperature sensitive genie male-sterile rice (cv. 2177s) by using 60 Co γ-rays irradiation. The total chlorophyll mutation frequency reached to 0.26% in M 2 generation. However only about 4.50% of these mutants could survived. Among them, 33 heritable chlorophyll mutant lines were easily distinguished, and were screened and studied. The mutants either showed chlorosis or yellowing or expressed only at seedling period or persisted all growth cycle. The expression of mutant character was stable under different environment. It is suggested that they are useful as the marker traits in two-line hybrid rice. Moreover, the agronomic traits of most of these lines changed in different levels compared with the parent line 2177S. Every mutation line seemed to be controlled by one recessive gene as the F 1 plants of reciprocal crosses between mutant and 2177S showed normal leaf color. And the ratio of green plants/mutant plants was 3:1 in the segregated F 2 population

  16. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome

    DEFF Research Database (Denmark)

    Suls, Arvid; Jaehn, Johanna A; Kecskés, Angela

    2013-01-01

    Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet...

  17. Mutation induction in a mouse lymphoma cell mutant sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation

    International Nuclear Information System (INIS)

    Sato, K.; Hieda, N.

    1980-01-01

    The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells. (orig.)

  18. Direct detection of hemophilia B F9 gene mutation using multiplex PCR and conformation sensitive gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Ki Young Yoo

    2010-03-01

    Full Text Available Purpose : The F9 gene is known to be the causative gene for hemophilia B, but unfortunately the detection rate for restriction fragment length polymorphism-based linkage analysis is only 55.6%. Direct DNA sequencing can detect 98% of mutations, but this alternative procedure is very costly. Here, we conducted multiplex polymerase chain reactions (PCRs and conformation sensitive gel electrophoresis (CSGE to perform a screened DNA sequencing for the F9 gene, and we compared the results with direct sequencing in terms of accuracy, cost, simplicity, and time consumption. Methods : A total of 27 unrelated hemophilia B patients were enrolled. Direct DNA sequencing was performed for 27 patients by a separate institute, and multiplex PCR-CSGE screened sequencing was done in our laboratory. Results of the direct DNA sequencing were used as a reference, to which the results of the multiplex PCR-CSGE screened sequencing were compared. For the patients whose mutation was not detected by the 2 methods, multiplex ligation-dependent probe amplification (MLPA was conducted. Results : With direct sequencing, the mutations could be identified from 26 patients (96.3%, whereas for multiplex PCR- CSGE screened sequencing, the mutations could be detected in 23 (85.2%. One patient’s mutation was identified by MLPA. A total of 21 different mutations were found among the 27 patients. Conclusion : Multiplex PCR-CSGE screened DNA sequencing detected 88.9% of mutations and reduced costs by 55.7% compared with direct DNA sequencing. However, it was more labor-intensive and time-consuming.

  19. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    Science.gov (United States)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  20. Mutation induction by 365-nm radiation and far-ultraviolet light in Escherichia coli differing in near- and far-ultraviolet light sensitivity

    International Nuclear Information System (INIS)

    Leonardo, J.M.; Reynolds, P.R.; Tuveson, R.W.

    1984-01-01

    The his-4 locus derived from Escherichia coli strain AB1157 has been transduced into 4 E. coli strains that exhibit all 4 possible combinations of genes controlling sensitivity to near-ultraviolet light (nur versus nur + ) and far-ultraviolet light (uvrA6 versus uvrA + ). The 4 strains exhibited the predicted sensitivity to 254-nm radiation based on the sensitivity of the parent strains from which they were derived and the frequency of his + mutations predicted from experiments with AB1157 from which the his-4 locus was derived. When the 4 strains were treated with 365-nm radiation, they exhibited the predicted sensitivity based on the near-ultraviolet light sensitivity of the strains from which they were derived while his + mutations were undetectable with the 4 strains as well as with strain AB1157. When treated with 365-nm radiation, cells of a WP2sub(s) strain (a derivative of B/r transduced to his-4) plated on semi-enriched medium prepared with casamino acids did not yield induced mutations, whereas plating on semi-enriched medium prepared with nutrient broth did yield mutants at both the his-4 and trp loci at frequencies at least an order of magnitude lower than that observed with far-ultraviolet light. The induction of nutritionally independent mutants by 365-nm radiation is strongly dependent on the supplement used for semi-enrichment. When compared at equivalent survival levels, mutant frequencies are significantly less following 365-nm radiation when compared with far-ultraviolet radiation. (Auth.)

  1. Resonance analysis of a high temperature piezoelectric disc for sensitivity characterization.

    Science.gov (United States)

    Bilgunde, Prathamesh N; Bond, Leonard J

    2018-07-01

    Ultrasonic transducers for high temperature (200 °C+) applications are a key enabling technology for advanced nuclear power systems and in a range of chemical and petro-chemical industries. Design, fabrication and optimization of such transducers using piezoelectric materials remains a challenge. In this work, experimental data-based analysis is performed to investigate the fundamental causal factors for the resonance characteristics of a piezoelectric disc at elevated temperatures. The effect of all ten temperature-dependent piezoelectric constants (ε 33 , ε 11 , d 33 , d 31 , d 15 , s 11 , s 12 , s 13 , s 33 , s 44 ) is studied numerically on both the radial and thickness mode resonances of a piezoelectric disc. A sensitivity index is defined to quantify the effect of each of the temperature-dependent coefficients on the resonance modes of the modified lead zirconium titanate disc. The temperature dependence of s 33 showed highest sensitivity towards the thickness resonance mode followed by ε 33 , s 11 , s 13 , s 12 , d 31 , d 33 , s 44 , ε 11 , and d 15 in the decreasing order of the sensitivity index. For radial resonance modes, the temperature dependence of ε 33 showed highest sensitivity index followed by s 11 , s 12 and d 31 coefficient. This numerical study demonstrates that the magnitude of d 33 is not the sole factor that affects the resonance characteristics of the piezoelectric disc at high temperatures. It appears that there exists a complex interplay between various temperature dependent piezoelectric coefficients that causes reduction in the thickness mode resonance frequencies which is found to be agreement in with the experimental data at an elevated temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  3. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The receptors tyrosine kinases (RTKs for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V and CSF-1R (mutation D802V by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii the electrostatic interactions are a decisive factor affecting the binding energy; (iii the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R and D816V (KIT mutations; (iv the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.

  4. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  5. DNA and cancer biology: role in radiation and drug sensitivity, carcinogenesis and mutations

    International Nuclear Information System (INIS)

    Yielding, K.L.

    1974-01-01

    The DNA excision repair mechanism is an important factor in the resistance exhibited by tumor cells toward both x rays and alkylating agents as demonstrated by the fact that the chemical alterations to cellular DNA caused by these agents are substrates for the repair enzymes. Furthermore, experiments performed in our laboratory demonstrate that: (a) tumor sensitivity to alkylating agents and x-ray can be increased by inhibition of the repair process, and (b) there is a suggestion that this sensitization can be achieved with some degree of selectivity, thereby improving the balance of sensitivites between tumor and normal tissue. Other work from this laboratory has shown that cocarcinogens probably act by preventing repair of carcinogenic damage to the DNA genome. The possibility has also been raised that mistakes made during repair synthesis might be responsible for some genetic diversity and for the mutations which arise in resting cells. (U.S.)

  6. Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+

    International Nuclear Information System (INIS)

    Thoms, B.; Wackernagel, W.

    1988-01-01

    Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We show that in a uvrA recB+ recC+ genetic background there are two prerequisites for the suppression by recA(Srf) of the UV-sensitive phenotype of recF mutants. (i) The recA(Srf) protein must be provided in increased amounts either by SOS derepression or by a recA operator-constitutive mutation in a lexA(Ind) (no induction of SOS functions) genetic background. (ii) The gene recJ, which has been shown previously to be involved in the recF pathway of recombination and repair, must be functional. The level of expression of recJ in a lexA(Ind) strain suffices for full suppression. Suppression by recA441 at 30 degrees C also depends on recJ+. The hampered induction by UV of the SOS gene uvrA seen in a recF mutant was improved by a recA(Srf) mutation. This improvement did not require recJ+. We suggest that recA(Srf) and recA(Tif) mutant proteins can operate in postreplication repair independent of recF by using the recJ+ function

  7. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  8. Sensitivity of the ViroSeq HIV-1 Genotyping System for Detection of the K103N Resistance Mutation in HIV-1 Subtypes A, C, and D

    Science.gov (United States)

    Church, Jessica D.; Jones, Dana; Flys, Tamara; Hoover, Donald; Marlowe, Natalia; Chen, Shu; Shi, Chanjuan; Eshleman, James R.; Guay, Laura A.; Jackson, J. Brooks; Kumwenda, Newton; Taha, Taha E.; Eshleman, Susan H.

    2006-01-01

    The US Food and Drug Administration-cleared ViroSeq HIV-1 Genotyping System (ViroSeq) and other population sequencing-based human immunodeficiency virus type 1 (HIV-1) genotyping methods detect antiretroviral drug resistance mutations present in the major viral population of a test sample. These assays also detect some mutations in viral variants that are present as mixtures. We compared detection of the K103N nevirapine resistance mutation using ViroSeq and a sensitive, quantitative point mutation assay, LigAmp. The LigAmp assay measured the percentage of K103N-containing variants in the viral population (percentage of K103N). We analyzed 305 samples with HIV-1 subtypes A, C, and D collected from African women after nevirapine administration. ViroSeq detected K103N in 100% of samples with >20% K103N, 77.8% of samples with 10 to 20% K103N, 71.4% of samples with 5 to 10% K103N, and 16.9% of samples with 1 to 5% K103N. The sensitivity of ViroSeq for detection of K103N was similar for subtypes A, C, and D. These data indicate that the ViroSeq system reliably detects the K103N mutation at levels above 20% and frequently detects the mutation at lower levels. Further studies are needed to compare the sensitivity of different assays for detection of HIV-1 drug resistance mutations and to determine the clinical relevance of HIV-1 minority variants. PMID:16931582

  9. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  10. Development of an ozone high sensitive sensor working at ambient temperature

    International Nuclear Information System (INIS)

    Berger, F; Ghaddab, B; Sanchez, J B; Mavon, C

    2011-01-01

    Hybrid SnO 2 /SWNTs thin layer were deposited by using sol-gel process. Such sensitive layers showed very high performances for O 3 flow detection at ambient temperature. Limit sensitivity, lower than 21,5 ppb of O 3 in air has been reached by using these hybrid layers. Compared to usefull metal oxide sensors, the main advantage of the use of such hybrid layers, is that these devices enable the detection of O 3 traces at room temperature. The influence of sensor's working temperature is discussed and finally a reactional mechanism for the detection of O 3 is proposed.

  11. Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents

    Energy Technology Data Exchange (ETDEWEB)

    Caseira Cabral, Rosa Estela [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France); Instituto de Biofisica Carlos Chagas Filho, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro (Brazil); Queille, Sophie [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France); Bodemer, Christine; Prost, Yves de [Service de Dermatologie, Hopital Necker-Enfants Malades, Universite Decartes-Paris V, APHP, Cedex (France); Bispo Cabral Neto, Januario [Instituto de Biofisica Carlos Chagas Filho, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro (Brazil); Sarasin, Alain [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France); Daya-Grosjean, Leela [Laboratoire ' Genomes et Cancers' , FRE2939 CNRS, Institut Gustave-Roussy, Universite Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif (France)], E-mail: daya@igr.fr

    2008-08-25

    Rothmund-Thomson syndrome (RTS), a rare recessive autosomal disorder, presents genome instability and clinical heterogeneity with growth deficiency, skin and bone defects, premature aging symptoms and cancer susceptibility. A subset of RTS patients presents mutations of the RECQL4 gene, member of the RecQ family of DNA helicases, including the RECQL2 (BLM) and RECQL3 (WRN) genes, defective in the cancer prone Bloom and Werner syndromes, respectively. Analysis of the RECQL4 gene in six clinically diagnosed RTS patients shows five patients, including two siblings, with eight mutations mainly located in the helicase domain, three patients presenting two mutations. The alterations include four missense mutations, one nonsense mutation and the same frameshift deletion, g.2881delG in exon 9 found in three patients. Seven RECQL4 polymorphisms, two being new, have also been identified. Primary RTS fibroblasts from these RTS patients show no sensitivity to a wide variety of genotoxic agents including ionizing or ultraviolet irradiation, nitrogen mustard, 4NQO, 8-MOP, Cis-Pt, MMC, H{sub 2}O{sub 2}, HU, or UV plus caffeine which could be related to the RECQL4 alterations identified here. This is in contrast with the DNA damage sensitive Bloom and Werner cells and highlights the complexity of the numerous RecQ protein functions implicated in the different cellular pathways required for maintaining genomic integrity.

  12. Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents

    International Nuclear Information System (INIS)

    Caseira Cabral, Rosa Estela; Queille, Sophie; Bodemer, Christine; Prost, Yves de; Bispo Cabral Neto, Januario; Sarasin, Alain; Daya-Grosjean, Leela

    2008-01-01

    Rothmund-Thomson syndrome (RTS), a rare recessive autosomal disorder, presents genome instability and clinical heterogeneity with growth deficiency, skin and bone defects, premature aging symptoms and cancer susceptibility. A subset of RTS patients presents mutations of the RECQL4 gene, member of the RecQ family of DNA helicases, including the RECQL2 (BLM) and RECQL3 (WRN) genes, defective in the cancer prone Bloom and Werner syndromes, respectively. Analysis of the RECQL4 gene in six clinically diagnosed RTS patients shows five patients, including two siblings, with eight mutations mainly located in the helicase domain, three patients presenting two mutations. The alterations include four missense mutations, one nonsense mutation and the same frameshift deletion, g.2881delG in exon 9 found in three patients. Seven RECQL4 polymorphisms, two being new, have also been identified. Primary RTS fibroblasts from these RTS patients show no sensitivity to a wide variety of genotoxic agents including ionizing or ultraviolet irradiation, nitrogen mustard, 4NQO, 8-MOP, Cis-Pt, MMC, H 2 O 2 , HU, or UV plus caffeine which could be related to the RECQL4 alterations identified here. This is in contrast with the DNA damage sensitive Bloom and Werner cells and highlights the complexity of the numerous RecQ protein functions implicated in the different cellular pathways required for maintaining genomic integrity

  13. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-08-01

    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  14. Mutation breeding in Philippine fruits

    International Nuclear Information System (INIS)

    Espino, R.R.C.

    1987-09-01

    Studies were made to establish standard conditions for mutation induction by gamma-irradiation to be performed in combination with in-vitro culture for banana and citrus spp. Besides this, radio-sensitivity of seeds and/or plantlets of mango, sugar apple, soursop, lanzones and Jack fruit was investigated and primary observation on the occurrence of mutation was made. For the mutagenesis of banana shoot tip cultures, radio-sensitivity of plantlets derived from the culture as well as fresh-cultured shoots was examined and phenotypes indicative of mutation, such as chlorophyl streaking, slow growth, pigmentation and varied bunch orientation were recorded. Isozyme analysis for mutated protein structure was not conclusive. In the in-vitro culture of Citrus spp., seeds placed on fresh media as well as germinating seeds and two-leaf stage seedlings in test tubes were examined for their radio-sensitivity. Irradiated materials were propagated for further observation. In these two crops, basic methodology for mutation induction with combined use of in-vitro culture and gamma-irradiation was established. In mango, sugar apple, soursop, lanzones and Jack fruit, basic data on radiosensitivity were obtained. In mango, leaf abnormalities were observed after the treatment of scions

  15. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    Science.gov (United States)

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  16. Mutator activity in Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Shneyour, Y.; Koltin, Y. (Tel Aviv Univ. (Israel). Dept. of Microbiology)

    1983-01-01

    A strain with an elevated level of spontaneous mutations and an especially high rate of reversion at a specific locus (pab/sup -/) was identified. The mutator trait is recessive. UV sensitivity and the absence of a UV-specific endonucleolytic activity were associated with the enhancement of the mutation rate in mutator strains. The endonuclease associated with the regulation of the mutation rate also acted on single-stranded DNA. The molecular weight of this enzyme is about 38,000 daltons.

  17. Boundary integral method to calculate the sensitivity temperature error of microstructured fibre plasmonic sensors

    International Nuclear Information System (INIS)

    Esmaeilzadeh, Hamid; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2013-01-01

    In this paper, using the boundary integral method (BIM), we simulate the effect of temperature fluctuation on the sensitivity of microstructured optical fibre (MOF) surface plasmon resonance (SPR) sensors. The final results indicate that, as the temperature increases, the refractometry sensitivity of our sensor decreases from 1300 nm/RIU at 0 °C to 1200 nm/RIU at 50 °C, leading to ∼7.7% sensitivity reduction and the sensitivity temperature error of 0.15% °C −1 for this case. These results can be used for biosensing temperature-error adjustment in MOF SPR sensors, since biomaterials detection usually happens in this temperature range. Moreover, the signal-to-noise ratio (SNR) of our sensor decreases from 0.265 at 0 °C to 0.154 at 100 °C with the average reduction rate of ∼0.42% °C −1 . The results suggest that at lower temperatures the sensor has a higher SNR. (paper)

  18. Hyper-radiation sensitivity of murine scid mutation and mapping of the human homologue HYRC1 gene

    International Nuclear Information System (INIS)

    Komatsu, Kenshi; Ohta, Tohru; Niikawa, Norio; Okumura, Yutaka; Kubota, Nobuo.

    1994-01-01

    The murine severe combined immunodeficient mutation (scid) is characterized by a lack of both B and T cells, due to a defect in lymphoid variable-(diversity)-joining(V(D)J) rearrangement. Scid cells are highly sensitive to both radiation-induced killing and chromosomal aberrations. Present experiments also demonstrated the high sensitivity of scid cells to killing, because of a deficient repair of double strand breaks(DSB). Scid cells can repair only 60% of radiation-induced DSB for 3 hours, while normal cells repair 85% of the DSB. Significantly reduced Do and n values were obtained from survival curves of scid cells and were similar to ataxia-telangiectasia(AT) cells (a unique human disease conferring whole body radiosensitivity). However, the kinetics of DNA synthesis after irradiation were different between the two cell types. In contrast with the radioresistant DNA synthesis of AT cells, DNA synthesis of scid cells was markedly inhibited after irradiation. The existence of different mutations was also supported by evidence of complementation in somatic cell hybrids between scid cells and AT cells. Using these hybrid cells, fragments of human chromosome 8 were introduced into scid cells HPRT mutant via X-irradiation and somatic cell fusion. The resulting hybrid clones contained human DNA fragment(s) which complemented the hyper-radiosensitivity of the scid cells. Alu-PCR products from these hybrids were used for chromosome painting using the technique of chromosome in situ suppression hybridization, allowing assignment of the human HYRC1 (hyper-radiosensitivity of murine scid mutation, complementing 1) gene, a candidate for a V(D)J recombinant gene, to human chromosome 8q11. (author)

  19. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

    Directory of Open Access Journals (Sweden)

    Camilla Ceccatelli Berti

    2015-04-01

    Full Text Available Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA, namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.

  20. Study on temperature sensitivity of topological insulators based on long-period fiber grating

    Science.gov (United States)

    Luo, Jianhua; Zhao, Chenghai; Li, Jianbo; He, Mengdong

    2017-06-01

    Based on a long-period fiber grating, we conducted experimental research on the temperature sensitivity of topological insulators. The long-period fiber grating and topological insulators solution were encapsulated in a capillary tube using UV glue, and the temperature response was measured. Within a range of 35 to 75 centigrade, one resonance dip of a long-period fiber grating exhibits a redshift of 1.536 nm. The temperature sensitivity is about 7.7 times of an ordinary long-period fiber grating's sensitivity (0.005 nm/°C). A numerical simulation is also performed on the basis of the experiments.

  1. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  2. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  3. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment

    NARCIS (Netherlands)

    Vries, de P.; Tamis, J.E.; Murk, A.J.; Smit, M.G.D.

    2008-01-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic

  4. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  5. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  6. Caffeine sensitive repair and mutation induction in UV- or γ-ray-irradiated Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Kanishi, Nobuji; Kinjo, Yasuhito; Watanabe, Makoto.

    1990-01-01

    It seems that certain kinds of chemical substances increase the distortion in molecules, change the high order microstructures of nuclei and chromosomes, and exert large variation to the function of repairing the damage of genes due to radiation and others, by coupling with DNA, protein or enzyme system. It has been well known that caffeine is one of such compounds, and by coupling with DNA, it increases the damage due to ultraviolet ray and gives the action of obstructing repair in addition to the action of inducing the abnormality of chromosomes and mutation. Dictyostelium discoideum has the simplest nuclear structure, and shows extremely high resistance to radiation by its high restoration ability. The authors have advanced the research by paying attention to its characteristics, and comparing the Dictyostelium discoideum as one model system with the lymphocyte system of higher animals. This time, the authors analyzed the characteristics of two kinds of sensitivity repair process of caffeine, and investigated into their relation with the occurrence of mutation. The experimental method and the results are reported. (K.I.)

  7. Caffeine sensitive repair and mutation induction in UV- or. gamma. -ray-irradiated Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Kanishi, Nobuji (Tokyo Metropolitan Research Lab. of Public Health (Japan)); Kinjo, Yasuhito; Watanabe, Makoto

    1990-01-01

    It seems that certain kinds of chemical substances increase the distortion in molecules, change the high order microstructures of nuclei and chromosomes, and exert large variation to the function of repairing the damage of genes due to radiation and others, by coupling with DNA, protein or enzyme system. It has been well known that caffeine is one of such compounds, and by coupling with DNA, it increases the damage due to ultraviolet ray and gives the action of obstructing repair in addition to the action of inducing the abnormality of chromosomes and mutation. Dictyostelium discoideum has the simplest nuclear structure, and shows extremely high resistance to radiation by its high restoration ability. The authors have advanced the research by paying attention to its characteristics, and comparing the Dictyostelium discoideum as one model system with the lymphocyte system of higher animals. This time, the authors analyzed the characteristics of two kinds of sensitivity repair process of caffeine, and investigated into their relation with the occurrence of mutation. The experimental method and the results are reported. (K.I.).

  8. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  9. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  10. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  11. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    Science.gov (United States)

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  12. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Science.gov (United States)

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  13. Influence of Temperature Variation on Optical Receiver Sensitivity and its Compensation

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2007-09-01

    Full Text Available In the paper, the influence of temperature variation on the sensitivity of an avalanche-photodiode-based optical receiver applied in the free space optical communication link is discussed. Communication systems of this type are exposed to a wide range of operating temperatures, which markedly affect many photodiode and preamplifier parameters. The paper presents a receiver sensitivity calculation, taking into consideration the temperature dependence of avalanche photodiode gain, excess noise factor, dark current and thermal noise of preamplifier resistances, and describes the compensation of temperature effects on photodiode gain based on a corresponding change in the reverse voltage applied to the diode. The calculations are demonstrated on the connection of a small-area silicon APD operating in the wavelength range from 820 to 1150 nm with a transimpedance preamplifier using a bipolar junction transistor.

  14. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  15. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  16. Low temperature sensitization of austenitic stainless steel: an ageing effect during BWR service

    International Nuclear Information System (INIS)

    Shah, B.K.; Sinha, A.K.; Rastogi, P.K.; Kulkarni, P.G.

    1994-01-01

    Sensitization in austenitic stainless steel refers to chromium carbide precipitation at the grain boundaries with concomitant depletion of chromium below 12% near grain boundaries. This makes the material susceptible to either intergranular corrosion (IGC) or intergranular stress corrosion cracking (IGSCC). This effect is predominant whenever austenitic stainless steel is subjected to thermal exposure in the temperature range 723-1073K either during welding or during heat treatment. Low temperature sensitization (LTS) refers to sensitization at temperature below the typical range of sensitization i.e. 723-1073K. A prerequisite for LTS phenomenon is reported to be the presence of chromium carbide nuclei at the grain boundaries which can grow during boiling water reactor service even at a relatively lower temperature of around 560K. LTS can lead to failure of BWR pipe due to IGSCC. The paper reviews the phenomenological and mechanistic aspects of LTS. Studies carried out regarding effect of prior cold work on LTS are reported. Summary of the studies reported in literature to examine the occurrence of LTS during BWR service has also been included. (author). 10 refs., 3 figs

  17. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity.

    Science.gov (United States)

    Kocsis, Tamas; Trencsenyi, Gyorgy; Szabo, Kitti; Baan, Julia Aliz; Muller, Geza; Mendler, Luca; Garai, Ildiko; Reinauer, Hans; Deak, Ferenc; Dux, Laszlo; Keller-Pinter, Aniko

    2017-03-01

    The TGFβ family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compact s, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18 FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared. Copyright © 2017 the American Physiological Society.

  18. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  19. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines.

    Science.gov (United States)

    White, Matthew D; Bosio, Catharine M; Duplantis, Barry N; Nano, Francis E

    2011-09-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines.

  20. Highly sensitive KRAS mutation detection from formalin-fixed paraffin-embedded biopsies and circulating tumour cells using wild-type blocking polymerase chain reaction and Sanger sequencing.

    Science.gov (United States)

    Huang, Meggie Mo Chao; Leong, Sai Mun; Chua, Hui Wen; Tucker, Steven; Cheong, Wai Chye; Chiu, Lily; Li, Mo-Huang; Koay, Evelyn Siew-Chuan

    2014-08-01

    Among patients with colorectal cancer (CRC), KRAS mutations were reported to occur in 30-51 % of all cases. CRC patients with KRAS mutations were reported to be non-responsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MoAb) treatment in many clinical trials. Hence, accurate detection of KRAS mutations would be critical in guiding the use of anti-EGFR MoAb therapies in CRC. In this study, we carried out a detailed investigation of the efficacy of a wild-type (WT) blocking real-time polymerase chain reaction (PCR), employing WT KRAS locked nucleic acid blockers, and Sanger sequencing, for KRAS mutation detection in rare cells. Analyses were first conducted on cell lines to optimize the assay protocol which was subsequently applied to peripheral blood and tissue samples from patients with CRC. The optimized assay provided a superior sensitivity enabling detection of as little as two cells with mutated KRAS in the background of 10(4) WT cells (0.02 %). The feasibility of this assay was further investigated to assess the KRAS status of 45 colorectal tissue samples, which had been tested previously, using a conventional PCR sequencing approach. The analysis showed a mutational discordance between these two methods in 4 of 18 WT cases. Our results present a simple, effective, and robust method for KRAS mutation detection in both paraffin embedded tissues and circulating tumour cells, at single-cell level. The method greatly enhances the detection sensitivity and alleviates the need of exhaustively removing co-enriched contaminating lymphocytes.

  1. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  2. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  3. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  4. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature.

    Science.gov (United States)

    Brown, Paul A; Lupini, Caterina; Catelli, Elena; Clubbe, Jayne; Ricchizzi, Enrico; Naylor, Clive J

    2011-02-01

    Previously, a virulent avian metapneumovirus, farm isolate Italy 309/04, was shown to have been derived from a live vaccine. Virulence due to the five nucleotide mutations associated with the reversion to virulence was investigated by their addition to the genome of the vaccine strain using reverse genetics. Virulence of these recombinant viruses was determined by infection of 1-day-old turkeys. Disease levels resulting from the combined two matrix mutations was indistinguishable from that produced by the recombinant vaccine, whereas the combined three L gene mutations increased disease to a level (P<0.0001) that was indistinguishable from that caused by the revertant Italy 309/04 virus. Testing of the L mutations individually showed that two mutations did not increase virulence, while the third mutation, corresponding to an asparagine to aspartic acid substitution, produced virulence indistinguishable from that caused by Italy 309/04. In contrast to the vaccine, the virulent mutant also showed increased viability at temperatures typical of turkey core tissues. The notion that increased viral virulence resulted from enhanced ability to replicate in tissues away from the cool respiratory tract, cannot be discounted.

