WorldWideScience

Sample records for temperature wear applications

  1. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  2. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  3. Temperature effect on IG-11 graphite wear performance

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xiaowei [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: xwluo@mail.tsnghua.edu.cn; Yu Suyuan [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China); Sheng Xuanyu [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Shuyan [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    IG-11 graphite, used in the 10 MW high temperature gas-cooled test reactor (HTR-10), was tested under different temperatures on an SRV standard wear performance tester. The experiment temperatures were room temperature, 100, 200, 300 and 400 deg C. According to the reactor structure, the experiments were designed to test graphite-graphite and graphite-stainless steel wear. The wear debris was collected, and the worn surfaces and debris were observed under scanning electronic microscope (SEM). It was found that there were different wear mechanisms at different temperatures. The main wear mechanism at room temperature was abrasive wear; at 200 deg C, it was fatigue wear; at 400 deg C, adhesive wear was observed. This difference was mainly due to the change of stress distribution at the contact area. The distribution of wear debris was also analyzed by EDX particle analysis software.

  4. Wirelessly Interrogated Wear or Temperature Sensors

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  5. Objective measurement of spectacle wear with a temperature sensor data logger.

    Science.gov (United States)

    Lentsch, Matthew J; Marsack, Jason D; Anderson, Heather A

    2017-11-08

    This study seeks to establish the utility of the SmartButton Data Logger (www.acrsystems.com) to monitor spectacle wear for research and clinical applications. Fifty adults wore a thermosensor on their spectacles for 2 weeks for each of two mount types while keeping wear-time logs. Temperatures during reported spectacle wear (ON) were compared to temperatures during non-wear (OFF) with repeated measures analysis of variance (ANOVA). In addition, two strategies to approximate spectacle wear from temperature data were evaluated: (1) Filtering data based on temperature ranges to identify spectacle wear (either group mean ON temperature, or an individual's mean ON temperature), and (2) Separate examiners inspecting temperature against time plots to identify spectacle wear. The success of these methods to approximate wear time was evaluated by per cent error with respect to subject reported wear time. Group mean ON (31.8 [0.6]°Celsius [°C]) and OFF (24.7 [1.5]°C) temperatures differed significantly (F1,47  = 471.2, p spectacle compliance in patients with all approximation methods evaluated providing less than 10% median per cent error in wear time. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  6. Wear Properties of Nuclear Graphite IG-110 at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dunkun; Kim, Jaehoon; Kim, Yeonwook [Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    The high temperature gas-cooled reactor (HTR-10) is designed to produce electricity and hydrogen. Graphite is used as reflector, support structures, and a moderator in reactor core; it has good resistance to neutron and is a suitable material at high temperatures. Friction is generated in the graphite structures for the core reflector, support structures, and moderator because of vibration from the HTR-10 fuel cycle flow. In this study, the wear characteristics of the isotropic graphite IG-110 used in HTR-10 were evaluated. The reciprocating wear test was carried out for graphite against graphite. The effects of changes in the contact load and sliding speeds at room temperature and 400℃ on the coefficient of friction and specific wear rate were evaluated. The wear behavior of graphite IG-110 was evaluated based on the wear surfaces.

  7. Influence of Cycle Temperature on the Wear Resistance of Vermicular Iron Derivatized with Bionic Surfaces

    Science.gov (United States)

    Sui, Qi; Zhang, Peng; Zhou, Hong; Liu, Yan; Ren, Luquan

    2016-11-01

    Depending on their applications, such as in brake discs, camshafts, etc., the wear behavior of vermicular iron is influenced by the thermal cycling regime. The failure of a working part during its service life is a consequence of both thermal fatigue and wear. Previously, the wear and thermal fatigue resistance properties of vermicular iron were separately investigated by researchers, rather than a study combining these two factors. In the present work, the effect of cycle temperature on the wear resistance of specimens with bionic units processed by laser has been investigated experimentally. The wear behavior pre- and post-thermal cycling has also been investigated, and the influence of different cycle temperatures on the wear resistance is discussed. The results indicate that the thermal cycling regime brought about negative influences with varying degrees, on the material properties, such as the microstructures, micro-hardness, cracks, and oxidation resistance properties. All these factors synergistically reduced the wear resistance of vermicular iron. In particular, the negative influence apparently increased with an increase in cycle temperature. Nevertheless, the post-thermal-cycle wear resistance of the specimens with bionic units was superior to those without bionic units. Hence, the laser bionic process is an effective way to improve the performance of vermicular iron in combined thermal cycling and wear service conditions.

  8. Carbon-Based Wear Coatings: Properties and Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion

  9. Wear Potential Due to Low EHD Films During Elevated Temperatures

    Science.gov (United States)

    Leville, Alan; Ward, Peter

    2014-01-01

    An earlier study showed that EHD films could be accurately measured in a running bearing and that the EHD film eventually runs-in to a steady state value [1]. In the present paper, we report on additional tests conducted on bearings with more lubricants, wider speeds, and higher temperatures. The new results consistently show that all lubricants tested, including MAC-based lubricants have EHD film levels that are lower than model predictions in some situations. In addition, the MAC lubricants studied have lower film thickness than traditional hydrocarbons. Figure 1 is taken from [1] and shows room temperature data of MAC oil and Corey 100 oil, illustrating the smaller EHD film results when using this MAC oil. Since higher temperatures produce lower films by changing the viscosity, the concern we have is that the EHD films may be too small to prevent ball/race metal contact and resulting wear at lower speeds. Best bearing practices would have the EHD film thickness be at least three (3) times the composite surface roughness. In this paper, we will present measured EHD thicknesses of lubricant films at speeds up to several thousand RPM for bearing bore sizes from as low as 6 mm (0.2 in) to as large as 35 mm (1.4 in) using MAC, Corey and KG-80. Ambient temperatures from room temperature to 52C (125F) are used. Testing was done with the base oils as well as formulated greases. Greases eventually ran in to the same EHD values as the base oil but took longer times to get there. The results clearly indicate that wear is very possible in all steel bearings when using MAC lubricants and that this condition worsens with higher temperatures and smaller bearing size.

  10. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  11. Analysis of Wear Behavior of Graphene OXIDE — Polyamide Gears for Engineering Applications

    Science.gov (United States)

    Rajamani, Geetha; Paulraj, Jawahar; Krishnan, Kanny

    Recent advances in polymer nanocomposites open a wide range of applications in various industrial sectors. Due to their high potential properties, these materials are replacing the usage of metals for many heavier components in automobile industries. In this experimental work, the tribological performance of Graphene oxide (GO) — Polyamide is investigated against pristine polyamide by fabricating gears for the usage in engineering applications. A gear test rig was developed in-house for analysis to study the specific wear rate and temperature gradient at different conditions of load and speeds. The wear resistance of the polyamide gears with the addition of 0.03wt.% of graphene oxide is better than the pristine polyamide gears and the specific wear rate is reduced significantly. The reduced specific wear rate of these polymer nanocomposite gears is attributed to the superior properties of graphene oxide such as High specific surface area, good adhesion properties and enhanced glass transition temperatures. The GO nanocomposite gear seems to be a potential alternative against conventional gears for engineering applications. Finally, the wear mechanisms and the potential of GO-based polyamide nanocomposite gears were proposed tentatively in the development of transmission gears for engineering applications.

  12. Effect of low temperature annealing on the wear properties of NITINOL

    Science.gov (United States)

    Mukunda, Sriram; Nath. S, Narendra; Herbert, Mervin A.; Mukunda, P. G.

    2016-02-01

    NiTi shape memory alloy is a wonder material that is a solution looking for problems. The material finds wide biomedical applications like endodontic files for root canal treatment and cardiovascular stents. This material has rendered the surgical procedure simple compared to that with the existing Stainless Steel (SS) or titanium ones. NiTi as an endodontic file would cause less discomfort to the patients in comparison to that with far stiffer SS or titanium ones. Here nearly equi-atomic 50:50 commercial NiTi rods were subjected to low temperature aging at 300 to 450°C. The wear resistance of the as-received and the heat-treated samples was studied using adhesive wear tests on hardened steel counter face. Abrasive wear tests were run against Alumina disc to simulate the working of endodontic drills and files against dental hard and soft tissues. The abrasive wear resistance is expected to be proportional to the Vickers Hardness of the material and is high for the 450°C heat-treated sample. A correlation between the mechanical properties and microstructures of this material is attempted

  13. Effect of Particle Size on Wear of Particulate Reinforced Aluminum Alloy Composites at Elevated Temperatures

    Science.gov (United States)

    Kumar, Suresh; Pandey, Ratandeep; Panwar, Ranvir Singh; Pandey, O. P.

    2013-11-01

    The present paper describes the effect of particle size on operative wear mechanism in particle reinforced aluminum alloy composites at elevated temperatures. Two composites containing zircon sand particles of 20-32 μm and 106-125 μm were fabricated by stir casting process. The dry sliding wear tests of the developed composites were performed at low and high loads with variation in temperatures from 50 to 300 °C. The transition in wear mode from mild-to-severe was observed with variation in temperature and load. The wear at 200 °C presented entirely different wear behavior from the one at 250 °C. The wear rate of fine size reinforced composite at 200 °C at higher load was substantially lower than that of coarse size reinforced composite. Examination of wear tracks and debris revealed that delamination occurs after run in wear mode followed by formation of smaller size wear debris, transfer of materials from the counter surfaces and mixing of these materials on the contact surfaces. The volume loss was observed to increase with increase in load and temperature. Composite containing bigger size particles exhibit higher loss under similar conditions.

  14. Investigation of austenitizing temperature on wear behavior of austempered gray iron (AGI)

    Science.gov (United States)

    Sarkar, T.; Sutradhara, G.

    2016-09-01

    This study is about finding the effect of austenitizing temperature on microstructure and wear behavior of copper alloyed austempered gray iron (AGI), and then comparing it with an as- cast (solidified) state. Tensile and wear tests specimens are prepared from as-cast gray iron material, and austenitized at different temperatures and then austempered at a fixed austempering temperature. Resulting microstructures are characterized through optical microscopy, scanning electron microscope (SEM) and X-Ray diffraction. Wear test is carried out using a block-on-roller multi-tribotester with sliding speed of 1.86 m/sec. In this investigation, wear behavior of all these austempered materials are determined and co-related with the micro structure. Hence the wear surface under scanning electron microscope showed that wear occurred mainly due to adhesion and delamination under dry sliding condition. The test results indicate that the austenitizing temperature has remarkable effect on resultant micro structure and wear behavior of austempered materials. Wear behavior is also found to be dependent on the hardness, tensile strength, austenite content and carbon content in austenite. It is shown that coarse ausferrite micro structure exhibited higher wear depth than fine ausferrite microstructure.

  15. Friction and wear studies on the temperature dependence of brake-pad materials containing brass

    Directory of Open Access Journals (Sweden)

    Eddoumy Fatima

    2013-11-01

    Full Text Available Brake pad materials for automobile applications are basically polymer matrix composites. Various reinforcing constituents used in brake pads are organic, metallic and ceramic fillers which play among others an important role on the mechanical and thermal properties, and the wear resistance at high temperature. Friction and wear depend on various parameters such as the micro-chemical structure of the pad and of the metallic counter-face, the rotation speed, the pressure, and the contact surface temperature (M.G. Jacko 1983. This latter parameter can be locally as high as 600 up to 1.500 ∘C depending on the brake type (M.G. Jacko 1983; Blau 2001. Thermal models have been developed to study interface effects at contacting surfaces (Majcherczak, Dufrenoy et al. 2007. Frictional energy can be dissipated through different mechanisms such as oxidation, rise in temperature, formation of wear particles, entropy changes associated to viscoelastic and viscoplastic deformation, and noise generation (Eddoumy, Addiego et al. 2011. Studies of friction brake show that more than 95% of the dissipated energy is transformed into heat (Kasem, Thevenet et al.; Majcherczak, Dufrenoy et al. 2007. Thermal analysis is therefore a primordial step in the study of brake systems since it provides thermo-mechanical properties (Majcherczak, Dufrenoy et al. 2007. The influence of the addition of metallic fibers on the performance of organic friction composites has been investigated using friction tests (Qu, Zhang et al. 2004. Benefits or limitations of the different fibers have been reported, however the issues of thermo-mechanical properties or effect of temperature on friction and wear behavior were not yet investigated (Bijwe, Kumar et al. 2008. No effort was done to correlate the thermo-mechanical and thermal properties with the friction and wear behavior. An important prerequisite is to get a good understanding on how brake materials behave. However, a link

  16. Effects of sintering temperatures on microstructure and wear resistance of iron-silica composite

    Science.gov (United States)

    Amir, Adibah; Mamat, Othman

    2015-07-01

    Ceramic particle reinforced into metal base matrix composite has been reported to produce higher strength and wear resistance than its alloys because the ceramic phases can strongly resist abrasion. In this study the iron matrix was reinforced with two compositions of 20 and 25 wt. % fine silica particles. The compacts were produced by using powder metallurgy fabrication technique and sintered at three sintering temperatures: 1000, 1100 and 1200°C. Effects of various sintering temperatures on microstructures and the composite's wear resistance were evaluated via optical and SEM microscopy. Both compositions were also subjected to ball-on-disk wear test. The results showed the reinforcement weight fraction of 20 wt.% of silica and sintering temperature at 1100°C exhibited better result, in all aspects. It possessed higher mechanical properties, it's microstructure revealed most intact reinforcing region and it displayed higher wear resistance during wear test.

  17. Surface texture measurement for dental wear applications

    Science.gov (United States)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  18. Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate

    Science.gov (United States)

    Ekinci, Şerafettin

    Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.

  19. The High-Temperature Wear and Oxidation Behavior of CrC-Based HVOF Coatings

    Science.gov (United States)

    Houdková, Šárka; Česánek, Zdeněk; Smazalová, Eva; Lukáč, František

    2018-01-01

    Three commercially available chromium carbide-based powders with different kinds of matrix (Cr3C2-25%NiCr; Cr3C2-25%CoNiCrAlY and Cr3C2-50%NiCrMoNb) were deposited by an HVOF JP-5000 spraying gun, evaluated and compared. The influence of heat treatment on the microstructure and properties, as well as the oxidation resistance in a hot steam environment ( p = 24 MPa; T = 609 °C), was evaluated by SEM and XRD with respect to their potential application in the steam power industry. The sliding wear resistance measured at room and elevated ( T = 600 °C) temperatures according to ASTM G-133. For all three kinds of chromium carbide-based coatings, the precipitation of secondary carbides from the supersaturated matrix was observed during the heat treatment. For Cr3C2-25%NiCr coating annealed in hot steam environment as well as for Cr3C2-25%CoNiCrAlY coating in both environments, the inner carbide oxidation was recorded. The sliding wear resistance was found equal at room temperature, regardless of the matrix composition and content, while at elevated temperatures, the higher wear was measured, varying in dependence on the matrix composition and content. The chromium carbide-based coating with modified matrix composition Cr3C2-50%NiCrMoNb is suitable to replace the Cr3C2-25%NiCr coating in a hot steam environment to eliminate the risk of failure caused by inner carbide oxidation.

  20. Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing.

    Science.gov (United States)

    Richmond, V L; Wilkinson, D M; Blacker, S D; Horner, F E; Carter, J; Havenith, G; Rayson, M P

    2013-11-01

    This study assessed the validity of insulated skin temperature (Tis) to predict rectal temperature (Tre) for use as a non-invasive measurement of thermal strain to reduce the risk of heat illness for emergency service personnel. Volunteers from the Police, Fire and Rescue, and Ambulance Services performed role-related tasks in hot (30 °C) and neutral (18 °C) conditions, wearing service specific personal protective equipment. Insulated skin temperature and micro climate temperature (Tmc) predicted Tre with an adjusted r(2) = 0.87 and standard error of the estimate (SEE) of 0.19 °C. A bootstrap validation of the equation resulted in an adjusted r(2) = 0.85 and SEE = 0.20 °C. Taking into account the 0.20 °C error, the prediction of Tre resulted in a sensitivity and specificity of 100% and 91%, respectively. Insulated skin temperature and Tmc can be used in a model to predict Tre in emergency service personnel wearing CBRN protective clothing with an SEE of 0.2 °C. However, the model is only valid for Tis over 36.5 °C, above which thermal stability is reached between the core and the skin.

  1. Erosive wear of selected materials for fossil energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Thomas A.; Rawers, James C.; Tylczak, Joseph H.; Hawk, Jeffrey A.