  5. Effect of the temperature in the sensitivity of CaSO4: Dy

    International Nuclear Information System (INIS)

    Gonzalez, P.R.; Alcantara, B.C.; Azorin, J.; Furetta, C.

    2003-01-01

    Sensitivity of a Tl material is one of the most important properties for dosimetry. This property is optimized by means of various processes such as the incorporation of different dopants into the matrix material, the application of certain doses of ionizing radiation and carefully controlled thermal treatments among others. Results obtained of studying the sensitivity of diverse preparations of CaSO 4 : Dy submitted different thermal treatments are presented. The material, which presented the highest sensitivity, was that one it was heated to 800 C during one hour. When the temperature was raised over this value it was observed that sensitivity drops again. In other hand, as the heating rate in lowing down, during the readout, the height of the glow curve decreases proportionally. The temperature of the maximum of the main peak also decreases. (Author)

  6. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  7. The association between null mutations in the filaggrin gene and contact sensitization to nickel and other chemicals in the general population

    DEFF Research Database (Denmark)

    Thyssen, J P; Johansen, J D; Linneberg, A

    2010-01-01

    It was recently shown that filaggrin gene (FLG) null mutations are positively associated with nickel sensitization. We have hypothesized that histidine-rich filaggrin proteins in the epidermis chelate nickel ions and prevent their skin penetration and exposure to Langerhans cells. Furthermore, we...... have proposed that the low degree of genetic predisposition to nickel sensitization found by a Danish twin study was explained by a high prevalence of ear piercing among participants resulting in 'bypassing' of the filaggrin proteins....

  8. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

    DEFF Research Database (Denmark)

    Schubert, J.; Siekierska, A.; Langlois, M.

    2014-01-01

    Febrile seizures affect 2-4% of all children(1) and have a strong genetic component(2). Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)(3-5) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding...... syntaxin-1B(6), that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees(7,8) identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations...... and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature...

  9. msbB deletion confers acute sensitivity to CO2 in Salmonella enterica serovar Typhimurium that can be suppressed by a loss-of-function mutation in zwf

    Directory of Open Access Journals (Sweden)

    Troy Kimberly

    2009-08-01

    Full Text Available Abstract Background Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS, which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with reduced virulence and severe growth defects that can both be compensated with extragenic suppressor mutations. Results We report here that msbB (or msbB somA Salmonella are highly sensitive to physiological CO2 (5%, resulting in a 3-log reduction in plating efficiency. Under these conditions, msbB Salmonella form long filaments, bulge and lyse. These bacteria are also sensitive to acidic pH and high osmolarity. Although CO2 acidifies LB broth media, buffering LB to pH 7.5 did not restore growth of msbB mutants in CO2, indicating that the CO2-induced growth defects are not due to the effect of CO2 on the pH of the media. A transposon insertion in the glucose metabolism gene zwf compensates for the CO2 sensitivity of msbB Salmonella. The msbB zwf mutants grow on agar, or in broth, in the presence of 5% CO2. In addition, msbB zwf strains show improved growth in low pH or high osmolarity media compared to the single msbB mutant. Conclusion These results demonstrate that msbB confers acute sensitivity to CO2, acidic pH, and high osmolarity. Disruption of zwf in msbB mutants restores growth in 5% CO2 and results in improved growth in acidic media or in media with high osmolarity. These results add to a growing list of phenotypes caused by msbB and mutations that suppress specific growth defects.

  10. AT-101 enhances gefitinib sensitivity in non-small cell lung cancer with EGFR T790M mutations

    International Nuclear Information System (INIS)

    Zhao, Ren; Zhou, Shun; Xia, Bing; Zhang, Cui-ying; Hai, Ping; Zhe, Hong; Wang, Yan-yang

    2016-01-01

    Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard care of patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC), development of acquired resistance is inevitable. A secondary mutation of threonine 790 (T790M) is associated with approximately half of the cases of acquired resistance. Strategies or agents to overcome this type of resistance are still limited. In this study, enhanced antitumor effect of AT-101, a-pan-Bcl-2 inhibitor, on gefitinib was explored in NSCLC with T790M mutation. The effect of cotreatment with AT-101 and gefitinib on the viability of NSCLC cell lines harboring acquired T790M mutation was investigated using the MTT assay. The cellular apoptosis of NSCLC cells after cotreatment with AT-101 and gefitinib was assessed by FITC-annexin V/PI assay and Western blots analysis. The potential underlying mechanisms of the enhanced therapeutic effect for AT-101 was also studied using Western blots analysis. The in vivo anti-cancer efficacy of the combination with AT-101 and gefitinib was examined in a mouse xenograft model. In this study, we found that treatment with AT-101 in combination with gefitinib significantly inhibited cell proliferation, as well as promoted apoptosis of EGFR TKIs resistant lung cancer cells. The apoptotic effects of the use of AT-101 was related to the blocking of antiapoptotic protein: Bcl-2, Bcl-xl, and Mcl-1 and downregrulation of the molecules in EGFR pathway. The observed enhancements of tumor growth suppression in xenografts supported the reverse effect of AT-101 in NSCLC with T790M mutation, which has been found in in vitro studies before. AT-101 enhances gefitinib sensitivity in NSCLC with EGFR T790M mutations. The addition of AT-101 to gefitinib is a promising strategy to overcome EGFR TKIs resistance in NSCLC with EGFR T790M mutations

  11. Mapping of the mutations present in the genome of the Rift Valley fever virus attenuated MP12 strain and their putative role in attenuation.

    Science.gov (United States)

    Vialat, P; Muller, R; Vu, T H; Prehaud, C; Bouloy, M

    1997-11-01

    The MP12 attenuated strain of Rift Valley fever virus was obtained by 12 serial passages of a virulent isolate ZH548 in the presence of 5-fluorouracil (Caplen et al., 1985. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol., 66, 2271-2277). The comparison of the M segment of the two strains has already been reported by Takehara et al. (Takehara et al., 1989. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus. Virology 169, 452-457). We have completed the comparison and found that altogether a total of nine, 12 and four nucleotides were changed in the L, M and S segments of the two strains, respectively. Three mutations induced amino acid changes in the L protein but none of them was located in the recognized motifs conserved among RNA dependent polymerases. In the S segment, a single change modified an amino acid in the NSs protein and in the M segment, seven of the mutations resulted in amino acid changes in each of the four encoded G1, G2, 14 kDa and 78 kDa proteins. Characterization of the MP12 virus indicated that determinants for attenuation were present in each segment and that they were introduced progressively during the 12 passages in the presence of the mutagen (Saluzzo and Smith, 1990. Use of reassortant viruses to map attenuating and temperature-sensitive mutations of the Rift Valley fever virus MP-12 vaccine. Vaccine 8, 369-375). Passages 4 and 7-9 were found to be essential for introduction of temperature-sensitive lesions and attenuation. In an attempt to correlate some of the mutations with the attenuated or temperature-sensitive phenotypes, we determined by sequencing the passage level at which the different mutations appeared. This work should help to address the question of the role of the viral gene products in Rift Valley fever pathogenesis.

  12. Effect of recB21, uvrD3, lexA101 and recF143 mutations on ultraviolet radiation sensitivity and genetic recombination in ΔuvrB strains of Escherichia coli K-12

    International Nuclear Information System (INIS)

    Wang, T.V.; Smith, K.C.

    1981-01-01

    The interaction of the recB21, uvrD3, lexA101, and recF143 mutations on UV radiation sensitization and genetic recombination was studied in isogenic strains containing all possible combinations of these mutations in a ΔuvrB genetic background. The relative UV radiation sensitivities of the multiply mutant strains in the ΔuvrB background were: recF recB lexA > recF recB uvrD lexA, recF recB uvrD > recA > recF uvrD lexA > recF recB, recF uvrD > recF lexA > recB uvrD lexA > recB uvrD > recB lexA, lexA uvrD > recB > lexA, uvrD > recF; three of these strains were more UV radiation sensitive than the uvrB recA strain. There was no correlation between the degree of radiation sensitivity and the degree of deficiency in genetic recombination. An analysis of the survival curves revealed that the recF mutation interacts synergistically with the recB, uvrD, and lexA mutations in UV radiation sensitization, while the recB, uvrD, and lexA mutations appear to interact additively with each other. We interpret these data to suggest that there are two major independent pathways for postreplication repair; one is dependent on the recF gene, and the other is dependent on the recB, uvrD, and lexA genes. (orig.)

  13. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity...... of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  14. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Directory of Open Access Journals (Sweden)

    F. J. Bohn

    2018-03-01

    Full Text Available Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP. It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q and a species distribution index (ΩAWP. ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length. The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a

  15. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Science.gov (United States)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  16. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    Science.gov (United States)

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  17. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    International Nuclear Information System (INIS)

    Hugly, S.; McCourt, P.; Somerville, C.; Browse, J.; Patterson, G.W.

    1990-01-01

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14 CO 2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  18. Sensitivity of LUCC on the Surface Temperature of Tibetan Plateau

    Science.gov (United States)

    Qi, W.; Deng, X.; Wu, F.

    2016-12-01

    The Tibetan Plateau has an important effect on the ecological security in China, even in Asia, which makes the region become the hot spot in recently research. Under the joint influence of global change and human activities, ecosystem destabilizing and the increasing pressure on resources and environment emerge on the Tibetan Plateau, but the potential spatial sensitivity of land use and land cover changes(LUCC) on surface temperature has not been quantitatively analyzed. This study analyzed the mainly types of LUCC, urbanization, grassland degradation, deforestation on Tibetan Plateau along with Representative Concentration Pathways (RCPs) of the Intergovernmental Panel on Climate Change (IPCC). The LUCC in recent decades was first quantitatively analyzed in this study to give the basic fact with a significant increase in temperatures, reduced precipitation and increased evaporation. This study focused on the future spatio-temporal heterogeneity of the temperature and precipitation. Finally, the influencing factors with LUCC on Tibetan Plateau were simulated with the Weather Research and Forecasting (WRF) model, and the sensitivity of different land use types was spatially analyzed with Singular Value Decomposition (SVD). The results indicate that the large-area alpine grassland plays a more important role in alleviating global warming than other vegetation types do. The changes of the landscape structure resulting from the urban expansion play a significant role in intensifying regional temperature increase. In addition, the effects of LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  19. Effect of soil moisture on the temperature sensitivity of Northern soils

    Science.gov (United States)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  20. A mutation (radA100) in Escherichia coli that selectively sensitizes cells grown in rich medium to X- or U.V.-radiation, or methyl methanesulphonate

    International Nuclear Information System (INIS)

    Diver, W.P.; Sargentini, N.J.; Smith, K.C.

    1982-01-01

    The radA100 mutant was isolated from Escherichia coli K-12 after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and selection for gamma radiation sensitivity. The radA100 mutation sensitized stationary phase cells to X-rays if they had been grown in glucose-supplemented rich medium, but not if they had been grown in nonsupplemented rich medium (indicating a defect in glucose-induced resistance). Similarly, logarithmic phase cells were sensitized to X-rays, U.V. radiation and methyl methanesulphonate if they had been grown in rich medium, but not if they had been grown in minimal medium (indicating a defect in medium-dependent resistance). Relative to the wild-type strain, the radA100 mutant was deficient in the repair of X-ray-induced DNA single-strand breaks when grown to logarithmic phase in rich medium, but not when grown in minimal medium. This is a novel mutation amongst the known DNA repair defects in that it did not sensitize logarithmic phase cells, grown in minimal medium, to either X- or U.V.-radiation. (author)

  1. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) temperature sensors with enhanced sensitivity and detection range for NASA application...

  2. Electrochemical polarization behavior of sensitized SUS 304 stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kushiya, K [Tohoku Univ., Sendai (Japan); Sugimoto, K; Ejima, T

    1978-11-01

    Anodic polarization curves for a solution-treated or sensitized SUS 304 stainless steel and solution-treated Fe-Ni-Cr ternary alloys containing 10%Ni and 6 to 14%Cr have been measured in deaerated 0.5 mol/l Na/sub 2/SO/sub 4/ solutions of pH 2.0 to 5.9 at 298, 523 and 553 K. Corrosion potentials for U-bend SCC test specimens of sensitized SUS 304 stainless steel have also been monitored for a long time in the same solutions as those used for the polarization measurements except that they were aerated. It was found that the differences in the current densities in the passive state, i sub(pass), between the solution treated steel and the sensitized one and also between the ternary alloy with higher Cr content and the one with lower Cr content become large with increasing temperature and decreasing pH. This means that the difference in the values of i sub(pass) between grain bodies and Cr-depleted zones along grain boundaries of sensitized steel becomes larger and susceptibility to intergranular corrosion of the sensitized steel in the passivation region becomes higher with increasing temperature and decreasing pH. Since corrosion potentials for the U-bend SCC test specimens in air-satulated solutions lie in the passive region of anodic polarization curves for the sensitized steel in deaerated solutions, the intergranular stress-corrosion cracking of the sensitized steel in high temperature water with dissolved oxygen is considered to be caused by the preferential corrosion in the Cr-depleted zone.

  3. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  4. A temperature monitor circuit with small voltage sensitivity using a topology-reconfigurable ring oscillator

    Science.gov (United States)

    Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi

    2018-04-01

    In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.

  5. Extreme assay sensitivity in molecular diagnostics further unveils intratumour heterogeneity in metastatic colorectal cancer as well as artifactual low-frequency mutations in the KRAS gene.

    Science.gov (United States)

    Mariani, Sara; Bertero, Luca; Osella-Abate, Simona; Di Bello, Cristiana; Francia di Celle, Paola; Coppola, Vittoria; Sapino, Anna; Cassoni, Paola; Marchiò, Caterina

    2017-07-25

    Gene mutations in the RAS family rule out metastatic colorectal carcinomas (mCRCs) from anti-EGFR therapies. We report a retrospective analysis by Sequenom Massarray and fast COLD-PCR followed by Sanger sequencing on 240 mCRCs. By Sequenom, KRAS and NRAS exons 2-3-4 were mutated in 52.9% (127/240) of tumours, while BRAF codon 600 mutations reached 5% (12/240). Fast COLD-PCR found extra mutations at KRAS exon 2 in 15/166 (9%) of samples, previously diagnosed by Sequenom as wild-type or mutated at RAS (exons 3-4) or BRAF genes. After UDG digestion results were reproduced in 2/12 analysable subclonally mutated samples leading to a frequency of true subclonal KRAS mutations of 1.2% (2.1% of the previous Sequenom wild-type subgroup). In 10 out of 12 samples, the subclonal KRAS mutations disappeared (9 out of 12) or turned to a different sequence variant (1 out of 12). mCRC can harbour coexisting multiple gene mutations. High sensitivity assays allow the detection of a small subset of patients harbouring true subclonal KRAS mutations. However, DNA changes with mutant allele frequencies <3% detected in formalin-fixed paraffin-embedded samples may be artifactual in a non-negligible fraction of cases. UDG pre-treatment of DNA is mandatory to identify true DNA changes in archival samples and avoid misinterpretation due to artifacts.

  6. Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, Jenni; Mäntynen, Sari [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Ihalainen, Teemu O. [Stem Cells in Neurological Applications Group, BioMediTech, University of Tampere, Tampere (Finland); Bamford, Jaana K.H. [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Oksanen, Hanna M., E-mail: hanna.oksanen@helsinki.fi [Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 Helsinki (Finland)

    2015-08-15

    Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components.

  7. DNA repair in Haemophilus influenzae: isolation and characterization of an ultraviolet sensitive mutator mutant

    International Nuclear Information System (INIS)

    Walter, R.B.

    1985-01-01

    DNA repair in Haemophilus influenzae appears to be quite different from that seen in Escherichia coli in that H. influenzae shows neither SOS nor adaptation phenomena. Repair of DNA lesions in H. influenzae has been seen to occur via recombinational, excision, and mismatch repair pathways acting independently of one another. The author has isolated an ultraviolet (UV)-sensitive mutator mutant (mutB1) of H. influenzae Rd which shows deficiencies in both recombinational and mismatch repair pathways. This mutant is sensitive to a variety of DNA damaging agents as well as being hypermutable by alkylating agents and base analogues. MutB1 cells do not show post-UV DNA breakdown but do begin excision after UV irradiation. Genetic transformation with UV-irradiated DNA on mut B1 recipients shows that high (HE) and low (LE) efficiency markers are transformed at a ratio of 1.0 as in the mismatch repair deficient hex 1 mutant; however, kinetics of UV-inactivation experiments indicate that HE markers are sensitized and act as LE markers do on wild type recipients. Thus, the mutB gene product appears to play a role in both DNA repair and genetic transformation. A model is outlined which presents a role for a DNA helicase in both DNA repair and genetic transformation of H. influenzae

  8. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation.

    Science.gov (United States)

    Zhao, Xiao; Zhu, Guangqin; Chen, Huoming; Yang, Ping; Li, Fang; Du, Nan

    2016-01-01

    This study aimed to investigate the potential use of icotinib as first-line treatment to prevent brain metastasis from advanced lung adenocarcinoma. This investigation was designed as a retrospective nonrandomized controlled study. Enrolled patients received either icotinib or traditional chemotherapy as their first-line treatment. The therapeutic efficacy was compared among patients with advanced. (stages IIIB and IV) lung adenocarcinoma with epidermal growth factor receptor (EGFR)-sensitive mutation. The primary endpoint was the cumulative incidence of brain metastasis, whereas, the secondary endpoint was overall survival(OS). Death without brain metastasis was considered a competitive risk to calculate the cumulative risk of brain metastasis. Survival analysis was conducted using the Kaplan-Meier method and statistical significance was determined using the log-rank test. The present study included 396 patients with 131 in the icotinib group and 265 in the chemotherapy group. Among those with EGFR-sensitive mutation, the cumulative risk of brain metastasis was lower in the icotinib group than in the chemotherapy group. However, no significant difference in OS was observed between the two groups. Icotinib can effectively reduce the incidence of brain metastasis and therefore improve prognosis in advanced lung adenocarcinoma patients with EGFR.sensitive mutation.

  9. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  10. DNA Variations in Oculocutaneous Albinism: An Updated Mutation List and Current Outstanding Issues in Molecular Diagnostics

    Science.gov (United States)

    Simeonov, Dimitre R.; Wang, Xinjing; Wang, Chen; Sergeev, Yuri; Dolinska, Monika; Bower, Matthew; Fischer, Roxanne; Winer, David; Dubrovsky, Genia; Balog, Joan Z.; Huizing, Marjan; Hart, Rachel; Zein, Wadih M.; Gahl, William A.; Brooks, Brian P.; Adams, David R.

    2014-01-01

    Oculocutaneous albinism (OCA) is a rare genetic disorder of melanin synthesis that results in hypopigmented hair, skin, and eyes. There are four types of OCA, caused by mutations in TYR (OCA-1), OCA2 (OCA-2), TYRP1 (OCA-3), or SLC45A2 (OCA-4). Here we report 22 novel mutations; 14 from a cohort of 61 patients seen as part of the NIH OCA Natural History Study and 8 from a prior study at the University of Minnesota. We also include a comprehensive list of almost 600 previously reported OCA mutations, along with ethnicity information, carrier frequencies, and in silico pathogenicity predictions. In addition to discussing the clinical and molecular features of OCA, we address the cases of apparent missing heritability. In our cohort, 25% of patients did not have two mutations in a single OCA gene. We demonstrate the utility of multiple detection methods to reveal mutations missed by Sanger sequencing. Finally, we review the TYR p.R402Q temperature sensitive variant and confirm its association with cases of albinism with only one identifiable TYR mutation. PMID:23504663

  11. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Science.gov (United States)

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  12. BRAF mutations in conjunctival melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Dahl, Christina; Dahmcke, Christina M.

    2016-01-01

    with atypia. BRAF mutations were identified in 39 of 111 (35%) cases. The rate ratio of BRAF-mutated versus BRAF-wild-type melanoma did not change over time. BRAF mutations were associated with T1 stage (p = 0.007), young age (p = 0.001), male gender (p = 0.02), sun-exposed location (p = 0.01), mixed....../non-pigmented tumour colour (p = 0.02) and nevus origin (p = 0.005), but did not associate with prognosis. BRAF status in conjunctival melanoma and paired premalignant lesions corresponded in 19 of 20 cases. Immunohistochemistry detected BRAF V600E mutations with a sensitivity of 0.94 and a specificity of 1...

  13. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  14. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    Science.gov (United States)

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  15. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca2+-sensitizing mutations.

    Science.gov (United States)

    Stevens, Charles M; Rayani, Kaveh; Singh, Gurpreet; Lotfalisalmasi, Bairam; Tieleman, D Peter; Tibbits, Glen F

    2017-07-14

    Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca 2+ TnC binding Ca 2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnI SW ). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca 2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca 2+ and TnI SW Surprisingly the Ca 2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca 2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca 2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca 2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca 2+ -binding site of cTnC. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  17. Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.

    Science.gov (United States)

    Mann, A; Kiefer, M; Leuenberger, H

    2001-03-01

    High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.

  18. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.

    Science.gov (United States)

    Kashiwagi, Akiko; Sugawara, Ryu; Sano Tsushima, Fumie; Kumagai, Tomofumi; Yomo, Tetsuya

    2014-10-01

    Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and

  19. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Acidophilus Milk Shelf-life Prolongation by the Use of Cold Sensitive Mutants of Lactobacillus acidophilus MDC 9626

    Directory of Open Access Journals (Sweden)

    Alireza Goodarzi

    2017-09-01

    Full Text Available  Background and Objective: The shelf-life of Acidophilus milk fermented by probiotic culture Lactobacillus acidophilus is limited due to acidification caused by continued organic acid formation at low temperatures. Increasing of titrable acidity in turn causes reducing of the total viable count of probiotic bacteria. To overcome acidification we suggested to use coldsensitive mutants of Lactobacillus acidophilus, with limited metabolism at low temperatures. In order to facilitate the selection of cold sensitive mutants, it was decided to use Rifampicin and Streotomycin mutations affecting thermostability of the key molecules of cell metabolism the RNA polymerase and ribosome, respectively.Material and Methods: Ultra violet mutagenesis was used to enhance the yield and diversity of rifampicin and streptomycin resistant mutants of Lactobacillus acidophilus. To perform negative selection of cold sensitive mutants, antibiotic resistant colonies replica plated and incubated at 23ºC. The growth rate, milk fermenting rate, titratable acidity were measured.Results and Conclusion: Among tested resistant to either rifampicin or streptomycin clones with frequency mean of 1.0 %, ten mutants were isolated which have lost the ability to grow at minimal temperature. Fermented with cold-sensitive mutants of Lactobacillus acidophilus milks, during storage in the refrigerator, almost twice as long retained high amount of probiotic bacteria and low titratable acidity as compared to the parent strain. Thus, direct relationship between temperature sensitivity of the starter and shelf life of acidophilic milk was confirmed. Rifampicin and Streptomycin resistant mutations are powerful tools for selection of cold-sensitive dairy starters for preparing dairy fermented products with long shelf-life.Conflict of interest: The authors declare no conflict of interest.

  1. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  2. Low temperature sensitization behavior in the weld metal of austenitic stainless steel. Study on low temperature sensitization in weldments of austenitic stainless steels and its improvement by laser surface melting treatment. 1

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Nishimoto, Kazutoshi; Nakao, Yoshikuni

    1996-01-01

    Low temperature sensitization (LTS) behavior in the weld metal of Type308 stainless steel was investigated in this study. Three kinds of Type308 stainless steels, of which carbon contents were 0.04%, 0.06% and 0.08%, were used for this study. TIG welding method was adopted to make the weld metals. Weld metals were subjected to the sensitizing heat treatment in the temperature range between 773 K and 1073 K. The degree of sensitization were examined by the EPR method and the Strauss test. Chromium carbide was absorbed to precipitate at δ/γ grain boundaries in the as-welded weld metals Corrosion test results have shown that the higher carbon content in the weld metal is, the earlier sensitization yields in it. Sensitization in weld metals is found to occur faster than in those solution heat-treated at 1273 K prior to sensitizing heat-treatment. This fact suggests that preexisted chromium carbides have an effect to accelerate sensitization. That is, it is apparent that LTS phenomenon occur even in the weld metal. Moreover, sensitization in the weld metal has occurred in much shorter time than in HAZ, which is attributed to the preferential precipitation of chromium carbide at δ/γ grain boundaries in the weld metals. (author)

  3. Surgical implantation of temperature-sensitive transmitters and data-loggers to record body temperature in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Adam, D; Johnston, S D; Beard, L; Nicholson, V; Lisle, A; Gaughan, J; Larkin, R; Theilemann, P; Mckinnon, A; Ellis, W

    2016-01-01

    Under predicted climate change scenarios, koala distribution in Australia is expected to be adversely affected. Recent studies have attempted to identify suitable habitat, based on models of bioclimatic regions, but to more accurately reflect the thermal tolerance and behavioural adaptations of the various regional populations, the koala's response to periods of heat stress will need to be investigated at the individual animal level. To explore the safety and suitability of temperature-sensitive intra-abdominal implants for monitoring core body temperature in the koala. A temperature-sensitive radio transmitter and thermal iButton data-logger, waxed together as a package, were surgically implanted into the abdominal cavity of four captive koalas. In one animal the implant was tethered and in the other three, it was left free-floating. After 3 months, the implants were removed and all four koalas recovered without complications. The tethering of the package in the one koala resulted in minor inflammation and adhesion, so this practice was subsequently abandoned. The free-floating deployments were complication-free and revealed a diurnal body temperature rhythm, with daily ranges of 0.4-2.8°C. The minimum recorded body temperature was 34.2°C and the maximum was 37.7°C. The difference in the readings obtained from the transmitters and iButtons never exceeded 0.3°C. The suitability of the surgical approach was confirmed, from both the animal welfare and data collection points of view. © 2016 Australian Veterinary Association.

  4. Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2014-01-01

    Full Text Available Objective: This study aimed to investigate the potential use of icotinib as first-line treatment to prevent brain metastasis from advanced lung adenocarcinoma. Patients and Methods: This investigation was designed as a retrospective nonrandomized controlled study. Enrolled patients received either icotinib or traditional chemotherapy as their first-line treatment. The therapeutic efficacy was compared among patients with advanced (stages IIIB and IV lung adenocarcinoma with epidermal growth factor receptor (EGFR-sensitive mutation. The primary endpoint was the cumulative incidence of brain metastasis, whereas the secondary endpoint was overall survival (OS. Death without brain metastasis was considered a competitive risk to calculate the cumulative risk of brain metastasis. Survival analysis was conducted using the Kaplan-Meier method and statistical significance were determined using the log-rank test. Results: The present study included 396 patients with 131 in the icotinib group and 265 in the chemotherapy group. Among those with EGFR-sensitive mutation, the cumulative risk of brain metastasis was lower in the icotinib group than in the chemotherapy group. However, no significant difference in OS was observed between the two groups. Conclusion: Icotinib can effectively reduce the incidence of brain metastasis and therefore improve prognosis in advanced lung adenocarcinoma patients with EGFR-sensitive mutation.

  5. Studies of air plasma techniques in mutating Penicillium chrysogenum

    International Nuclear Information System (INIS)

    Gui Fang; Liu Hui; Wang Hui; Wang Peng; Yuan Chengling; Zheng Zhiming

    2011-01-01

    penicillin producing strain Penicillium chrysogenum Pc05 as the starting strain was mutated by low-temperature air plasma technology. As the result revealed, in 30 minutes, the survival rate of spores followed the saddle-shaped curve. The positive mutants accounted for 44.19% of all mutants while the negative mutation was low. After primary and secondary screening, the mutant aPc051310 was obtained, and eventually its penicillin titer increased 42.1% compared with that of starting strain. Synergetic effect between chemical reactive species and charged particles was considered as the main mutation mechanism involved in low temperature air plasma. All the results have been proved that as a new industrial microbial strains mutation method, low temperature air plasma has potential applications. (authors)

  6. The dependence of thermoluminescence sensitivity upon the temperature of irradiation in meteorites and in terrestrial apatites

    International Nuclear Information System (INIS)

    Durrani, S.A.; Al-Khalifa, I.J.M.

    1990-01-01

    Measurements are reported on the TL sensitivity (i.e. TL glow output per unit γ ray test dose) of meteoritic specimens as well as terrestrial fluor- and chlor-apatites, as a function of irradiation temperature (T irr ). The irradiation temperatures ranged from liquid nitrogen to room temperature (77 - 293 K). A kilocurie 60 Co γ ray source was used to deliver test doses of 400 Gy (40 krad) and 40 (4 krad) to the various samples. A strong dependence of the TL sensitivity upon the temperature of irradiation was noted in the case of Kirin meteorite: its TL sensitivity (for the 493 K readout peak) decreased by a factor of ∼ 2 when T irr rose from liquid nitrogen (77 K) to dry ice in acetone (197 K) temperature, in the case of both 400 Gy and 40 Gy γ ray doses. In the case of the Antarctic meteorite specimen (ALHA 77182.13), there was a smaller effect, viz. a fall of ∼ 14% in the TL output corresponding to dry ice and higher irradiating temperatures as compared to the 77 K irradiation. For chlorapatite, the TL sensitivity decreased monotonically with increasing temperature for both the 563 K and the 448 K glow peaks. For the fluorapatite, the effect of reduced response was observed only between -17 0 C (256 K) and room temperature (293 K). Both the theoretical and the practical implications of these observations are discussed. (author)

  7. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  8. A sensitive detection method for MPLW515L or MPLW515K mutation in chronic myeloproliferative disorders with locked nucleic acid-modified probes and real-time polymerase chain reaction.

    Science.gov (United States)

    Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M

    2008-09-01

    Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy.

  9. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel

    Science.gov (United States)

    Chen, Haiyan; Zhang, Jian; Qian, Zhiyu; Liu, Fei; Chen, Xinyang; Hu, Yuzhu; Gu, Yueqing

    2008-05-01

    Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 °C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment.

  10. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel

    International Nuclear Information System (INIS)

    Chen Haiyan; Hu Yuzhu; Zhang Jian; Liu Fei; Chen Xinyang; Gu Yueqing; Qian Zhiyu

    2008-01-01

    Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 deg. C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment

  11. Photoreactivation of conversion and de novo suppressor mutation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, R C; Plamer, J E [Indiana Univ., Indianapolis (USA). Dept. of Microbiology

    1977-04-01

    Studies of mutagenesis and photoreactivation in various E.coli strains have shown that conversion mutation of a mutant containing an amber suppressor to one containing an ochre suppressor is sensitive to photoreactivation. Direct photoreactivation by photoreactivating light (PRL) after uv mutagenesis reduced mutation frequencies by a factor of about 2 for each minute of exposure during the first 5 to 8 min of exposure for cells with normal repair capacity. Conversion and potential de novo suppressor mutations were about equally sensitive. For conversion, the sensitivities to PRL were identical in the repair-normal and excisions-repair-deficient strains. For de novo suppressor mutation, the rate of mutation frequency reduction by PRL in the repair-deficient strain was about one-half that in the other strains. The results suggest that ultraviolet radiation produces both de novo suppressor mutation and conversion at the sup(E,B) locus by photoreversible pyrimidine dimers in the DNA. The causative dimers could be Thy()Cyt dimers in the transcribed strand or the non-transcribed strand, respectively.

  12. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  13. The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent.

    Science.gov (United States)

    Hochmuth, Jennifer D; De Schamphelaere, Karel A C

    2014-10-01

    In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures. © 2014 SETAC.

  14. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  15. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis.

    Science.gov (United States)

    Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin

    2018-01-01

    This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion.

  16. Continuous cooling and low temperature sensitization of AISI types 316 SS and 304 SS with different degrees of cold work

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N.; Dayal, R.K.; Gnanamoorthy, J.B. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Programme); Seshadri, S.K. (Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering)

    This paper presents the results of investigations carried out to study the sensitization behaviour of AISI Types 316 SS and 304 SS with various degrees of cold work ranging from 0 to 25%. Initially Time-Temperature-Sensitization (TTS) diagrams were established using ASTM standard A262 Practice A and E tests. From these diagrams it was found that the rate of sensitization and overall susceptibility to intergranular corrosion increases up to 15% cold work and above that starts decreasing. Desensitization was observed to be faster for higher levels of cold work, especially in the higher sensitization temperature range. From the TTS diagrams, the critical linear cooling rate below which sensitization occurs was calculated. From these data, Continuous Cooling Sensitization (CCS) diagrams were established. The results show that as the degree of cold work increases up to 15%, time needed for sensitization decreases and hence faster cooling rates must be used in order to avoid sensitization. At temperatures sufficiently below the nose temperature of the TTS diagram, log t versus 1/T plots follow a linear relationship where t is the time needed for the onset of sensitization at temperature T. From the slope, the apparent activation energy for sensitization was estimated. The validity of extrapolating these linear plots to lower temperatures (725 to 775 K) (which lie in the operating temperature regime of fast reactors) has been verified by experiment. The effect of heat treatment and microstructure on the Low Temperature Sensitization (LTS) behaviour was investigated. The results indicate that carbides of optimum size and distribution are the essential pre-requisites for LTS and cold work enhances susceptibility of stainless steels to LTS. (orig.).

  17. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1984-01-01

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references

  18. Prospects for cellular mutational assays in human populations

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  19. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  20. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  1. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  2. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels

    International Nuclear Information System (INIS)

    Guo, Wei; Zhou, Jinxiong; Li, Meie

    2013-01-01

    Combination of soft active hydrogels with hard passive polymers gives rise to all-polymer composites. The hydrogel is sensitive to external stimuli while the passive polymer is inert. Utilizing the different behaviors of two materials subject to environmental variation, for example temperature, results in self-folding soft machines. We report our efforts to model the programmable deformation of self-folding structures with temperature-sensitive hydrogels. The self-folding structures are realized either by constructing a bilayer structure or by incorporating hydrogels as hinges. The methodology and the results may aid the design, control and fabrication of 3D complex structures from 2D simple configurations through self-assembly. (paper)

  3. The observed sensitivity of the global hydrological cycle to changes in surface temperature

    International Nuclear Information System (INIS)

    Arkin, Phillip A; Janowiak, John; Smith, Thomas M; Sapiano, Mathew R P

    2010-01-01

    Climate models project large changes in global surface temperature in coming decades that are expected to be accompanied by significant changes in the global hydrological cycle. Validation of model simulations is essential to support their use in decision making, but observing the elements of the hydrological cycle is challenging, and model-independent global data sets exist only for precipitation. We compute the sensitivity of the global hydrological cycle to changes in surface temperature using available global precipitation data sets and compare the results against the sensitivities derived from model simulations of 20th century climate. The implications of the results for the global climate observing system are discussed.

  4. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Alexandra; Lewis, David F.; Varma, Sangya; Vitkin, I. Alex; Jaffray, David A. [Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Advanced Materials Group, International Specialty Products, Inc., Wayne, New Jersey 07470 (United States); Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2008-10-15

    The effects of temperature on real time changes in optical density ({Delta}OD) of GAFCHROMIC EBT film were investigated. The spectral peak of maximum change in absorbance ({lambda}{sub max}) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 degree sign C. The {Delta}OD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in {lambda}{sub max}. A compensation scheme using {lambda}{sub max} and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry.

  5. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  6. Measurement of genome changes of greenable albino mutation line c.v. W25

    International Nuclear Information System (INIS)

    Wu Dianxing; Xia Yingwu; Shu Qingyao; Zhang Yaozhou; Liu Guifu

    1997-01-01

    W25 was a greenable albino mutation line, which was derived from a temperature-sensitive genic male sterile rice 2177s, with 300 Gy gamma rays irradiation. During the whole growth duration, the leaves of W25 showed the following characters: white, greenism, albinism and greenism again. 70 primers were used for the detection of polymorphism, one of them gave polymorphic products. RAPD analysis of W25 and 2177s with random primer H05 indicated that there were two DNA bands differences

  7. Mutational synergism between p-fluorophenylalaline and UV in Coprinus lagopus

    International Nuclear Information System (INIS)

    Talmud, P.J.

    1977-01-01

    The amino acid analogue p-fluorophenylalanine (PFP) is mutagenic to Coprinus lagopus due to its incorporation into proteins. Spontaneous mutations, PFP and UV mutagenesis and PFP/UV synergism have been studied in a UV resistant strain and in two complementing UV sensitive mutant strains. By comparison to the UV resistant strain, one UV sensitive strain shows normal spontaneous mutations, 1.4% PFP-induced mutations and 50-fold UV mutagenesis. The second UV sensitive strain has 19-fold spontaneous mutation frequency and slightly elevated UV mutagenesis. In all 3 strains the PFP/UV synergism is comparable (4-5 times the arithmetic expected). The results indicate that PFP mutagenesis is due to the incorporation of PFP into enzymes normally functioning in the organism but which also participate in UV repair mechanisms. A model is proposed for UV repair which is based on a PFP sensitive excision repair system of at least two enzymes, an alternative 'error-proof' pathway which is not susceptible to PFP and an 'error-prone' pathway which is responsible for UV mutagenesis and is susceptible to PFP as shown by the PFP/UV synergism. Because PFP is given before UV treatment, this implies a UV inducible cofactor and a PFP sensitive enzyme which only functions after UV activation

  8. Design of cross-sensitive temperature and strain sensor based on sampled fiber grating

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohang

    2017-02-01

    Full Text Available In this paper,a cross-sensitive temperature and strain sensor based on sampled fiber grating is designed.Its temperature measurement range is -50-200℃,and the strain measurement rangeis 0-2 000 με.The characteristics of the sensor are obtained using simulation method.Utilizing SPSS software,we found the dual-parameter matrix equations of measurement of temperature and strain,and calibrated the four sensing coefficients of the matrix equations.

  9. Thermoresistant revertants of an Escherichia coli strain carrying tif-1 and ruv mutations: non-suppressibility of ruv by sfi

    International Nuclear Information System (INIS)

    Otsuji, N.; Iyehara-Ogawa, H.

    1979-01-01

    Spontaneous thermoresistant revertants were isolated from Tif1 Ruv - and Tif1 Ruv + strains of Escherichia coli K-12. They were divided into five groups; backmutants to tif + and recA structural gene mutants accounted for at least two of these groups. Mutations with an unconditional RecA - phenotype were detected at a higher frequency in the Tif1 Ruv - strains (65%) than in the Tif1 Ruv + strains (25%). A third group consisted of revertants exhibiting a RecA - phenotype at low temperature. Revertants with normal recombination ability and uv resistance, but with a thermosensitive defect in propagating lambda bio11 phage, were also isolated (group 4). The alleles responsible for this property were cotransducible with the srl gene, suggesting that they are located at the recA locus. Other revertants, which might carry lexA, lexB, or zab mutations, were uv sensitive and were able to propagate lambda bio11 phage (group 5). The sfi mutation, which suppresses filamentation in the Tif1 and uv-sensitive Lon - strains, does not restore uv resistance of the Ruv - mutant

  10. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  11. Skin prick test reactivity to aeroallergens by filaggrin mutation status

    DEFF Research Database (Denmark)

    Hougaard, M G; Johansen, J D; Linneberg, A

    2014-01-01

    BACKGROUND: Studies have shown that filaggrin gene (FLG) mutations are positively associated with sensitization to aero allergens. We hypothesized that FLG mutations would also have an effect on the mean size of positive skin prick test (SPT) reactions as well as the number of positive reactions....... OBJECTIVE: To investigate the effect of FLG mutations on the mean size and the number of positive SPT reactions, as well as the association with positive specific IgE. METHODS: A random sample of 3335 adults from the general population in Denmark was genotyped for the R501X and 2282del4 mutations in the FLG...... mutations alone are insufficient to cause secondary sensitization to allergens. The positive association seen in patients must be explained by a combination of further barrier abnormality caused by dermatitis as well as increased allergen exposure....

  12. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    Science.gov (United States)

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  13. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women

    International Nuclear Information System (INIS)

    Russell, W.L.

    1977-01-01

    The female germ cell stage of primary importance in radiation genetic hazards is the immature, arrested oocyte. In the mouse, this stage has a near zero or zero sensitivity to mutation induction by radiation. However, the application of these mouse results to women has been questioned on the ground that the mouse arrested oocytes are highly sensitive to killing by radiation, while the human cells are not; and, furthermore, that the mature and maturing oocytes in the mouse, which are resistant to killing, are sensitive to mutation induction. The present results have a 2-fold bearing on this problem. First, a more detailed analysis of oocyte-stage sensitivity to killing and mutation induction shows that there is no consistent correlation, either negative or positive, between the two. This indicates that the sensitivity to cell killing of the mouse immature oocyte may not be sufficient reason to prevent its use in predicting the mutational response of the human immature oocyte. Second, if the much more cautious assumption is made that the human arrested oocyte might be as mutationally sensitive as the most sensitive of all oocyte stages in the mouse, namely the maturing and mature ones, then the present data on the duration of these stages permit more accurate estimates than were heretofore possible on the mutational response of these stages to chronic irradiation

  14. Fitness, Competitive Ability, and Mutation Stability of Isolates of Colletotrichum acutatum from Strawberry Resistant to QoI Fungicides.

    Science.gov (United States)

    Forcelini, Bruna B; Rebello, Carolina S; Wang, Nan-Yi; Peres, Natalia A

    2018-04-01

    Quinone-outside inhibitor (QoI) fungicides are used to manage anthracnose of strawberry, caused by Colletotrichum acutatum. However, selection for resistance to QoI fungicides was first reported in 2013 in Florida and, subsequently, in strawberry nurseries and production areas across the United States and Canada. C. acutatum resistance to QoIs is associated with the G143A point mutation in the cytochrome b gene. This mutation is known to be associated with field resistance even at high rates of QoI. In this study, we investigated the relative fitness and competitive ability of QoI-resistant and -sensitive C. acutatum isolates. A fitness comparison did not indicate any difference between resistant and sensitive isolates in aggressiveness, spore production, and mycelial growth at different temperatures. Additionally, in the absence of selection pressure, resistant and sensitive isolates were equally competitive. Cultivation of QoI-resistant and QoI-sensitive isolates for four culture cycles in vitro in the absence of azoxystrobin showed that QoI resistance was stable. The observed lack of fitness penalties and stability of the G143A mutation in QoI-resistant C. acutatum populations suggest that the interruption and further reintroduction of QoI fungicides might not be an option for strawberry nurseries and fruit production areas. Further investigation of alternative chemical and nonchemical C. acutatum control practices, in addition to the integration of multisite fungicides, is needed to reduce the occurrence and distribution of QoI-resistant populations in strawberry fields.

  15. Manual on mutation breeding. 2. ed.

    International Nuclear Information System (INIS)

    1977-01-01

    The manual is a compilation of work done on the use of induced mutations in plant breeding, and presents general methods and techniques in this field. The use of chemical mutagens and ionizing radiations (X-rays, gamma rays, α- and β-particles, protons, neutrons) are described as well as the effects of these mutagens. The different types of mutations achieved can be divided into genome mutations, chromosome mutations and extra nuclear mutations. Separate chapters deal with mutation techniques in breeding seed-propagated species and asexually propagated plants (examples of development of cultivars given). Plant characters which can be improved by mutation breeding include yield, ripening time, growth habit, disease resistance and tolerance to environmental factors (temperature, salinity etc.). The use of mutagens for some specific plant breeding problems is discussed and attention is also paid to somatic cell genetics in connection with induced mutations. The manual contains a comprehensive bibliography (60 p. references) and a subject index

  16. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1985-01-01

    Practical, sensitive, effective, human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis. When available, such assays should allow us to fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. We will be able to validate the role of somatic mutations in carcinogenesis, to identify environmental factors that affect human germ cells, to integrate the effects of complex mixtures and the environment in the human subject, and to identify people who are hypersusceptible to genetic injury. Human cellular mutational assays, particularly when combined with cytogenetic and heritable mutational tests, promise to play pivotal roles in estimating the risk from low-dose radiation and chemical exposures. These combined methods avoid extrapolations of dose and from species to species, and may be sensitive enough and credible enough to permit politically, socially and scientifically acceptable risk management. 16 references

  17. Detection of MPL mutations by a novel allele-specific PCR-based strategy.

    Science.gov (United States)

    Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L

    2013-11-01

    MPL mutation testing is recommended in patients with suspected primary myelofibrosis or essential thrombocythemia who lack the JAK2 V617F mutation. MPL mutations can occur at allelic levels below 15%, which may escape detection by commonly used mutation screening methods such as Sanger sequencing. We developed a novel multiplexed allele-specific PCR assay capable of detecting most recurrent MPL exon 10 mutations associated with primary myelofibrosis and essential thrombocythemia (W515L, W515K, W515A, and S505N) down to a sensitivity of 2.5% mutant allele. Test results were reviewed from 15 reference cases and 1380 consecutive specimens referred to our laboratory for testing. Assay performance was compared to Sanger sequencing across a series of 58 specimens with MPL mutations. Positive cases consisted of 45 with W515L, 6 with S505N, 5 with W515K, 1 with W515A, and 1 with both W515L and S505N. Seven cases had mutations below 5% that were undetected by Sanger sequencing. Ten additional cases had mutation levels between 5% and 15% that were not consistently detected by sequencing. All results were easily interpreted in the allele-specific test. This assay offers a sensitive and reliable solution for MPL mutation testing. Sanger sequencing appears insufficiently sensitive for robust MPL mutation detection. Our data also suggest the relative frequency of S505N mutations may be underestimated, highlighting the necessity for inclusion of this mutation in MPL test platforms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  18. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    International Nuclear Information System (INIS)

    Fu, Yuejun; Huang, Rui; Zheng, Yali; Zhang, Zhiyun; Liang, Aihua

    2011-01-01

    Highlights: → IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. → IDH2 mutations are not required for the tumorigenesis of glioma. → IDH2 R172G can sensitize glioma sensitivity to chemotherapy through NADPH levels. → IDH2 R172G can give a benefit to traditional chemotherapy of glioma. → This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2 R172G on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2 R172G mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.

  19. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    Full Text Available BACKGROUND: BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. METHODS: We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. RESULTS: Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48, all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. CONCLUSION: Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid

  20. Petroleum pollution and mutation in mangroves

    International Nuclear Information System (INIS)

    Klekowski, E.J. Jr.; Corredor, J.E.; Morell, J.M.; Del Castillo, C.A.

    1994-01-01

    Chlorophyll-deficiency has often been used as a sensitive genetic end-point in plant mutation research. The frequency of trees heterozygous for nuclear chlorophyll-deficient mutations was determined for mangrove populations growing along the southwest coast of Puerto Rico. The frequency of heterozygotes was strongly correlated with the concentration of polycyclic aromatic hydrocarbons in the underlying sediment and with both acute and chronic petroleum pollution. Although epidemiological studies can seldom prove causation, a strong correlation is certainly compatible with a cause-effect relationship. Our results suggest that the biota of oil-polluted habitats may be experiencing increased mutation. (Author)

  1. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    Science.gov (United States)

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-01-01

    Full Text Available A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.

  3. Effect of growth temperature on lipid composition and ultraviolet sensitivity of human cells

    International Nuclear Information System (INIS)

    McAleer, M.A.; Moore, S.P.; Moss, S.H.

    1987-01-01

    Human skin fibroblasts were incubated at either 25 or 37 0 C before UV irradiation. Cells incubated at 25 0 C were more resistant to near UV radiation than cells grown at 37 0 C, but cells grown at the lower temperature were more sensitive to 254 nm radiation. Fatty acid analysis of membranes of cells showed that cells incubated at the lower temperature contained significantly higher amounts of linoleic acid (18:2) and linolenic acid (18:3) than cells incubated at 37 0 C. To determine if this difference in fatty acid content of the membranes was responsible for the UV survival characteristics of cells incubated at different temperatures, cells were enriched with either linoleate or linolenate during a 37 0 C incubation period. Gas chromatography revealed that cells incorporated the supplied fatty acid. Fatty acid enriched cells were then irradiated with near UV, and survival characteristics were compared to those obtained with cells grown at the lower incubation temperature. The results suggest that the different proportion of fatty acid content of the cells is not the cause of different UV sensitivities of cells grown at 25 0 C compared to cells grown at 37 0 C. (author)

  4. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  5. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    International Nuclear Information System (INIS)

    Lee, Yoon Jae; Jang, Yo Han; Kim, Paul; Lee, Yun Ha; Lee, Young Jae; Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik; Seong, Baik Lin

    2016-01-01

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  6. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  7. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  8. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy

    NARCIS (Netherlands)

    G. Mulligan (George); D.I. Lichter (David); A.D. Bacco (Alessandra Di); S.J. Blakemore (Stephen); A. Berger (Allison); E. Koenig (Erik); H. Bernard (Hugues); W.L. Trepicchio (William); B. Li (Bin); R. Neuwirth (Rachel); N. Chattopadhyay (Nibedita); J.B. Bolen (Joseph); A.J. Dorner (Andrew); H. van de Velde (Helgi); D. Ricci (Deborah); S. Jagannath (Sundar); J.R. Berenson (James); P.G. Richardson (Paul Gerard); E.A. Stadtmauer (Edward); R.Z. Orlowski (Robert); S. Lonial (Sagar); K.C. Anderson (Kenneth); P. Sonneveld (Pieter); J.F. San Miguel (Jesús Fernando); D.-L. Esseltine (Dixie-Lee); M. Schu (Matthew)

    2014-01-01

    textabstractVarious translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41

  9. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  10. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  11. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  12. Characterization of mutants of yeast sensitive to x rays

    International Nuclear Information System (INIS)

    Strike, T.L.

    1978-01-01

    This study deals with the characterization of mutants at the rad50 to rad57 loci selected on the basis of their sensitivity to x rays. They were also examined for sensitivity to uv and mms and for characteristics of mutation induction, heteroallelic reversion (gene conversion), liquid holding recovery from x rays, and sporulation. All the mutants were slightly to moderately sensitive to uv though they did not show the extreme sensitivity of the rad1 to rad22 mutations, and all demonstrated cross sensitivity to both x rays and MMS. If a mutant was very sensitive to x-rays, it was usually very sensitive to MMS also

  13. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture 2115

    Science.gov (United States)

    Shrub encroachment into grasslands creates a mosaic of different soil microsites ranging from open spaces to well-developed shrub canopies, and it is unclear how this affects the spatial variability in soil respiration characteristics, such as the sensitivity to soil temperature and moisture. This i...

  14. Alzheimer's disease presenilin-1 exon 9 deletion and L250S mutations sensitize SH-SY5Y neuroblastoma cells to hyperosmotic stress-induced apoptosis

    DEFF Research Database (Denmark)

    Tanii, H; Ankarcrona, M; Flood, F

    2000-01-01

    . In the present study, we determined whether PS1 mutations also sensitize cells to hyperosmotic stress-induced apoptosis. For this, we established SH-SY5Y neuroblastoma cell lines stably transfected with wild-type PS1 or either the PS1 exon 9 deletion (deltaE9) or PS1 L250S mutants. Cultured cells were exposed...

  15. Temperature dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Schuurmans, J.J.; Veerman, E.C.I.; Francke, J.A.; Torres-Pereira, J.M.G.; Kraayenhof, R.

    1984-01-01

    A comparative analysis of the temperature dependence of energy-transducing reactions in spinach (Spinacia oleracea) chloroplasts and their sensitivity for uncouplers and energy-transfer inhibitors at different temperatures is presented. Arrhenius plots reveal two groups of transitions, around 19/sup 0/C and around 12/sup 0/C. Activities that show transitions around 19/sup 0/C include linear electron flow from water to ferricyanide, its coupled photophosphorylation, the dark-release of the fluorescent probe atebrin, and the slow component of the 515 nm (carotenoid) absorbance decay after a flash. The transitions around 12/sup 0/C are observed with pyocyanine-mediated cyclic photophosphorylation, light- and dithioerythritol-activated ATP hydrolysis, the dark-release of protons, and the fast 515 nm decay component. It is suggested that both groups of temperature transitions are determined by proton displacements in different domains of the exposed thylakoid membranes. The effects of various uncouplers and an energy-transfer inhibitor are temperature dependent. Some uncouplers also show a different relative inhibition of proton uptake and ATP synthesis at lower temperatures. The efficiency of energy transduction (ATP/e/sub 3/) varied with temperature and was optimal around 10/sup 0/C.

  16. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal Carcinomas

    Directory of Open Access Journals (Sweden)

    Meagan B. Myers

    2016-04-01

    Full Text Available Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs, examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E. As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10−3 to 4.6 × 10−2 in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells.

  17. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Science.gov (United States)

    Ma, Gang; Yu, Jiang; Xiao, Yue; Chan, Danny; Gao, Bo; Hu, Jianxin; He, Yongxing; Guo, Shengzhen; Zhou, Jian; Zhang, Lingling; Gao, Linghan; Zhang, Wenjuan; Kang, Yan; Cheah, Kathryn SE; Feng, Guoyin; Guo, Xizhi; Wang, Yujiong; Zhou, Cong-zhao; He, Lin

    2011-01-01

    Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation. PMID:21537345

  18. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    Science.gov (United States)

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  19. Temperature-Sensitive Mutants of Mouse Hepatitis Virus Strain A59: Isolation, Characterization and Neuropathogenic Properties.

    NARCIS (Netherlands)

    M.J.M. Koolen (Marck); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert); M.C. Horzinek; B.A.M. van der Zeijst (Ben)

    1983-01-01

    textabstractTwenty 5-fluorouracil-induced temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59 were isolated from 1284 virus clones. Mutants were preselected on the basis of their inability to induce syncytia in infected cells at the restrictive temperature (40 degrees) vs the

  20. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Leslie Goo

    2017-02-01

    Full Text Available The structural flexibility or 'breathing' of the envelope (E protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F of the West Nile virus (WNV E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV, but not Zika virus (ZIKV, E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.

  1. Temperature- and pH-sensitive wearable materials for monitoring foot ulcers

    Directory of Open Access Journals (Sweden)

    Salvo P

    2017-01-01

    Full Text Available Pietro Salvo,1,2 Nicola Calisi,1 Bernardo Melai,1 Valentina Dini,3 Clara Paoletti,1 Tommaso Lomonaco,1 Andrea Pucci,1 Fabio Di Francesco,1 Alberto Piaggesi,4 Marco Romanelli3 1Department of Chemistry and Industrial Chemistry, University of Pisa, 2Institute of Clinical Physiology, National Council of Research, 3Wound Healing Research Unit, Department of Dermatology, University of Pisa, 4Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy Abstract: Foot ulcers account for 15% of comorbidities associated with diabetes. Presently, no device allows the status of foot ulcers to be continuously monitored when patients are not hospitalized. In this study, we describe a temperature and a pH sensor capable of monitoring diabetic foot and venous leg ulcers developed in the frame of the seventh framework program European Union project SWAN-iCare (smart wearable and autonomous negative pressure device for wound monitoring and therapy. Temperature is measured by exploiting the variations in the electrical resistance of a nanocomposite consisting of multiwalled carbon nanotubes and poly(styrene-b-(ethylene-co-butylene-b-styrene. The pH sensor used a graphene oxide (GO layer that changes its electrical potential when pH changes. The temperature sensor has a sensitivity of ~85 Ω/°C in the range 25°C–50°C and a high repeatability (maximum standard deviation of 0.1% over seven repeated measurements. For a GO concentration of 4 mg/mL, the pH sensor has a sensitivity of ~42 mV/pH and high linearity (R2=0.99. Keywords: diabetic foot ulcer, wearable sensors, wound temperature, wound pH

  2. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    Science.gov (United States)

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  3. A yeast mutant specifically sensitive to bifunctional alkylation

    International Nuclear Information System (INIS)

    Ruhland, A.; Kircher, M.; Wilborn, F.; Brendel, M.