    2001-01-01

    A number of materials have been evaluated to determine their erosion resistance for fossil energy applications. This is part of a larger program to study wear and corrosion at Albany Research Center. This paper will present the results for some of these materials, including FeAl, FeAl cermets, WC-Co cemented carbides, Si3N4-MoSi2, Si3N4, Stellite 6B, white cast irons and 440C steel. Trends in erosion rates due to material properties and erosive conditions will be presented. FeAl cermets performed well compared to the WC-Co cemented carbides. The interparticle spacing of the WC-Co cemented carbides correlated with the erosion rate. The erosion rate of the WC-Co cemented carbides decreased as the interparticle spacing decreased. It is important to realize that erosion resistance is not an intrinsic material property, but is a system response. A change in the wear environment can significantly alter the relative rankings of materials with respect to their wear rate. For example, at relatively low velocities, the carbides in the white cast irons are more erosion resistant than the matrix, while at higher velocities the matrix is more erosion resistant.

  2. Wear Response of Aluminium 6061 Composite Reinforced with Red Mud at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    R. Dabral

    2017-09-01

    Full Text Available The present work is focused on the investigations on dry sliding wear behaviour of aluminium metal matrix composite at room and elevated temperature. Aluminium metal matrix composites reinforced with red mud are prepared by stir casting method. The experiments are planned using Taguchi technique. An orthogonal array, analysis of variance and signal to noise ratio are used to check the influence of wear parameters like temperature, percentage of reinforcement, mesh size, load, sliding distance and sliding speed on dry sliding wear of composites. The optimal testing parameters are found and their values are calculated which are then compared with predicted values. A reasonable agreement is found between predicted and actual values. The model prepared in the present work can be effectively used to predict the specific wear rate of the composites.

  3. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  4. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  5. The Tooth Wear Evaluation System: development and applications

    NARCIS (Netherlands)

    Wetselaar, P.

    2016-01-01

    Tooth wear is a multifactorial condition, leading to the loss of dental hard tissues, viz., enamel and dentine. Because of its multifactorial etiology, tooth wear can manifest itself in many different representations, and therefore it can be difficult and demanding to diagnose and manage the

  6. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    Science.gov (United States)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  7. Ocular Surface Temperature During Scleral Lens Wearing in Patients With Keratoconus.

    Science.gov (United States)

    Carracedo, Gonzalo; Wang, Zicheng; Serramito-Blanco, Maria; Martin-Gil, Alba; Carballo-Alvarez, Jesús; Pintor, Jesús

    2017-11-01

    To evaluate the ocular surface temperature using an infrared thermography camera before and after wearing scleral lens in patients with keratoconus and correlate these results with the tear production and stability. A pilot, experimental, short-term study has been performed. Twenty-six patients with keratoconus (36.95±8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (KC-ICRS group) and patients without ICRS (KC group). Schirmer test, tear breakup time (TBUT), and ocular surface temperature in the conjunctiva, limbus, and cornea were evaluated before and after wearing a scleral lens. The patients wore the scleral lenses from 6 to 9 hours with average of 7.59±0.73 hours. No significant changes in Schirmer test and TBUT were found for both groups. No temperature differences were found between the KC-ICRS and the KC groups for all zones evaluated. There was a slight, but statistically significant, increase in the inferior cornea, temporal limbus, and nasal conjunctival temperature for KC-ICRS group and temporal limbus temperature decreasing for the KC group after wearing scleral lens (P0.05). Scleral contact lens seems not to modify the ocular surface temperature despite the presence of the tear film stagnation under the lens.

  8. About wear and average surface temperature of copper or steel contacts at sliding current collection

    Science.gov (United States)

    Fadin, V. V.; Aleutdinova, M. I.; Rubtsov, V. Ye.

    2015-10-01

    Wear intensity and the average surface temperature of contact between copper and 1020 steel in dry sliding with a contact density higher 100 A/cm2 are defined. It is shown that the temperature decreases linearly along the specimen with an increasing of distance from a contact surface. It is established that copper forms a friction zone with lower average contact surface temperature and with lower wear intensity in comparison with those of 1020 steel. It is caused by the lower local shear stability of copper comparing with that of 1020 steel. The explanation of this fact is offered on the basis of idea of low copper shear stability (i.e. copper high plasticity) that leads to easy relaxation of mechanical stresses in the field of stress concentrators. In this case, the surface layer is deformed locally at the low structural level and the low speed of structural defects formation is manifested. Rather high fatigue resistance of a surface layer takes place as a result. These factors and high heat conductivity of copper cause high shear stability of a surface layer at the macro-scale structural level that promotes weak heating and high wear resistance. Iron (unlike copper) has rather low heat conductivity and higher local shear stability. It leads to more difficult tension relaxation in a surface layer, as well as average temperature increasing and higher speed of deterioration.

  9. Wear resistance of experimental titanium alloys for dental applications.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Claro, Ana Paula Rosifini Alves; da Gloria Chiarello de Mattos, Maria; Ribeiro, Ricardo Faria

    2011-11-01

    The present study evaluated microstructure, microhardness and wear resistance of experimental titanium alloys containing zirconium and tantalum. Alloys were melted in arc melting furnace according to the following compositions: Ti-5Zr, Ti-5Ta and Ti-5Ta-5Zr (%wt). Hemispheres and disks were obtained from wax patterns that were invested and cast by plasma. Microstructures were evaluated using optical microscopy and X-ray diffraction (XRD) analysis and also Vickers microhardness was measured. Hemispherical samples and disks were used for 2-body wear tests, performed by repeated grinding of the samples. Wear resistance was assessed as height loss after 40,000 cycles. The data were compared using ANOVA and post-hoc Tukey test. Ti-5Zr presented a Widmanstätten structure and the identified phases were α and α' while Ti-5Ta and Ti-5Ta-5Zr presented α, β, α' and α" phases, but the former presented a lamellar structure, and the other, acicular. The microhardness of Ti-5Zr was significantly greater than other materials and cp Ti presented wear resistance significantly lower than experimental alloys. It was concluded that wear resistance was improved when adding Ta and Zr to titanium and Zr increased microhardness of Ti-5Zr alloy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Application of an X-ray Fluorescence Instrument to Helicopter Wear Debris Analysis

    National Research Council Canada - National Science Library

    Becker, Andrew

    2008-01-01

    This report describes the application of an X-ray Fluorescence (XRF) instrument to determine the composition of wear debris collected from helicopter magnetic chip detectors and oil filters. The Twin-X XRF...

  11. High Temperature Sliding Wear of NiAl-based Coatings Reinforced by Borides

    Directory of Open Access Journals (Sweden)

    Oleksandr UMANSKYI

    2016-05-01

    Full Text Available The development of composite materials (CM in the systems “metal-refractory compound” is one of the up-to-date trends in design of novel materials aimed at operating under the conditions of significant loads at high temperature. To design such material, NiAl, which is widely used for deposition of protective coatings on parts of gas-turbine engines, was selected for a matrix. To strengthen a NiAl under the conditions of intense wear and a broad temperature range (up to 1000 °C, it is reasonable to add refractory inclusions. Introduction of refractory borides into matrix leads to a marked increase in metal wear resistance. In order to research the behavior of the designed composites at high temperatures and to study the influence of oxides on the friction processes, the authors carried out high temperature oxidation of CM of the above systems at 1000 °С for 90 min. It was determined that all of the composites were oxidized selectively and that the thickness of oxide layers formed on the boride inclusions is 3 – 7 times that on the oxides formed on the NiAl matrix. The mechanism of wear of gas-thermal coatings of the NiAl – МеB2 systems was studied for conditions of high temperature tribotests using the «pin-on-disc» technique. The obtained results indicate that introduction of TiB2, CrB2 and ZrB2 leads to their more intense oxidation during high temperature tribotests as compared to the matrix. The oxides formed on refractory borides act as solid lubricants, which promote a decrease in wear of the contact friction pairs. For more detailed investigation of the effect of tribo-oxidation products on the friction processes, tribotests were conducted for prior oxidized (at 900 °С coatings NiAl – 15 wt.% CrB2 (TiB2, ZrB2.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8093

  12. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pthermal swimsuit than with a normal swimsuit in both water temperatures (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pthermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  13. Load application for the contact mechanics analysis and wear prediction of total knee replacement.

    Science.gov (United States)

    Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin

    2017-05-01

    Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.

  14. Temperature Effects on the Friction and Wear Behaviors of SiCp/A356 Composite against Semimetallic Materials

    Directory of Open Access Journals (Sweden)

    Like Pan

    2017-01-01

    Full Text Available Due to the low density and high temperature resistance, the SiCp/A356 composites have great potential for weight reduction and braking performance using the brake disc used in trains and automobiles. But the friction coefficient and braking performance are not stable in the braking process because of temperature rising. In this paper, friction and wear behaviors of SiCp/A356 composite against semimetallic materials were investigated in a ring-on-disc configuration in the temperature range of 30°C to 300°C. Experiments were conducted at a constant sliding speed of 1.4 m/s and an applied load of 200 N. Worn surface, subsurface, and wear debris were also examined by using SEM and EDS techniques. The third body films (TBFs lubricated wear transferred to the third body abrasive wear above 200°C, which was a transition temperature. The friction coefficient decreased and weight of semimetallic materials increased with the increase of temperature and the temperature had almost no effect on the weight loss of composites. The dominant wear mechanism of the composites was microploughing and slight adhesion below 200°C, while being controlled by cutting grooves, severe adhesion, and delamination above the 200°C.

  15. Application of RNB for high sensitive wear diagnostics in medicine technique and industry

    Energy Technology Data Exchange (ETDEWEB)

    Fehsenfeld, P. E-mail: Peter.Fehsenfeld@hzy.fzk.de; Eifrig, C.; Kubat, R

    2002-04-22

    The RTM--Radionuclide Technique in Mechanical engineering--is now extended to the solution of world wide problems in medicine technique (prosthetics), and in development of modern materials (synthetic materials, ceramics, hard coatings, etc.) and their industrial application. RNB--Radioactive Nuclear Beams of {sup 7}Be or {sup 22}Na--may enable the required extreme thin radioactive surface labeling (several micrometers) of synthetic materials for wear measurements without producing radiation damages of influence to the wear properties of the material. The function principle and special properties of the RTM on-line wear diagnostics and its components, the measurement methods, the radioactive surface labeling, and the measurement instruments are explained. The quality features of a {sup 7}Be and {sup 22}Na-beam for RTM application are specified.

  16. Resistance to High-Temperature Oxidation and Wear of Various Ferrous Alloys Used in Rolling Mills

    Science.gov (United States)

    Delaunois, Fabienne; Stanciu, Victor Ioan; Sinnaeve, Mario

    2018-01-01

    Various materials are commonly used to manufacture work rolls for hot rolling mills, such as ICDP (Indefinite Chill Double Pour) cast irons, high-chromium white cast irons, and high speed steels (HSS). Various chemical compositions and microstructures are studied in order to optimize the in-use behavior of those grades of rolls. In this paper, six grades of ferrous alloys (an ICDP cast iron; an ICDP cast iron enriched in vanadium, niobium, and molybdenum; a HSS; a graphitic HSS; a high-chromium white cast iron (Hi-Cr); and a niobium-molybdenum-doped high-chromium white cast iron) were investigated. High-temperature oxidation tests with gravimetric means at 575 °C in water vapor atmosphere and sliding wear tests were carried out. The oxidation kinetics was followed during oxidation test. The microstructure was observed by optical and scanning electron microscopies. The oxides formed on the surface of the samples were analyzed by XRD and EDS. The thickness of the oxide scales and the mass gain were measured after oxidation test. The results showed that the behavior of all the grades differed. The oxide scale of HSS and HSS-G grades was fine and their friction coefficient was low. The weight gain after oxidation test of HSS was high. Hi-Cr and M-Hi-Cr grades presented highly porous oxide layer and an important increase of the friction coefficient during wear test. ICDP and M-ICDP had intermediate behavior.

  17. Dry Sliding Wear of TiAl-Graphene-Silver Composite at Elevated Temperatures

    Science.gov (United States)

    Zou, Jialiang; Shi, Xiaoliang; Shen, Qiao; Yang, Kang; Zhai, Wenzheng; Huang, Yuchun

    2017-09-01

    The dry sliding friction and wear behaviors of TiAl matrix self-lubricating composite (TMSC) containing multilayer graphene (MLG), silver (Ag) and MLG-Ag sliding against Si3N4 balls from 25 to 750 °C were comparatively studied in this paper. The results suggested that TMSC containing MLG-Ag (TMA) showed better tribological properties over the wide temperature range, if compared to TMSC only containing MLG or Ag. Moreover, TMA exhibited the lower fiction coefficient and the less wear rate at 450 °C, which was attributed to the formation of intact lubricating films containing MLG and Ag on the worn surface. Furthermore, in the formed lubricating films, Ag worked as the solid lubricant to provide good lubricating effect, while MLG with high strength played the active role in enhancing the anti-rupture ability of lubricating films. The study indicated that TMA obtained the excellent tribological performance at 450 °C due to the remarkable synergistic effect of MLG and Ag.

  18. Effect of wearing an N95 filtering facepiece respirator on superomedial orbital infrared indirect brain temperature measurements.

    Science.gov (United States)

    DiLeo, Travis; Roberge, Raymond J; Kim, Jung-Hyun

    2017-02-01

    To determine any effect of wearing a filtering facepiece respirator on brain temperature. Subjects (n = 18) wore a filtering facepiece respirator (FFR) for 1 h at rest while undergoing infrared thermography measurements of the superomedial periobital region of the eye, a non-invasive indirect method of brain temperature measurements we termed the superomedial orbital infrared indirect brain temperature (SOIIBT) measurement. Temperature of the facial skin covered by the FFR, infrared temperature measurements of the tympanic membrane and superficial temporal artery region were concurrently measured, and subjective impressions of thermal comfort obtained simultaneously. The temperature of the skin under the FFR and subjective impressions of thermal discomfort both increased significantly. The mean tympanic membrane temperature did not increase, and the superficial temporal artery region temperature decreased significantly. The SOIIBT values did not change significantly, but subjects who switched from nasal to oronasal breathing during the study (n = 5) experienced a slight increase in the SOIIBT measurements. Wearing a FFR for 1 h at rest does not have a significant effect on brain temperatures, as evaluated by the SOIIBT measurements, but a change in the route of breathing may impact these measurements. These findings suggest that subjective impressions of thermal discomfort from wearing a FFR under the study conditions are more likely the result of local dermal sensations rather than brain warming.

  19. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  20. Effect of niobium interlayer on high-temperature sliding friction and wear of silver films on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Erck, R.A.

    1994-03-01

    We investigated the effect of a thin Nb bond layer (15--20 mn thick) on the high-temperature sliding friction and wear of silver films ({approx}1.5 {mu}m thick) produced on {alpha}-alumina (Al{sub 2}O{sub 3}) substrates by ion-beam assisted deposition. The friction coefficients of test pairs without an Ag film fluctuated between 0.8 to 1.1, whereas the friction coefficients of pairs with an Ag film were 0.32 to 0.5. The wear of uncoated Al{sub 2}O{sub 3} balls sliding against the Ag-coated flats was reduced by factors of 25 to {approx}2000, depending on test temperature and the presence or absence of an Nb bond layer. The wear of silver-coated flats was virtually unmeasurable after tests at temperatures up to 400C. At much higher temperatures (e.g., 600C), Ag films without an Nb bond layer delaminated from the sliding surfaces and lost their effectiveness; however, Ag films with an Nb bond layer remained intact on the sliding surfaces of the Al{sub 2}O{sub 3} substrates even at 600C and continued to impart low friction and low wear.

  1. Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  2. Wear Resistance and Mechanical Behaviour of Epoxy/Mollusk Shell Biocomposites developed for Structural Applications

    Directory of Open Access Journals (Sweden)

    I.O. Oladele

    2016-09-01

    Full Text Available Epoxy resin is one of the strongest commercially exploitable thermosetting polymers in the polymer family; however its expensive nature in comparison with other thermosetting polymers such as vinylester and polyester limits its applications as a structural material. Inexpensive fillers on the other hand, especially those derived from agro-industrial wastes are very important in reducing the overall cost of polymer composites and furthermore influential in enhancing some of their engineering properties. In the present study, the wear resistance and mechanical behaviour of epoxy polymer matrix filled with <75 and 75 μm calcined particles of African land snail shells have been comparatively investigated. The wear resistance and the mechanical behaviour of the composites were studied via Taber Abraser and INSTRON universal testing machine. Also, the elemental constituents of the calcined snail shell and the epoxy biocomposites were characterized by X-Ray Fluorescence Spectroscopy and Scanning Electron Microscopy/Energy Dispersion Spectroscopy. From the experimental results, it was observed that, at the highest filler loading, smaller particle size presented a biocomposite with significant enhancement in wear and mechanical properties. However, it was also observed that increase in particle size showed no significant enhancement in the mechanical properties of the biocomposites.

  3. Self-lubricating coatings for high-temperature applications

    Science.gov (United States)

    Sliney, Harold E.

    1987-01-01

    Some present-day aeropropulsion systems impose severe demands on the thermal and oxidative stability of lubricant, bearing, and seal materials. These demands will be much more severe for operational systems around the turn of the century. Solid lubricants with maximum temperature capabilities of about 1100 C are known. Unfortunately, none of the solid lubricants with the highest temperature capabilities are effective below approximately 400 C. However, research shows that silver and stable fluorides, such as calcium and barium fluoride act synergistically to provide lubrication from below room temperature to approximately 900 C. Plasma-sprayed, self-lubricating composite coatings that were developed at Lewis are described. Background information is given on coatings, designed as PS100 and PS101, that contain the solid lubricants in a Nichrome matrix. These coatings have low friction coefficients over a wide temperature range, but they have inadequate wear resistance for some long-duration applications. Wear resistance was dramatically improved in a recently developed coating PS200, by replacing the Nichrome matrix material with metal-bonded chromium carbide containing dispersed silver and calcium fluoride/barium fluoride eutectic (CaF2/BaF2). The lubricants control friction and the carbide matrix provides excellent wear resistance. Successful tests of these coatings are discussed.

  4. Reduction of Temperature Dependent Drift in On-Line Wear Debris ...

    African Journals Online (AJOL)

    In this work, efforts have been made towards finding suitable techniques of minimizing output drifts in the operation of an online wear debris Hall Effect sensor. Hall chip (with an ALNICO permanent magnet) output fluctuates at a rate of about 1mV per a degree change in Celsius. This was observed whenHall sensor chip ...

  5. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA, Johnson Space Center

    Science.gov (United States)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  6. A rolling-gliding wear simulator for the investigation of tribological material pairings for application in total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Denkena Berend

    2010-06-01

    Full Text Available Abstract Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in

  7. Practical applications of ion beam and plasma processing for improving corrosion and wear protection

    CERN Document Server

    Klingenberg, M L; Wei, R; Demaret, J; Hirvonen, J

    2002-01-01

    A multi-year project for the US Army has been investigating the use of various ion beam and plasma-based surface treatments to improve the corrosion and wear properties of military hardware. These processes are intended to be complementary to, rather than competing with, other promising macro scale coating processes such high velocity oxy-fuel (HVOF) deposition, particularly in non-line-of- sight and flash chrome replacement applications. It is believed that these processes can improve the tribological and corrosion behavior of parts without significantly altering the dimensions of the part, thereby eliminating the need for further machining operations and reducing overall production costs. The ion beam processes chosen are relatively mature, low-cost processes that can be scaled-up. The key methods that have been considered under this program include nitrogen ion implantation into electroplated hard chrome, ion beam assisted chromium and chromium nitride coatings, and plasma-deposited diamond- like carbon an...

  8. Tribaloy intermetallic alloy compositions: new materials or additives for wear resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.B.; Hoffman, R.A.; Poskitt, R.W.

    1975-01-01

    Properties and uses of TRIBALOY alloys in powder metallurgy fabrication are discussed. Powders of TRIBALOY can be blended with essentially any powder processed by powder metallurgy. Green strength of the blended powder parts is reduced as the amount of TRIBALOY is increased. The concentration of TRIBALOY, however, is usually 15 to 20 volume percent, a compromise between green strength and effectiveness as a wear resistant part. Blended powders are sintered at the temperature normally used for the base metal with special consideration given to a low dew point in the atmosphere. The sintered parts can be coined, carburized, machined, or impregnated in any of the well-known ways. TRIBALOY as a powder blending agent has extended the useful life of P/M parts by factors of 5 and more. A variety of industries are presently using P/M parts at higher temperatures, heavier loads, in poorer or non-lubricated conditions or at higher speeds because of the addition of TRIBALOY. More important, however, is that TRIBALOY can be incorporated in parts to be made by powder metallurgy which until now had not been feasible. The overall effect has been considerable savings for the customer by switching to the powder metal method of manufacturing and increased activity for the fabricator.

  9. Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications.

    Science.gov (United States)

    Cui, Jing; Zhao, Liang; Zhu, Weiwei; Wang, Bi; Zhao, Cancan; Fang, Liming; Ren, Fuzeng

    2017-10-01

    Tantalum has been widely used in orthopedic and dental implants. However, the major barrier to the extended use of such medical devices is the possibility of bacterial adhesion to the implant surface which will cause implant-associated infections. To solve this problem, bulk Ta-5Cu alloy has been fabricated by a combination of mechanical alloying and spark plasma sintering. The effect of the addition of Cu on the hardness, antibacterial activity, cytocompatibility, corrosion resistance and wear performance was systematically investigated. The sintered Ta-5Cu alloy shows enhanced antibacterial activity against E. Coli due to the sustained release of Cu ions. However, the addition of Cu would produce slight cytotoxicity and decrease corrosion resistance of Ta. Furthermore, pin-on-disk wear tests show that Ta-5Cu alloy has a much lower coefficient of friction but a higher wear rate and shows a distinct wear mode from that of Ta upon sliding against stainless steel 440C. Wear-induced plastic deformation leads to elongation of Ta and Cu grains along the sliding direction and nanolayered structures were observed upon approaching the sliding surface. The presence of hard oxides also shows a profound effect on the plastic flow of the base material and results in localized vortex patterns. The obtained results are expected to provide deep insights into the development of novel Ta-Cu alloy for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Insulation and body temperature of prepubescent children wearing a thermal swimsuit during moderate-intensity water exercise.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Kaneda, Koichi; Okura, Masashi; Nomura, Takeo

    2007-03-01

    This study investigated thermal swimsuits (TSS) effects on body temperature and thermal insulation of prepubescent children during moderate-intensity water exercise. Nine prepubescent children (11.0+/-0.7 yrs) were immersed in water (23 degrees C) and pedalled on an underwater cycle-ergometer for 30 min with TSS or normal swimsuits (NSS). The rectal temperature (Tre) was maintained slightly higher with TSS than with NSS. The total insulation (Itotal) was significantly higher with TSS. The DeltaTre, Deltamean body temperature (Tb), and tissue insulation (Itissue) in the NSS condition were correlated with % body fat, which indicated that the insulation layer of subjects with low body fat was thinner than that of obese subjects, and tended to decrease body temperature. Wearing TSS increased Itotal, thereby reducing heat loss from subjects' skin to the water. Consequently, subjects with TSS were able to maintain higher body temperatures. In addition, TSS is especially advantageous for subjects with low body fat to compensate for the smaller Itissue.

  11. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  12. The hardness and sliding wear behaviour of a bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Shipway, P.H. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design; Wood, S.J. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design; Dent, A.H. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design

    1997-03-01

    High-strength bainitic steels have a number of desirable mechanical properties and have thus been viewed as candidate materials for heavy wear applications. This work examines the role of transformation temperature on the wear resistance of isothermally formed bainite from a single alloy steel and compares it with wear resistance following other heat treatments such as quenching, quenching and tempering and normalisation. The sliding wear resistance was examined for a range of applied loads at a constant sliding velocity of 1 m s{sup -1}. Microstructural constituents of the steels were related to their wear resistance. The hardness of the bainitic steel was a function of the isothermal transformation temperature and its variation has been correlated with the transformation behaviour. However, the hardness of the materials did not correlate well with their wear resistance, with the hardest martensitic steel showing greater wear rates than the normalised steel. Bainitic microstructures formed at low transformation temperatures were found to have a high wear resistance which in many cases was a factor of two better than any of the other microstructures examined; this material had a good combination of hardness and toughness on the microstructural level due to the fine nature of the bainite formed with high dislocation density and the lack of embrittling martensite and cementite phases and it is proposed that these attributes confer its high wear resistance. (orig.)

  13. Does ultra-mild wear play any role for dry friction applications, such as automotive braking?

    Science.gov (United States)

    Osterle, Werner; Dmitriev, A I; Kloss, H

    2012-01-01

    Nanostructured third body films and/or storage of wear debris at the surfaces of the first bodies are deemed as prerequisites of sliding under ultra-mild wear conditions. Since such features have been observed experimentally on brake pads and discs, attempts were undertaken to study their sliding behaviour by modelling on the nanoscopic scale with an approach based on Movable Cellular Automata (MCA). The model rendered the possibility to study the influence of different nanostructures systematically and to assess the impact of different brake pad ingredients on the sliding behaviour, velocity accommodation and friction force stabilization at a sliding contact. Besides providing a review on previously published modelling results, some additional new graphs enabling better visualization of dynamic processes are presented. Although ultra-mild wear conditions were considered to be essential for achieving the desired tribological properties, transitions to mesoscopic and macroscopic wear mechanisms were studied as well. The final conclusion is that ultra-mild wear and corresponding smooth sliding behaviour play an important role during automotive braking, even though temporarily and locally events of severe wear may cause friction instabilities, surface damage and release of coarse wear particles.

  14. Effect of load on the friction-wear behavior of magnetron sputtered DLC film at high temperature

    Science.gov (United States)

    Ze, Sun; Dejun, Kong

    2017-01-01

    A DLC (diamond-like carbon) film was deposited on a YT14 cemented carbide cutting tool by using magnetron sputtering. The surface-interfacial morphologies, chemical composition, and phases of the obtained DLC film were analyzed by using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction, respectively. The friction and wear characteristics of the DLC film were investigated under different loads, the distribution of the chemical elements on the worn tracks were analyzed by using a plane scan analysis, and the wear mechanism of the DLC film was also examined. The results showed that the DLC particles were uniformly covered on the substrate with a thickness of about 600 nm, and the diamond peaks at the crystal face of (1 1 1), and (2 2 0) appear at diffraction angles of 44.40, and 75.52°, respectively. The average coefficients of friction of the DLC film under loads of 2, 4, and 6 N were 0.65, 0.65, and 0.49, respectively, and the corresponding wear rates were 0.33  ×  10-9, 0.26  ×  10-9, and 0.25  ×  10-9 mm3 N-1 s-1, respectively. Therefore, the film represents outstanding reducing friction and wear resistance. With the increasing wear loads, the atomic fraction of C decreased, while that of O increased; the oxidation reaction occurred in the wear test. The wear mechanisms under a load of 2 N were abrasive wear, adhesive wear and oxidation wear, while that under a load of 4 N were adhesive wear and oxidation wear, and that under the load of 6 N were only oxidation wear.

  15. Synthesis of High-Temperature Self-lubricating Wear Resistant Composite Coating on Ti6Al4V Alloy by Laser Deposition

    Science.gov (United States)

    Luo, Jian; Liu, Xiu-Bo; Xiang, Zhan-Feng; Shi, Shi-Hong; Chen, Yao; Shi, Gao-Lian; Wu, Shao-Hua; Wu, Yu-Nan

    2015-05-01

    Laser deposition was adopted to prepare novel Ni-based solid solution (γ-NiCrAlTi)/ TiC/α-Ti/CaF2 high-temperature self-lubricating wear resistant composite coating on Ti6Al4V alloy. Microstructure, micro-hardness, wear behavior, and counter-body effect of the coating were investigated systematically. It can be seen that the coating mainly consists of γ-NiCrAlTi, TiC, α-Ti, and small fine CaF2 particles. Average micro-hardness of the coating is 1023 HV0.3, which is about three-factor higher than that of Ti6Al4V substrate (380 HV0.3). The friction coefficient and wear rate of the coating decrease at all test temperatures to different extents with respect to the substrate. The improvement in wear resistance is believed to be the combined effects of the γ-NiCrAlTi solid solution, the dominating anti-wear capabilities of the reinforced TiC carbides, and the self-lubricating property of CaF2.

  16. Temperature Changes on the Foot during Pregnancy Affected by Wearing Biomechanical Shoes

    Directory of Open Access Journals (Sweden)

    Martin Zvonar

    2016-02-01

    Full Text Available Introduction: Everyone needs to walk; however, many people have problems with walking caused by non-standard condition or function of their feet, which in some cases can be easily recognized by thermography methods. The question is which internal actors can influence plantar temperature. 20 pregnant women from Czech and Slovak Republic in early stage of pregnancy, aged from 24 to 38 years old were included in the research. In this research, we followed the course of temperature-rested feet and feet after exercise for pregnant mothers in the different trimesters of pregnancy. Our task during the experimental research was to verify the functionality of special shoes. When we examined the temperatures of left and right sole in pregnant women, we noticed significant differences between right and left leg on 1 % level of statistical significance. Body weight gain is directly proportional with increased pressure on future mother’s sole. Increased body weight and pressure on the sole connected with it increases blood flow of the tissue. More blood flowing increases the friction and the temperature of the sole. Surprisingly, from second to third trimester we noticed decrease in temperature after walking.

  17. Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron

    Science.gov (United States)

    Zhao, Hang; Li, Jian-jun; Zheng, Zhi-zhen; Wang, Ai-hua; Huang, Qi-wen; Zeng, Da-wen

    2015-12-01

    In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400 µm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhardness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the samples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstructure and to the presence of TiC particles.

  18. Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale.

    Science.gov (United States)

    Eder, S J; Feldbauer, G; Bianchi, D; Cihak-Bayr, U; Betz, G; Vernes, A

    2015-07-10

    Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.

  19. Explanation of the Wear Behaviour of NCD Coated Carbide Tools Facilitated by Appropriate Methods for Assessing the Coating Adhesion Deterioration at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    K.-D. Bouzakis

    2015-09-01

    Full Text Available The determination of the temperature dependent interface fatigue strength of Nano-Crystalline Diamond (NCD coatings facilitates a thorough understanding of the NCD coated cutting tools wear mechanisms. In the present paper, the fatigue strength of the interface region between a NCD film and its hardmetal substrate was investigated by inclined impact tests at various temperatures. Depending upon the impact load and the applied temperature, after a certain number of impacts, damages in the film-substrate interface develop, resulting in coating detachment and lifting. These effects were attributed among others to the release of highly compressive residual stresses in the NCD coating structure. The attained inclined impact test’s results contributed to the explanation of the wear-evolution of NCD-coated tools with diverse film-substrate adhesion qualities. The related milling experiments using as work material AA 7075 T6 verified the dominant effect of the film adhesion on the NCD coated tool life.

  20. DIFFUSIVELY ALLOYED COMPOUNDS MADE OF METAL DISCARD WITH A REDUCED MELTING TEMPERATURE FOR OBTAINING WEAR RESISTANT COATINGS USING INDUCTION HARD-FACING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. G. Shcherbakou

    2016-01-01

    Full Text Available The technology of obtaining diffusion doped alloys made from metal scrap is reviewed in the article. The influence of short term preprocessing at high temperature on structure formation by concentrated energy sources within the further induction deposit is reviewed. A mechanism of a contact eutectic melting in diffusion doped alloys at short term high temperature treatment is described and suggested in this work. It was shown that such kind of processing of diffusion doped alloys is a perspective way of treatment when using induction hard-facing technologies for obtaining wear resistant coatings. A resource and energy saving technology was developed for obtaining wear resistant coatings based on diffusion doped alloys from metal scrap treated using induction hard-facing process.

  1. The Influence Of Temperature Gradient On Stereological Parameters Of Carbide Phase On Cross-Section Of Abrasive Wear Resistant Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-09-01

    Full Text Available In the paper analysis of temperature gradient and parameters of structure on casting cross-section of abrasive wear resistant chromium cast iron at carbon content of 2,5%wt. and chromium 17%wt. with nickel and molybdenum additives are presented. The castings were made with use of special tester ϕ100mm (method of temperature gradient and derivative analysis with temperature recording in many points from thermal centre to surface (to mould of casting. Registered cooling curves were used to describe the temperature gradient on cross-section of analyzed casting. On the basis of determined curves of temperature gradient measurement fields were selected to make the quantitative studies of structure. The results of studies show significant influence of temperature gradient on quantitative parameters of chromium cast iron structure. Moreover was affirmed that exists a critical temperature gradient for which is present rapid change of quantitative parameters of chromium cast iron structure.

  2. Sensors for low temperature application

    Science.gov (United States)

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  3. Eye Wear

    Science.gov (United States)

    Eye wear protects or corrects your vision. Examples are Sunglasses Safety goggles Glasses (also called eyeglasses) Contact ... jobs and some sports carry a risk of eye injury. Thousands of children and adults get eye ...