    1981-01-01

    A mutation that specifically confers sensitivity to bi- and tri-functional alkylating agents is presented. No or little cross-sensitivity to radiation or monofunctional agents could be detected. Sensitivity does not seem to be due to preferential alkylation of mutant DNA as parent and mutant strain exhibit the same amount of DNA alkylation and the same pattern of DNA lesions including interstrand crosslinks. The mutation is due to a defect in a nuclear gene which has been designated SNM1 (sensitive to nitrogen mustard); it may control an important step in the repair of DNA interstrand crosslinks (orig.(AJ)

  4. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  5. Heterozygous ABCC8 mutations are a cause of MODY.

    Science.gov (United States)

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  6. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Wang LL

    2018-04-01

    Full Text Available Lulu Wang, Yan Li, Luchun Li, Zhijuan Wu, Dan Yang, Huiwen Ma, Donglin Wang Oncology Department, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Shapingba District, Chongqing, China Purpose: This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC patients harboring epidermal growth factor receptor (EGFR-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation in a real-life setting. Patients and methods: One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS. Results: Longer PFS and overall survival (OS, and better objective response rate (ORR were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. Conclusion: The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS,especially in those who harbored the EGFR exon 19 deletion. Keywords: non-small-cell lung cancer, EGFR-TKI, icotinib, chemotherapy, first-line treatment

  7. Effects of growth temperature and caffeine on genetic responses of Candida albicans to ethyl methanesulfonate, nitrous acid and ultraviolet radiation

    International Nuclear Information System (INIS)

    Sarachek, A.; Bish, J.T.

    1976-01-01

    Ultraviolet radiation is more effective than either ethyl methanesulfonate or nitrous acid in inducing reverse mutation from auxotrophy to prototrophy in C. albicans. The killing effect of each of the mutagens is greater for cells grown at 37 C than at 25 C after treatment; mutation frequencies are unaffected by post-treatment growth temperatures. Though caffeine depresses survival of mutagen treated cells at both 25 C or 37 C, its effect is more pronounced at 37 C. Caffeine has no effect on mutagenesis by nitrous acid or ethyl methanesulfonate; it depresses UV mutagenesis, but only at 37 C and at high UV dosages. These findings indicate that UV mutagenesis in C. albicans is mediated by a caffeine-sensitive, recombinational system for DNA repair analogous to those known to occur in other species of yeast. The repair of C. albicans is unique in being susceptible to caffeine only at high temperature and when the number of DNA lesions to be repaired is large. The caffeine sensitive steps in repair critical to UV mutagenesis are not involved in fixing mutations induced by the chemical mutagens tested

  8. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.

    Science.gov (United States)

    Kirschner, Doris B; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P Anthony; Tora, Làszlò

    2002-05-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.

  9. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    Science.gov (United States)

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  11. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  12. Effect of annealing temperature and dopant concentration on the thermoluminescence sensitivity in LiF:Mg,Cu,Ag material.

    Science.gov (United States)

    Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi

    2018-04-24

    LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Mg/Ca- Δ CO3porewater2- -temperature calibration for Globobulimina spp.: A sensitive paleothermometer for deep-sea temperature reconstruction

    Science.gov (United States)

    Weldeab, Syee; Arce, Adam; Kasten, Sabine

    2016-03-01

    Existing benthic foraminiferal Mg/Ca-temperature calibrations are surrounded by substantial uncertainties mainly due to low temperature sensitivity of Mg/Ca in most benthic foraminifers and the effect of carbonate ion concentration on benthic foraminiferal Mg/Ca. Here we present Mg/Ca analysis of Rose Bengal stained and exceptionally well-preserved tests of the infaunal benthic foraminifer Globobulimina spp. from 39 eastern equatorial Atlantic core top samples. Mg/Ca in Globobulimina spp. varies between 2.5 mmol/mol and 9.1 mmol/mol corresponding to bottom water temperatures (BWT) between 1.8 °C and 19.1 °C and Δ CO3pore water2- between 33.7 ± 4 and - 34.3 ± 4 μmol /kg in sediment depths between 1 and 10 cm. Mg/Ca and BWT are linearly correlated with a best fit of Mg/Ca [mmol/mol] = (0.36 ± 0.02) * BWT [°C] + 2.22 ± 0.19 (r2 = 0.92, p-value: 11 *10-20, and n = 39). Using total alkalinity and pH data of pore water samples from 64 Atlantic multi-corer sites, we obtained Δ CO3pore water2- data from the depth habitat range of Globobulimina spp. (≥1 cm ≤ 10 cm below sediment surface). We show that Δ CO3pore waterSUP>2- is significantly lower than and linearly co-varies with the ΔCO2-3 of the overlying bottom water: Δ CO3pore water2- = (0.67 ± 0.05) * Δ CO3bottom water2- - (39.84 ± 1.98); r2 = 0.75, p-value: 6 *10-20, n = 64. We found a Mg/Ca sensitivity of 0.009 ± 0.0044 mmol /mol per μmol/kg Δ CO3pore water2- and Mg/Ca temperature sensitivity of 0.32 ± 0.06 mmol /mol / °C after a correction for the Δ CO3pore water2- effect. This study provides a robust Mg/Ca-temperature calibration, highlights that Δ CO3pore water2- is spatially and most likely temporally variable, and contradicts the notion that infaunal foraminiferal Mg/Ca is relatively immune from ΔCO2-3 changes in the overlying bottom water. Furthermore, comparison of down core Mg/Ca data of Cibicides pachyderma and Globobulimina spp. demonstrates that the high temperature sensitivity of

  14. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    Science.gov (United States)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  15. Diagnostic markers for the detection of ovarian cancer in BRCA1 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Daphne Gschwantler-Kaulich

    Full Text Available Screening for ovarian cancer (OC in women at high risk consists of a combination of carbohydrate antigen 125 (CA125 and transvaginal ultrasound, despite their low sensitivity and specificity. This could be improved by the combination of several biomarkers, which has been shown in average risk patients but has not been investigated until now in female BRCA mutation carriers.Using a multiplex, bead-based, immunoassay system, we analyzed the concentrations of leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, CA125 and human epididymis antigen 4 in 26 healthy wild type women, 26 healthy BRCA1 mutation carriers, 28 wildtype OC patients and 26 OC patients with BRCA1 mutation.Using the ROC analysis, we found a high overall sensitivity of 94.3% in differentiating healthy controls from OC patients with comparable results in the wildtype subgroup (sensitivity 92.8%, AUC = 0.988; p = 5.2e-14 as well as in BRCA1 mutation carriers (sensitivity 95.2%, AUC = 0.978; p = 1.7e-15 at an overall specificity of 92.3%. The used algorithm also allowed to identify healthy BRCA1 mutation carriers when compared to healthy wildtype women (sensitivity 88.4%, specificity 80.7%, AUC = 0.895; p = 6e-08, while this was less pronounced in patients with OC (sensitivity 66.7%, specificity 67.8%, AUC = 0.724; p = 0.00065.We have developed an algorithm, which can differentiate between healthy women and OC patients and have for the first time shown, that such an algorithm can also be used in BRCA mutation carriers. To clarify a suggested benefit to the existing early detection program, large prospective trials with mainly early stage OC cases are warranted.

  16. Body temperature and cold sensation during and following exercise under temperate room conditions in cold‐sensitive young trained females

    OpenAIRE

    Fujii, Naoto; Aoki‐Murakami, Erii; Tsuji, Bun; Kenny, Glen P.; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-01-01

    Abstract We evaluated cold sensation at rest and in response to exercise‐induced changes in core and skin temperatures in cold‐sensitive exercise trained females. Fifty‐eight trained young females were screened by a questionnaire, selecting cold‐sensitive (Cold‐sensitive, n = 7) and non‐cold‐sensitive (Control, n = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then...

  17. Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane

    International Nuclear Information System (INIS)

    Liu Qi; Zhu Zhiyong; Yang Xiaomin; Chen Xiliang; Song Yufeng

    2007-01-01

    N-isopropylacrylamide (NIPAAm) monomer was grafted on and in poly(vinylidene fluoride) (PVDF) micro-pore membrane by γ-irradiation. The influence of irradiation and reaction conditions on the grafting yield was investigated in detail. The chemical structure of NIPAAm-grafted PVDF (NIPAAm-g-PVDF) membrane was characterized by Fourier transform infrared spectra and X-ray photoelectron spectra measurements. The morphology of the sample surface as well as the cross-section before and after grafting was characterized by scanning electron microscope. The temperature sensitive properties of the membrane were monitored by measuring the conductance as well as the water flux through the sample thickness. The results show that the membrane exhibits clearly temperature-sensitive permeability to water as expected, i.e. the permeability of water changes dramatically as the temperature goes over the lower critical solution temperature of NIPAAm

  18. Mutations induced by X-radiation in the yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Loprieno, N.; Barale, R.; Baroncelli, S.; Cammellini, A.; Melani, M.; Nieri, R.; Nozzolini, M.; Rossi, A.M.; Pisa Univ.

    1975-01-01

    Experiments on strains of yeast with different genetic backgrounds were done to evaluate the kinetics of inactivation and mutation induction by X-radiation. A system of forward mutation induction in five loci was used and a specific mutation rate was evaluated for the wild type. From a comparison of observations with wild type and radiation-sensitive strains, it may be assumed that in this yeast, mutations are mainly the result of a repair-active process. The range of genotypic and phenotypic influence upon the specific locus mutation rate was evaluated with appropriate biological material and experiments

  19. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  20. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs.

    Science.gov (United States)

    Kobayashi, Yoshihisa; Togashi, Yosuke; Yatabe, Yasushi; Mizuuchi, Hiroshi; Jangchul, Park; Kondo, Chiaki; Shimoji, Masaki; Sato, Katsuaki; Suda, Kenichi; Tomizawa, Kenji; Takemoto, Toshiki; Hida, Toyoaki; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI), whereas exon 20 insertions (Ins20) are resistant to them. However, little is known about mutations in exon 18. Mutational status of lung cancers between 2001 and 2015 was reviewed. Three representative mutations in exon 18, G719A, E709K, and exon 18 deletion (Del18: delE709_T710insD) were retrovirally introduced into Ba/F3 and NIH/3T3 cells. The 90% inhibitory concentrations (IC90s) of first-generation (1G; gefitinib and erlotinib), second-generation (2G; afatinib, dacomitinib, and neratinib), and third-generation TKIs (3G; AZD9291 and CO1686) were determined. Among 1,402 EGFR mutations, Del19, L858R, and Ins20 were detected in 40%, 47%, and 4%, respectively. Exon 18 mutations, including G719X, E709X, and Del18, were present in 3.2%. Transfected Ba/F3 cells grew in the absence of IL3, and NIH/3T3 cells formed foci with marked pile-up, indicating their oncogenic abilities. IC90s of 1G and 3G TKIs in G719A, E709K, and Del18 were much higher than those in Del19 (by >11-50-fold), whereas IC90s of afatinib were only 3- to 7-fold greater than those for Del19. Notably, cells transfected with G719A and E709K exhibited higher sensitivity to neratinib (by 5-25-fold) than those expressing Del19. Patients with lung cancers harboring G719X exhibited higher response rate to afatinib or neratinib (∼ 80%) than to 1G TKIs (35%-56%) by compilation of data in the literature. Lung cancers harboring exon 18 mutations should not be overlooked in clinical practice. These cases can be best treated with afatinib or neratinib, although the currently available in vitro diagnostic kits cannot detect all exon 18 mutations. ©2015 American Association for Cancer Research.

  1. Small-Angle Neutron Scattering Study of Structural Changes in Temperature-Sensitive Microgel Colloids

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.; Pedersen, J.S.; Lindner, P.

    2004-01-01

    The structure of temperature-sensitive poly(N-isopropylacrylamide) microgels in dilute suspension was investigated by means of small-angle neutron scattering. A direct modeling expression for the scattering intensity distribution was derived which describes very well the experimental data at all

  2. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers

    Science.gov (United States)

    Schlautmann, S.; Besselink, G. A. J.; Radhakrishna Prabhu, G.; Schasfoort, R. B. M.

    2003-07-01

    A method for the bonding of a microfluidic device at room temperature is presented. The wafer with the fluidic structures was bonded to a sensor wafer with gold pads by means of adhesive bonding, utilizing an UV-curable glue layer. To avoid filling the fluidic channels with the glue, a stamping process was developed which allows the selective application of a thin glue layer. In this way a microfluidic glass chip was fabricated that could be used for performing surface plasmon resonance measurements without signs of leakage. The advantage of this method is the possibility of integration of organic layers as well as other temperature-sensitive layers into a microfluidic glass device.

  3. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Science.gov (United States)

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  4. What is the Right Temperature Sensitivity for Foraminiferal Mg/ca Paleothermometry in Ancient Oceans?

    Science.gov (United States)

    Eggins, S.; Holland, K.; Hoenisch, B.; Spero, H. J.; Allen, K. A.

    2013-12-01

    Mg/Ca seawater thermometry has become a cornerstone of modern paleoceanography. Laboratory experiments, seafloor core-top samples, plankton trap and tow collected materials all indicate consistent temperature sensitivity (9-10% increase in Mg/Ca per °C) for a full range of modern planktic foraminifer species. While these results demonstrate the overall robustness of Mg/Ca paleothermometry for the modern ocean, it is an empirical tool for which there is limited understanding of its bio-physio-chemical basis and its applicability to ancient oceans. We have undertaken experimental cultures of Orbulina universa, Globigerinoides sacculifer and Globigerinoides ruber (pink) across a range of seawater compositions (temperature, carbonate chemistry and Mg/Casw) that encompass modern and ancient Paleogene and Cretaceous ocean compositions (Mg/Casw 0.25x to 2x modern and pCO2 = 200 to 1500 ppmv). Our results reveal that the sensitivity of the Mg/Ca-thermometer for planktic foraminifers reduces significantly with Mg/Casw, rather than remaining constant as has been widely assumed or, increasing at lower Mg/Casw as proposed recently by Evans and Müller (2012). These results indicate that the modern sensitivity of 9-10% increase in Mg/Ca per °C cannot yet be applied to obtain reliable relative temperature change estimates to ancient oceans. These results further suggest that variations in foraminiferal Mg/Ca compositions in ancient oceans with lower Mg/Casw may correspond to larger temperature variations than in the modern ocean. Evans D. and Müller W., Paleoceanography, vol. 27, PA4205, doi:10.1029/2012PA002315, 2012

  5. Tumor‐associated DNA mutation detection in individuals undergoing colonoscopy

    OpenAIRE

    Fleshner, Phillip; Braunstein, Glenn D.; Ovsepyan, Gayane; Tonozzi, Theresa R.; Kammesheidt, Anja

    2017-01-01

    Abstract The majority of colorectal cancers (CRC) harbor somatic mutations and epigenetic modifications in the tumor tissue, and some of these mutations can be detected in plasma as circulating tumor DNA (ctDNA). Precancerous colorectal lesions also contain many of these same mutations. This study examined plasma for ctDNA from patients undergoing a screening or diagnostic colonoscopy to determine the sensitivity and specificity of the ctDNA panel for detecting CRC and precancerous lesions. T...

  6. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; O’Neill, Brian; Lamarque, Jean-François

    2015-01-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m −2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  7. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Majhi

    2015-10-01

    Full Text Available Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8 is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th–5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA. We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.

  8. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    Science.gov (United States)

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  9. Identification of uvrA gene mutation sites in two mitomycin-sensitive deinococcus radiodurans strains

    International Nuclear Information System (INIS)

    Du Zeji; Kong Xianrong

    1999-01-01

    Deinococcus radiodurans (Dr) possesses a prominent ability to repair the DNA injury induced by various DNA- damaging agents including mitomycin C(MC), ultraviolet light (UV) and ionizing radiation. DNA damage resistance was restored in MC sensitive (MC s ) mutants 2621 and 3021 by transforming with DNAs of four cosmids clones derived from the gene library of strain KD8301 which showed the property of wild type phenotype to DNA-damaging agents. Gene affected by mutation (mtcA or mtcB) in both mutants was cloned and its nucleotide sequence was determined. The deduced amino acid (aa) sequence of Dr uvrA gene product consists of 1016 aa and shares homology with many bacterial UvrA proteins. The mutation sites in both mutants were identified by analyzing the polymerase chain reaction (PCR) fragments derived from the genomic DNA of the mutants. A 144-base pairs (bp) deletion including the start codon for the uvr A gene was observed in DNA of the mutant 3021, causing a defect in the gene. On the other hand, an insertion sequence (IS) element intervened in the uvrA gene of the mutant 2621, suggesting the insertional inactivation of the gene. The IS element comprise 1322-bp long, flanked by 19-bp inverted terminal repeats (ITR), and generated a 6-bp target duplication (TD). Two open reading frames (ORF) were found in the IS element. The deduced aa sequences of large and small ORF show homology to a putative transposes found in IS4 of Escherichia coli (E. coli) and to a resolvent found in IS Xc5 of Xanthomonas campestris (Xc), respectively. This is the first discovery of IS element in deino-bacteria, and the IS element was designated IS2621

  10. Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating.

    Science.gov (United States)

    Saffari, Pouneh; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin

    2012-07-10

    Fabrication and characterization of a UV inscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h)×125 μm(w)×1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off.

  11. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer.

    Science.gov (United States)

    Pejerrey, Sasha M; Dustin, Derek; Kim, Jin-Ah; Gu, Guowei; Rechoum, Yassine; Fuqua, Suzanne A W

    2018-05-07

    After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.

  12. The enhanced UV-sensitivity of Escherichia coli uvr A crp strain

    International Nuclear Information System (INIS)

    Skavronskaya, A.G.; Aleshkin, G.I.

    1979-01-01

    Mutations in genes cya and crp do not affect the UV cell sensitivity of Escherichia coli of wild type in relation to repairs of UV-injuries and UV induced mutations yield. Mutations in gene crp (protein defect of catabolitic activator - cap) result in UV sensitivity decrease of E. coli uvrA strain, imperfect as to the first stage of excision repairs not decreasing the quantity of revertants, induced by the UV-light

  13. RADIA: RNA and DNA integrated analysis for somatic mutation detection.

    Directory of Open Access Journals (Sweden)

    Amie J Radenbaugh

    Full Text Available The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis, a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84% and very high precision (98% and 99% for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.

  14. Large-scale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation.

    Science.gov (United States)

    Aris-Brosou, Stéphane; Bielawski, Joseph P

    2006-08-15

    A popular approach to examine the roles of mutation and selection in the evolution of genomes has been to consider the relationship between codon bias and synonymous rates of molecular evolution. A significant relationship between these two quantities is taken to indicate the action of weak selection on substitutions among synonymous codons. The neutral theory predicts that the rate of evolution is inversely related to the level of functional constraint. Therefore, selection against the use of non-preferred codons among those coding for the same amino acid should result in lower rates of synonymous substitution as compared with sites not subject to such selection pressures. However, reliably measuring the extent of such a relationship is problematic, as estimates of synonymous rates are sensitive to our assumptions about the process of molecular evolution. Previous studies showed the importance of accounting for unequal codon frequencies, in particular when synonymous codon usage is highly biased. Yet, unequal codon frequencies can be modeled in different ways, making different assumptions about the mutation process. Here we conduct a simulation study to evaluate two different ways of modeling uneven codon frequencies and show that both model parameterizations can have a dramatic impact on rate estimates and affect biological conclusions about genome evolution. We reanalyze three large data sets to demonstrate the relevance of our results to empirical data analysis.

  15. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  16. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    Science.gov (United States)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  17. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    Science.gov (United States)

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  18. Post-deposition annealing temperature dependence TiO_2-based EGFET pH sensor sensitivity

    International Nuclear Information System (INIS)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2016-01-01

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO_2 sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO_2 deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO_2 thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFET as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.

  19. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis

    NARCIS (Netherlands)

    Felten, Sandra; Leutenegger, Christian M.; Balzer, Hans Joerg; Pantchev, Nikola; Matiasek, Kaspar; Wess, Gerhard; Egberink, Herman|info:eu-repo/dai/nl/089740890; Hartmann, Katrin

    2017-01-01

    Background: Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse

  20. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  1. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA.

    Directory of Open Access Journals (Sweden)

    Orr Ashenberg

    2017-03-01

    Full Text Available The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP. Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors.

  2. Mutations Found in embCAB, embR, and ubiA Genes of Ethambutol-Sensitive and -Resistant Mycobacterium tuberculosis Clinical Isolates from China

    Directory of Open Access Journals (Sweden)

    Yuhui Xu

    2015-01-01

    Full Text Available To better understand the molecular mechanisms of Ethambutol (EMB resistance, the mutant hot spot region of five genes (embB, embA, embC, embR, and ubiA was amplified and sequenced in 109 EMB-resistant and 153 EMB-susceptible clinical isolates from China. Twenty-seven EMB-susceptible isolates were found to have nonsynonym mutations, 23 of which were in embB. The mutations occurred most frequently in embB (85.3%, 93 and were seldom in embC (2.8%, 3, embA (3.7%, 4, embR (3.7%, 4, and ubiA (8.3%, 9 in EMB-resistant isolates. For the embB gene, 63 isolates showed mutations at embB306, 20 at embB406, nine at embB497, and five at embB354 in EMB-resistant isolates. In addition, the particular mutants at embB406 and embB497 indicated both high levels of EMB resistance (MICs>5 μg/mL and broad anti-TB drug resistance spectrums. Our data supported the facts that embB306 could be used as a marker for EMB resistance with a sensitivity of 57.8% and a specificity of 78.8%.

  3. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation

    Science.gov (United States)

    Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.

    2018-04-01

    The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.

  4. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  5. Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2013-04-24

    Low-temperature processing of dye-sensitized solar cells (DSCs) is crucial to enable commercialization with low-cost, plastic substrates. Prior studies have focused on mechanical compression of premade particles on plastic or glass substrates; however, this did not yield sufficient interconnections for good carrier transport. Furthermore, such compression can lead to more heterogeneous porosity. To circumvent these problems, we have developed a low-temperature processing route for photoanodes where crystalline TiO2 is deposited onto well-defined, mesoporous templates. The TiO2 is grown by atomic layer deposition (ALD), and the crystalline films are achieved at a growth temperature of 200 C. The ALD TiO2 thickness was systematically studied in terms of charge transport and performance to lead to optimized photovoltaic performance. We found that a 15 nm TiO2 overlayer on an 8 μm thick SiO2 film leads to a high power conversion efficiency of 7.1% with the state-of-the-art zinc porphyrin sensitizer and cobalt bipyridine redox mediator. © 2013 American Chemical Society.

  6. Clinical significance of FLG gene mutations in children with atopic dermatitis

    Directory of Open Access Journals (Sweden)

    E. E. Varlamov

    2015-01-01

    Full Text Available Skin barrier dysfunction due to deficiency of the skin protein filaggrin is one of the factors involved in the pathogenesis of atopic dermatitis. Objective: to determine the clinical significance of 2282 del CAGT, R501X, R2447X, and S3247X mutations in the FLG gene in children with atopic dermatitis. The investigation included 58 children with atopic dermatitis. A molecular genetic analysis of the four mutations in the FLG gene was done in all the children. In the patients with FLG gene mutations, there was a tendency towards a higher frequency of sensitization to house dust allergens, significantly more often sensitization to cat epidermal allergen, and significantly higher levels of specific IgE to the cat epidermis. Conclusion. Mutations in the FLG gene encoding the protein filaggrin raise the risk for sensitization to domestic and epidermal allergens and, in case of already existing sensitization to the cat epidermis, the patients are found with a high degree of probability to have the high concentration of specific IgE to this allergen. The above fact justifies the need to place special emphasis on measures to eliminate house dust allergens, and cat epidermis allergen in particular, and to personalize approaches to therapy and prevention of atopic dermatitis in children. 

  7. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Barbara Ziegler

    2011-11-01

    Full Text Available This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip. Biochip hybridization identified 17 (21% samples to carry a KRAS mutation of which 16 (33% were adenocarcinomas and 1 (3% was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples.

  8. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP).

    Science.gov (United States)

    Schorderet, Daniel F; Escher, Pascal

    2009-11-01

    NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.

  9. Targeted ultradeep next-generation sequencing as a method for KIT D816V mutation analysis in mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Broesby-Olsen, Sigurd; Vestergaard, Hanne

    2016-01-01

    mutation levels. In this study, we established an NGS-based KIT mutation analysis and analyzed the sensitivity of D816V detection using the Ion Torrent platform. Eighty-two individual NGS analyses were included in the study. All samples were also analyzed using highly sensitive KIT D816V mutation...

  10. Chaperonin GroE-facilitated refolding of disulfide-bonded and reduced Taka-amylase A from Aspergillus oryzae.

    Science.gov (United States)

    Kawata, Y; Hongo, K; Mizobata, T; Nagai, J

    1998-12-01

    The refolding characteristics of Taka-amylase A (TAA) from Aspergillus oryzae in the presence of the chaperonin GroE were studied in terms of activity and fluorescence. Disulfide-bonded (intact) TAA and non-disulfide-bonded (reduced) TAA were unfolded in guanidine hydrochloride and refolded by dilution into buffer containing GroE. The intermediates of both intact and reduced enzymes were trapped by GroEL in the absence of nucleotide. Upon addition of nucleotides such as ATP, ADP, CTP or UTP, the intermediates were released from GroEL and recovery of activity was detected. In both cases, the refolding yields in the presence of GroEL and ATP were higher than spontaneous recoveries. Fluorescence studies of intrinsic tryptophan and a hydrophobic probe, 8-anilinonaphthalene-1-sulfonate, suggested that the intermediates trapped by GroEL assumed conformations with different hydrophobic properties. The presence of protein disulfide isomerase or reduced and oxidized forms of glutathione in addition to GroE greatly enhanced the refolding reaction of reduced TAA. These findings suggest that GroE has an ability to recognize folding intermediates of TAA protein and facilitate refolding, regardless of the existence or absence of disulfide bonds in the protein.

  11. Impact of mutation breeding in rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1992-01-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world's leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs

  12. Effect of combined mutagenic treatments on sensitivity and mutation frequency in rice

    International Nuclear Information System (INIS)

    Gopinathan Nair, V.

    1977-01-01

    Rice seeds were subjected to two sets of combination treatments of radiations and NMH. The effects of mutagenic treatments in the M 1 and M 2 generations were recorded and discussed. Mutation frequencies estimated as number of mutations per 100 M 1 years were not higher than the values expected on the basis of additive effects. When estimated as number of mutants per 100 M 2 plants, the frequencies revealed more than additive effects. The synergistic effect on mutant frequencies was due to increase in the segregation ratio of mutants. This effect was more pronounced at the higher dose combinations of fast neutrons and NMH. (author)

  13. Characterization of MMS-sensitive mutants of Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    DeLange, A.M.; Mishra, N.C.

    1982-01-01

    Several MMS-sensitive mutants of Neurospora crassa were compared with the wild-type strain for their relative sensitivities to UV, X-ray, and histidine. They were also compared for the frequency of spontaneous mutation at the loci which confer resistance to p-fluorophenylalanine. The mutants were also examined for possible defects in meiotic behavior in homozygous crosses and for any change in the inducible DNA salvage pathways. On the basis of these characterizations, the present MMS-sensitive mutants of Neurospora can be placed into three groups. On the basis of data presented, the MMS sensitivity of the first group mutants cannot be ascertained to arise from a defect in the DNA repair pathways; instead, it may stem from altered cell permeability or other pleotropic effects of the mus mutations. However, it can be suggested that the second and third group of mus mutants may indeed result from a defect in the DNA repair pathways controlled by the mus genes; this conclusion is based on their cross-sensitivity to a number of DNA-damaging agents such as MMS, UV and/or X-rays, high frequencies of spontaneous mutation and defects in meiotic behavior.

  14. Data on the experiments of temperature-sensitive hydrogels for pH-sensitive drug release and the characterizations of materials

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-04-01

    Full Text Available This article contains experimental data on the strain sweep, the calibration curve of drug (doxorubicin, DOX and the characterizations of materials. Data included are related to the research article “Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release” (Zhang et al., 2017 [1]. The strain sweep experiments were performed on a rotational rheometer. The calibration curves were obtained by analyzing the absorbance of DOX solutions on a UV–vis-NIR spectrometer. Molecular weight (Mw of the hyaluronic acid (HA and chitosan (CS were determined by gel permeation chromatography (GPC. The deacetylation degree of CS was measured by acid base titration.

  15. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    Science.gov (United States)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  16. [Genetic control of the sensitivity of Aspergillus nidulans to mutagenic factors. VII. Inheritance of cross-sensitivity to different mutagenic factors by uvs-mutants].

    Science.gov (United States)

    Evseeva, G V; Kameneva, S V

    1977-01-01

    To study the inheritance of the sensitivity to UV, X-rays, methylmethanesulphonate (MMS), nitrosoguanidine (NG) and nitrous acid (NA) in five uvs mutants of Aspergillus nidulans, having multiple sensitivity to these factors, the sensitivity of recombinants obtained from crossing uvs mutants with uvs+ strain, resistant to all the factors analysed, and uvs leads to uvs+ revertants is investigated. Four uvs mutants (15, 17, 19 and 26) are found to have a nomogenic control of sensitivity to different mutagens. In one mutant (uvs11) the sensitivity to five factors is controlled by two non-linked mutations, one of them determining the sensitivity to UV, NG, NA, and the other--to X-rays and MMC. Phenotypic manifestations of uvs mutations is modified by cell genotype, both chromosomal and cytoplasmic factors being responsible for the modification. Phenotypic modification of uvs mutation results in the change to some (but not to all) mutagenic factors. It suggests, that not the product of uvs gene, but some other components of the reparation complex are modified. Otherwise, reparation of different DNA damages can be carried out by a single enzyme acting in different reparation complexes.

  17. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  18. A quasi-distributed temperature sensor interrogated by a wavelength-sensitive optical time-domain reflectometer

    International Nuclear Information System (INIS)

    Crunelle, C; Wuilpart, M; Caucheteur, C; Mégret, P

    2009-01-01

    In this note, we present a quasi-distributed temperature monitoring system based on the concatenation of identical low-reflective fiber Bragg gratings (FBGs) and interrogated by means of an optical time-domain reflectometer (OTDR). An original wavelength-sensitive system placed before the OTDR detector is used to analyze the reflected signal. This system allows the height of the FBG reflection peaks in the OTDR trace to depend on their resonance wavelength, and therefore to the local temperature. In addition, a simple but original reference method is proposed. The configuration of the whole interrogating device is kept very basic, as a standard OTDR and some passive components are used. The cost of the overall system is therefore very limited. In this note, the wavelength-sensitive system is studied in details, as well as the reference method. Experimental results are reported. (technical design note)

  19. Sensitivity Analysis of RCW Temperature on the Moderator Subcooling Margin for the LBLOCA of Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Seo, Si Won; Kim, Jong Hyun; Choi, Sung Soo; Kim, Sung Min

    2016-01-01

    Moderator subcooling margin has been analyzed using the MODTURC_CLAS code in the Large LOCA FSAR PARTs C and F. Performance of moderator heat exchangers depends on RCW (Raw reCirculated Water) temperature. And also the temperature is affected by sea water temperature. Unfortunately, sea water temperature is gradually increasing by global warming. So it will cause increase of RCW temperature inevitably. There is no assessment result of moderator subcooling with increasing RCW temperature even if it is important problem. Therefore, sensitivity analysis is performed to give information about the relation between RCW temperature and moderator subcooling in the present study. The moderator subcooling margin has to be ensured to establish the moderator heat removal when Large LOCA with LOECI and Loss of Class IV Power occurs. However, sea water temperature is increasing gradually due to global warming. So it is necessary that sensitivity analysis of RCW temperature on the moderator subcooling margin to estimate the availability of the moderator heat removal. In the present paper, the moderator subcooling analysis is performed using the same methodology and assumptions except for RCW temperature used in FSAR Large LOCA PART F.

  20. Sensitivity Analysis of RCW Temperature on the Moderator Subcooling Margin for the LBLOCA of Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Kim, Jong Hyun; Choi, Sung Soo [Atomic Creative Technology Co., Daejeon (Korea, Republic of); Kim, Sung Min [Central Research Institute, Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    Moderator subcooling margin has been analyzed using the MODTURC{sub C}LAS code in the Large LOCA FSAR PARTs C and F. Performance of moderator heat exchangers depends on RCW (Raw reCirculated Water) temperature. And also the temperature is affected by sea water temperature. Unfortunately, sea water temperature is gradually increasing by global warming. So it will cause increase of RCW temperature inevitably. There is no assessment result of moderator subcooling with increasing RCW temperature even if it is important problem. Therefore, sensitivity analysis is performed to give information about the relation between RCW temperature and moderator subcooling in the present study. The moderator subcooling margin has to be ensured to establish the moderator heat removal when Large LOCA with LOECI and Loss of Class IV Power occurs. However, sea water temperature is increasing gradually due to global warming. So it is necessary that sensitivity analysis of RCW temperature on the moderator subcooling margin to estimate the availability of the moderator heat removal. In the present paper, the moderator subcooling analysis is performed using the same methodology and assumptions except for RCW temperature used in FSAR Large LOCA PART F.

  1. Krokot (Portulaca oleracea L As a Natural Sensitizer for TiO2 Dye-sensitized Solar Cells: The Effect of Temperature Extract

    Directory of Open Access Journals (Sweden)

    Reyza Anni Mufidah

    2015-10-01

    Full Text Available The solar cell is formed by a sandwich structure, in which two electrodes flank the primary electrolyte that is containing redox I-/based on PEG (Polyethylene Glycol. The working-electrode which is TiO2 layer on an ITO glass substrate is sensitized with krokot dye as the electron donor. The counter electrode is a layer of carbon. The fabrication cell is immersed with the krokot dye with 40°C, 50°C, 60°C extract temperature. The result of the UV-Vis shows that the absorption of wave-length from dye extract of krokot is located in the visible region with the absorbance peak in 420,5 nm and 665,5 nm which are the peak of chlorophyll. For the UV-Vis solid system, there are the highest band gap  in  50°C extract temperature that make the capability of absorption toward UV spectrum is large. Furthermore, in the functional group analysed by FT-IR, there are shiften-carbonil and hydroxyl group after they are sensitized. From the current and voltage test with I-V meter keithley 2400 is resulted that on the 50°C extract temperature produces the highest efficiency of reaches which is 2.63 x 10-3 %.

  2. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations.

    Science.gov (United States)

    Hoyt, M A; He, L; Totis, L; Saunders, W S

    1993-09-01

    The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-delta strain. The extragenic suppressors analyzed were all found to be alleles of the KAR3 gene. KAR3 encodes a distinct kinesin-related protein whose action antagonizes Cin8p/Kip1p function. All seven alleles analyzed were altered within the region of KAR3 that encodes the putative force-generating (or "motor") domain. These mutations also suppressed the inviability associated with the cin8-delta kip1-delta genotype, a property not shared by a deletion of KAR3. Other properties of the suppressing alleles revealed that they were not null for function. Six of the seven were unaffected for the essential karyogamy and meiosis properties of KAR3 and the seventh was dominant for the suppressing trait. Our findings suggest that despite an antagonistic relationship between Cin8p/Kip1p and Kar3p, aspects of their mitotic roles may be similar.

  3. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis.

    Science.gov (United States)

    Felten, Sandra; Leutenegger, Christian M; Balzer, Hans-Joerg; Pantchev, Nikola; Matiasek, Kaspar; Wess, Gerhard; Egberink, Herman; Hartmann, Katrin

    2017-08-02

    Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (RT-PCR) specifically designed to detect FCoV spike gene mutations at two nucleotide positions. It was hypothesized that this test would correctly discriminate feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). The study included 63 cats with signs consistent with FIP. FIP was confirmed in 38 cats. Twenty-five control cats were definitively diagnosed with a disease other than FIP. Effusion and/or serum/plasma samples were examined by real-time RT-PCR targeting the two FCoV spike gene fusion peptide mutations M1058 L and S1060A using an allelic discrimination approach. Sensitivity, specificity, negative and positive predictive values including 95% confidence intervals (95% CI) were calculated. FIPV was detected in the effusion of 25/59 cats, one of them being a control cat with chronic kidney disease. A mixed population of FIPV/FECV was detected in the effusion of 2/59 cats; all of them had FIP. RT-PCR was negative or the pathotype could not be determined in 34/59 effusion samples. In effusion, sensitivity was 68.6% (95% CI 50.7-83.2), specificity was 95.8% (95% CI 78.9-99.9). No serum/plasma samples were positive for FIPV. Although specificity of the test in effusions was high, one false positive result occurred. The use of serum/plasma cannot be recommended due to a low viral load in blood.

  4. High-throughput mutational analysis of TOR1A in primary dystonia

    Directory of Open Access Journals (Sweden)

    Truong Daniel D

    2009-03-01

    Full Text Available Abstract Background Although the c.904_906delGAG mutation in Exon 5 of TOR1A typically manifests as early-onset generalized dystonia, DYT1 dystonia is genetically and clinically heterogeneous. Recently, another Exon 5 mutation (c.863G>A has been associated with early-onset generalized dystonia and some ΔGAG mutation carriers present with late-onset focal dystonia. The aim of this study was to identify TOR1A Exon 5 mutations in a large cohort of subjects with mainly non-generalized primary dystonia. Methods High resolution melting (HRM was used to examine the entire TOR1A Exon 5 coding sequence in 1014 subjects with primary dystonia (422 spasmodic dysphonia, 285 cervical dystonia, 67 blepharospasm, 41 writer's cramp, 16 oromandibular dystonia, 38 other primary focal dystonia, 112 segmental dystonia, 16 multifocal dystonia, and 17 generalized dystonia and 250 controls (150 neurologically normal and 100 with other movement disorders. Diagnostic sensitivity and specificity were evaluated in an additional 8 subjects with known ΔGAG DYT1 dystonia and 88 subjects with ΔGAG-negative dystonia. Results HRM of TOR1A Exon 5 showed high (100% diagnostic sensitivity and specificity. HRM was rapid and economical. HRM reliably differentiated the TOR1A ΔGAG and c.863G>A mutations. Melting curves were normal in 250/250 controls and 1012/1014 subjects with primary dystonia. The two subjects with shifted melting curves were found to harbor the classic ΔGAG deletion: 1 a non-Jewish Caucasian female with childhood-onset multifocal dystonia and 2 an Ashkenazi Jewish female with adolescent-onset spasmodic dysphonia. Conclusion First, HRM is an inexpensive, diagnostically sensitive and specific, high-throughput method for mutation discovery. Second, Exon 5 mutations in TOR1A are rarely associated with non-generalized primary dystonia.

  5. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients.

    Science.gov (United States)

    Papadopoulou, Eirini; Tsoulos, Nikolaos; Tsirigoti, Angeliki; Apessos, Angela; Agiannitopoulos, Konstantinos; Metaxa-Mariatou, Vasiliki; Zarogoulidis, Konstantinos; Zarogoulidis, Pavlos; Kasarakis, Dimitrios; Kakolyris, Stylianos; Dahabreh, Jubrail; Vlastos, Fotis; Zoublios, Charalampos; Rapti, Aggeliki; Papageorgiou, Niki Georgatou; Veldekis, Dimitrios; Gaga, Mina; Aravantinos, Gerasimos; Karavasilis, Vasileios; Karagiannidis, Napoleon; Nasioulas, George

    2015-10-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor ( EGFR ) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18-21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  6. Suppressor Analysis of CRL4Cdt2 Defective and cdc48-353 Temperature Sensitive Mutants in Fission Yeast

    DEFF Research Database (Denmark)

    Marinova, Irina Nikolaeva

    chaperone-like complex involved in numerous cellular processes, including protein degradation, cell cycle control, DNA repair, and vesicle fusion. The cdc48 gene is essential in fission yeast and mutations or changes in Cdc48/p97 protein expression have been linked to neurological disorders and cancer......SummaryPart 1CRL4Cdt2 E3 ligase is a key regulator of cellular proliferation and genome integrity, as it promotes the degradation of proteins involved in cell cycle progression, DNA replication and repair. In fission yeast the small intrinsically disordered protein Spd1 is targeted for degradation...... that these mutations alleviate the checkpoint dependency, the DNA damage sensitivity and the meiotic defects associated with Spd1 accumulation. Further analysis showed that whereas the V40G and S43L substitutions do not have a significant impact on Suc22R2 nuclear import function of Spd1, they affect the interaction...

  7. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    Science.gov (United States)

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Directory of Open Access Journals (Sweden)

    Chen D

    2012-05-01

    Full Text Available Daquan Chen,1,2 Kaoxiang Sun,1,2 Hongjie Mu,1 Mingtan Tang,3 Rongcai Liang,1,2 Aiping Wang,1,2 Shasha Zhou,1 Haijun Sun,1 Feng Zhao,1 Jianwen Yao,1 Wanhui Liu1,21School of Pharmacy, Yantai University, 2State Key Laboratory of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of ChinaBackground: In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS polymer was used for vaginal administration.Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment.Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0. Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0.Conclusion: This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery.Keywords: mPEG-Hz-CHEMS polymer, pH-sensitive liposomes, thermosensitive

  9. New mutations affecting induced mutagenesis in yeast.

    Science.gov (United States)

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  10. Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations.

    LENUS (Irish Health Repository)

    Kapoor, R R

    2011-10-01

    Dominantly acting loss-of-function mutations in the ABCC8\\/KCNJ11 genes can cause mild medically responsive hyperinsulinaemic hypoglycaemia (HH). As controversy exists over whether these mutations predispose to diabetes in adulthood we investigated the prevalence of diabetes in families with dominantly inherited ATP-sensitive potassium (K(ATP)) channel mutations causing HH in the proband.

  11. Kinetics of mutation induction by ultraviolet light in excision-deficient yeast.

    Science.gov (United States)

    Eckardt, F; Haynes, R H

    1977-02-01

    We have measured the frequency of UV-induced reversions (locus plus suppressor) for the ochre alleles ade2-1 and lys2-1 and forward mutations (ade2 adex double auxotrophs) in an excision-deficient strain of Saccharomyces cerevisiae (rad2-20). For very low UV doses, both mutational systems exhibit linear induction kinetics. However, as the dose increases, a strikingly different response is observed: in the selective reversion system a transition to higher order induction kinetics occurs near 9 ergs/mm2 (25% survival), whereas in the nonselective forward system the mutation frequency passes through a maximum near 14 ergs/mm2 (4.4% survival) and then declines. This contrast in kinetics cannot be explained in any straightforward way by current models of induced mutagenesis, which have been developed primarily on the basis of bacterial data. The bacterial models are designed to accommodate the quadratic induction kinetics that are frequently observed in these systems. We have derived a mathematical expression for mutation frequency that enables us to fit both the forward and reversion data on the assumptions that mutagenesis is basically a "single event" Poisson process, and that mutation and killing are not necessarily independent of one another. In particular, the dose-response relations are consistent with the idea that the sensitivity of the revertants is about 25% less than that of the original cell population, whereas the sensitivity of the forward mutants is about 29% greater than the population average. We argue that this relatively small differential sensitivity of mutant and nonmutant cells is associated with events that take place during mutation expression and clonal growth.

  12. Kinetics of mutation induction by ultraviolet light in excision-deficient yeast

    International Nuclear Information System (INIS)

    Eckardt, F.; Haynes, R.H.

    1977-01-01

    We have measured the frequency of uv-induced reversions (locus plus suppressor) for the ochre alleles ade 2-1 and lys 2-1 and forward mutations (ade2 adex double auxotrophs) in an excision-deficient strain of Saccharomyces cerevisiae (rad 2-20). For very low uv doses, both mutational systems exhibit linear induction kinetics. However, as the dose increases, a strikingly different response is observed: in the selective reversion system a transition to higher order induction kinetics occurs near 9 ergs/mm 2 (25 percent survival), whereas in the nonselective forward system the mutation frequency passes through a maximum near 14 ergs/mm 2 (4.4 percent survival) and then declines. This contrast in kinetics cannot be explained in any straightforward way by current models of induced mutagenesis, which have been developed primarily on the basis of bacterial data. The bacterial models are designed to accommodate the quadratic induction kinetics that are frequently observed in these systems. We have derived a mathematical expression for mutation frequency that enables us to fit both the forward and reversion data on the assumptions that mutagenesis is basically a ''single event'' Poisson process, and that mutation and killing are not necessarily independent of one another. In particular, the dose-response relations are consistent with the idea that the sensitivity of the revertants is about 25 percent less than that of the original cell population, whereas the sensitivity of the forward mutants is about 29 percent greater than the population average. We argue that this relatively small differential sensitivity of mutant and nonmutant cells is associated with events that take place during mutation expression and clonal growth

  13. Competitive amplification of differentially melting amplicons (CADMA improves KRAS hotspot mutation testing in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Kristensen Lasse

    2012-11-01

    Full Text Available Abstract Background Cancer is an extremely heterogeneous group of diseases traditionally categorized according to tissue of origin. However, even among patients with the same cancer subtype the cellular alterations at the molecular level are often very different. Several new therapies targeting specific molecular changes found in individual patients have initiated the era of personalized therapy and significantly improved patient care. In metastatic colorectal cancer (mCRC a selected group of patients with wild-type KRAS respond to antibodies against the epidermal growth factor receptor (EGFR. Testing for KRAS mutations is now required prior to anti-EGFR treatment, however, less sensitive methods based on conventional PCR regularly fail to detect KRAS mutations in clinical samples. Methods We have developed sensitive and specific assays for detection of the seven most common KRAS mutations based on a novel methodology named Competitive Amplification of Differentially Melting Amplicons (CADMA. The clinical applicability of these assays was assessed by analyzing 100 colorectal cancer samples, for which KRAS mutation status has been evaluated by the commercially available TheraScreen® KRAS mutation kit. Results The CADMA assays were sensitive to at least 0.5% mutant alleles in a wild-type background when using 50 nanograms of DNA in the reactions. Consensus between CADMA and the TheraScreen kit was observed in 96% of the colorectal cancer samples. In cases where disagreement was observed the CADMA result could be confirmed by a previously published assay based on TaqMan probes and by fast COLD-PCR followed by Sanger sequencing. Conclusions The high analytical sensitivity and specificity of CADMA may increase diagnostic sensitivity and specificity of KRAS mutation testing in mCRC patients.

  14. Mutation scanning of peach floral genes

    Directory of Open Access Journals (Sweden)

    Wilde H Dayton

    2011-05-01

    Full Text Available Abstract Background Mutation scanning technology has been used to develop crop species with improved traits. Modifications that improve screening throughput and sensitivity would facilitate the targeted mutation breeding of crops. Technical innovations for high-resolution melting (HRM analysis are enabling the clinic-based screening for human disease gene polymorphism. We examined the application of two HRM modifications, COLD-PCR and QMC-PCR, to the mutation scanning of genes in peach, Prunus persica. The targeted genes were the putative floral regulators PpAGAMOUS and PpTERMINAL FLOWER I. Results HRM analysis of PpAG and PpTFL1 coding regions in 36 peach cultivars found one polymorphic site in each gene. PpTFL1 and PpAG SNPs were used to examine approaches to increase HRM throughput. Cultivars with SNPs could be reliably detected in pools of twelve genotypes. COLD-PCR was found to increase the sensitivity of HRM analysis of pooled samples, but worked best with small amplicons. Examination of QMC-PCR demonstrated that primary PCR products for further analysis could be produced from variable levels of genomic DNA. Conclusions Natural SNPs in exons of target peach genes were discovered by HRM analysis of cultivars from a southeastern US breeding program. For detecting natural or induced SNPs in larger populations, HRM efficiency can be improved by increasing sample pooling and template production through approaches such as COLD-PCR and QMC-PCR. Technical advances developed to improve clinical diagnostics can play a role in the targeted mutation breeding of crops.

  15. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    Science.gov (United States)

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com [NANO-ElecTronic Centre (NET), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Abdullah, W. F. H., E-mail: wanfaz@salam.uitm.edu.my [Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-Science Technology (NST), Institute of Science (IOS), Faculty of Applied Sciences, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Herman, S. H., E-mail: hana1617@salam.uitm.edu.my [Core of Frontier Materials & Industry Applications, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFET as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.

  17. A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes

    International Nuclear Information System (INIS)

    Fumagalli, Debora; Gavin, Patrick G; Taniyama, Yusuke; Kim, Seung-Il; Choi, Hyun-Joo; Paik, Soonmyung; Pogue-Geile, Katherine L

    2010-01-01

    An increasing number of studies show that genetic markers can aid in refining prognostic information and predicting the benefit from systemic therapy. Our goal was to develop a high throughput, cost-effective and simple methodology for the detection of clinically relevant hot spot mutations in colon cancer. The Maldi-Tof mass spectrometry platform and OncoCarta panel from Sequenom were used to profile 239 colon cancers and 39 metastatic lymph nodes from NSABP clinical trial C-07 utilizing routinely processed FFPET (formalin-fixed paraffin-embedded tissue). Among the 238 common hot-spot cancer mutations in 19 genes interrogated by the OncoCarta panel, mutations were detected in 7 different genes at 26 different nucleotide positions in our colon cancer samples. Twenty-four assays that detected mutations in more than 1% of the samples were reconfigured into a new multiplexed panel, termed here as ColoCarta. Mutation profiling was repeated on 32 mutant samples using ColoCarta and the results were identical to results with OncoCarta, demonstrating that this methodology was reproducible. Further evidence demonstrating the validity of the data was the fact that the mutation frequencies of the most common colon cancer mutations were similar to the COSMIC (Catalog of Somatic Mutations in Cancer) database. The frequencies were 43.5% for KRAS, 20.1% for PIK3CA, and 12.1% for BRAF. In addition, infrequent mutations in NRAS, AKT1, ABL1, and MET were detected. Mutation profiling of metastatic lymph nodes and their corresponding primary tumors showed that they were 89.7% concordant. All mutations found in the lymph nodes were also found in the corresponding primary tumors, but in 4 cases a mutation was present in the primary tumor only. This study describes a high throughput technology that can be used to interrogate DNAs isolated from routinely processed FFPET and identifies the specific mutations that are common to colon cancer. The development of this technology and the Colo

  18. EGFR Mutation Status in Uighur Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Li SHAN

    2013-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR, a transmembrane protein, is a member of the tyrosine kinase family. Gefitinib, an EGFR tyrosine-kinase inhibitors, has shown a high response rate in the treatment of lung cancer in patients with EGFR mutation. However, significant differences in EGFR mutations exist among different ethnic groups. The aim of this study is to investigate the prevalence of EGFR mutations in Uighur lung adenocarcinoma patients by using a rapid and sensitive detection method and to analyze EGFR mutation differences compared with Han lung adenocarcinoma patients. Methods We examined lung adenocarcinoma tissues from 138 patients, including 68 Uighur lung adenocarcinoma patients and 70 Han lung adenocarcinoma patients, for EGFR mutations in exons 18, 19, 20, and 21 by using the amplification refractory mutation system (ARMS PCR method. The mutation differences between Uighur and Han lung adenocarcinoma were compared by using the chi-square test method. Results EGFR mutations were detected in 43 (31.2% of the 138 lung adenocarcinoma patients. EGFR mutations were detected in 11 (16.2% of the 68 Uighur lung adenocarcinoma patients and in 32 (45.7% of the 70 Han lung adenocarcinoma patients. Significant differences were observed in the EGFR mutations between Uighur lung adenocarcinoma patients and Han lung adenocarcinoma patients (P<0.001. Conclusion Our results indicate that the EGFR mutation in Uighur lung adenocarcinoma patients (16.2% is significantly lower than that in Han lung adenocarcinoma patients (45.7%.

  19. Mutation induction by ion beams in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-04-01

    This review mainly describes study results obtained in the Takasaki ion-beam (IB) irradiation facility (TIARA) on the mutation induction in higher plants. Biological effects like lethality and on budding of IBs (carbon, Ne and Ar) are discussed in relation with their linear energy transfer (LET), relative biological effectiveness and the developmental states in shepherd's-purse and tobacco. Induced mutation by IB are characterized by those findings that the mutation rate by C beam is 1.9 x 10{sup -6}, being 17 times higher than the electron beam, in the shepherd's-purse, that C beam induces larger structural changes than electron beam when examined by molecular mechanism of tt and gl gene mutations, and that mutation spectrum of IB is different from that of {gamma}-ray and is wider. Novel mutants are described on shepherd's-purse (pigment mutants, ultraviolet (UV)-resistant and sensitive ones, and flowering ones), disease-resistant rice, barley and tobacco plants, and flowering plants. IB mutation is possibly useful for solving the problems of environment and foods in future. (N.I.)

  20. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    Science.gov (United States)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  1. Western Arctic Temperature Sensitivity Varies under Different Mean States

    Science.gov (United States)

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  2. TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions

    Directory of Open Access Journals (Sweden)

    Guangda Peng

    2016-10-01

    Full Text Available The transient receptor potential cation channel, subfamily A, member 1 (TRPA1 is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1 have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1.

  3. FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey

    2010-09-01

    Full Text Available Abstract Background Mutations in FLT3 result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of FLT3 mutations in a population series of childhood leukemia patients from Northern California. Methods We screened and sequenced FLT3 mutations (point mutations and internal tandem duplications, ITDs among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods. Results We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12% and 9 of 441 acute lymphocytic leukemias (ALLs, 2%. Among AMLs, FLT3 mutations were more common in older patients, and among ALLs, FLT3 mutations were more common in patients with high hyperdiploidy (3.7% than those without this cytogenetic feature (1.4%. Five FLT3 ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor FLT3 mutations at birth. Conclusions FLT3 mutations were not common in our population-based patient series in California, and patients who harbor FLT3 mutations most likely acquire them after they are born.

  4. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin

    NARCIS (Netherlands)

    Rico, Andreu; Zhao, Wenkai; Gillissen, Frits; Lürling, Miquel; Brink, van den Paul J.

    2018-01-01

    Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and

  5. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  6. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Science.gov (United States)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  7. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish ( Cheilodipterus quinquelineatus)

    Science.gov (United States)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam; Steffensen, John F.; Rummer, Jodie L.

    2015-12-01

    As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature ( T pref), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish ( Cheilodipterus quinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25 °C, approximating summer average temperatures in the wild. However, 32 °C fish moved more frequently to correct their thermal environment than 28 °C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns.

  8. Influence of annealing temperature and organic dyes as sensitizers on sol–gel derived TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Mamta; Abbas, Saeed J.; Tripathi, S.K., E-mail: surya@pu.ac.in

    2014-09-15

    Highlights: • Preparation of rice shaped TiO{sub 2} nanorods with anatase structure by sol–gel method. • Effect of post deposition annealing on structural properties of TiO{sub 2} is studied. • Unlike individual dye, absorption of Cocktail dye with TiO{sub 2} nanorods is broader. • Cocktail dye sensitized TiO{sub 2} film has more photosensitivity than EY, RB, AO. • Increase in photosensitivity up to optimum temperature is due to hole passivation. - Abstract: Five different organic dyes and reported cocktail dye composed of these dyes are used as sensitizer for titanium dioxide (TiO{sub 2}). Rice shaped (TiO{sub 2}) nanorods are prepared by using sol–gel method. The films annealed at 673 K and above are crystalline with anatase structure. The effect of post annealing temperature is studied on various structural parameters. Cocktail dye shows broader absorption with TiO{sub 2} nanorods in visible region compared with five dyes. Maximum photosensitivity is obtained with RhB dye, followed by FGF and cocktail dye sensitized TiO{sub 2} films. Increase in photosensitivity is due to passivating some hole traps on the surface up to some optimum temperature, above which photosensitivity decreases due to a higher photo activation energy compared to dark conductivity in low temperature region and also may be due to damage of the dye molecule. This work may prove its worth for understanding the electron transport in dye sensitized nanodevices.