  4. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  5. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  6. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  7. Obtention, machining and wear of sintered alloys for automotive applications; Processamento, usinagem e desgaste de ligas sinterizadas para aplicacoes automotivas

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Filho, Edson Souza de

    2006-07-01

    The aim of this work was the development of materials for automotive applications, in particular, valve seat inserts for gasoline combustion engines. The development involved the following activities: processing by powder metallurgy techniques, heat treatment, mechanical and microstructural characterization, machining and wear of materials. This work was undertaken aiming cost reduction of this component by the use of cheaper and less pollutant elements, eliminating the presence of Co and Pb due to their high cost and toxicological effects, respectively. The accomplishment of a thorough research into patents revealed that the materials studied here present particular compositions and were not yet produced. The results of hardness measurements and the transverse radial strength of the studied materials, after heat treatment, revealed superior properties than the commercial alloys applied at the moment. The machining tests of the material without heat treatment indicated a similar behaviour in comparison to the commercial alloy, suggesting that the new alloy chemistry composition was not deleterious in this sense. After heat treatment, the obtained alloys presented a cutting force increase in relation to the commercial alloy. Wear tests results of heat treated materials presented smaller friction coefficient and mass loss than the commercial alloy, in ali cases. This was especially achieved due to the advantages offered by heat treatment allied to the addition of NbC and Ti/W carbides. The materials obtained here showed to be potential candidates to substitute with advantages, valve seat inserts made of Fe-Co alloys for gasoline combustion engines. (author)

  8. Experimentally determined wear behavior of an Al2O3-SiC composite from 25 to 1200 C

    Science.gov (United States)

    Dellacorte, Christopher; Farmer, Serene C.; Book, Patricia O.

    1990-01-01

    The sliding wear behavior of a self-mated alumina-silicon carbide whisker toughened composite was studied using optical, scanning electron (SEM) and transmission electron (TEM) microscopy. Because of its excellent strength and toughness properties this composite material is under consideration for use in heat engine applications for sliding contacts which operate at elevated temperatures. The composite's wear behavior and especially its wear mechanisms are not well understood. Pin-on-disk specimens were slid in air at 2.7 m/s sliding velocity, under a 26.5-N load, at temperatures 25 to 1200 C. Pin wear increased with increasing temperature. Based upon the microscopic analyses, the wear mechanism seems to be loosening of the reinforcing whiskers due to frictional and bulk heating. This leads to whisker pullout and increased wear.

  9. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  10. Industrial Applications of Low Temperature Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  11. Magnesium Diecasting Alloys for High Temperature Applications

    Science.gov (United States)

    Pekguleryuz, Mihriban O.; Kaya, A. Arslan

    New growth area for automotive use of magnesium is powertrain applications such as the transmission case and engine block. These applications see service conditions in the temperature range of 150-200C under 50-70 MPa of tensile and compressive loads. In addition, metallurgical stability, fatigue resistance, corrosion resistance and castability requirements need to be met. A decade of research and development has resulted in a number of creep- resistant magnesium alloys that are potential candidates for elevated-temperature automotive applications. These alloys are mostly based on rare-earth and alkaline earth element additions to magnesium. This paper gives an overview of the various magnesium alloy systems for use in elevated-temperature applications.

  12. MEMS temperature scanner: principles, advances, and applications

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  13. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  14. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    Full Text Available Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction, which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to tooth abfraction and microfracture. Wear of tooth surfaces due to the presence of microscopic imperfections of tooth surfaces is clinically manifested as sanding veneers. Tribology, as an interdisciplinary study of the mechanisms of friction, wear and lubrication at the ultrastructural level, has defined a universal model according to which the etiopathogenesis of tooth wear is caused by the following factors: health and diseases of the digestive tract, oral hygiene, eating habits, poor oral habits, bruxism, temporomandibular disorders and iatrogenic factors. Attrition and dental erosion are much more common in children with special needs (Down syndrome. Erosion of teeth usually results from diseases of the digestive tract that lead to gastroesophageal reflux (GER of gastric juice (HCl. There are two basic approaches to the assessment of the degree of wear and dental erosion. Depending on the type of wear (erosion, attrition, abfraction, the amount of calcium that was realised during the erosive attack could be determined qualitatively and quantitatively, or changes in optical properties and hardness of enamel could be recorded, too. Abrasion of teeth (abrasio dentium is the loss of dental hard tissue caused by friction between the teeth and exogenous foreign substance. It is most commonly provoked by prosthetic dentures and bad habits, while its effect depends on the size of abrasive particles and their amount, abrasive particle hardness and hardness of tooth

  15. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  16. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  17. Model development of work roll wear in hot strip mill

    Science.gov (United States)

    Liu, Ziying; Guan, Yingping; Wang, Fengqin

    2017-06-01

    This paper, based on the analysis of the main factors(specific roll force, mean roll surface temperature, irregular edge wear and contact arc length) affecting roll wear, designed a new work roll wear model, the test data shows that the model can more accurately reflect the work roll wear, can be on-line prediction of work roll wear. The roll wear curve, including constant wear and irregular edge wear, presents a box shape, and the reasons also are showed in this paper. The top roll wear and bottom roll wear in the same mill are inconsistent, and the reasons are also analysed in this paper. Results show that the construction of the work roll mathematical model accords with the general law of work roll wear and tear; it can more accurately forecast roll wear online.

  18. Optimisation of Dry Sliding Wear Process Parameters for Aluminium Hybrid Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    N. Radhika

    2014-06-01

    Full Text Available The advancement in today’s technology calls for the usage of superior material. A metal matrix composite has a unique characteristics to combine the various properties of the different materials present in the matrix composition, which enables it to be used for various high temperature applications where constrains could be overcome. The present study investigates the influence of applied load, sliding velocity and temperature on wear rate of AlSi10Mg alloy reinforced with 3 wt-% graphite and 9 wt-% alumina which was fabricated through liquid metallurgy route. The wear rate of this hybrid composite was investigated by performing dry sliding wear test on a pin-on-disc wear tester. The experiment was conducted for a constant sliding distance of 1500m. The influence of the various parameters on the wear rate was studied using Taguchi’s Design of Experiment. An L9 orthogonal array was used for analysis of data. Signal-to-Noise ratio and Analysis of Variance were used to determine the ranking and percentage effect of input process parameters on wear rate respectively. Results revealed that load has the highest contribution on wear rate followed by temperature and sliding velocity. Worn-out wear surfaces were analysed using scanning electron microscope.

  19. Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model.

    Science.gov (United States)

    Cunningham, Bryan W; Hallab, Nadim J; Hu, Nianbin; McAfee, Paul C

    2013-09-01

    The introduction and utilization of motion-preserving implant systems for spinal reconstruction served as the impetus for this basic scientific investigation. The effect of unintended wear particulate debris resulting from micromotion at spinal implant interconnections and bearing surfaces remains a clinical concern. Using an in vivo rabbit model, the current study quantified the neural and systemic histopathological responses following epidural application of 11 different types of medical-grade particulate wear debris produced from spinal instrumentation. A total of 120 New Zealand White rabbits were equally randomized into 12 groups based on implant treatment: 1) sham (control), 2) stainless steel, 3) titanium alloy, 4) cobalt chromium alloy, 5) ultra-high molecular weight polyethylene (UHMWPe), 6) ceramic, 7) polytetrafluoroethylene, 8) polycarbonate urethane, 9) silicone, 10) polyethylene terephthalate, 11) polyester, and 12) polyetheretherketone. The surgical procedure consisted of a midline posterior approach followed by resection of the L-6 spinous process and L5-6 ligamentum flavum, permitting interlaminar exposure of the dural sac. Four milligrams of the appropriate treatment material (Groups 2-12) was then implanted onto the dura in a dry, sterile format. All particles (average size range 0.1-50 μm in diameter) were verified to be endotoxin free prior to implantation. Five animals from each treatment group were sacrificed at 3 months and 5 were sacrificed at 6 months postoperatively. Postmortem analysis included epidural cultures and histopathological assessment of local and systemic tissue samples. Immunocytochemical analysis of the spinal cord and overlying epidural fibrosis quantified the extent of proinflammatory cytokines (tumor necrosis factor-α, tumor necrosis factor-β, interleukin [IL]-1α, IL-1β, and IL-6) and activated macrophages. Epidural cultures were negative for nearly all cases, and there was no evidence of particulate debris or

  20. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  1. Wear performance of laser processed tantalum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2011-12-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10{sup -4} mm{sup 3}(N.m){sup -1}, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. Highlights: {yields} In vitro wear performance of laser processed Ta coatings on Ti was evaluated. {yields} Wear tests in SBF showed one order of magnitude less wear for Ta coatings than Ti. {yields} Ta coatings can minimize early-stage micro-motion induced wear debris generation.

  2. Composite coating for low friction and wear applications and method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M. (Oak Ridge, TN); Blau, Peter J. (Oak Ridge, TN); Lee, Woo Y. (Knoxville, TN); Bae, Yong W. (Oak Ridge, TN)

    1998-01-01

    An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350.degree. and 850.degree. C. in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH.sub.3).sub.2 N).sub.4, MoF.sub.6, H.sub.2 S and NH.sub.3 over the heated article forming a multiphase composite lubricant coating on the article.

  3. Compensation systems for low temperature applications

    CERN Document Server

    Skoczen, Balzej T

    2004-01-01

    The book is dedicated to the behaviour of ductile materials at cryogenic temperatures, structural stability issues and reliability oriented parametric optimisation of compensation systems containing the corrugated bellows. The problems of local and global stability of systems containing bellows, coupling between the low-cycle fatigue and stability as well as evolution of plastic strain fields, micro-damage and strain induced phase transformation in the corrugated shells at cryogenic temperatures are presented. As a special feature reliability oriented optimum design of compensation systems under strength, stability, fatigue and geometrical constraints is discussed. The relevant applications in the particle accelerators and cryogenic transfer lines are shown.

  4. Friction and Wear Characteristics of Plasma-Sprayed Self-Lubrication Coating with Clad Powder at Elevated Temperatures up to 800 °C

    Science.gov (United States)

    Huang, Chuanbing; Du, Lingzhong; Zhang, Weigang

    2014-02-01

    NiCr/(Cr3C2-BaF2·CaF2) coating was fabricated by atmospheric plasma spray technology using clad powder. The coating shows low porosity, high microhardness and bonding strength, and it also exhibits good friction reduction and wear resistance at elevated temperatures up to 800 °C which is due to the formation of a kind of continuous BaF2·CaF2 eutectic lubricating film. The excellent mechanical and tribological properties of the coating are partially attributed to the protection of NiCr layer of the composite powders which can decrease oxidation, decarburization of Cr3C2, and ablation of BaF2·CaF2 eutectic during spray and deposition process.

  5. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications.

    Science.gov (United States)

    Sampaio, M; Buciumeanu, M; Henriques, B; Silva, F S; Souza, J C M; Gomes, J R

    2016-07-01

    In the oral cavity, abrasive wear is predictable at exposed tooth or restorative surfaces, during mastication and tooth brushing. Also, wear can occur at contacting surfaces between the Ti-based prosthetic structures and implants in presence of abrasive compounds from food or toothpaste. Thus, the aim of this work was to compare the abrasive wear resistance of PEEK and Ti6Al4V on three-body abrasion related to different hydrated silica content and loads. Surfaces of Ti6Al4V or PEEK cylinders (8mm diameter and 4mm height) were wet ground on SiC papers and then polished with 1µm diamond paste. After that, surfaces were ultrasonically cleaned in propyl alcohol for 15min and then in distilled water for 10min. Micro-scale abrasion tests were performed at 60rpm and on different normal loads (0.4, 0.8 or 1.2N) after 600 ball revolutions using suspensions with different weight contents of hydrated silica. After abrasive tests, wear scars on flat samples were measured to quantify the wear volume and characterized by scanning electron microscope (SEM) to identify the dominant wear mechanisms. Results showed a higher volume loss rate on PEEK than that recorded on Ti6Al4V,, when subjected to three-body abrasion tests involving hydrated silica suspensions. An increase in volume loss was noted on both tested materials when the abrasive content or load was increased. PEEK was characterized by less wear resistance than that on Ti6Al4V after micro-scale abrasion wear in contact with hydrated silica particles, as commonly found in toothpastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cryogenic temperature measurement for large applications

    CERN Document Server

    Ylöstalo, J; Kyynäräinen, J; Niinikoski, T O; Voutilainen, R

    1996-01-01

    We have developed a resistance thermometry system for the acquisition, control and monitoring of temperature in large-scale cryogenic applications. The resistance of the sensor is converted to a voltage using a self-balancing AC bridge circuit featuring square-wave excitation currents down to 1 nA. The system is easily scalable and includes intelligent features to treat special situations such as magnet quenches differently from normal operation.

  7. New fluid for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M.; Flohr, F. [Solvay Fluor GmbH, Hannover (Germany); Froeba, A.P. [Lehrstuhl fuer Technische Thermodynamik (LTT), Univ. Erlangen (Germany)

    2006-12-15

    As a result of the worldwide increased consumption of energy, energy saving measures come more and more in the focus of commercial acting. Besides the efficiency enhancement of energy consuming systems the utilization of waste heat is an additional possibility of saving energy. Areas where this might be feasible are geothermal power plants, local combined heat and power plants, solar-thermal-systems and high temperature heat pumps (HTHP). All these applications need a transfer fluid which secures the transport of the energy from it's source to the place where it is needed at high temperatures. The paper will start with a description or overview of promising energy sources and their utilization. The thermophysical properties of an azeotropic binary mixture of HFC-365mfc and a per-fluoro-poly-ether (PFPE) which fulfils the requirements on a high temperature working fluid are introduced in the second part of the paper. First results and practical experiences in an ORC process are shown in this context followed by an estimation regarding the saved energy or the improved efficiency respectively for other applications The paper will end with a brief outlook on possible new applications e.g. autarkic systems or immersion cooling of electrical parts. (orig.)

  8. Needs and challenges in precision wear measurement

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1996-01-10

    Accurate, precise wear measurements are a key element in solving both current wear problems and in basic wear research. Applications range from assessing durability of micro-scale components to accurate screening of surface treatments and thin solid films. Need to distinguish small differences in wear tate presents formidable problems to those who are developing new materials and surface treatments. Methods for measuring wear in ASTM standard test methods are discussed. Errors in using alterate methods of wear measurement on the same test specimen are also described. Human judgemental factors are a concern in common methods for wear measurement, and an experiment involving measurement of a wear scar by ten different people is described. Precision in wear measurement is limited both by the capabilities of the measuring instruments and by the nonuniformity of the wear process. A method of measuring wear using nano-scale indentations is discussed. Current and future prospects for incorporating advanced, higher-precision wear measurement methods into standards are considered.

  9. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  10. Wear behaviour of Al 261

    Directory of Open Access Journals (Sweden)

    N. Mathan Kumar

    2016-03-01

    Full Text Available Al 2618 matrix material was mixed with the Silicon Nitride (Si3N4, Aluminium Nitride (AlN and Zirconium Boride (ZrB2 reinforced particles. AMC was synthesized successfully by the stir casting method with the various X-wt.% of reinforcements (X = 0,2,4,6,8. Tribological behaviour was studied in this composite with various temperature conditions. The working conditions were Temperature (°C, Load (N, Velocity (m/s and Sliding Distances (m. Before wear testing the mechanical behaviour has been analysed. EDAX was confirmed by the matrix material composition. The Al 2618 alloy and the reinforcement mixers were confirmed by the X-ray Diffraction analysis. Wear rate (mm3/m, Wear resistance (m/mm3, Specific Wear rate (m/Nm and Co-efficient of friction (μ were analysed with various conditions. The worn surfaces were analysed before and after wear testing by Scanning Electron Microscope (SEM. Influence of process parameters and Percentage of contribution were analysed by Taguchi and Analysis of Variance (ANOVA methods. Genetic Algorithm (GA was adopted for optimizing the best and mean of the wear rate and to identify the exact influence of input parameters.

  11. High Temperature Battery for Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  12. An investigation on the temperature distribution in thinwalled cylinders during welding up of wear-proof layers

    NARCIS (Netherlands)

    Boshuisen, D.C.; van Wijngaarden, L.

    1975-01-01

    This paper describes an attempt to find the space and timewise temperature-distribution in a thinwalled cylinder during building up by welding several layers on top of each other. From the exact one-dimensional solution (thin ring) we found an approximate solution for the cylinder. The approximation

  13. Effect of tempering temperature on microstructure and sliding wear property of laser quenched 4Cr13 steel

    NARCIS (Netherlands)

    Ouyang, J.H.; Pei, Y.T.; Li, X.D.; Lei, T.C.