  9. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)

    DEFF Research Database (Denmark)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam

    2015-01-01

    provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish (Cheilodipterusquinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. Tpref was determined using a shuttlebox system, which allowed fish...... than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns....

  10. Sensitivity study and functionalization of cross section to fuel and moderator temperature

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Song, Jae Seung; Cho, Young Chul

    1995-11-01

    A reactor core neutronics code MASTER is under development as a part of Korean Core Design System ADONIS. MASTER solves two-group three-dimensional; neutron diffusion equation which requires fuel assembly-wise group constants, to calculate the neutron flux distribution in the core. The group constants are obtained from the fuel assembly multi-group neutron transport calculation, and inputted as functions of the core operating condition. The functionalization of the group constant requires sensitivity analysis to various core operating conditions. In this report, the sensitivity of group constant to fuel and moderator temperature were analyzed. Lumped higher order macroscopic cross section derivative method was developed to reduce the computer memory and the number of floating point operations to treat group constants in MASTER. 1 fig., 6 tabs., 2 refs. (Author) .new

  11. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Energy Technology Data Exchange (ETDEWEB)

    Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Thopan, P.; Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  12. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    International Nuclear Information System (INIS)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation

  13. Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology

    Science.gov (United States)

    Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng

    2018-03-01

    The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P plant species in other climates and environments using similar methods to our study.

  14. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    Science.gov (United States)

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Regional Variation in the Temperature Sensitivity of Soil Organic Matter Decomposition in China's Forests and Grasslands

    Science.gov (United States)

    Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.

    2017-12-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  16. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    Science.gov (United States)

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  17. Mutations around interferon sensitivity-determining region: a pilot resistance report of hepatitis C virus 1b in a Hong Kong population.

    Science.gov (United States)

    Zhou, Xiao-Ming; Chan, Paul Ks; Tam, John S

    2011-12-28

    To explore mutations around the interferon sensitivity-determining region (ISDR) which are associated with the resistance of hepatitis C virus 1b (HCV-1b) to interferon-α treatment. Thirty-seven HCV-1b samples were obtained from Hong Kong patients who had completed the combined interferon-α/ribavirin treatment for more than one year with available response data. Nineteen of them were sustained virological responders, while 18 were non-responders. The amino acid sequences of the extended ISDR (eISDR) covering 64 amino acids upstream and 67 amino acids downstream from the previously reported ISDR were analyzed. One amino acid variation (I2268V, P = 0.023) was significantly correlated with treatment outcome in this pilot study with a limited number of patients, while two amino acid variations (R2260H, P = 0.05 and S2278T, P = 0.05) were weakly associated with treatment outcome. The extent of amino acid variations within the ISDR or eISDR was not correlated with treatment outcome as previously reported. Three amino acid mutations near but outside of ISDR may associate with interferon treatment resistance of HCV-1b patients in Hong Kong.

  18. Sensitivity of Sump Water Temperature to Containment Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Kim, Seoung Rae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-05-15

    This paper is focused on the containment behavior analysis in the above described cases using GOTHIC-IST (generation of thermal-hydraulic information for containments, industry standard toolset). GOTHIC-IST version 7.2a is an integrated, general purpose thermal-hydraulics software package for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings. In this study, we perform the sensitivity the sump water temperature to containment integrity. For 35% RIH break accident with the malfunction of spray system, local air coolers, ECC(emergency core cooling) pump and heat exchanger, the peak pressure at boiler room do not exceed the design pressure 124kPa(g) of the containment and containment integrity is secured. If accompanied the malfunction of heat exchanger or pump in the time of low pressure safety injection, of ECCS, it will be one of the aggravating factors to the integrity of core and containment.

  19. Association between loss-of-function mutations in the filaggrin gene and self-reported food allergy and alcohol sensitivity

    DEFF Research Database (Denmark)

    Linneberg, Allan René; Fenger, Runa V; Husemoen, Lise Lotte Nystrup

    2013-01-01

    Loss-of-function mutations of the filaggrin (FLG) gene cause an impaired skin barrier and increase the risk of atopic dermatitis. Interestingly, FLG mutations have also been found to be associated with a high risk of peanut allergy.......Loss-of-function mutations of the filaggrin (FLG) gene cause an impaired skin barrier and increase the risk of atopic dermatitis. Interestingly, FLG mutations have also been found to be associated with a high risk of peanut allergy....

  20. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  1. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  2. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  3. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    Science.gov (United States)

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  4. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    Science.gov (United States)

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  5. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    Science.gov (United States)

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  6. The microbial temperature sensitivity to warming is controlled by thermal adaptation and is independent of C-quality across a pan-continental survey

    Science.gov (United States)

    Berglund, Eva; Rousk, Johannes

    2017-04-01

    Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation

  7. Use of nfsB, encoding nitroreductase, as a reporter gene to determine the mutational spectrum of spontaneous mutations in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Dunham Stephen

    2009-11-01

    Full Text Available Abstract Background Organisms that are sensitive to nitrofurantoin express a nitroreductase. Since bacterial resistance to this compound results primarily from mutations in the gene encoding nitroreductase, the resulting loss of function of nitroreductase results in a selectable phenotype; resistance to nitrofurantoin. We exploited this direct selection for mutation to study the frequency at which spontaneous mutations arise (transitions and transversions, insertions and deletions. Results A nitroreductase- encoding gene was identified in the N. gonorrhoeae FA1090 genome by using a bioinformatic search with the deduced amino acid sequence derived from the Escherichia coli nitroreductase gene, nfsB. Cell extracts from N. gonorrhoeae were shown to possess nitroreductase activity, and activity was shown to be the result of NfsB. Spontaneous nitrofurantoin-resistant mutants arose at a frequency of ~3 × 10-6 - 8 × 10-8 among the various strains tested. The nfsB sequence was amplified from various nitrofurantoin-resistant mutants, and the nature of the mutations determined. Transition, transversion, insertion and deletion mutations were all readily detectable with this reporter gene. Conclusion We found that nfsB is a useful reporter gene for measuring spontaneous mutation frequencies. Furthermore, we found that mutations were more likely to arise in homopolymeric runs rather than as base substitutions.

  8. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  9. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Science.gov (United States)

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (Ptemperature in the following order: MA>MF>bulk soil >MI(P classes (P temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  10. Value of TIRADS, BSRTC and FNA-BRAF V600E mutation analysis in differentiating high-risk thyroid nodules.

    Science.gov (United States)

    Zhang, Yu-zhi; Xu, Ting; Cui, Dai; Li, Xiao; Yao, Qing; Gong, Hai-yan; Liu, Xiao-yun; Chen, Huan-huan; Jiang, Lin; Ye, Xin-hua; Zhang, Zhi-hong; Shen, Mei-ping; Duan, Yu; Yang, Tao; Wu, Xiao-hong

    2015-11-24

    The thyroid imaging reporting and data system (TIRADS) and Bethesda system for reporting thyroid cytopathology (BSRTC) have been used for interpretation of ultrasound and fine-needle aspiration cytology (FNAC) results of thyroid nodules. BRAF(V600E) mutation analysis is a molecular tool in diagnosing thyroid carcinoma. Our objective was to compare the diagnostic value of these methods in differentiating high-risk thyroid nodules. Total 220 patients with high-risk thyroid nodules were recruited in this prospective study. They all underwent ultrasound, FNAC and BRAF(V600E) mutation analysis. The sensitivity and specificity of TIRADS were 73.1% and 88.4%. BSRTC had higher specificity (97.7%) and similar sensitivity (77.6%) compared with TIRADS. The sensitivity and specificity of BRAF(V600E) mutation (85.1%, 100%) were the highest. The combination of BSRTC and BRAF(V600E) mutation analysis significantly increased the efficiency, with 97.8% sensitivity, 97.7% specificity. In patients with BSRTC I-III, the mutation rate of BRAF(V600E) was 64.5% in nodules with TIRADS 4B compared with 8.4% in nodules with TIRADS 3 or 4A (P value in differentiating high-risk thyroid nodules. The TIRADS is useful in selecting high-risk patients for FNAB and patients with BSRTC I-III for BRAF(V600E) mutation analysis.

  11. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    Science.gov (United States)

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  12. Impact of mutation breeding in rice. A review

    Energy Technology Data Exchange (ETDEWEB)

    Rutger, J N [Department of Agriculture, Stoneville, MS (United States). Agricultural Research Service

    1992-07-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world`s leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs.

  13. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  14. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  15. Prospective evaluation of the diagnostic value of sensitive KIT D816V mutation analysis of blood in adults with suspected systemic mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Vestergaard, H; Bindslev-Jensen, C

    2017-01-01

    BACKGROUND: Sensitive KIT D816V mutation analysis of blood has been proposed to guide bone marrow (BM) investigation in suspected systemic mastocytosis (SM). The aim of this prospective study was for the first time to compare the D816V status of the "screening blood sample" used to guide BM biopsy...... in suspected SM to the outcome of the subsequent BM investigation. METHODS: Fifty-eight adult patients with suspected SM were included. The outcome of sensitive KIT D816V analysis of blood was compared to the result of the BM investigation. RESULTS: Screening blood samples from 44 of 58 patients tested D816V...... patients did not fulfill any diagnostic SM criteria (excluding tryptase criterion). Of the 48 SM patients, 90% tested D816V-positive. Thirteen SM patients presented with Hymenoptera venom-induced anaphylaxis, no skin lesions, and baseline serum tryptase ≤20 ng/mL. Of these, 92% tested D816V...

  16. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  17. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Timothy M. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Lambert, Iain B. [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Williams, Andrew [Biostatistics and Epidemiology Division, Safe Environments Programme, 6604B, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Douglas, George R. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Yauk, Carole L. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada)]. E-mail: carole_yauk@hc-sc.gc.ca

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  18. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    International Nuclear Information System (INIS)

    Singer, Timothy M.; Lambert, Iain B.; Williams, Andrew; Douglas, George R.; Yauk, Carole L.

    2006-01-01

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development

  19. Mass rearing of the Medfly temperature sensitive lethal genetic sexing strain in Guatemala

    International Nuclear Information System (INIS)

    Caceres, C.; Fisher, K.; Rendon, P.

    2000-01-01

    Field tests have demonstrated the increased efficiency of the sterile insect technique (SIT) for the Mediterranean fruit fly (Ceratitis capitata Wied.), when only male Medflies are released (Robinson et al. 1986, Nitzan et al. 1993, McInnis et al. 1994, Rendon 1996). Genetic sexing strains (GSS) of Medflies, containing temperature sensitive lethal (tsl) and white pupae colour (wp) mutations (Franz et al. 1994) developed by FAO/IAEA, allow the separation of male flies from female flies. GSS technology has reached a stage where it is being used in large-scale operational programmes, such as the Moscamed Program in Guatemala. GSS based on the wp/tsl have the advantages of: 1) not requiring sophisticated equipment for sex separation, 2) a high accuracy of separation (> 99.5% males) is possible and, 3) separation is achieved during egg development, which excludes the unnecessary rearing of females (Franz et al. 1996). It was shown by Franz et al. (1994) that tsl GSS are genetically stable for many generations under small-scale rearing conditions. However, under the large-scale rearing of operational programmes such as Moscamed (Hentze and Mata 1987), a gradual loss of the sex separation mechanism through recombination remains a problem, as has been demonstrated in Guatemala during 1994-1996. This in no way precludes the use of GSS technology, but it does mean that a management system must be used to control this gradual loss of stability; a strategy for colony management which maintains a stable and high level of accuracy of male-only production. The El Pino facility, which mass produces sterile flies for the Guatemala Medflies SIT Program, has introduced a filter rearing system (FRS) (Fisher and Caceres 1999), and has demonstrated in a Medfly tsl GSS known as VIENNA 4/Tol-94, that genetic stability can be maintained. We report the operation of the FRS and its impact upon genetic stability and male-only production. The concept of the FRS has the potential to improve the

  20. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    Science.gov (United States)

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  1. Differential conformational modulations of MreB folding upon interactions with GroEL/ES and TRiC chaperonin components

    Science.gov (United States)

    Moparthi, Satish Babu; Carlsson, Uno; Vincentelli, Renaud; Jonsson, Bengt-Harald; Hammarström, Per; Wenger, Jérôme

    2016-01-01

    Here, we study and compare the mechanisms of action of the GroEL/GroES and the TRiC chaperonin systems on MreB client protein variants extracted from E. coli. MreB is a homologue to actin in prokaryotes. Single-molecule fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence polarization anisotropy report the binding interaction of folding MreB with GroEL, GroES and TRiC. Fluorescence resonance energy transfer (FRET) measurements on MreB variants quantified molecular distance changes occurring during conformational rearrangements within folding MreB bound to chaperonins. We observed that the MreB structure is rearranged by a binding-induced expansion mechanism in TRiC, GroEL and GroES. These results are quantitatively comparable to the structural rearrangements found during the interaction of β-actin with GroEL and TRiC, indicating that the mechanism of chaperonins is conserved during evolution. The chaperonin-bound MreB is also significantly compacted after addition of AMP-PNP for both the GroEL/ES and TRiC systems. Most importantly, our results showed that GroES may act as an unfoldase by inducing a dramatic initial expansion of MreB (even more than for GroEL) implicating a role for MreB folding, allowing us to suggest a delivery mechanism for GroES to GroEL in prokaryotes. PMID:27328749

  2. Induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S.L.; Parry, J.M. (University Coll. of Swansea (UK). Dept. of Genetics)

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment ot recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  3. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    OpenAIRE

    McHenney, M A; Baltz, R H

    1991-01-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  4. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations

    Directory of Open Access Journals (Sweden)

    Atsushi eUeda

    2015-02-01

    Full Text Available Homeostasis is the ability of physiological systems to regain functional balance following environment or experimental insults and synaptic homeostasis has been demonstrated in various species following genetic or pharmacological disruptions. Among environmental challenges, homeostatic responses to temperature extremes are critical to animal survival under natural conditions. We previously reported that axon terminal arborization in Drosophila larval neuromuscular junctions is enhanced at elevated temperatures; however, the amplitude of excitatory junctional potentials (EJPs remains unaltered despite the increase in synaptic bouton numbers. Here we determine the cellular basis of this homeostatic adjustment in larvae reared at high temperature (HT, 29 ˚C. We found that synaptic current focally recorded from individual synaptic boutons was unaffected by rearing temperature (30 ˚C. However, HT rearing decreased the quantal size (amplitude of spontaneous miniature EJPs, or mEJPs, which compensates for the increased number of synaptic releasing sites to retain a normal EJP size. The quantal size decrease is accounted for by a decrease in input resistance of the postsynaptic muscle fiber, indicating an increase in membrane area that matches the synaptic growth at HT. Interestingly, a mutation in rutabaga (rut encoding adenylyl cyclase (AC exhibited no obvious changes in quantal size or input resistance of postsynaptic muscle cells after HT rearing, suggesting an important role for rut AC in temperature-induced synaptic homeostasis in Drosophila. This extends our previous finding of rut-dependent synaptic homeostasis in hyperexcitable mutants, e.g. slowpoke (slo. In slo larvae, the lack of BK channel function is partially ameliorated by upregulation of presynaptic Sh IA current to limit excessive transmitter release in addition to postsynaptic glutamate receptor recomposition that reduces the quantal size.

  5. Structural analysis of eight novel and 112 previously reported missense mutations in the interactive FXI mutation database reveals new insight on FXI deficiency.

    Science.gov (United States)

    Saunders, Rebecca E; Shiltagh, Nuha; Gomez, Keith; Mellars, Gillian; Cooper, Carolyn; Perry, David J; Tuddenham, Edward G; Perkins, Stephen J

    2009-08-01

    Factor XI (FXI) functions in blood coagulation. FXI is composed of four apple (Ap) domains and a serine protease (SP) domain. Deficiency of FXI leads to an injury-related bleeding disorder, which is remarkable for the lack of correlation between bleeding symptoms and FXI coagulant activity (FXI:C). The number of mutations previously reported in our interactive web database (http://www.FactorXI.org) is now significantly increased to 183 through our new patient studies and from literature surveys. Eight novel missense mutations give a total of 120 throughout the FXI gene (F11). The most abundant defects in FXI are revealed to be those from low-protein plasma levels (Type I: CRM-) that originate from protein misfolding, rather than from functional defects (Type II: CRM+). A total of 70 Ap missense mutations were analysed using a consensus Ap domain structure generated from the FXI dimer crystal structure. This showed that all parts of the Ap domain were affected. The 47 SP missense mutations were also distributed throughout the SP domain structure. The periphery of the Ap beta-sheet structure is sensitive to structural perturbation caused by residue changes throughout the Ap domain, yet this beta-sheet is crucial for FXI dimer formation. Residues located at the Ap4:Ap4 interface in the dimer are much less directly involved. We conclude that the abundance of Type I defects in FXI results from the sensitivity of the Ap domain folding to residue changes within this, and discuss how structural knowledge of the mutations improves our understanding of FXI deficiencies.

  6. Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature

    International Nuclear Information System (INIS)

    Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki

    2009-01-01

    We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.

  7. High resolution melting for mutation scanning of TP53 exons 5–8

    International Nuclear Information System (INIS)

    Krypuy, Michael; Dobrovic, Alexander; Ahmed, Ahmed Ashour; Etemadmoghadam, Dariush; Hyland, Sarah J; Australian Ovarian Cancer Study Group; Fazio, Anna de; Fox, Stephen B; Brenton, James D; Bowtell, David D

    2007-01-01

    p53 is commonly inactivated by mutations in the DNA-binding domain in a wide range of cancers. As mutant p53 often influences response to therapy, effective and rapid methods to scan for mutations in TP53 are likely to be of clinical value. We therefore evaluated the use of high resolution melting (HRM) as a rapid mutation scanning tool for TP53 in tumour samples. We designed PCR amplicons for HRM mutation scanning of TP53 exons 5 to 8 and tested them with DNA from cell lines hemizygous or homozygous for known mutations. We assessed the sensitivity of each PCR amplicon using dilutions of cell line DNA in normal wild-type DNA. We then performed a blinded assessment on ovarian tumour DNA samples that had been previously sequenced for mutations in TP53 to assess the sensitivity and positive predictive value of the HRM technique. We also performed HRM analysis on breast tumour DNA samples with unknown TP53 mutation status. One cell line mutation was not readily observed when exon 5 was amplified. As exon 5 contained multiple melting domains, we divided the exon into two amplicons for further screening. Sequence changes were also introduced into some of the primers to improve the melting characteristics of the amplicon. Aberrant HRM curves indicative of TP53 mutations were observed for each of the samples in the ovarian tumour DNA panel. Comparison of the HRM results with the sequencing results revealed that each mutation was detected by HRM in the correct exon. For the breast tumour panel, we detected seven aberrant melt profiles by HRM and subsequent sequencing confirmed the presence of these and no other mutations in the predicted exons. HRM is an effective technique for simple and rapid scanning of TP53 mutations that can markedly reduce the amount of sequencing required in mutational studies of TP53

  8. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  9. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Warren, G; McKown, R; Marin, A L; Teutonico, R

    1996-08-01

    We screened for mutations deleterious to the freezing tolerance of Arabidopsis thaliana (L.) Heynh. ecotype Columbia. Tolerance was assayed by the vigor and regrowth of intact plants after cold acclimation and freezing. From a chemically mutagenized population, we obtained 13 lines of mutants with highly penetrant phenotypes. In 5 of these, freezing sensitivity was attributable to chilling injury sustained during cold acclimation, but in the remaining 8 lines, the absence of injury prior to freezing suggested that they were affected specifically in the development of freezing tolerance. In backcrosses, freezing sensitivity from each line segregated as a single nuclear mutation. Complementation tests indicated that the 8 lines contained mutations in 7 different genes. The mutants' freezing sensitivity was also detectable in the leakage of electrolytes from frozen leaves. However, 1 mutant line that displayed a strong phenotype at the whole-plant level showed a relatively weak phenotype by the electrolyte leakage assay.

  10. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    Science.gov (United States)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to

  11. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

    Science.gov (United States)

    Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri

    2014-12-24

    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.

  12. Radiation synthesis of a water-soluble temperature sensitive polymer, activated copolymer and applications in immobilization of proteins

    International Nuclear Information System (INIS)

    Zhai Maolin; Ha Hongfei; Wu Jilan

    1993-01-01

    In this work the radiation polymerization of N-isopropylacrylamide (NIPAAM) in aqueous solutions has been carried out and a water-soluble, temperature sensitive polymer and copolymer were obtained by using γ-rays from Co-60 source at room temperature. We have gained the optimum dose and dose-rate of radiation synthesis of linear polyNIPAAM through determining conversion yield and viscosity. In order to immobilize protein (BSA) and enzyme (HRP) into this water-soluble polymer, we prepared an activated copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide). The BSA and HRP has been immobilized onto the activated copolymer. The BSA (HRP)/copolymer conjugates still kept the original thermally sensitive properties of the linear polyNIPAAM. The conjugation yield of BSA to the activated copolymer decreased with increasing dose. Immobilized HRP was stable at 0 o C for a long time and has, at least, 4 days stability at room temperature. Immobilized HRP activity was lowered when the temperature was raised. This phenomenon was reversible and the immobilized HRP regained activity. The optimum pH of the immobilized HRP shifted from ca.5 upward to ca. 7. (author)

  13. Elimination of bus voltage impact on temperature sensitive electrical parameter during turn-on transition for junction temperature estimation of high-power IGBT modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo......-sensitive electrical parameters (DTSEP) during turn-on transient is proposed. Two DTSEP, turn-on delay time (tdon) and the maximum increasing rate of collector current dic/dt(max), are combined to eliminate the bus voltage impact. Using the inherent emitter-auxiliary inductor LeE in high-power modules, the temperature......-dependent DTSEPs can be converted into a low-voltage and measurable signal. Finally, experiment results are exhibited to verify the effectiveness of proposed method....

  14. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Christina A. Wicker

    2009-01-01

    Full Text Available Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12, which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC. BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.

  15. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  16. Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Feng, Yongqiang; Zhang, Yaning; Li, Bingxi; Yang, Jinfu; Shi, Yang

    2015-01-01

    The sensitivity analysis for low temperature ORCs (organic Rankine cycles), as well as the thermoeconomic comparison between the basic ORC and regenerative ORC using Non-dominated sorting genetic algorithm-II (NSGA-II), are conducted in this paper. The derivatives of five system parameters on system performance are used to evaluate the parametric sensitiveness. The exergy efficiency and the APR (heat exchanger area per unit net power output) are selected as the objective functions for multi-objective optimization using R123 under the low temperature heat source of 423 K. The Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing APR is obtained and compared with the corresponding single-objective solutions. The results indicate that the prior consideration of improving thermal efficiency and exergy efficiency is to increase the evaporator outlet temperature. A fitting curve can be yielded from the Pareto frontier between the thermodynamic performance and economic factor. The optimum exergy efficiency and APR of the regenerative ORC obtained from the Pareto-optimal solution are 59.93% and 3.07 m 2 /kW, which are 8.10% higher and 15.89% lower than that of the basic ORC, respectively. The Pareto optimization compromises the thermodynamic performance and economic factor, therefore being more suitable for decision making. - Highlights: • The sensitivity analysis of the basic ORC is conducted. • The Pareto-optimal solution is compared with the single-objective solutions. • Evaporator outlet temperature should be preferentially considered. • 8.10% higher exergy efficiency and 15.89% lower APR for the regenerative ORC

  17. The effect of spermine on spontaneous and UV-induced mutations in Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Prendergast, J.A.; Kamra, O.P.; Nasim, A.

    1984-01-01

    The effect of different concentrations of spermine on spontaneous and UV-induced mutation in the adenine forward mutation system of Schizosaccharomyces pombe was investigated. The effect of spermine on spontaneous mutation was studied in 5 mutator strains (mut 1-4, mut 1-23, mut 2-9, mut 2-20 and mut 3-21) and on UV-induced mutation in a pigmented adenine-requiring strain and its radiation-sensitive derivative (rad 13). The effect of spermine exposure on mutation induction before and after UV irradiation was also investigated. Spermine increased spontaneous forward mutation in the mut 1-4 strain by 47% and enhanced UV-induced forward mutation 2-fold in the rad 13 and normal pigmented strains. No antimutagenic effect of spermine was seen in any of the strains tested. This is in marked contrast to the antimutagenic effect of spermine observed with bacteria. (Auth.)

  18. OPTIMIZATION OF THE TEMPERATURE CONTROL SCHEME FOR ROLLER COMPACTED CONCRETE DAMS BASED ON FINITE ELEMENT AND SENSITIVITY ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Huawei Zhou

    2016-10-01

    Full Text Available Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC dams that couples the finite element method (FEM with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.

  19. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  20. Mutational analysis of the yeast TRAPP subunit Trs20p identifies roles in endocytic recycling and sporulation.

    Directory of Open Access Journals (Sweden)

    Hichem Mahfouz

    Full Text Available Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.

  1. How to orient the functional GroEL-SR1 mutant for atomic force microscopy investigations

    International Nuclear Information System (INIS)

    Schiener, Jens; Witt, Susanne; Hayer-Hartl, Manajit; Guckenberger, Reinhard

    2005-01-01

    We present high-resolution atomic force microscopy (AFM) imaging of the single-ring mutant of the chaperonin GroEL (SR-EL) from Escherichia coli in buffer solution. The native GroEL is generally unsuitable for AFM scanning as it is easily being bisected by forces exerted by the AFM tip. The single-ring mutant of GroEL with its simplified composition, but unaltered capability of binding substrates and the co-chaperone GroES, is a more suited system for AFM studies. We worked out a scheme to systematically investigate both the apical and the equatorial faces of SR-EL, as it binds in a preferred orientation to hydrophilic mica and hydrophobic highly ordered pyrolytic graphite. High-resolution topographical imaging and the interaction of the co-chaperone GroES were used to assign the orientations of SR-EL in comparison with the physically bisected GroEL. The usage of SR-EL facilitates single molecule studies on the folding cycle of the GroE system using AFM

  2. In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL.

    Science.gov (United States)

    Kumar, Vipul; Punetha, Ankita; Sundar, Durai; Chaudhuri, Tapan K

    2012-01-01

    Molecular chaperones appear to have been evolved to facilitate protein folding in the cell through entrapment of folding intermediates on the interior of a large cavity formed between GroEL and its co-chaperonin GroES. They bind newly synthesized or non-native polypeptides through hydrophobic interactions and prevent their aggregation. Some proteins do not interact with GroEL, hence even though they are aggregation prone, cannot be assisted by GroEL for their folding. In this study, we have attempted to engineer these non-substrate proteins to convert them as the substrate for GroEL, without compromising on their function. We have used a computational biology approach to generate mutants of the selected proteins by selectively mutating residues in the hydrophobic patch, similar to GroES mobile loop region that are responsible for interaction with GroEL, and compared with the wild counterparts for calculation of their instability and aggregation propensities. The energies of the newly designed mutants were computed through molecular dynamics simulations. We observed increased aggregation propensity of some of the mutants formed after replacing charged amino acid residues with hydrophobic ones in the well defined hydrophobic patch, raising the possibility of their binding ability to GroEL. The newly generated mutants may provide potential substrates for Chaperonin GroEL, which can be experimentally generated and tested for their tendency of aggregation, interactions with GroEL and the possibility of chaperone-assisted folding to produce functional proteins.

  3. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  4. Effects of Temperature on Sensitivity of Bacilus licheniformis RI 75-1 Vegetative Cells at Gamma Quantum

    International Nuclear Information System (INIS)

    Fernandez-Larrea Vega, O.; Rios Brito, F.; Marquez Alvarez, M.; Padron Soler, E.

    1986-01-01

    It is known that strains of E. Coli with wild genotype for reparation, when are irradiated at temperature between 42 0 C and 45 0 C, shown an increase of radioresistance. At the given temperature the number of double strands breaks of DNA decrease. Some authors report that the radioresistance increased is due to the elevation of the irradiation temperature is related to the cell membrane status. The paper includes reports on the effects of increased temperature on the sensitivity - at gamma quantum - of Bacillus licheniformis RI 75-1 vegetative cells. Temperatures of 42 0 C and 60 0 C during irradiation were employed. An increase in radioresistance was found when the temperature of irradiation was increased to 42 0 C. However, a decrease in viability was observed. Heat treatment prior to irradiation showed an increase in the number of radioresistance colonies when compared. (author)

  5. Voltage-sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines.

    Science.gov (United States)

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2018-03-01

    Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage-sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia. We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid-resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21- to 107-fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000-fold resistance to DDT, 37.5-fold cross-resistance to indoxacarb and 13.4-fold cross-resistance to DCJW. Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of

  6. Mutation induction in repair-deficient strains of Drosophila

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.

    1980-01-01

    Experimental evidence indicates a polygenic control of mutagenesis in Drosophila melanogaster. In oocytes chromosome aberrations detected as half-translocations or dominant lethals depend on a repair system which in a number of genetically nonrelated strains shows different repair capacities. Sister chromatid exchanges are easily studied as ring chromosome losses. They develop through a genotype controlled mechanism from, premutational lesions. Stocks with particular pairs of third chromosomes were discovered in which increased sensitivity of larvae to the toxic effects of a monofunctional alkylating agent correlates with high frequencies of x-ray induced SCE's. Sex-linked mutagen-sensitive mutants could be shown to control mutation fixation: pronounced maternal effects were found when sperm carrying particular types of premutational lesions were introduced into different types of mutant oocytes. The mutant mus(1)101D1 was found to be unable to process lesions induced by the crosslinking agent nitrogen mustard into point mutations. Alkylation damage leads to increased point mutation frequencies in the excision repair deficient mutant mei-9L1, but to reduced frequencies in the post-replication repair deficient mutant mei-41D5. It became clear that the study of maternal effects on mutagenized sperm represents an efficient tool to analyze the gentic control of mutagenesis in the eukaryotic genome of Drosophila melanogaster

  7. Common mutations of hepatitis B virus and their clinical significance

    Directory of Open Access Journals (Sweden)

    HU Airong

    2016-06-01

    Full Text Available Hepatitis B virus (HBV tends to mutate easily due to its special structure and life cycle. Mutation changes the biological behavior of HBV and its sensitivity to antiviral drugs and even affects therapeutic effect and accelerate disease progression. The point mutations are commonly see in the pre-S/S open reading frame (ORF, which may be associated with immune escape and occult HBV infection. The G1896A mutation is often observed in the pre-C/C-ORF and is associated with the development of HBeAg-negative chronic hepatitis B (CHB, hepatocellular carcinoma (HCC, and severe chronic hepatitis (liver failure. The mutations in P-ORF mainly occur in the reverse transcriptase (RT domain and are closely related to the resistance to nucleos(tide analogues. The A1762T and G1764A mutations occur in the basal core promoter (BCP, which overlaps with X-ORF, and may be associated with HBeAg-negative CHB, HCC, and severe chronic hepatitis (liver failure. Clarification of the association between these mutations and diseases helps to develop tailor-made diagnostic and therapeutic regimens for patients with HBV infection.

  8. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    KAUST Repository

    Stavarache, Ionel

    2017-07-21

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling of nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. It is reported here the significant progress introduced by synthesis procedure to the in-situ structuring of Ge nanocrystallites in SiO2 thin films by heating the substrate at low temperature, 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency of 850 %. This simple preparation approach brings an important contribution to the efort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  9. Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies.

    Science.gov (United States)

    Do, Hongdo; Dobrovic, Alexander

    2009-10-08

    Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions.LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations.

  10. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    Science.gov (United States)

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  11. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    Science.gov (United States)

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  12. Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation

    DEFF Research Database (Denmark)

    Kralund, Henrik H; Ousager, Lilian; Jaspers, Nicolaas G

    2013-01-01

    outcome from many of these mutations. We demonstrate a patient, believed to represent an overlap between XP and TTD/CS. In addition to other organ dysfunctions, the young man presented with Photosensitivity, Ichthyosis, Brittle hair, Impaired physical and mental development, Decreased fertility and Short...... appearance also suggested XP, but fibroblast cultures only demonstrated x2 UV-sensitivity with expected NER and TFIIH-activity decrease. Genetic sequencing of the XPD/ERCC2 gene established the patient as heterozygote compound with a novel, N-terminal Y18H mutation and a known C-terminal (TTD) mutation, A725...

  13. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yuji Mishima

    2017-04-01

    Full Text Available The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs is prognostic in multiple myeloma (MM, but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.

  14. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  15. Dye-sensitized solar cells with ZnO nanoparticles fabricated at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungjae; Moon, Byungjoon; Son, Dongick [Korea Institute of Science and Technology, Wanju (Korea, Republic of); Kwon, Byoungwook; Choi, Wonkook [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-11-15

    The authors investigated the microstructural and the electrical properties of ZnO based dyesensitized solar cells (DSSCs) fabricated using a low-temperature-processed(200 .deg. C) dye-sensitized ZnO-nanoparticle thin film and a Pt catalyst deposited on ITO/glass by using RF magnetron sputtering. A hydropolymer containing PEG (poly(ethylene glycol)) and PEO (poly ethylene oxide) was used to make uniformly-distributed ZnO nanoparticle layer that form a nano-porous ZnO network after heat treatment and was then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short circuit current density (J{sub sc}), the open circuit potential(V{sub oc}), the fill factor(FF), and the power conversion efficiency (η), of the DSSC fabricated under optimized conditions were observed to be 4.93 mA/cm{sup 2}, 0.56 V, 0.40, and 1.12%, respectively.

  16. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kelly, S.L.; Parry, J.M.

    1983-01-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment ot recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation. (orig.)

  17. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  18. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

    Science.gov (United States)

    Khurshed, Mohammed; Aarnoudse, Niels; Hulsbos, Renske; Hira, Vashendriya V V; van Laarhoven, Hanneke W M; Wilmink, Johanna W; Molenaar, Remco J; van Noorden, Cornelis J F

    2018-06-07

    Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1 MUT ) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely-used anticancer agent cisplatin in IDH1 MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1 MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1 MUT cancer cells, as compared with IDH1 wild-type ( IDH1 WT ) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1 MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1 MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1 MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutated cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

  19. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  20. Mutation breeding in rice in India

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, M S; Siddiq, E A; Singh, C B; Pai, R A [Indian Agricultural Research Institute, New Delhi (India)

    1970-03-01

    Mutation research was continued in rice with the following aims; (a) to enhance the frequency and spectrum of mutations in indica and japonica rice varieties; (b) to change the grain quality of the japonica variety, Tainan-3, into the indica type; (c) to improve the grain quality of the indica variety, IR-8; (d) to increase the recombination frequency in japonica-indica hybrids. Both nitrosoguanidine and 5-MeV fast neutrons gave a high mutation frequency. The japonica variety was more sensitive to all mutagens than the indica types. Chemical mutagens had no particular advantage over ionizing radiations with reference to either mutation frequency or spectrum. Mutants with indica type of grain occurred readily in Tainan-3 in all treatments. Such mutants had a larger grain length/width ratio and were more resistant to alkali digestion. Fine grain types with better cooking quality occurred in the M{sub 2} populations of IR-8. These mutants are likely to render this high-yielding variety more popular. A wide range of chlorophyll and viable mutations occurred in IR-8 and Tainan-3. Some of these, like those involving dwarfing and slow senescence, are of economic interest, besides those affecting grain quality. Recombination frequency can be influenced in japonica x indica hybrids through the irradiation of F{sub 1} sporocytes. The precise influence varies with the stage at which the plant is irradiated, the dose given and the loci involved. (author)

  1. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    Science.gov (United States)

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal

  2. Change in the sensitivity of CR-39 for alpha-tracks after the storage at different temperatures

    International Nuclear Information System (INIS)

    Enomoto, Hiroko; Ishigure, Nobuhito

    2000-01-01

    The effect of storage on track registration property of CR-39 has been investigated. Pieces of CR-39 plate were irradiated with normally incident α-particles and fission fragments using a 252 Cf source prior and posterior to the storage of them in air for one year at different temperatures of -80degC, -23degC, 4degC, 23degC and 35degC. Periodical etching was performed for the pieces stored at different temperatures using the solution of NaOH with 7 mol+l -1 at 70degC for 4 hours. Bulk etch rate (V b ) was obtained from the etch pit diameter (D f ) of fission tracks using the equation: V b =D f /(2t), where t is etching time (h). The sensitivity for α-tracks (S) was obtained from the ratio of the etch pit diameters between α-tracks (D a ) and fission-tracks using the equation: S={1+(D a /D f ) 2 }/{1-(D a /D f ) 2 }-1. The present results show that both the bulk etch rate and α-track sensitivity are not constant, which tend to decrease with storage times and storage temperatures. At -80degC, -23degC and 4degC the change in the sensitivity was negligible. On the other hand, the storage at 23degC for 1 year decreased the sensitivity down to 74%. The most significant effect was observed on the α-track sensitivity at 35degC, which was reduced to 80% for one month, 61% for three months, 42% for six months and 32% for one year. By the comparison of experiments between fading and ageing it is shown that such storage effect is attributed not to fading of latent tracks but mainly to some changes in the detector itself. When CR-39 is used of radon monitoring or neutron monitoring, the following points should be paid attention to: (1) the detector should be stored in a refrigerator before exposure and until etching after the exposure, (2) the change in the sensitivity between the time of calibration and the time of use should be evaluated and the counting efficiency at the measurement should be corrected and (3) for comparison or for interpretation of experimental results

  3. Induced mutations in sesame breeding

    International Nuclear Information System (INIS)

    Ashri, A.

    2001-01-01

    The scope of induced mutations in sesame (Sesamum indicum L.) breeding is reviewed. So far in Egypt, India, Iraq, Rep. of Korea, and Sri Lanka, 14 officially released varieties have been developed through induced mutations: 12 directly and 2 through cross breeding (one using the 'dt45' induced mutant from Israel). For another variety released in China there are no details. The induced mutations approach was adopted primarily in order to obtain genetic variability that was not available in the germplasm collection. The mutagens commonly applied have been gamma rays, EMS and sodium azide. Sesame seeds can withstand high mutagen doses, and there are genotypic differences in sensitivity between varieties. The mutants induced in the above named countries and others include better yield, improved seed retention, determinate habit, modified plant architecture and size, more uniform and shorter maturation period, earliness, resistance to diseases, genic male sterility, seed coat color, higher oil content and modified fatty acids composition. Some of the induced mutants have already given rise to improved varieties, the breeding value of other mutants is now being assessed and still others can serve as useful markers in genetic studies and breeding programmes. (author)

  4. Performance of mitochondrial DNA mutations detecting early stage cancer

    International Nuclear Information System (INIS)

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  5. Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization

    NARCIS (Netherlands)

    Van Elk, Merel; Lorenzato, Cyril; Ozbakir, Burcin; Oerlemans, Chris; Storm, Gert; Nijsen, Frank; Deckers, Roel; Vermonden, Tina; Hennink, Wim E.

    2015-01-01

    The objective of this study was to prepare and characterize alginate microgels loaded with temperature sensitive liposomes, which release their payload after mild hyperthermia. It is further aimed that by using these microgels both the drug release and the microgel deposition can be visualized by

  6. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  7. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    Science.gov (United States)

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2–associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2–associated mutations increased cell sensitivity. CONCLUSIONS Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.) PMID:23802516

  8. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  9. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  10. Effects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)

    Science.gov (United States)

    Maiditsch, Isabelle Pia; Ladich, Friedrich

    2014-01-01

    Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456

  11. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  12. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Nicolas Piton

    2015-01-01

    Full Text Available KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27% and specificity (64% in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100% and specificity (100% in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  13. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Science.gov (United States)

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  14. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  15. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients.

    Science.gov (United States)

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-04-06

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.

  16. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin.

    Science.gov (United States)

    Rico, Andreu; Zhao, Wenkai; Gillissen, Frits; Lürling, Miquel; Van den Brink, Paul J

    2018-02-01

    Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and species competition may affect the sensitivity of the cyanobacterium Microcystis aeruginosa and the green-algae Scenedesmus obliquus to the antibiotic enrofloxacin. First, we performed single-species tests to assess the toxicity of enrofloxacin under different temperature conditions (20°C and 30°C) and to assess the sensitivity of different species strains using a standard temperature (20°C). Next, we investigated how enrofloxacin contamination may affect the competition between M. aeruginosa and S. obliquus. A competition experiment was performed following a full factorial design with different competition treatments, defined as density ratios (i.e. initial bio-volume of 25/75%, 10/90% and 1/99% of S. obliquus/M. aeruginosa, respectively), one 100% S. obliquus treatment and one 100% M. aeruginosa treatment, and four different enrofloxacin concentrations (i.e. control, 0.01, 0.05 and 0.10mg/L). Growth inhibition based on cell number, bio-volume, chlorophyll-a concentration as well as photosynthetic activity were used as evaluation endpoints in the single-species tests, while growth inhibition based on measured chlorophyll-a was primarily used in the competition experiment. M. aeruginosa photosynthetic activity was found to be the most sensitive endpoint to enrofloxacin (EC50-72h =0.02mg/L), followed by growth inhibition based on cell number. S. obliquus was found to be slightly more sensitive at 20°C than at 30°C (EC50-72h cell number growth inhibition of 38 and 41mg/L, respectively), whereas an opposite trend was observed for M. aeruginosa (0.047 and 0.037mg/L, respectively). Differences in EC50-72h values between algal strains of the same species were within a factor

  17. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites.

    Science.gov (United States)

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-07-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed.

  18. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    1980-01-01

    The apparatus, described in detail, accurately infers the average coolant temperature exiting from the reactor core in a liquid metal cooled reactor and rapidly and reliably actuates a safety rod release mechanism on the occurrence of a critical temperature. The output temperature is inferred from the cooperative effect of the flow rate through a coolant flow path within the safety assembly and the heat generated by sensor fuel pins. The inferred temperature is sensed by a confined fluid having a high expansion coefficient; the expansion is transferred to a linear force used to actuate the release mechanism. The system may be contained within the safety assembly and does not interfere with the operation of the plant protection system scram mode. It is resetable after a scram. The time interval between the overtemperature and the insertion of the safety rods is short enough to preclude fuel damage. (U.K.)

  19. High and low temperatures have unequal reinforcing properties in Drosophila spatial learning.

    Science.gov (United States)

    Zars, Melissa; Zars, Troy

    2006-07-01

    Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.

  20. An L319F mutation in transmembrane region 3 (TM3) selectively reduces sensitivity to okaramine B of the Bombyx mori l-glutamate-gated chloride channel.

    Science.gov (United States)

    Furutani, Shogo; Okuhara, Daiki; Hashimoto, Anju; Ihara, Makoto; Kai, Kenji; Hayashi, Hideo; Sattelle, David B; Matsuda, Kazuhiko

    2017-10-01

    Okaramines produced by Penicillium simplicissimum AK-40 activate l-glutamate-gated chloride channels (GluCls) and thus paralyze insects. However, the okaramine binding site on insect GluCls is poorly understood. Sequence alignment shows that the equivalent of residue Leucine319 of the okaramine B sensitive Bombyx mori (B. mori) GluCl is a phenylalanine in the okaramine B insensitive B. mori γ-aminobutyric acid-gated chloride channel of the same species. This residue is located in the third transmembrane (TM3) region, a location which in a nematode GluCl is close to the ivermectin binding site. The B. mori GluCl containing the L319F mutation retained its sensitivity to l-glutamate, but responses to ivermectin were reduced and those to okaramine B were completely blocked.

  1. HPRT gene locus mutation in peripheral blood lymphocytes induced by internal exposure to radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Jingyong, Zhao; Yongzhong, Xu; Tao, Zhao; Fengmei, Cui; Liuyi, Wang; Qinhua, Lao [Suzhou Univ., Suzhou (China). Radiation Medicine Department

    2001-07-01

    HPRT gene locus mutation in peripheral blood lymphocytes induced by internal exposure to radionuclides was performed and the relationships between mutation frequency and dose were studied. Rats were injected intravenously with radionuclides, the blood was sampled at different time after injection; HPRT gene locus mutation frequency (GMF) were examined by methods of multi-nucleus cell and Brdurd assay, working out the Dose-response function. GMF rose with the increase of dose and dose-rates and were clearly interrelated. The HPRT gene locus mutation is very sensitive to radiation and may be used as a biological dosimeter.

  2. Sensitivity of Mesoporous CoSb2O6 Nanoparticles to Gaseous CO and C3H8 at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2015-01-01

    Full Text Available Mesoporous CoSb2O6 nanoparticles, synthesized through a nonaqueous method (using cobalt nitrate, antimony trichloride, ethylenediamine, and ethanol as a solvent, were tested to establish their sensitivity to CO and C3H8 atmospheres at relatively low temperatures. The precursor material was dried at 200°C and calcined at 600°C. X-ray diffraction and scanning electron microscopy were employed to verify the existence of crystal phases (P42/mnm and the morphology of this trirutile-type CoSb2O6 oxide. Pyramidal and cubic shaped crystals (average size: 41.1 nm, embedded in the material’s surface, were identified. Mesopores (average size: 6.5 nm on the nanoparticles’ surface were observed by means of transmission electron microscopy. The best sensitivity of the CoSb2O6 in a CO atmosphere was at the relatively low temperatures of 250 and 350°C, whereas, in a C3H8 atmosphere, the sensitivity increased uniformly with temperature. These results encourage using the CoSb2O6 nanoparticles as gas sensors.

  3. Prediction of BRAF mutation status of craniopharyngioma using magnetic resonance imaging features.

    Science.gov (United States)

    Yue, Qi; Yu, Yang; Shi, Zhifeng; Wang, Yongfei; Zhu, Wei; Du, Zunguo; Yao, Zhenwei; Chen, Liang; Mao, Ying

    2017-10-06

    OBJECTIVE Treatment with a BRAF mutation inhibitor might shrink otherwise refractory craniopharyngiomas and is a promising preoperative treatment to facilitate tumor resection. The aim of this study was to investigate the noninvasive diagnosis of BRAF-mutated craniopharyngiomas based on MRI characteristics. METHODS Fifty-two patients with pathologically diagnosed craniopharyngioma were included in this study. Polymerase chain reaction was performed on tumor tissue specimens to detect BRAF and CTNNB1 mutations. MRI manifestations-including tumor location, size, shape, and composition; signal intensity of cysts; enhancement pattern; pituitary stalk morphology; and encasement of the internal carotid artery-were analyzed by 2 neuroradiologists blinded to patient identity and clinical characteristics, including BRAF mutation status. Results were compared between the BRAF-mutated and wild-type (WT) groups. Characteristics that were significantly more prevalent (p < 0.05) in the BRAF-mutated craniopharyngiomas were defined as diagnostic features. The minimum number of diagnostic features needed to make a diagnosis was determined by analyzing the receiver operating characteristic (ROC) curve. RESULTS Eight of the 52 patients had BRAF-mutated craniopharyngiomas, and the remaining 44 had BRAF WT tumors. The clinical characteristics did not differ significantly between the 2 groups. Interobserver agreement for MRI data analysis was relatively reliable, with values of Cohen κ ranging from 0.65 to 0.97 (p < 0.001). A comparison of findings in the 2 patient groups showed that BRAF-mutated craniopharyngiomas tended to be suprasellar (p < 0.001), spherical (p = 0.005), predominantly solid (p = 0.003), and homogeneously enhancing (p < 0.001), and that patients with these tumors tended to have a thickened pituitary stalk (p = 0.014). When at least 3 of these 5 features were present, a tumor might be identified as BRAF mutated with a sensitivity of 1.00 and a specificity of 0

  4. Fragment length analysis screening for detection of CEBPA mutations in intermediate-risk karyotype acute myeloid leukemia.

    Science.gov (United States)

    Fuster, Oscar; Barragán, Eva; Bolufer, Pascual; Such, Esperanza; Valencia, Ana; Ibáñez, Mariam; Dolz, Sandra; de Juan, Inmaculada; Jiménez, Antonio; Gómez, Maria Teresa; Buño, Ismael; Martínez, Joaquín; Cervera, José; Montesinos, Pau; Moscardó, Federico; Sanz, Miguel Ángel

    2012-01-01

    During last years, molecular markers have been increased as prognostic factors routinely screened in acute myeloid leukemia (AML). Recently, an increasing interest has been reported in introducing to clinical practice screening for mutations in the CCAAT/enhancer-binding protein α (CEBPA) gene in AML, as it seems to be a good prognostic factor. However, there is no reliable established method for assessing CEBPA mutations during the diagnostic work-up of AMLs. We describe here a straightforward and reliable fragment analysis method based in PCR capillary electrophoresis (PCR-CE) for screening of CEBPA mutations; moreover, we present the results obtained in 151 intermediate-risk karyotype AML patients (aged 16-80 years). The method gave a specificity of 100% and sensitivity of 93% with a lower detection limit of 1-5% for CEBPA mutations. The series found 19 mutations and four polymorphisms in 12 patients, seven of whom (58%) presented two mutations. The overall frequency of CEBPA mutations in AML was 8% (n = 12). CEBPA mutations showed no coincidence with FLT3-ITD or NPM1 mutations. CEBPA mutation predicted better disease-free survival in the group of patients without FLT3-ITD, NPM, or both genes mutated (HR 3.6, IC 95%; 1.0-13.2, p = 0.05) and better overall survival in patients younger than 65 of this group without molecular markers (HR 4.0, IC 95%; 1.0-17.4, p = 0.05). In conclusion, the fragment analysis method based in PCR-CE is a rapid, specific, and sensitive method for CEBPA mutation screening and our results confirm that CEBPA mutations can identify a subgroup of patients with favorable prognosis in AML with intermediate-risk karyotype.

  5. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  6. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  7. Chaotic particle swarm optimization with mutation for classification.

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  8. Chaotic Particle Swarm Optimization with Mutation for Classification

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  9. Comparative effects of ionizing radiation and two gaseous chemical mutagens on somatic mutation induction in one mutable and two non-mutable clones of Tradescantia

    International Nuclear Information System (INIS)

    Nauman, C.H.; Sparrow, A.H.; Schairer, L.A.

    1976-01-01

    The X-ray dose responses of mutable clone 0106 of Tradescantia (mutable for blue to pink), and its parent clone 02 have been determined for pink and colorless mutations in stamen hair cells, and are compared to the previously determined X-ray response for pink mutations of a third unrelated clone, clone 4430 (hybrid of T. subacaulis and T. hirsutiflora). X-ray response curves are compared to the response curves of the same three clones after exposure to the gaseous phase of the alkylating agent ethyl methanesulfate (EMS) and the fumigant and gasoline additive 1,2-dibromoethane (DBE). X-irradiation induces a pink mutation rate in mutable clone 0106 that is significantly higher than that of the nearly identical pink mutation rates in clones 02 and 4430. However, the colorless mutation rates of clones 02 and 0106 are not significantly different from one another. In clones 02 and 0106, pink mutations occur more frequently than colorless mutations at lower doses, but colorless dose-response curves saturate at higher doses than do those for pink mutations. Exposure-response curves for EMS and DBE have characteristics similar to those of X-ray response curves: exponential rise followed by an area of saturation. However, it was found that the relative sensitivities of the three clones to the gaseous mutagens and to ionizing radiation do not parallel one another. Where clones 02 and 4430 are equally sensitive to X-rays, at equal mutagen concentration clone 4430 is 6-7 times more sensitive to EMS and 7-9 times more sensitive to DBE than is clone 02. Mutable clone 0106 shows intermediate sensitivities to both EMS and DBE

  10. Analysis of chlorophyll mutations induced by γ-rays in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-06-01

    Thirty varieties of dormant barley seeds were irradiated with 137 Cs γ-rays. Dose-effect relations of chlorophyll mutation frequency in M 2 seedling and differences resulting from cultured types or radiosensitive types were investigated. Experimental results show that the relations between chlorophyll mutation frequency and doses can be fitted by a linear regression equation Y = A + BX. According to analysis of covariance, there is no considerable difference in various cultured types, but the difference of five different radiosensitive types is remarkable. The sensitive and intermediate types need much lower doses than other types to induce maximum chlorophyll mutation

  11. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  12. Studies on the Mechanism of Radiation Resistance in Micrococcus Radiodurans and its Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, S.; Matsuyama, A. [Radiobiology Laboratory, Institute of Physical and Chemical Research, Wako-shi, Saitama-ken (Japan)

    1978-06-15

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37 Degree-Sign C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by postirradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  13. Studies on the mechanism of radiation resistance in Micrococcus radiodurans and its sensitization

    International Nuclear Information System (INIS)

    Kitayama, S.; Matsuyama, A.

    1978-01-01

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37 0 C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by post-irradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  14. Compactness of viral genomes: effect of disperse and localized random mutations

    Science.gov (United States)

    Lošdorfer Božič, Anže; Micheletti, Cristian; Podgornik, Rudolf; Tubiana, Luca

    2018-02-01

    Genomes of single-stranded RNA viruses have evolved to optimize several concurrent properties. One of them is the architecture of their genomic folds, which must not only feature precise structural elements at specific positions, but also allow for overall spatial compactness. The latter was shown to be disrupted by random synonymous mutations, a disruption which can consequently negatively affect genome encapsidation. In this study, we use three mutation schemes with different degrees of locality to mutate the genomes of phage MS2 and Brome Mosaic virus in order to understand the observed sensitivity of the global compactness of their folds. We find that mutating local stretches of their genomes’ sequence or structure is less disruptive to their compactness compared to inducing randomly-distributed mutations. Our findings are indicative of a mechanism for the conservation of compactness acting on a global scale of the genomes, and have several implications for understanding the interplay between local and global architecture of viral RNA genomes.

  15. De novo mutations in HCN1 cause early infantile epileptic encephalopathy.

    Science.gov (United States)

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel

    2014-06-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.

  16. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation.

    Science.gov (United States)

    Deng, Wei; Yang, Qian; Zhang, Yongzhi; Jiao, Hongtao; Mei, Yu; Li, Xuefeng; Zheng, Mingqi

    2017-03-01

    Acetolactate synthase (ALS) is the common target of ALS-inhibiting herbicides, and target-site ALS mutations are the main mechanism of resistance to ALS-inhibiting herbicides. In this study, ALS1 and ALS2 genes with full lengths of 2004bp and 1998bp respectively were cloned in individual plants of susceptible (S) or resistant (R) flixweed (Descurainia sophia L.) populations. Two ALS mutations of Pro-197-Thr and/or Trp-574-Leu were identified in plants of three R biotypes (HB24, HB30 and HB42). In order to investigate the function of ALS isozymes in ALS-inhibiting herbicide resistance, pHB24 (a Pro-197-Thr mutation in ALS1 and a wild type ALS2), pHB42 (a Trp-574-Leu mutation in ALS1 and a wild type ALS2) and pHB30 (a Trp-574-Leu mutation in ALS1 and a Pro-197-Thr mutation in ALS2) subpopulations individually homozygous for different ALS mutations were generated. Individuals of pHB30 had mutations in each isozyme of ALS and had higher resistance than pHB24 and pHB42 populations containing mutations in only one ALS isozyme. Moreover, the pHB24 had resistance to SU, TP and SCT herbicides, whereas pHB24 and pHB42 had resistance to these classes of herbicides as well as IMI and PTB herbicides. The sensitivity of isolated ALS enzyme to inhibition by herbicides in these populations correlated with whole plant resistance levels. Therefore, reduced ALS sensitivity resulting from the mutations in ALS was responsible for resistance to ALS-inhibiting herbicides in flixweed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Interspecific Differences in Metabolic Rate and Metabolic Temperature Sensitivity Create Distinct Thermal Ecological Niches in Lizards (Plestiodon).