    1994-01-01

    4Cr13 martensite stainless steel was quenched by a CO2 laser and tempered for 2 h at different temperatures in the range 200 °C to 550 °C. The microstructure of treated layer was observed by SEM, XRD and TEM. Tempering leads to the decomposition of a large number of retained austenites in laser

  14. Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Bose, Susmita; Bandyopadhyay, Amit

    2017-11-08

    To mitigate shortcomings in current biomedical CoCrMo alloy, composites of CoCrMo with calcium phosphate (CaP) were envisioned. CoCrMo alloy was reinforced with CaP to enhance the wear resistance of the alloy. A powder based direct energy additive manufacturing technique of Laser Engineered Net Shaping (LENS™) was used for processing of CoCrMo alloy with 1% and 3% (by weight) of CaP in the form of hydroxyapaptite. Addition of CaP was found to stabilize the ε (hcp) phase along with the more common γ (fcc) phase of the CoCrMo alloy, and the microstructure showed discontinuous chromium carbide phase. The resultant composite showed hardness similar to the base material, however, there was significant increase in the wear resistance of the alloy due to the addition of CaP. During wear testing, a tribo-layer or a tribofilm was found to develop on the surface. This led to the reduction in the leaching of Co and Cr ions during wear testing. The tribofilm was found to be dependent on the wear distance, and made the CoCrMo-CaP composites an in situ self-protecting system. The overall coefficient of friction of the CoCrMo-CaP composite was found to increase but was more stable with the wear distance as compared to the CoCrMo alloy with no CaP addition. Co-based alloys, an ideal choice for biomedical load-bearing implants, show low wear rates along with low coefficient of friction (COF) and good resistance to corrosive media. However, significant material loss can occur in vivo due to wear and/or corrosion of CoCrMo over long periods of time. Release of metal ions in the human body over time leads to medical complications such as metallosis, which can often require a revision surgery that can adversely affect the quality of life for the patient. We hypothesize that metal ion release from CoCrMo alloys can be reduced during articulation using an in situ formed inorganic tribofilm, and our results validate our hypothesis in calcium phosphate reinforced CoCrMo composites

  15. Effect of Wearing Socks, Stockings and Leather Shoe on Shoe Microclimate and Wear Comfort

    OpenAIRE

    三ツ井, 紀子; Michiko, Mitsui

    2001-01-01

    The effects of socks, stockings and leather shoe on wear comfort and microclimate between shoe and skin while exercising has been studied by seven women under laboratory conditions. Temperature and absolute humidity in wearing socks or stockings were higher than barefooted. Further under wearing shoes and socks or stockings they are increased. Temperature and absolute humidity at the measuring point were the highest between the first and the second toes. Inside socks or stockings with shoes a...

  16. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhan-Feng [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Liu, Xiu-Bo, E-mail: liuxiubo@suda.edu.cn [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Shi, Gao-Lian; Wu, Shao-Hua [Suzhou Institute of Industrial Technology, Suzhou 215104 (China)

    2014-09-15

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF{sub 2} were “in situ” synthesized in the coating. • The coating with the addition of CaF{sub 2} possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF{sub 2} coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF{sub 2} coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF{sub 2} particles. The wear rates of γ-NiCrAlTi/TiC/CaF{sub 2} coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF{sub 2} coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF{sub 2} coating exhibited excellent friction-reducing and anti-wear properties at high temperature.

  17. 46 CFR 57.05-5 - Low temperature application.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature application. 57.05-5 Section 57.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING AND BRAZING Performance Qualifications § 57.05-5 Low temperature application. For low temperature application, each welder...

  18. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    Science.gov (United States)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  19. Truck tyre wear assessment and prediction

    NARCIS (Netherlands)

    Lupker, H.A.; Montanaro, F.; Donadio, D.; Gelosa, E.; Vis, M.A.

    2002-01-01

    Tyre wear is a complex phenomenon. It depends non-linearly on numerous parameters, like tyre compound and design, vehicle type and usage, road conditions and road surface characteristics, environmental conditions (e.g., temperature) and many others. Yet, tyre wear has many economic and ecological

  20. Application of ceramic coating to improve abrasive wear resistance of die inserts used to press-mould stampings of refractories

    Directory of Open Access Journals (Sweden)

    A. W. Orłowicz

    2017-01-01

    Full Text Available The paper presents results of a study on abrasive wear resistance of die inserts for composite moulds used to pressmould stampings from refractory materials, determined based on susceptibility to scratching with a diamond indenter. For the study, two inserts of high-chromium cast iron were prepared, of which one was provided with a ceramic coating (60 % Al2O3 + 40 % TiO2 with a metallic interlayer (NiAlCrSi. Both layers were deposited by means of the Atmospheric Plasma Spraying (APS method. The obtained scratch test results indicate that with the use of the same load force (20 N, die inserts with ceramic coating are characterized with less indenter penetration depth which should translate to higher resistance to abrasive wear.

  1. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  2. Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim Kurt

    2015-01-01

    Full Text Available In the current study, the effect of applied load, sliding speed, and type and weight percentages of reinforcements on the wear properties of ultrahigh molecular weight polyethylene (UHMWPE was theoretically studied. The extensive experimental results were taken from literature and modeled with artificial neural network (ANN. The feed forward (FF back-propagation (BP neural network (NN was used to predict the dry sliding wear behavior of UHMWPE composites. Eleven input vectors were used in the construction of the proposed NN. The carbon nanotube (CNT, carbon fiber (CF, graphene oxide (GO, and wollastonite additives are the main input parameters and the volume loss is the output parameter for the developed NN. It was observed that the sliding speed and applied load have a stronger effect on the volume loss of UHMWPE composites in comparison to other input parameters. The proper condition for achieving the desired wear behaviors of UHMWPE by tailoring the weight percentage and reinforcement particle size and composition was presented. The proposed NN model and the derived explicit form of mathematical formulation show good agreement with test results and can be used to predict the volume loss of UHMWPE composites.

  3. Abrasive Wear Resistance of a Ti–Fe–Cr Alloy Obtained by Self-Propagating High-Temperature Synthesis and Modified with Boron and Carbon

    National Research Council Canada - National Science Library

    O. O. Onyshchuk

    2016-01-01

    ...–Cr system obtained by self-propagating hightemperature synthesis. It is shown that, as a result of the addition of carbon and boron, the heterogeneity of the structure and its wear resistance increase...

  4. Fuzzy Logic Controller for Low Temperature Application

    Science.gov (United States)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  5. Wear in human knees

    Directory of Open Access Journals (Sweden)

    M.L. Wang

    2015-06-01

    Full Text Available Wear occurs in natural knee joints and plays a pivotal factor in causing articular cartilage degradation in osteoarthritis (OA processes. Wear particles are produced in the wear process and get involved in inflammation of human knees. This review presents progresses in the mechanical and surface morphological studies of articular cartilages, wear particles analysis techniques for wear studies and investigations of human knee synovial fluid in wear of human knees. Future work is also included for further understanding of OA symptoms and their relations which may shed light on OA causes.

  6. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2.A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon...

  7. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  8. Wear resistance of polypropylene-SiC composite

    Science.gov (United States)

    Abenojar, J.; Enciso, B.; Martínez, MA; Velasco, F.

    2017-05-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope.

  9. Tribopolymerization as an anti-wear mechanism. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Furey, M.J.

    1996-04-01

    The primary objective of this activity is to obtain the necessary data which would enhance, promote, and encourage the introduction of advanced lubrication technology into the marketplace. This includes (a) defining specific but different applications, (b) establishing the limits or ranges of applied loads, speeds, and temperatures over which the concept of tribopolymerization would work in reducing wear and/or friction, (c) continuing in efforts to understand the film-forming process (this rates to (b) above), using this knowledge to develop new and even more effective additives, and (d) exploring possible connections with private and investment companies for the licensing and marketing of products which will reduce friction and wear in a variety of applications. Progress was made in several different but connected areas. These included (a) establishing of load/velocity limits of selected monomers for ceramic lubrication, (b) the discovery of new and effective monomers designed for higher temperature anti-wear applications, (c) improvements and modifications of the high load/high speed pin-on-disk machine, (d) the initiation of related or spin-off projects designed to get their advanced technology into the marketplace, (e) the filing of three new patent applications, and (f) collaborative research with Dr. Kajdas--the co-inventor with Dr. Furey--on tribopolymerization as a novel and effective approach to the boundary lubrication of ceramics and steel. These and other elements of progress made during the first Quarter of 1996 are discussed briefly.

  10. Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear

    Science.gov (United States)

    Velkavrh, Igor; Kafexhiu, Fevzi; Klien, Stefan; Diem, Alexander; Podgornik, Bojan

    2017-01-01

    Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.

  11. High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding

    Science.gov (United States)

    Lv, Y. H.; Li, J.; Tao, Y. F.; Hu, L. F.

    2017-04-01

    TiNi/Ti2Ni matrix composite coatings were produced on Ti6Al4V surfaces by laser cladding the mixed powders of Ni-based alloy and different contents of TaC (0, 5, 10, 15, 20, 30 and 40 wt.%). Microstructures of the coatings were investigated. High-temperature wear tests of the substrate and the coatings were carried out at 600 °C in air for 30 min. High-temperature oxidation tests of the substrate and the coatings were performed at 1000 °C in air for 50 h. Wear and oxidation mechanisms were revealed in detail. The results showed that TiNi/Ti2Ni as the matrix and TiC/TiB2/TiB as the reinforcements are the main phases of the coatings. The friction coefficients of the substrate and the coatings with different contents of TaC were 0.431 (the substrate), 0.554 (0 wt.%), 0.486 (5 wt.%), 0.457 (10 wt.%), 0.458 (15 wt.%), 0.507 (20 wt.%), 0.462 (30 wt.%) and 0.488 (40 wt.%). The wear rates of the coatings were decreased by almost 83%-98% than that of the substrate and presented a decreasing tendency with increasing TaC content. The wear mechanism of the substrate was a combination of serious oxidation, micro-cutting and brittle debonding. For the coatings, oxidation and slight scratching were predominant during wear, accompanied by slight brittle debonding in partial zones. With the increase in content of TaC, the oxidation film better shielded the coatings from destruction due to the effective friction-reducing role of Ta2O5. The oxidation rates of the substrate and the coatings with different contents of TaC at 1000 °C were 12.170 (the substrate), 5.886 (0 wt.%), 4.937 (5 wt.%), 4.517 (10 wt.%), 4.394 (15 wt.%), 3.951 (20 wt.%), 4.239 (30 wt.%) and 3.530 (40 wt.%) mg2 cm-4 h-1, respectively. The oxidation film formed outside the coating without adding TaC was composed of TiO2, NiO, Cr2O3, Al2O3 and SiO2. When TaC was added, Ta2O5 and TaC were also detected, which effectively improved the oxidation resistance of the coatings. The addition of TaC contributed to the

  12. Comparative wear mapping techniques

    DEFF Research Database (Denmark)

    Alcock, J.; Sørensen, Ole Toft; Jensen, S.

    1996-01-01

    Pin-on-disc tests of tungsten carbide pins against silicon carbide discs were performed and wear rate, mechanism and friction maps constructed. Correlations were observed between the wear mode and the friction of the pin-disc interface, and between the qualitative incidence of disruptive wear mec...

  13. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  14. Wear and friction of self-lubricating CuO-TZP composites

    NARCIS (Netherlands)

    Valefi, Mahdiar

    2012-01-01

    In certain applications, including high temperature or vacuum environments, liquid lubricants or greases are not stable. Solid lubricants are potentially suitable candidates for the reduction of friction and wear. Ceramic materials are a suitable candidate for harsh environments such as high

  15. High temperature heat exchange: nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  16. Wear and Life Characteristics of Microwave-Sintered Copper-Graphite Composite

    Science.gov (United States)

    Rajkumar, K.; Aravindan, S.; Kulkarni, M. S.

    2012-11-01

    Copper-graphite composite is an important tribological material used in electrical sliding contact applications like electrical brushes in motors and generators. The electrical sliding contact experiences multiple stresses such as mechanical pressure and temperature. Traditional life tests under normal operating condition would be a time-consuming process due to the longer expected life of the composite. Accelerated wear testing was carried out to evaluate the life characteristics of the composite. This work focuses on evaluation of tribological performance of microwave-sintered copper-graphite composite using accelerated wear testing methodology using high temperature pin-on-disc tribometer. Microstructural studies of worn out surfaces were carried out using SEM with EDAX. Reliability and analysis on life characteristics were performed on the time-to-failure data using temperature-nonthermal-accelerated life-stress model. The obtained times-to-failure data from the accelerated wear testing was extrapolated to normal usage condition. Temperature and pressure are significantly affecting the wear performance. Self-lubricating action of graphite and improvement in wear resistance is helpful in extending the life of copper graphite composite. The life of the composite obtained through testing at mean and 99% reliability are 18,725 and 16,950 h, respectively.

  17. Elevated temperature and temperature programming in conventional liquid chromatography--fundamentals and applications.

    Science.gov (United States)

    Vanhoenacker, Gerd; Sandra, Pat

    2006-08-01

    Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.

  18. Simulation and experiment of the effect of clearance of impeller wear-rings on the performance of centrifugal pump

    Science.gov (United States)

    Chen, S. X.; Pan, Z. Y.; Wu, Y. L.; Zhang, D. Q.

    2012-11-01

    The effect of clearance of impeller wear-rings on the performance of a centrifugal pump was investigated numerically and experimentally. The whole flow field model including front and back shrouds of pump was designed so as to accurately calculate the head and efficiency of the centrifugal pump. Based on RNG k-ε turbulence model, three wear-rings schemes were established, and the effects of clearance of impeller wear-rings on the hydraulic efficiency and mechanical efficiency of the centrifugal pump was analyzed, chiefly from the turbulent kinetic energy, vorticity and radial force angles. According to the results, it can be drawn that the head and total efficiency of the centrifugal pump increase as the clearance value of wear-rings narrows. The following reasons may account for it: firstly, as the clearance value of wear-rings declines, the turbulent kinetic energy and energy dissipation decrease within the impeller, and the impact of secondary flow at the inlet of impeller on the mainstream weakens slowly, which leads to a lower hydraulic loss, thus a higher hydraulic efficiency; secondly, radial force decreases with the clearance value of wear-rings, so the eccentric whirl of centrifugal pump is dampened, which results in a lower mechanical loss and a higher mechanical efficiency; thirdly, the front shroud leakage diminishes with the clearance value of wear-rings, therefore, the volume loss is reduced and volume efficiency improved. Finally, the first wear-ring scheme of impeller is adopted after comprehensive comparison of these three wear-ring schemes, because its efficiency is highest and it satisfies the requirements of the engineering application.

  19. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  20. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  1. Tool wear in cryogenic turning of Ti-6Al-4V alloy

    Science.gov (United States)

    Venugopal, K. A.; Paul, S.; Chattopadhyay, A. B.

    2007-01-01

    Though titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. Rapid tool wear encountered in machining of titanium alloys is a challenge that needs to be overcome. Cryogenic machining with liquid nitrogen as coolant is being investigated by researchers to reduce the cutting zone temperatures and enhance the tool life. The effects of cryogenic cooling have been studied on growth and nature tool wear in the present investigation while turning Ti-6Al-4V alloy bars with microcrystalline uncoated carbide inserts under dry, wet and cryogenic cooling environments in the cutting velocity range of 70-100 m/min. Cryogenic cooling by liquid nitrogen jets enabled substantial improvement in tool life through reduction in adhesion-dissolution-diffusion tool wear through control of machining temperature desirably at the cutting zone.

  2. Wearable Android Android wear and Google Fit app development

    CERN Document Server

    Mishra, Sanjay M

    2015-01-01

    Software Development/Mobile/Android/Wearable/Fitness Build ""Wearable"" Applications on the Android Wear and Google Fit Platforms This book covers wearable computing and wearable application development particularly for Android Wear (smartwatches) and Google Fit (fitness sensors). It provides relevant history, background and core concepts of wearable computing and ubiquitous computing, as a foundation for designing/developing applications for the Android Wear and Google Fit platforms. This book is intended for Android wearable enthusiasts, technologists and software developers. Gain ins

  3. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  4. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  5. Microscale wear behavior and crosslinking of PEG-like coatings for total hip replacements.

    Science.gov (United States)

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2010-04-01

    The predominant cause of late-state failure of total hip replacements is wear-mediated osteolysis caused by wear particles that originate from the ultrahigh molecular weight polyethylene (UHMWPE) acetabular cup surface. One strategy for reducing wear particle formation from UHMWPE is to modify the surface with a hydrophilic coating to increase lubrication from synovial fluid. This study focuses on the wear behavior of hydrophilic coatings similar to poly(ethylene glycol) (PEG). The coatings were produced by plasma-polymerizing tetraglyme on UHMWPE in a chamber heated to 40 degrees C or 50 degrees C. Both temperatures yielded coatings with PEG-like chemistry and increased hydrophilicity relative to uncoated UHMWPE; however, the 40 degrees C coatings were significantly more resistant to damage induced by atomic force microscopy nanoscratching. The 40 degrees C coatings exhibited only one damage mode (delamination) and often showed no signs of damage after repeated scratching. In contrast, the 50 degrees C coatings exhibited three damage modes (roughening, thinning, and delamination), and always showed visible signs of damage after no more than two scratches. The greater wear resistance of the 40 degrees C coatings could not be explained by coating chemistry or hydrophilicity, but it corresponded to an approximately 26-32% greater degree of crosslinking relative to the 50 degrees C surfaces, suggesting that crosslinking should be a significant design consideration for hydrophilic coatings used for total hip replacements and other wear-dependent applications.