    Science.gov (United States)

    Watson, Charles M; Burggren, Warren W

    2016-01-01

    Three congeneric lizards from the southeastern United States (Plestiodon fasciatus, P. inexpectatus, and P. laticeps) exhibit a unique nested distribution. All three skink species inhabit the US Southeast, but two extend northward to central Ohio (P. fasciatus and P. laticeps) and P. fasciatus extends well into Canada. Distinct interspecific differences in microhabitat selection and behavior are associated with the cooler temperatures of the more Northern ranges. We hypothesized that interspecific differences in metabolic temperature sensitivity locally segregates them across their total range. Resting oxygen consumption was measured at 20°, 25° and 30°C. Plestiodon fasciatus, from the coolest habitats, exhibited greatly elevated oxygen consumption compared to the other species at high ecologically-relevant temperatures (0.10, 0.17 and 0.83 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Yet, P. inexpectatus, from the warmest habitats, exhibited sharply decreased oxygen consumption compared to the other species at lower ecologically-relevant temperatures (0.09, 0.27 and 0.42 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Plestiodon laticeps, from both open and closed microhabitats and intermediate latitudinal range, exhibited oxygen consumptions significantly lower than the other two species (0.057, 0.104 and 0.172 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Overall, Plestiodon showed metabolic temperature sensitivities (Q10s) in the range of 2-3 over the middle of each species' normal temperature range. However, especially P. fasciatus and P. inexpectatus showed highly elevated Q10s (9 to 25) at the extreme ends of their temperature range. While morphologically similar, these skinks are metabolically distinct across the genus' habitat, likely having contributed to their current distribution.

  18. Mutation induction in haploid yeast after split-dose radiation-exposure. Pt. 1

    International Nuclear Information System (INIS)

    Schenk, K.; Zoelzer, F.; Kiefer, J.

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency. (orig.)

  19. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  20. Chromosomal radiosensitivity in breast cancer patients and BRCA1 and 2 mutation carriers

    International Nuclear Information System (INIS)

    Vral, Anne

    2004-01-01

    Enhanced chromosomal radiosensitivity is observed in significant proportions of cancer patients. In breast cancer patients, this elevated sensitivity is confirmed in several independent studies with the G2 assay as well as with the GO micronucleus (MN) assay for peripheral blood lymphocytes (PBL). Enhanced chromosomal radiosensitivity is a common feature of sporadic breast cancer patients as well as breast cancer patients with a family history of the disease. Segregation analysis showed Mendelian heritability of chromosomal radiosensitivity. As mutations in the highly penetrant breast cancer predisposing genes, BRCA1 and 2, are only present in about 3-5 % of familial breast cancer patients, they cannot solely account for the high proportion of radiosensitive cases found among all breast cancer patients. A review on chromosomal radiosensitivity in BRCA1 and 2 mutation carriers shows that breast cancer patients with a BRCAl or 2 mutation are on the average more radiosensitive than healthy individuals, but not different from breast cancer patients without a BRCA mutation. The radiation response of healthy BRCA1/2 mutation carriers, on the contrary, is not significantly different from controls. Most studies performed on wild type and BRCA +/- EBV lymphoblastoid cell lines also could not demonstrate any differences in MN response between both groups. These findings suggest that mutations in BRCA 1 and 2 are not playing a major role in chromosomal radiosensitivity as measured by G2 and MN assay. The enhanced sensitivity observed in a substantial proportion of breast cancer patients, irrespective of a BRCA1/2 mutation or not, suggests that this feature may be related to the presence of other mutations in low penetrance breast cancer predisposing genes, which may be involved in the process of DNA damage. (author)

  1. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  2. Characterization of new radiation-sensitive mutant, Escherichia coli K-12 radC102

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Sargentini, N.J.; Smith, K.C.

    1984-01-01

    A new radiation-sensitive mutant, radC, has been isolated. The radC gene is located at 81.0 min on the Escherichia coli K-12 linkage map. The radC mutation sensitized cells to uv radiation, but unlike most DNA repair mutations, sensitization to X rays was observed only for rich medium-grown cells. For cells grown in rich medium, the radC mutant was normal for γ radiation mutagenesis, but showed less uv-radiation mutagenesis than the wild-type strain; it showed normal amount of X- and uv-radiation-induced DNA degradation, and it wasapprox. =60% deficient in recombination ability. The radC strain was normal for host cell reactivation of γ and uv-irradiated bacteriophage the radC mutation did not sensitize a recA strain, but did sensitize a radA and a polA strain to X and uv radiation and a uvrA strain to uv radiation. Therefore, it is suggested that the radC gene product plays a role in the growth medium-dependent, recA gene-dependent repair of DNA single-strand breaks after X irradiation, and in postreplication repair after uv irradiation

  3. Hypermutability of a UV-sensitive aphidicolin-resistant mutant of Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Liu, P.K.; Chang, C.; Trosko, J.E.

    1982-01-01

    An ultraviolet light (UV)-sensitive thymidine auxotroph of Chinese hamster V79 cells that exhibits pleiotropic effects such as a high level of deoxycytidine triphosphate, slow growth, sensitivity to cytidine, and high frequencies of site-specific bromodeoxyuridine-dependent chromosomal aberrations was selected by its resistance to aphidicolin. The UV-induced mutability of this mutant and one of its revertants, which retains some of the phenotypes listed above, was studied in 3 mutation assay systems. The results showed that the mutant was hypermutable for ouabain and diphtheria-toxin-resistant mutations compared to wild-type V79 cells at the same UV dose or the same survival level. The mutant exhibits a delayed expression of maximal frequency of induced 6-thioguanine-resistant mutants. When maximal frequencies are compared at the same UV dose, the mutant also has higher mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase locus. The revertant was similar to the wild-type in UV sensitivity and mutability. (orig./AJ)

  4. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    Science.gov (United States)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  5. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  6. Evaluation of the sensitivity of the mineralizable pool of soil organic matter to changes in temperature and moisture

    Science.gov (United States)

    Tulina, A. S.; Semenov, V. M.

    2015-08-01

    The sensitivity of the potentially mineralizable pool of soil organic matter (Cpm) to changes in temperature and moisture has been assessed from the temperature coefficient ( Q10) and the moisture coefficient ( W 10), which indicate how much the Cpm size changes, when the temperature changes by 10°C and the soil water content changes by 10 wt %, respectively. Samples of gray forest soil, podzolized chernozem, and dark chestnut soil taken from arable plots have been incubated at 8, 18, and 28°C and humidity of 10, 25, and 40 wt %. From the data on the production of C-CO2 by soil samples during incubation for 150 days, the content of Cpm has been calculated. It has been shown that, on average for the three soils, an increase in temperature accounts for 63% of the rise in the pool of potentially mineralizable organic matter, whereas an increase in moisture accounts for 8% of that rise. The temperature coefficients of the potentially mineralizable pool are 2.71 ± 0.64, 1.27 ± 0.20, and 1.85 ± 0.30 in ranges of 8-18, 18-28, and 8-28°C, respectively; the moisture coefficients are 1.19 ± 0.11, 1.09 ± 0.05, and 1.14 ± 0.06 in ranges of 10-25, 25-40, and 10-40 wt %, respectively. The easily mineralizable fraction (C1, k 1 > 0.1 days-1) of the active pool of soil organic matter is less sensitive to temperature than the hardly mineralizable fraction (C3, 0.01 > k 3 > 0.001 days-1); their Q 10 values are 0.91 ± 0.15 and 2.40 ± 0.31, respectively. On the contrary, the easily mineralizable fraction is more sensitive to moistening than the hardly mineralizable fraction: their W 10 values are 1.22 ± 0.06 and 1.03 ± 0.08, respectively. The intensification of mineralization with rising temperature and water content during a long-term incubation results in the exhausting of the active pool, which reduces the production of CO2 by the soils during the repeated incubation under similar conditions nonlimiting mineralization.

  7. Efficient detection of factor IX mutations by denaturing high-performance liquid chromatography in Taiwanese hemophilia B patients, and the identification of two novel mutations

    Directory of Open Access Journals (Sweden)

    Pei-Chin Lin

    2014-04-01

    Full Text Available Hemophilia B (HB is an X-linked recessive disorder characterized by mutations in the clotting factor IX (FIX gene that result in FIX deficiency. Previous studies have shown a wide variation of FIX gene mutations in HB. Although the quality of life in HB has greatly improved mainly because of prophylactic replacement therapy with FIX concentrates, there exists a significant burden on affected families and the medical care system. Accurate detection of FIX gene mutations is critical for genetic counseling and disease prevention in HB. In this study, we used denaturing high-performance liquid chromatography (DHPLC, which has proved to be a highly informative and practical means of detecting mutations, for the molecular diagnosis of our patients with HB. Ten Taiwanese families affected by HB were enrolled. We used the DHPLC technique followed by direct sequencing of suspected segments to detect FIX gene mutations. In all, 11 FIX gene mutations (8 point mutations, 2 small deletions/insertions, and 1 large deletion, including two novel mutations (exon6 c.687–695, del 9 mer and c.460–461, ins T were found. According to the HB pedigrees, 25% and 75% of our patients were defined as familial and sporadic HB cases, respectively. We show that DHPLC is a highly sensitive and cost-effective method for FIX gene analysis and can be used as a convenient system for disease prevention.

  8. New approaches for effective mutation induction in gamma field

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomi, Shigeki [National Institute of Agrobiological Resources, Institute of Radiation Breeding, Omiya, Ibaraki (Japan)

    2001-03-01

    The purpose of the report is to clarify the effects of chronic irradiation using in vitro culture on inducing the mutation of two model plants. Culture technique combined with irradiation can overcome the problem of chimera formation and provided 10 times greater mutation efficiency than conventional method. Proper mutagenic treatment using cultured materials is indispensable to effective mutation induction. The chronic culture method showed the widest color spectrum in chrysanthemum and extended toward not only the negative but positive direction. However, the acute culture methods indicated a relatively low mutation rate and a very limited flower color spectrum. Flower color mutation of the regenerations could be induced more from petals and buds than from leaves. These facts is supposed that the gene loci fully expressed on floral organs may be unstable for mutation by mutagenesis or culture. It may be likely to control a direction of desired mutation. One possible reason why the chronic culture methods showed higher frequencies is that most of the cells composing the tissue and organs continually irradiated into a cell division which was highly sensitive and more mutable to irradiation. Under these conditions, many mutated sectors may accumulate in the cells of the growing organs. Regenerated mutant lines show remarkable decrease of chromosome numbers by irradiation. It is a proper indicator to monitor radiation damage. In this study, the six flower color mutant varieties registered were derived from chronic irradiation. The combined method of chronic irradiation with floral organ cultures proved to be of particularly great practical use in mutation breeding for not only flower species but any other species. (author)

  9. New approaches for effective mutation induction in gamma field

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    2001-01-01

    The purpose of the report is to clarify the effects of chronic irradiation using in vitro culture on inducing the mutation of two model plants. Culture technique combined with irradiation can overcome the problem of chimera formation and provided 10 times greater mutation efficiency than conventional method. Proper mutagenic treatment using cultured materials is indispensable to effective mutation induction. The chronic culture method showed the widest color spectrum in chrysanthemum and extended toward not only the negative but positive direction. However, the acute culture methods indicated a relatively low mutation rate and a very limited flower color spectrum. Flower color mutation of the regenerations could be induced more from petals and buds than from leaves. These facts is supposed that the gene loci fully expressed on floral organs may be unstable for mutation by mutagenesis or culture. It may be likely to control a direction of desired mutation. One possible reason why the chronic culture methods showed higher frequencies is that most of the cells composing the tissue and organs continually irradiated into a cell division which was highly sensitive and more mutable to irradiation. Under these conditions, many mutated sectors may accumulate in the cells of the growing organs. Regenerated mutant lines show remarkable decrease of chromosome numbers by irradiation. It is a proper indicator to monitor radiation damage. In this study, the six flower color mutant varieties registered were derived from chronic irradiation. The combined method of chronic irradiation with floral organ cultures proved to be of particularly great practical use in mutation breeding for not only flower species but any other species. (author)

  10. Sensitivity analysis of power depression and axial power factor effect on fuel pin to temperature and related properties distribution

    International Nuclear Information System (INIS)

    Suwardi, S.

    2001-01-01

    The presented paper is a preliminary step to evaluate the effect of radial and axial distribution of power generation on thermal analysis of whole fuel pin model with large L/D ratio. The model takes into account both radial and axial distribution of power generation due to power depression and core geometry, temperature and microstructure dependent on thermal conductivity. The microstructure distribution and the gap conductance for typical steady-state situation are given for the sensitivity analysis. The temperature and thermal conductivity distribution along the radial and axial directions obtained by different power distribution is used to indicate the sensitivity of power depression and power factor on thermal aspect. The evaluation is made for one step of incremental time and steady state approach is used. The analysis has been performed using a finite element-finite difference model. The result for typical reactor fuel shows that the sensitivity is too important to be omitted in thermal model

  11. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    Directory of Open Access Journals (Sweden)

    Scarlett Sett

    Full Text Available Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂ at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica. Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  12. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer.

    Science.gov (United States)

    Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy

    2018-06-13

    The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.

  13. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia.

    Science.gov (United States)

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-03-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×10 9 /l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR.

  14. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites§

    Science.gov (United States)

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-01-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed. PMID:17581118

  15. Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia.

    Science.gov (United States)

    Wuliandari, Juli Rochmijati; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret

    2015-07-23

    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.

  16. FLT3 mutations in canine acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Suter, Steven E; Small, George W; Seiser, Eric L; Thomas, Rachael; Breen, Matthew; Richards, Kristy L

    2011-01-01

    FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit FLT3 ITD mutations. We molecularly characterized FLT3 mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via in vitro proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting. The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have FLT3 ITD mutations and FLT3 mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the FLT3 mutation. Finally, western blots were used to confirm the conserved downstream mediators of FLT3 activating mutations. These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias

  17. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    Science.gov (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  18. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, B; Prakasarao, A; Singaravelu, G [Anna University, Chennai, TamilNadu (India); Palraj, T; Rai, R [Dr. Rai Memorial Cancer Institute, Chennai, TamilNadu (India)

    2016-06-15

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap. To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.

  19. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    International Nuclear Information System (INIS)

    Ganesan, B; Prakasarao, A; Singaravelu, G; Palraj, T; Rai, R

    2016-01-01

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap. To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.

  20. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    Science.gov (United States)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  1. Sensitivities of dry season runoff to precipitation and temperature in southern Sierra Nevada streams

    Science.gov (United States)

    Safeeq, M.; Hunsaker, C. T.; Bales, R. C.

    2016-12-01

    In a mediterranean climate, dry season runoff sustains water supply and supports aquatic habitat and other ecosystems. Precipitation and temperature directly, by regulating recharge and evapotranspiration (ET), and indirectly, by regulating amount and timing of snowmelt, control the dry season runoff in the Sierra Nevada. Here, we explored relative impacts of precipitation and temperature variability on dry season runoff using path analysis. Specific objectives include: (i) to quantify the direct and indirect impacts of precipitation and temperature on 7-day average minimum flow (Qmin) and (ii) to explore the role of preceding year Qmin on fall season runoff (QF). We used daily runoff, air temperature, precipitation, and snow water equivalent (SWE) over 2004-2015 for the ten catchments in the Kings River Experimental Watersheds. For path analysis model of Qmin, we defined annual precipitation and temperature as exogenous variables and peak SWE, day of snow disappearance, and Qmin as endogenous variables. For QF, we defined current year fall precipitation and preceding year Qmin as exogenous variables and current year QF as an endogenous variable. Path analysis results for Qmin show precipitation as a dominant driver when compared to temperature, peak SWE, and day of snow disappearance. However, in half of the catchments that are mostly located at higher elevations the impact of temperature on Qmin was either comparable or exceeded that of precipitation. This relatively high sensitivity of Qmin to air temperature in high elevation catchments is consistent with the earlier findings of increased ET in proportion to warming. The direct effects of peak SWE and day of snow disappearance on Qmin were limited, and indirect effects of temperature and precipitation via peak SWE and day of snow disappearance were not significant. The preceding year Qmin and fall precipitation showed comparable impacts on QF, indicating that the storage in the preceding year modulates current

  2. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro Santos, Erika Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Silva Junior, Wilson Araujo da [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Carraro, Dirce Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Rossi, Benedito Mauro; Valentin, Mev Dominguez [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Carneiro, Felipe [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Oliveira, Ligia Petrolini de [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Nakagawa, Wilson Toshihiko [Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Gomy, Israel [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Faria Ferraz, Victor Evangelista de [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil)

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  3. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    International Nuclear Information System (INIS)

    Monteiro Santos, Erika Maria; Silva Junior, Wilson Araujo da; Carraro, Dirce Maria; Rossi, Benedito Mauro; Valentin, Mev Dominguez; Carneiro, Felipe; Oliveira, Ligia Petrolini de; Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; Faria Ferraz, Victor Evangelista de

    2012-01-01

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models

  4. Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel.

    Science.gov (United States)

    Arrieta, Oscar; Anaya, Pablo; Morales-Oyarvide, Vicente; Ramírez-Tirado, Laura Alejandra; Polanco, Ana C

    2016-09-01

    Assess the cost-effectiveness of an EGFR-mutation testing strategy for advanced NSCLC in first-line therapy with either gefitinib or carboplatin-paclitaxel in Mexican institutions. Cost-effectiveness analysis using a discrete event simulation (DES) model to simulate two therapeutic strategies in patients with advanced NSCLC. Strategy one included patients tested for EGFR-mutation and therapy given accordingly. Strategy two included chemotherapy for all patients without testing. All results are presented in 2014 US dollars. The analysis was made with data from the Mexican frequency of EGFR-mutation. A univariate sensitivity analysis was conducted on EGFR prevalence. Progression-free survival (PFS) transition probabilities were estimated on data from the IPASS and simulated with a Weibull distribution, run with parallel trials to calculate a probabilistic sensitivity analysis. PFS of patients in the testing strategy was 6.76 months (95 % CI 6.10-7.44) vs 5.85 months (95 % CI 5.43-6.29) in the non-testing group. The one-way sensitivity analysis showed that PFS has a direct relationship with EGFR-mutation prevalence, while the ICER and testing cost have an inverse relationship with EGFR-mutation prevalence. The probabilistic sensitivity analysis showed that all iterations had incremental costs and incremental PFS for strategy 1 in comparison with strategy 2. There is a direct relationship between the ICER and the cost of EGFR testing, with an inverse relationship with the prevalence of EGFR-mutation. When prevalence is >10 % ICER remains constant. This study could impact Mexican and Latin American health policies regarding mutation detection testing and treatment for advanced NSCLC.

  5. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    Science.gov (United States)

    Stavarache, Ionel; Maraloiu, Valentin Adrian; Negrila, Catalin; Prepelita, Petronela; Gruia, Ion; Iordache, Gheorghe

    2017-10-01

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. This article reports on a significant progress given by structuring Ge nanocrystals (Ge-NCs) embedded in silicon dioxide (SiO2) thin films by heating the substrate at 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency with peak value reaching 850% at -1 V and about 1000 nm. This simple preparation approach brings an important contribution to the effort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  6. Optimization of heteroduplex analysis for the detection of BRCA mutations and SNPs

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2011-02-01

    Full Text Available BRCA1 and BRCA2 are tumour suppressor genes whose mutant phenotypes predispose to breast and ovarian cancer. Screening for mutations in these genes is now standard practice for hereditary breast and ovarian cancer (HBOC cases in Europe, and permits medical follow-up and genetic counselling adapted to the needs of individuals in such families. Currently, most laboratories performing diagnostic analysis of the BRCA genes use PCR of exons and intron-exon boundaries coupled to a pre-screening step to identify anomalous amplicons. The techniques employed for the detection of mutations and SNPs have evolved over time and vary in sensitivity, specificity and cost-effectiveness. As a variant for pre-screening techniques, we chose the recently developed Surveyor® heteroduplex cleavage method as a sensitive and specific technique to reveal anomalous amplicons of the BRCA genes, using only basic laboratory equipment and agarose gel electrophoresis. Here we present the detection of either mutations or SNPs within the BRCA1 exon 7, using heteroduplex analysis (HA by mismatch-specific endonuclease, confirmed by dideoxy sequencing.

  7. Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D mutations.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Chen

    Full Text Available BACKGROUND: The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D on protein conformation. METHODS: Molecular dynamics (MD simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D and c.38G>A (p.G13D. The potential of mean force (PMF simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT KRAS and its mutants (MT. RESULTS: Using MD simulations, we observed that the root mean square deviation (RMSD increased as a function of time for the MT c.35G>A (p.G12D and MT c.38G>A (p.G13D when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D mutant is more open than that of the WT and the c.38G>A (p.G13D proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions. Such fluctuations may promote instability in these protein regions and hamper GTP binding. CONCLUSIONS: Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions. Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC and the KRAS c.38G>A (p.G13D mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D mutation in mCRC needs to be further investigated.

  8. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  9. CNGA3 mutations in two United Arab Emirates families with achromatopsia.

    Science.gov (United States)

    Ahuja, Yachna; Kohl, Susanne; Traboulsi, Elias I

    2008-07-10

    ACHROMATOPSIA RESULTS FROM MUTATIONS IN ONE OF THREE GENES: cyclic nucleotide-gated channel, alpha-3 (CNGA3); cyclic nucleotide-gated channel, beta-3 (CNGB3); and guanine nucleotide-binding protein, alpha-transducing activity polypeptide 2 (GNAT2). We report the responsible mutations in two United Arab Emirates families who have this autosomal recessive disease. Clinical examinations were performed in seven patients from three nuclear families. Molecular genetic testing for common CNGA3 and CNGB3 mutations was undertaken using standard protocols. All patients were extremely light sensitive and had reduced visual acuity and no color perception. Fundus examinations did not show any visible abnormalities. After further pedigree analysis, two of the families were found to be linked through the paternal line. Two mutations in CNGA3 were identified: Arg283Trp and Gly397Val. Family A, the larger pedigree, had one branch in which two sisters and one brother were homozygous for the Gly397Val mutation and another branch in which a brother and sister were compound heterozygous for both aforenamed mutations. Family B, however, only had two brothers who were homozygous for the Arg283Trp mutation. Achromatopsia in these two United Arab Emirates families results from two different mutations in CNGA3. Two branches of the same pedigree had individuals with both homozygous and compound heterozygous disease, demonstrating a complex molecular pathology in this large family.

  10. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    Giuggio, N.; Noyes, R.C.; Zaman, S.U.

    1982-01-01

    This invention provides a mechanism for rapidly dropping a neutron absorbing poison material into the core of an LMFBR type reactor, and in particular a mechanism that is self-actuated when the reactor coolant temperature reaches a critical value. A safety duct located in the reactor core and extending above the core contains an inner column that provides a vertical coolant flow path through the duct. One or more fuel pins are located in the duct, with a temperature-responsive actuator near their upper ends. A poison bundle surrounds the inner column within the duct, held in position by a release mechanism connected to the actuator. The inferred core temperature is sensed by a fluid confined within the actuator, and the expansion of the fluid is translated into a linear force used to activate the release mechanism

  11. Multiple temperature effects on up-conversion fluorescences of Er3+-Y b3+-Mo6+ codoped TiO2 and high thermal sensitivity

    Directory of Open Access Journals (Sweden)

    B. S. Cao

    2015-08-01

    Full Text Available We report multiple temperature effects on green and red up-conversion emissions in Er3+-Y b3+-Mo6+ codoped TiO2 phosphors. With increasing temperature, the decrease of the red emission from 4F9/2→4I15/2, the increase of green emission from 2H11/2→4I15/2 and another unchanged green emission from 4S3/2→4I15/2 were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (Smax and optimum operating temperature (Tmax are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  12. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  13. Ras mutations are rare in solitary cold and toxic thyroid nodules.

    Science.gov (United States)

    Krohn, K; Reske, A; Ackermann, F; Müller, A; Paschke, R

    2001-08-01

    Activation of ras proto-oncogenes as a result of point mutations is detectable in a significant percentage of most types of tumour. Similar to neoplasms of other organs, mutations of all three ras genes can be found in thyroid tumours. H-, K- and N-ras mutations have been detected in up to 20% of follicular adenomas and adenomatous nodules which were not functionally characterized. This raises the question as to whether ras mutations are specific for hypofunctional nodules and TSH receptor mutations for hyperfunctioning nodules. To investigate ras and TSH receptor mutations with respect to functional differentiation we studied 41 scintigraphically cold nodules and 47 toxic thyroid nodules. To address the likelihood of a somatic mutation we also studied the clonal origin of these tumours. Genomic DNA was extracted from nodular and surrounding tissue. Mutational hot spots in exons 1 and 2 of the H- and K-ras gene were PCR amplified and sequenced using big dye terminator chemistry. Denaturing gradient gel electrophoresis (DGGE) was used to verify sequencing results for the H-ras gene and to analyse the N-ras gene because its greater sensitivity in detecting somatic mutations. Clonality of nodular thyroid tissue was evaluated using X-Chromosome inactivation based on PCR amplification of the human androgen receptor locus. Monoclonal origin was detectable in 14 of 23 informative samples from cold thyroid nodules. In toxic thyroid nodules the frequency of clonal tissue was 20 in 30 informative cases. Only one point mutation could be found in the N-ras gene codon 61 (Gly to Arg) in a cold adenomatous nodule which was monoclonal. In toxic thyroid nodules no ras mutation was detectable. Our study suggests that ras mutations are rare in solitary cold and toxic thyroid nodules and that the frequent monoclonal origin of these tumours implies somatic mutations in genes other than H-, K- and N-ras.

  14. Mutation induction in yeast by very heavy ions

    Science.gov (United States)

    Kiefer, J.

    1994-10-01

    Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/μm. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.

  15. Somatic point mutation calling in low cellularity tumors.

    Directory of Open Access Journals (Sweden)

    Karin S Kassahn

    Full Text Available Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/ for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.

  16. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    Science.gov (United States)

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the

  17. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  18. Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC

    Directory of Open Access Journals (Sweden)

    Richard Marie-Jeanne

    2011-05-01

    Full Text Available Abstract Background Epidermal Growth Factor Receptor (EGFR mutations, especially in-frame deletions in exon 19 (ΔLRE and a point mutation in exon 21 (L858R predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. Methods We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. Results This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%. In the prospective analysis of 213 samples, 7 (3.3% samples were not analyzed and EGFR mutations were detected in 18 (8.7% patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. Conclusions pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.

  19. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues.

    Science.gov (United States)

    Chat-Uthai, Nunthawut; Vejvisithsakul, Pichpisith; Udommethaporn, Sutthirat; Meesiri, Puttarakun; Danthanawanit, Chetiya; Wongchai, Yannawan; Teerapakpinyo, Chinachote; Shuangshoti, Shanop; Poungvarin, Naravat

    2018-01-01

    The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.

  20. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients

    Science.gov (United States)

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; pcytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847