  6. Energetic aspects of boring tools wear

    Directory of Open Access Journals (Sweden)

    Lazarová Edita

    2002-03-01

    Full Text Available In the process of rock desintegration a boring tool is subjected to the wear. From a viewpoint of the bit wear, changes on the contact of operating tool with rock at its one-shot and rerun load or overload by external forces are technically significant. Theis change results in the degradation of bit working properties and the output of desintegration also decreases. In the major part of cases, together with the bit wear, the contact area of a tool with a rock massifs enhanced and this fact causes an increase of fines (dust creation during the desintegration. The wear is always connected with a friction, forces action, deformation, damage, and the increased mechanical work consumption. As to energetic aspects of bit wear, the wear was observed as a function of bore length and in the most of cases as a dependence of the operating time. A linear dependence between the wear intensity (bit wear per unit of bore length and the specific energy of desintegration (energy consumed per volume unit of desintegrated rock was experimentally verified. Thus, the changes of bit wear can be implicitly observed by monitoring the specific energy. At the same time, the specific energy is a function of input parameters of the desintegration process and in the field of applicable external forces it shows an extreme (minimum. Therefore, the specific energy is useful for the extreme optimisation of the rock desintegration process from the viewpoint of the bit wear. It was mathematically proven that the tool output at the desintegration exponentially decreases with the amount of work consumed in the rock desintegration. The derivation of this knowledge comes out from the Krendelev equation.

  7. SiC device development for high temperature sensor applications

    Science.gov (United States)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  8. DIY Soundcard Based Temperature Logging System. Part II: Applications

    Science.gov (United States)

    Nunn, John

    2016-01-01

    This paper demonstrates some simple applications of how temperature logging systems may be used to monitor simple heat experiments, and how the data obtained can be analysed to get some additional insight into the physical processes. [For "DIY Soundcard Based Temperature Logging System. Part I: Design," see EJ1114124.

  9. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  10. High temperature superconductors in electromagnetic applications

    CERN Document Server

    Richens, P E

    2000-01-01

    powder-in-tube and dip-coated, have been made using a novel single loop tensometer that enables the insertion of a reasonably long length of conductor into the bore of a high-field magnet. The design, construction, and characterization of a High Temperature Superconducting (HTS) magnet is described. The design stage has involved the development of computer software for the calculation of the critical current of a solenoid wound from anisotropic HTS conductor. This calculation can be performed for a variety of problems including those involving magnetic materials such as iron by the incorporation of finite element electromagnetic analysis software. This has enabled the optimization of the magnet's performance. The HTS magnet is wound from 190 m of silver-matrix Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 1 sub 0 powder-in-tube tape conductor supplied by Intermagnetics General Corporation. The dimensions are 70 mm bore and 70 mm length, and it consists of 728 turns. Iron end-plates were utilized in order to reduc...

  11. A review on real time physical measurement techniques and their attempt to predict wear-out status of IGBT

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Beczkowski, Szymon; Munk-Nielsen, Stig

    2013-01-01

    of operation. However, the Vce mainly shows the wear-out of bond wire lift-off and solder degradation. The Vce is normally used to estimate the junction temperature in the module. The measurement of Vce is sensitive to the converter power level and fluctuations in the surrounding temperature. In spite...... quality and some practical issues of those measurement techniques are discussed. Furthermore, the paper proposes the requirements for the measurement and prognostic approach to determine wear-out status of power modules in field applications. The online Vce measurement for a selected topology is also...

  12. The application of a computer data acquisition system to a new high temperature tribometer

    Science.gov (United States)

    Bonham, Charles D.; Dellacorte, Christopher

    1991-01-01

    The two data acquisition computer programs are described which were developed for a high temperature friction and wear test apparatus, a tribometer. The raw data produced by the tribometer and the methods used to sample that data are explained. In addition, the instrumentation and computer hardware and software are presented. Also shown is how computer data acquisition was applied to increase convenience and productivity on a high temperature tribometer.

  13. Implant wear mechanisms-basic approach

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Himanshu; Goswami, Tarun [Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435 (United States)

    2008-12-15

    Numerous parameters control the long-term performance of a total hip joint arthroplasty. The articulating motions between the femoral and the acetabular components produce wear debris in a hip implant. Surface roughness, clearance, coefficient of friction and sliding distance are found to be contributing parameters that affect wear rates. Wear produced in a hip implant leads to the loosening of a hip prosthesis and thus failure of the hip implant. Ultra-high-molecular-weight polyethylene (UHMWPE) has been successfully used as an acetabular weight bearing component in the THR applications. Cross-linked UHMWPE was found to improve the lifespan of an artificial hip. A gradient cross-linking of UHMWPE has been observed to be a recent development in implant bearing materials. During in vitro studies, gradient cross-linked UHMWPE showed nearly undetectable wear rates. (topical review)

  14. Assessment of wear facets produced by the ACTA wear machine

    DEFF Research Database (Denmark)

    Benetti, Ana R; Larsen, Liselotte; Dowling, Adam H

    2016-01-01

    an assessment of the potential of the experimental RBC formulations for clinical usage. CONCLUSION: The 3D technique allowed for the assessment of mean maximum wear depth and mean total volumetric wear which enables tribological analyses of the wear facet and therefore the wear mechanisms operative. Employing...... the 2D profile technique ranks RBC materials in terms of in-vitro wear performance. CLINICAL SIGNIFICANCE: Confidence in the wear volume measurements can only be achieved if the wear facet is analysed with sufficient resolution using a 3D digital measurement technique. However, the employment of 2D...

  15. Application for temperature and humidity monitoring of data center environment

    Science.gov (United States)

    Albert, Ş.; Truşcǎ, M. R. C.; Soran, M. L.

    2015-12-01

    The technology and computer science registered a large development in the last years. Most systems that use high technologies require special working conditions. The monitoring and the controlling are very important. The temperature and the humidity are important parameters in the operation of computer systems, industrial and research, maintaining it between certain values to ensure their proper functioning being important. Usually, the temperature is maintained in the established range using an air conditioning system, but the humidity is affected. In the present work we developed an application based on a board with own firmware called "AVR_NET_IO" using a microcontroller ATmega32 type for temperature and humidity monitoring in Data Center of INCDTIM. On this board, temperature sensors were connected to measure the temperature in different points of the Data Center and outside of this. Humidity monitoring is performed using data from integrated sensors of the air conditioning system, thus achieving a correlation between humidity and temperature variation. It was developed a software application (CM-1) together with the hardware, which allows temperature monitoring and register inside Data Center and trigger an alarm when variations are greater with 3°C than established limits of the temperature.

  16. The application of high temperature elastomer PCP in CSS wells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Song, F.; Wu, F.; Luo, E. [Petro-China, Liaohe (China). Liaohe Oilfield Co.; Seince, L.; Wu, B. [PCM, Vanves (France); Xiao, J.H. [Andmir Environmental Group, Calgary, AB (Canada)

    2009-07-01

    Progressive cavity pumps (PCPs) are now widely used in oil field applications. This paper discussed the feasibility of using a high temperature elastomer PCP in cyclic steam stimulation (CSS) applications. Data were obtained for fluid yields, speed, and wellhead temperature and dynamics. The study showed that during the initial production phase, wellhead temperature reached 80 degrees C. Water was injected to reduce the temperature to under 70 degrees C. The well has been operational for a period of 10 months. A second trial with a PCP with steam injection parameters of 14.6 MPa, a flow rate of 15.7 ton/h, and total steam injection of 1451 tonnes was then conducted. A set of optical fibres was used to obtain downhole temperature distribution data. The well has now been operational for more than 6 months, yielding 44.7 tonnes of fluid per day, with a daily oil yield of 14.8 tonnes per day. Actual pump-depth temperature before the pump start up was 98 degrees C. After start-up, actual pump depth temperatures reached 145 degrees C, which was decreased over time to 125 degrees C. It was concluded that the pumps are capable of withstanding the high temperature CSS environment. 8 refs., 1 tab., 4 figs.

  17. EFFECTIVE TOOL WEAR ESTIMATION THROUGH ...

    African Journals Online (AJOL)

    using TiN .coated K20 cemented carbide tool inserts to monitor the tool wear. In the early research, tool wear ... deformation, crack initiation, crack propagation and chipping. Such changes in material behavior will ... the coated carbide experienced rapid tool wear (up to a flank wear land of 0.11 Smm), followed by a slow.

  18. Wear resistance of hydrophobic surfaces

    Science.gov (United States)

    Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.

    2017-05-01

    Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance

  19. Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding

    Science.gov (United States)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Qiao, Shi-Jie; Zhai, Yong-Jie; Wang, Ming-Di; Chen, Yao; Xu, Dong

    2016-04-01

    Ni60-hBN composite coatings with varying hBN content were prepared on Ti6Al4V substrates by laser cladding. The composite coatings with no cracks and few pores are bonded metallurgically with the substrates. The phase composition and microstructure of the composite coatings were investigated. The tribological properties of the composite coatings were evaluated under dry sliding wear test conditions at 20 °C, 300 °C and 600 °C, respectively. The microhardness gradually increased from the bottom to the top of the coating and increased with increasing of hBN content. The laser clad Ni60-10%hBN coating exhibits excellent tribological behavior at high temperatures (300 °C and 600 °C).

  20. Optical fiber temperature sensors: applications in heat treatments for foods

    Science.gov (United States)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  1. The Effects of Exposure Time, Pressure and Cold on Hand Skin Temperature and Manual Performance When Wearing Three-Fingered Neoprene Gloves

    Science.gov (United States)

    2008-04-01

    summarised below. Grip strength was measured using a hand grip dynamometer . Tactile sensitivity was measured using modified (enlarged) Braille...in forearm temperature was partly due to leakage of water at the wrist in some divers. By comparison, the mean back of hand temperature fell to 15.8...larger unexplained variance in back of hand temperature is water leaking into the gloves at the wrist due to hand movement and the smaller skin

  2. The Impact of Low Accelerometer Wear Time on the Estimates and Application of Sedentary Behavior and Physical Activity Data in Adults.

    Science.gov (United States)

    McGrath, Ryan; Vella, Chantal A; Scruggs, Philip W; Peterson, Mark D; Williams, Christopher J; Paul, David R

    2017-12-01

    This investigation sought to determine how accelerometer wear (1) biased estimates of sedentary behavior (SB) and physical activity (PA), (2) affected misclassifications for meeting the Physical Activity Guidelines for Americans, and (3) impacted the results of regression models examining the association between moderate to vigorous physical activity (MVPA) and a clinically relevant health outcome. A total of 100 participants [age: 20.6 (7.9) y] wore an ActiGraph GT3X+ accelerometer for 15.9 (1.6) hours per day (reference dataset) on the hip. The BOD POD was used to determine body fat percentage. A data removal technique was applied to the reference dataset to create individual datasets with wear time ranging from 15 to 10 hours per day for SB and each intensity of PA. Underestimations of SB and each intensity of PA increased as accelerometer wear time decreased by up to 167.2 minutes per day. These underestimations resulted in Physical Activity Guidelines for Americans misclassification rates of up to 42.9%. The regression models for the association between MVPA and body fat percentage demonstrated changes in the estimates for each wear-time adherence level when compared to the model using the reference MVPA data. Increasing accelerometer wear improves daily estimates of SB and PA, thereby also improving the precision of statistical inferences that are made from accelerometer data.

  3. Monitoring Energy Expenditure Using a Multi-Sensor Device—Applications and Limitations of the SenseWear Armband in Athletic Populations

    Directory of Open Access Journals (Sweden)

    Karsten Koehler

    2017-11-01

    Full Text Available In order to monitor their energy requirements, athletes may desire to assess energy expenditure (EE during training and competition. Recent technological advances and increased customer interest have created a market for wearable devices that measure physiological variables and bodily movement over prolonged time periods and convert this information into EE data. This mini-review provides an overview of the applicability of the SenseWear armband (SWA, which combines accelerometry with measurements of heat production and skin conductivity, to measure total daily energy expenditure (TDEE and its components such as exercise energy expenditure (ExEE in athletic populations. While the SWA has been shown to provide valid estimates of EE in the general population, validation studies in athletic populations indicate a tendency toward underestimation of ExEE particularly during high-intensity exercise (>10 METs with an increasing underestimation as exercise intensity increases. Although limited information is available on the accuracy of the SWA during resistance exercise, high-intensity interval exercise, or mixed exercise forms, there seems to be a similar trend of underestimating high levels of ExEE. The SWA, however, is capable of detecting movement patterns and metabolic measurements even at high exercise intensities, suggesting that underestimation may result from limitations in the proprietary algorithms. In addition, the SWA has been used in the assessment of sleep quantity and quality as well as non-exercise activity thermogenesis. Overall, the SWA provides viable information and remains to be used in various clinical and athletic settings, despite the termination of its commercial sale.

  4. Wear Modalities and Mechanisms of the Mining Non-asbestos Composite Brake Material

    Science.gov (United States)

    Bao, Jiusheng; Yin, Yan; Zhu, Zhencai; Tong, Minming; Lu, Yuhao; Peng, Yuxing

    2013-08-01

    The mining brake material is generally made of composite materials and its wear has important influences on the braking performance of disc brakes. In order to improve the braking reliability of mine hoisters, this paper did some tribological investigations on the mining brake material to reveal its wear modalities and mechanisms. The mining non-asbestos brake shoe and 16Mn steel were selected as braking pairs and tested on a pad-on-disc friction tester. And a SEM was used to observe the worn surface of the brake shoe. It is shown that the non-asbestos brake material has mainly five wear modalities: adhesive wear, abrasive wear, cutting wear, fatigue wear and high heat wear. At the front period of a single braking the wear modality is mainly composed of some light mechanical wear such as abrasive, cutting and point adhesive. With the temperature rising at the back period it transforms to some heavy mechanical wear such as piece adhesive and fatigue. While in several repeated brakings once the surface temperature rises beyond the thermal-decomposition point of the bonding material, the strong destructive high heat wear takes leading roles on the surface. And a phenomenon called friction catastrophe (FC) occurs easily, which as a result causes a braking failure. It is considered that the friction heat has important influences on the wear modalities of the brake material. And the reduction of friction heat must be an effective technical method for decreasing wear and avoiding braking failures.

  5. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    Science.gov (United States)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  6. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  7. Investigation on wear characteristic of biopolymer gear

    Science.gov (United States)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  8. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  9. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  10. Friction, Fretting and Wear: Emerging Materials and Technologies

    Indian Academy of Sciences (India)

    wear, erosion, galling, scuffing and damage. Though these issues have been ... applications ranging from pharmaceuticals, dental implants, mining, transportation, space and nuclear medicine underlines the ... of the mechanical behaviour of solids subjected to erosion, abrasion, fretting, fatigue, impact and wear caused by ...

  11. Development of cryotribological theories & application to cryogenic devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  12. The Devil Wears Prada

    African Journals Online (AJOL)

    Adele

    The film is based on the book. The Devil Wears Prada written by Lauren Weisberger, ... image and power driven industry that is haute couture and fashion today. Although Andrea's experience is the main ... creations not fit even for Halloween, designer and brand name jewellery and other fashion accessories. Anything from ...

  13. Comparative wear mapping techniques

    DEFF Research Database (Denmark)

    Alcock, J.; Sørensen, Ole Toft; Jensen, S.

    1996-01-01

    Pin surfaces were analysed by laser profilometry. Two roughness parameters, R(a) and the fractal dimension, were investigated as a first step towards methods of quantitative wear mechanism mapping. Both parameters were analysed for their relationship to the severity and prevalence of a mechanism....

  14. Room-Temperature Skyrmion Shift Device for Memory Application.

    Science.gov (United States)

    Yu, Guoqiang; Upadhyaya, Pramey; Shao, Qiming; Wu, Hao; Yin, Gen; Li, Xiang; He, Congli; Jiang, Wanjun; Han, Xiufeng; Amiri, Pedram Khalili; Wang, Kang L

    2017-01-11

    Magnetic skyrmions are intensively explored for potential applications in ultralow-energy data storage and computing. To create practical skyrmionic memory devices, it is necessary to electrically create and manipulate these topologically protected information carriers in thin films, thus realizing both writing and addressing functions. Although room-temperature skyrmions have been previously observed, fully electrically controllable skyrmionic memory devices, integrating both of these functions, have not been developed to date. Here, we demonstrate a room-temperature skyrmion shift memory device, where individual skyrmions are controllably generated and shifted using current-induced spin-orbit torques. Particularly, it is shown that one can select the device operation mode in between (i) writing new single skyrmions or (ii) shifting existing skyrmions by controlling the magnitude and duration of current pulses. Thus, we electrically realize both writing and addressing of a stream of skyrmions in the device. This prototype demonstration brings skyrmions closer to real-world computing applications.

  15. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  16. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  17. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  18. Does wearing thermal underwear in mild cold affect skin temperatures and perceived thermal sensation in the hands and feet of the elderly?

    Science.gov (United States)

    Lee, Joo-Young; Kim, Myung-Ju; Choi, Jeong-Wha; Stone, Eric A; Hauver, Richard A

    2008-11-01

    The present study was to investigate whether increasing thermal insulation affects thermal sensation in the hands and feet; and whether aging is an influential factor in the relationship between thermal responses and subjective thermal perceptions. Six young males (YM), 5 young females (YF), 6 elderly males (OM), and 6 elderly females (OF) volunteered as subjects. Subjects conducted two trials at a constant air temperature of 19 degrees C: One condition included thermal underwear (19CUW) while the other did not (19C). The results showed that (1) rectal temperature (T(re)) did not show any significant differences between conditions with and without thermal underwear. The T(re) of the OF was greater than that of the YF (pcold did not affect local skin temperatures and thermal sensation in the hands and feet for the elderly male and female groups. Adding thermal underwear in mild cold affected the hand skin temperature and thermal sensation of the young female group. In particular, elderly females had specific features concerning local skin temperatures and thermal sensations distinguished from elderly males and young groups.

  19. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    Directory of Open Access Journals (Sweden)

    Mahdi Amiriyan

    2016-02-01

    Full Text Available This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load.

  20. Nanocomposite films on mylar for temperature sensing applications

    Science.gov (United States)

    Neella, Nagarjuna; Nayak, M. M.; Rajanna, K.

    2017-05-01

    Here in, we are reporting the fabrication of graphene oxide (GO) - Platinum (Pt) nanocomposite films on Mylar substrate for temperature sensor application on the basis of negative temperature coefficient (NTC) resistive element. The nanocomposite was successfully prepared by the solution mixing of GO nanosheets and Pt metal nanoparticles in N-Methyl-2-Pyrrolidone (NMP) using ultra sonication process. It was found that, the as-formed nanocomposite shows the Pt nanoparticles were dispersed no homogeneously on the surface of the GO nanosheets. The as-synthesized GO nanosheets and nanocomposite were characterized by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) for their surface analysis and structural properties respectively. The sensing film formation is carried out onto the flexible Mylar membrane for the fabrication of temperature sensor using drop casting method. The thickness of the sensing film is around 50 μm. As cab be observed that, the resistivity of nanocomposite sensing film decreased with the increase of temperature resulting in NTC behavior. The measured NTC and sensitivity of the sensor were found to be -4.26 x 10-3 Ω / Ω / K and 1.5231 Ω /K respectively. Therefore, the synthesized graphene oxide-Platinum nanocomposite film is an attractive candidate for making temperature sensors. Since the output is linear with respect to temperature variation, the electronic readout circuitry will be simpler. However, the change of electrical resistance of nanocomposite films can also be used in sensing environmental parameters such as chemical, biological, moisture and mechanical for their gas, glucose, humidity and strain/pressure sensor applications respectively.

  1. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    Science.gov (United States)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  2. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  3. A proposed model of the response of the anophthalmic socket to prosthetic eye wear and its application to the management of mucoid discharge.

    Science.gov (United States)

    Pine, Keith R; Sloan, Brian H; Jacobs, Robert J

    2013-08-01

    Mucoid discharge associated with prosthetic eye wear can be a distressing condition that affects the quality of life of people who have lost an eye. Discharge is the second highest concern of experienced prosthetic eye wearers after health of the companion eye and is prevalent in anophthalmic populations. Specific causes of mucoid discharge such as infections and environmental allergens are well understood, but non-specific causes are unknown and an evidence based protocol for managing non-specific discharge is lacking. Current management is based on prosthesis removal and cleaning, and professional re-polishing of the prosthesis. Tear protein deposits accumulate on prosthetic eyes. These deposits mediate the response of the socket to prosthetic eye wear and their influence (good and bad) is determined by differing cleaning regimes and standards of surface finish. This paper proposes a three-phase model that describes the response of the socket to prosthetic eye wear. The phases are: An initial period of wear of a new (or newly-polished) prosthesis when homeostasis is being established (or re-established) within the socket; a second period (equilibrium phase) where beneficial surface deposits have built up on the prosthesis and wear is safe and comfortable, and a third period (breakdown phase) where there is an increasing likelihood of harm from continued wear. The proposed model provides a rationale for a personal cleaning regime to manage non-specific mucoid discharge. Professional care of prosthetic eyes is also important for the management of discharge and evidence for effective surface finishing is reported in this study. Taken together, the proposed regimes for personal and professional care comprise a protocol for managing discharge associated with prosthetic eye wear. The protocol describes prosthetic eye cleaning methods and frequency, and suggests minimum standards for professional polishing. If confirmed, the protocol has the potential to resolve the

  4. Structure characterization and wear performance of NiTi thermal sprayed coatings

    Science.gov (United States)

    Cinca, N.; Isalgué, A.; Fernández, J.; Guilemany, J. M.

    2010-08-01

    NiTi shape memory alloy (SMA) has been studied for many years for its shape memory and pseudoelastic properties, as well as its biocompatibility, which make it suitable for many biomedical applications. However, SMA NiTi is also interesting for relevant wear resistance near the transition temperature which, along with its high oxidation and corrosion resistance, suggests its use as a coating to increase the lifetime of some components. Also, whereas bulk material properties have been characterized in respect of the nominal composition, manufacturing methods and thermo-mechanical treatments, NiTi overlays have been investigated much less. Most existent works in this field specifically deal with magnetron sputtering technology for thin films and its use in micro-devices (micro-electro-mechanical systems, MEMS), just some works refer to vacuum plasma spraying (VPS) for thicker coatings. The present paper explores and compares the microstructure and wear-related properties of coatings obtained from atomized NiTi powders, by VPS as well as by atmospheric plasma spraying (APS) and high velocity oxygen fuel (HVOF) techniques. In the present case, the wear behaviour of the NiTi deposits has been studied by rubber-wheel equipment and ball-on-disk tests. The results obtained at room temperature show that the APS-quenched coatings exhibit a preferential dry sliding wear mechanism, while the VPS and HVOF coatings show an abrasive mechanism.

  5. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  6. Surface engineering for enhanced performance against wear

    CERN Document Server

    2013-01-01

    Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

  7. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  8. Friction and Wear Processes – Thermodynamic Approach

    Directory of Open Access Journals (Sweden)

    M. Banjac

    2014-12-01

    Full Text Available Tribology, as the scientific and professional discipline within the mechanical engineering, studies phenomena and processes on the interacting surfaces, in direct and indirect contact and in relative motion. It includes the study and application of the principles of friction, wear and lubrication, as well as phenomena connected with these processes. Given that a process involving friction is always accompanied by transformation of energy, more precisely an energy dissipation process which generates entropy, the concept of thermodynamic entropy production analysis represents one of appropriate tools for studying and analysing the behaviour of complex friction and wear processes. This paper presents a review of published works in which the thermodynamic approach was used in analysing the friction and wear processes in tribosystems.

  9. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  10. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    Science.gov (United States)

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  11. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.

    Science.gov (United States)

    Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M

    2017-11-01

    This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Qc,max , whith differents oxygen tensions (high and low pc ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Qc,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10-4 cm3 of O2 /cm3 tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl

  12. Artificial Composites for High Temperature Applications; A Review (Composites Artificiels Destines a des Applications a Haute Temperature; Un Expose),

    Science.gov (United States)

    1987-01-01

    metallique et c~ramique pouvant servir dans des applications comportant des temp-ratures ilevies, comme dans les turbines i gaz . On s’intiresse surtout...the hot sections of gas turbine engines. Emphasis is placed on developments which have occured since 1975. An attempt is made to assess the current...Page I Projected use temperatures of : a) turbine blade alloys, b) turbine disc alloys and c) turbine vane materials

  13. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  14. Real Time Monitoring and Wear Out of Power Modules

    DEFF Research Database (Denmark)

    Ghimire, Pramod

    for power converter is a continuous research effort. Cost is a design limitation where the tendency is always to increase the rated power for the same price or decrease the price for same rated power. Satisfying the above mentioned facts, a healthy operation of power devices is essential to meet...... as an advanced power cycling test setup, where both power module characterization and field emulated testing are proposed. As temperature is identified as a major stressor, transforming on-state forward voltage drop to die temperature for each individual chip is presented at a nominal rated power level. The wear......Power electronic devices have a wide range of applications from very low to high power at constantly varying load conditions. Irrespective of the harsh operating loads, including both internal and external, an improvement in a performance such as efficiency, power density, reliability and cost...

  15. Development of wear-resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. (Cummins Engine Co., Inc., Columbus, IN (United States))

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  16. Elevated-Temperature Tribology of Metallic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2010-01-01

    The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribolayers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known to be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions is moderated by kinetics and microstructure. The role of deformation, oxidation, and tribo-corrosion in the elevated temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip.

  17. Wear deformation of ordered Fe-Al intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, H.E. (US Bureau of Mines, Albany Research Center, OR (United States)); Wilson, R.D. (US Bureau of Mines, Albany Research Center, OR (United States)); Hawk, J.A. (US Bureau of Mines, Albany Research Center, OR (United States))

    1993-04-13

    The Bureau of Mines conducted abrasive wear research on DO[sub 3] ordered and disordered Fe[sub 3]Al intermetallics. The effect of abrasion on these alloys was studied through mixroscopy, X-ray diffraction and hardness measurements. The region near the wear surface undergoes dynamic recrystallization, i.e. the original microstructural morphology of micron-size grains is replaced by one with nanosize grains. Abrasion of the Fe[sub 3]Al alloys also results in a loss of the DO[sub 3] ordering in the wear surface region. The bulk temperature rise of the specimen during abrasion was approximately 28 C which is insufficient to cause recrystallization in these alloys. Therefore, the flash temperature due to interface frictional heating is considered more important than the bulk temperature when considering dynamic recrystallization as the transformation mechanism in the near wear surface region. (orig.)

  18. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    . The corrosion surface morphology and also the corrosion products were analyzed using SEM. Focus in particular has been given to the property of corrosion resistance since corrosion resistance is a major issue for lead-free solder alloys. The electric field experienced by the solders during usage further...... of the package with different solders of different melting temperatures. High Pb containing alloys where the lead levels can be above 85% by weight, is one of the solders currently being used in this technology. Responding to market pressure i.e. need for green electronic products there is now an increasing...... pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...

  19. Effect of Particle and Carbide Grain Sizes on a HVOAF WC-Co-Cr Coating for the Future Application on Internal Surfaces: Microstructure and Wear

    Science.gov (United States)

    Pulsford, J.; Kamnis, S.; Murray, J.; Bai, M.; Hussain, T.

    2018-01-01

    The use of nanoscale WC grain or finer feedstock particles is a possible method of improving the performance of WC-Co-Cr coatings. Finer powders are being pursued for the development of coating internal surfaces, as less thermal energy is required to melt the finer powder compared to coarse powders, permitting spraying at smaller standoff distances. Three WC-10Co-4Cr coatings, with two different powder particle sizes and two different carbide grain sizes, were sprayed using a high velocity oxy-air fuel (HVOAF) thermal spray system developed by Castolin Eutectic-Monitor Coatings Ltd., UK. Powder and coating microstructures were characterized using XRD and SEM. Fracture toughness and dry sliding wear performance at three loads were investigated using a ball-on-disk tribometer with a WC-Co counterbody. It was found that the finer powder produced the coating with the highest microhardness, but its fracture toughness was reduced due to increased decarburization compared to the other powders. The sprayed nanostructured powder had the lowest microhardness and fracture toughness of all materials tested. Unlubricated sliding wear testing at the lowest load showed the nanostructured coating performed best; however, at the highest load this coating showed the highest specific wear rates with the other two powders performing to a similar, better standard.

  20. Tribology of selected ceramics at temperatures to 900 C

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1986-01-01

    Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.

  1. Dust accelerators and their applications in high-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Ticos, Catakin M [NILPRP, ROMANIA

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  2. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  3. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  4. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    Science.gov (United States)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  5. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  6. A mechanical cooler for dual-temperature applications

    Science.gov (United States)

    Gully, W.; Carrington, H.; Kiehl, W.; Byrne, Kevin

    1998-01-01

    Ball Aerospace has been developing Stirling cycle mechanical cryocoolers specifically for space applications. These coolers are special in that they are designed from the beginning for power efficiency, high reliability, and compatibility with sensitive instruments. We have delivered several of these coolers to NASA Goddard Space Flight Center, and are currently assembling one for the High Resolution Dynamics Limb Sounder (HIRDLS) program. In our current research effort, funded by the Ballistic Missile Defense Organization (BMDO), we are tailoring our basic design to new requirements from the Air Force Research Laboratory and its customers. We describe our success in optimizing a cooler to efficiently provide refrigeration at two different temperatures simultaneously. This two-temperature application requires 0.4 W of cooling at 35 K, and 0.6 W of cooling at 60 K. We have met these requirements with an input power of approximately 70 W from a dc source with a breadboard version of the cooler. We expect to deliver the protoflight version of this cooler to the Air Force Research Laboratory in January 1998.

  7. Enhanced DLC wear performance by the presence of lubricant additives

    Directory of Open Access Journals (Sweden)

    Romina Paula de Castro Costa

    2011-01-01

    Full Text Available Lubricant additives play significant role for reducing friction and wear of mechanical elements. The additives presented in 5W30 oil were developed for metal surfaces. However, they have been used in engine pieces covered with DLC coatings because they also offer the potential to reduce friction losses and wear in automotive applications. The friction and wear tests were carried out by using a UMT-CETR ball-on-disk tribometer in rotational mode under 5W30 synthetic oil at 100 °C. The X-ray photoelectron spectroscopy (XPS showed the presence of Mo and S in the wear tracks. These elements are from decomposition of ZDDP and MoDTC additives producing MoS2 in DLC surface, which offers enhanced durability by low wear rate.

  8. Conceptual design of a helium heater for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xue Zhou, E-mail: jin@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen

    2014-10-15

    Highlights: •A special design of heater with two vessels is introduced for the operation at 10 MPa and 800 °C. •The additional coupling between the cold leg and the hot leg of the loop due to the heater design has an impact on the loop energy budget. •Reducing the heat transfer between the two flow channels inside the heater by means of a helium gap in the inlet nozzle is proven to be effective. -- Abstract: The Karlsruhe Advanced Technologies Helium Loop (KATHELO) has been designed for testing divertor modules as well as qualifying materials for high heat flux, high temperature (up to 800 °C) and high pressure (10 MPa) applications. The test section inlet temperature level is controlled using a process electrical heater. To cope with the extreme operating conditions, a special design of this unit has been proposed. In this paper the conceptual design of the unit will be presented and the impact of the coupling between the cold and hot helium gas on the overall efficiency of the loop will be investigated. The detailed thermal-hydraulic analysis of the feed through of the hot helium into the low temperature pressure vessel using ANSYS CFX will be presented. The impact of the design choices on the overall energy budget of the loop will be analyzed using RELAP5-3D.

  9. Multi technical analysis of wear mechanisms in axial piston pumps

    Science.gov (United States)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  10. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Directory of Open Access Journals (Sweden)

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  11. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  12. Mechanical modelling of tooth wear.

    Science.gov (United States)

    Karme, Aleksis; Rannikko, Janina; Kallonen, Aki; Clauss, Marcus; Fortelius, Mikael

    2016-07-01

    Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate. © 2016 The Author(s).

  13. Wear-caused deflection evolution of a slide rail, considering linear and non-linear wear models

    Science.gov (United States)

    Kim, Dongwook; Quagliato, Luca; Park, Donghwi; Murugesan, Mohanraj; Kim, Naksoo; Hong, Seokmoo

    2017-05-01

    The research presented in this paper details an experimental-numerical approach for the quantitative correlation between wear and end-point deflection in a slide rail. Focusing the attention on slide rail utilized in white-goods applications, the aim is to evaluate the number of cycles the slide rail can operate, under different load conditions, before it should be replaced due to unacceptable end-point deflection. In this paper, two formulations are utilized to describe the wear: Archard model for the linear wear and Lemaitre damage model for the nonlinear wear. The linear wear gradually reduces the surface of the slide rail whereas the nonlinear one accounts for the surface element deletion (i.e. due to pitting). To determine the constants to use in the wear models, simple tension test and sliding wear test, by utilizing a designed and developed experiment machine, have been carried out. A full slide rail model simulation has been implemented in ABAQUS including both linear and non-linear wear models and the results have been compared with those of the real rails under different load condition, provided by the rail manufacturer. The comparison between numerically estimated and real rail results proved the reliability of the developed numerical model, limiting the error in a ±10% range. The proposed approach allows predicting the displacement vs cycle curves, parametrized for different loads and, based on a chosen failure criterion, to predict the lifetime of the rail.

  14. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  15. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...... = 25 mm, and a magnetic length of 250 mm. A total length of 2.5 km YBCO-based copper stabilized conductor supplied by SuperPower Inc., NY, USA, was isolated with 0.025 mm of epoxy and subsequently wound into 14 saddle coils and 4 racetrack coils with a cosine theta like configuration. The coils were......-liquid free operation of an HTS accelerator magnet was demonstrated. The cold mass support design permits magnet orientation under arbitrary angles. Careful choice of materials in terms of magnetic, heat conducting and mechanical properties resulted in a robust and compact solution which opens up...

  16. Progress on applications of high temperature superconducting microwave filters

    Science.gov (United States)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  17. High temperature superconducting current leads for micro-SMES application

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R. [Argonne National Lab., IL (United States); Buckles, W.E.; Weber, B.R. [Suerconductivity, Inc., Madison, WI (United States); Daugherty, M.A. [Los Alamos National Lab., NM (United States)

    1993-09-01

    SMES is being applied on a microscale (1--10 Mj stored energy) to improve electrical power quality. A major portion of the SMES refrigeration load is for cooling the conventional (copper, vapor- cooled) current leads that transfer energy between the magnet and the power-conditioning equipment. The lead refrigeration load can be reduced significantly by the use of high-temperature superconductors (HTSs). A HTS current lead suitable for micro-SMES application has been designed. The lower stage of the lead employs HTSs. A transition between the lower stage and the conventional upper-stage lead is heat-intercepted by a cryocooler. Details of the design are presented. Construction and operating experiences are discussed.

  18. A complex autoregressive model and application to monthly temperature forecasts

    Directory of Open Access Journals (Sweden)

    X. Gu

    2005-11-01

    Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.

  19. Pure mechanical wear loss measurement in corrosive wear

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied. The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were.

  20. Wear characteristics in a two-body wear test.

    Science.gov (United States)

    Wassell, R W; McCabe, J F; Walls, A W

    1994-07-01

    A previous report compared spherical steatite (ceramic enamel substitute) abraders with those of natural enamel in a two-body wear test. The wear rates and coefficients of friction of the two abraders against various composites and an amalgam were well correlated although the wear rates were slightly higher with steatite. This report investigates the characteristics of the worn abrader and specimen surfaces. Scanning electron microscopy and laser profilometry were used. Similar wear characteristics were found for the two types of abraders. Adhesive wear was evident for the amalgam, Dispersalloy (Johnson & Johnson), and the heat/pressure-cured microfill composite, Isosit (Ivoclar-Vivadent). Abrasion was seen with the hybrid composite, Occlusin (ICI), and, to a lesser extent, the microfill composite, Heliomolar (Ivoclar-Vivadent). The appearance of the worn small particle hybrid composite, Brilliant Dentin (Coltène), suggested that fatigue and delamination were involved. Laser profilometry showed that the hybrid composites caused much greater wear to the abraders than either the microfill composites or amalgam. The Ra values of the worn abraders and specimens were similar, suggesting conformal contact between them and endorsing the well controlled conditions of the wear test. The results of this and other publications suggest that steatite can be used as an alternative to enamel in performing two-body wear tests on dental composites. This should help significantly in materials evaluation and development.

  1. Pure mechanical wear loss measurement in corrosive wear

    Indian Academy of Sciences (India)

    The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied. The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were ...

  2. Type T reference function suitability for low temperature applications

    Science.gov (United States)

    Dowell, D.

    2013-09-01

    Type T thermocouples are commonly used in industrial measurement applications due to their accuracy relative to other thermocouple types, low cost, and the ready availability of measurement equipment. Type T thermocouples are very effective when used in differential measurements, as there is no cold junction compensation necessary for the connections to the measurement equipment. Type T's published accuracy specifications result in its frequent use in low temperature applications. An examination of over 328 samples from a number of manufacturers has been completed for this investigation. Samples were compared to a Standard Platinum Resistance Thermometer (SPRT) at the LN2 boiling point along with four other standardized measurement points using a characterized ice point reference, low-thermal EMF scanner and an 8.5 digit multimeter, and the data compiled and analyzed. The test points were approximately -196 °C, -75 °C, 0 °C, +100 °C, and +200 °C. These data show an anomaly in the conformance to the reference functions where the reference functions meet at 0 °C. Additionally, in the temperature region between -100 °C to -200 °C, a positive offset of up to 5.4 °C exists between the reference function equations published in the ASTM E230-06 for the nitrogen point and the measured response of the actual wire. This paper will examine the historical and technological reasons for this anomaly in the both the ASTM and IEC reference functions. At the request of the author and the Proceedings Editor the above article has been replaced with a corrected version. The original PDF file supplied to AIP Publishing contained several figures with missing information/characters—caused by processes used to generate the PDF file. All figures were affected by this error. The article has been replaced and these figures now display correctly. The corrected article was published on 7 November 2013.

  3. Low temperature aluminum nitride thin films for sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Zamponi, C.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Institute for Materials Science, Chair for Inorganic Functional Materials, Kiel University, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Institute for Materials Science, Chair for Synthesis and Real Structure, Kiel University, D-24143 Kiel (Germany)

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.

  4. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    Directory of Open Access Journals (Sweden)

    Xing S. Li

    2010-02-01

    Full Text Available Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  5. Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2017-11-01

    Full Text Available Tribological phenomena and tool wear mechanisms during machining of hard-to-cut TiAl6V4 aerospace alloy have been investigated in detail. Since cutting tool wear is directly affected by tribological phenomena occurring between the surfaces of the workpiece and the cutting tool, the performance of the cutting tool is strongly associated with the conditions of the machining process. The present work shows the effect of different machining conditions on the tribological and wear performance of TiB2-coated cutting tools compared to uncoated carbide tools. FEM modeling of the temperature profile on the friction surface was performed for wet machining conditions under varying cutting parameters. Comprehensive characterization of the TiB2 coated vs. uncoated cutting tool wear performance was made using optical 3D imaging, SEM/EDX and XPS methods respectively. The results obtained were linked to the FEM modeling. The studies carried out show that during machining of the TiAl6V4 alloy, the efficiency of the TiB2 coating application for carbide cutting tools strongly depends on cutting conditions. The TiB2 coating is very efficient under roughing at low speeds (with strong buildup edge formation. In contrast, it shows similar wear performance to the uncoated tool under finishing operations at higher cutting speeds when cratering wear predominates.

  6. Friction and wear behaviour of self lubricating bearing liners

    Science.gov (United States)

    Gay, Russell

    The thesis describes a numerical model for evaluating the variation of friction and wear of a self lubricating bearing liner over its useful wear life. Self-lubricating bearings have been in widespread use since the mid-1950s, particularly in the aerospace industry where they have the advantage of being low maintenance components. They are commonly used in relatively low speed, reciprocating applications such as control surface actuators, and usually consist of a spherical bearing with the inner and outer elements separated by a composite textile resin-bonded liner. A finite element model has been developed to predict the local stiffness of a particular liner at different states of wear. Results obtained using the model were used to predict the overall friction coefficient as it evolves due to wear, which is a novel approach. Experimental testing was performed on a bespoke flat-on-flat wear test rig with a reciprocating motion to validate the results of the friction model.. These tests were carried out on a commercially-available bearing liner, predominantly at a high contact pressure and an average sliding speed of 0.2 ms-1. Good agreement between predicted and experimentally measured wear was obtained when appropriate coefficients of friction were used in the friction model, and when the reciprocating sliding distance was above a critical value. A numerical wear model was also developed to predict the trend of backlash development in real bearing geometries using a novel approach. Results from the wear model were validated against full-scale bearing tests carried out elsewhere by the sponsoring company. Good agreement was obtained between the model predictions and the experimental results for the first 80% of the bearing wear life, and explanations for the discrepancy during the last 20% of the wear life have been proposed..

  7. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  8. Wear Behavior of Uncoated and Coated Tools under Complex Loading Conditions

    Directory of Open Access Journals (Sweden)

    M. Wieland

    2012-03-01

    Full Text Available In automotive industry crash relevant structures of the body in white are manufactured using the direct hot stamping process. Due to the high temperature difference between the hot blank and the cold tool surfaces and the relative movement between the blank and the tool surfaces during the forming operation, high thermal and mechanical loads are applied on the tool leading to excessive wear in terms of adhesion on the tool surfaces. One possibility to reduce wear of hot stamping tools is the application of tool coating systems. In the scope of this work uncoated and coated tools are characterized under complex loading conditions with respect to adhesive layer build-up.

  9. Tyre and road wear prediction

    NARCIS (Netherlands)

    Lupker, H.A.

    2003-01-01

    Both tyre wear and road polishing are complex phenomenon, which are obviously strongly related; the energy that polishes the road is the energy that wears the tyre. The both depend non-linearly on numerous parameters, like materials used, vehicle and road usage, environmental conditions (i.e.

  10. Surface and Sliding Wear Behaviour of Different Coatings and Steels

    Directory of Open Access Journals (Sweden)

    Vera-Cárdenas E.E.

    2012-01-01

    Full Text Available In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 C and 45% - 50% relative humidity. The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa and 7.84 N (Po = 1.52 GPa. Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS was performed, as well as Scanning Electron Microscopy (SEM and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings.

  11. Relationship of engine bearing wear and oil rheology

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.H.

    1987-01-01

    Engine wear tests were conducted, using two different engine designs, with single and multigrade engine oils. In one engine there was a significant reduction in bearing wear when multigrade oils were used. For the other engine there was evidence of less bearing wear when multigrade oils were used. In both engines correlations were found among bearing wear, high-temperature high-shear-rate viscosity and oil elasticity. It has been shown that the minimum oil film thickness measured for the front main bearing in an operating engine is related to both oil viscosity and elasticity for multigrade oils. The study presented here is an attempt to extend that work to determine if the same oil rheological parameter can be used to establish a correlation to engine journal bearing wear. Two different engines were used and wear was measured for connecting rod big-ends bearings and main bearings. The results ranged from excellent to poor depending on the engine and bearing location within each engine. Despite the limited success in establishing correlations among the oil rheological properties and bearing wear, the results are being presented in the interest of stimulating further work in this important area.

  12. Switch wear leveling

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  13. Friction and wear methodologies for design and control

    CERN Document Server

    Straffelini, Giovanni

    2015-01-01

    This book introduces the basic concepts of contact mechanics, friction, lubrication, and wear mechanisms, providing simplified analytical relationships that are useful for quantitative assessments. Subsequently, an overview on the main wear processes is provided, and guidelines on the most suitable design solutions for each specific application are outlined. The final part of the text is devoted to a description of the main materials and surface treatments specifically developed for tribological applications and to the presentation of tribological systems of particular engineering relevance. The text is up to date with the latest developments in the field of tribology and provides a theoretical framework to explain friction and wear problems, together with practical tools for their resolution. The text is intended for students on Engineering courses (both bachelor and master degrees) who must develop a sound understanding of friction, wear, lubrication, and surface engineering, and for technicians or professi...

  14. Prolonging contact lens wear and making contact lens wear safer.

    Science.gov (United States)

    Foulks, Gary N

    2006-02-01

    To summarize the present status of safety and efficacy of contact lens wear. Literature review. Ovid Medline searches were performed on records from 1966 through 2005 using keywords: keratitis, contact lens complications, extended-wear contact lenses, and silicone-hydrogel contact lenses. Patients desire comfort, clarity of vision, and prolonged contact lens wear when contact lenses are used to correct refractive error. Practitioners desire patient satisfaction but also require maintenance of the integrity of the eye and no complications that jeopardize vision or health of the eye. Improvements in the oxygen permeability of the contact lens materials, design of the contact lens and its surface, and solutions for the maintenance of the lens have reduced but not eliminated the risks of infection, inflammation, and conjunctival papillary reaction associated with contact lens wear. The lessons of past and recent history suggest that patient education and practitioner participation in the management of contact lens wear continue to be critical factors for patient satisfaction and safety in the extended wear of contact lenses. The availability of highly oxygen permeable contact lenses has increased the tolerance and safety of extended contact lens wear, but patient instruction and education in proper use and care of lenses is required and caution is advised.

  15. Low friction wear resistant graphene films

    Science.gov (United States)

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    2017-02-07

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  16. Wear rates of resin composites.

    Science.gov (United States)

    Barkmeier, W W; Erickson, R I; Latta, M A; Wilwerding, T M

    2013-01-01

    SUMMARY A laboratory study was conducted to examine the wear of resin composite materials using a generalized wear simulation model. Ten specimens each of five resin composites (Esthet•X [EX], Filtek Supreme Plus [SP], Filtek Z250 [Z2], Tetric EvoCeram [EC], and Z100 Restorative [Z1]) were subjected to wear challenges of 100,000, 400,000, 800,000, and 1,200,000 cycles. The materials were placed in cylinder-shaped stainless-steel fixtures, and wear was generated using a flat stainless-steel antagonist in a slurry of polymethylmethacrylate beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2000) with Proscan and ProForm software. Statistical analysis of the laboratory data using analysis of variance and Tukey's post hoc test showed a significant difference (p<0.05) for mean wear facet depth and volume loss for both the number of cycles and resin composite material. Linear regression analysis was used to develop predictive wear rates and volume loss rates. Linear wear was demonstrated with correlation coefficients (R(2)) ranging from 0.914 to 0.995. Mean wear values (mean facet depth [μm]) and standard deviations (SD) for 1200K cycles were as follows: Z1 13.9 (2.0), Z2 26.7 (2.7), SP 30.1 (4.1), EC 31.8 (2.3), and EX 67.5 (8.2). Volume loss (mm(3)) and SDs for 1200K cycles were as follows: Z1 0.248 (0.036), Z2 0.477 (0.044), SP 0.541 (0.072), EC 0.584 (0.037), and EX 1.162 (0.139). The wear rate (μm) and volume loss rate (mm(3)) per 100,000 cycles for the five resin composites were as follows: wear rate Z1 0.58, EC 1.27, Z2 1.49, SP 1.62, and EX 4.35, and volume loss rate Z1 0.009, EC 0.024, Z2 0.028, SP 0.029, and EX 0.075. The generalized wear model appears to be an excellent method for measuring relative wear of resin composite materials.

  17. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    Science.gov (United States)

    Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

    2013-12-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  18. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    Science.gov (United States)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice, Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  19. Experiment on wear behavior of high pressure gas seal faces

    Science.gov (United States)

    Xu, Jing; Peng, Xudong; Bai, Shaoxian; Meng, Xiangkai; Li, Jiyun

    2014-11-01

    Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%-25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.

  20. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC

  1. High Temperature Electrical Insulation Materials for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  2. Clinical measurement of tooth wear: Tooth Wear Indices

    OpenAIRE

    J. López Frías; Castellanos Cosano, Lizett; Martín González, Jenifer; Llamas Carreras, José María; Segura-Egea, Juan J.

    2012-01-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification corresponds to a different process with specific clinical features. Classifications made so far have no accurate prevalence data because the indexes do not necessarily measure a specific etiology, or because the study populations can be diverse in age and characteristics. Tooth wears (attrition, erosion and abrasion) is perceived internationally as a growing problem. However, th...

  3. MINICHANNEL-TUBE SOLAR THERMAL COLLECTORS FOR LOW TO MEDIUM TEMPERATURE APPLICATIONS

    OpenAIRE

    Duong, Thuc

    2015-01-01

    Novel minichannel-tube solar thermal collectors for low to medium temperature applications are introduced. Two types of minichannel solar thermal collectors are analyzed experimentally: aluminum minichannel solar collector for low temperature applications, and copper minichannel solar collector for low to medium temperature applications.The aluminum minichannel solar collector has been tested for over a year alongside a conventional copper flat-plate solar collector of similar dimensions as t...

  4. X-Aerogels for Structural Components and High Temperature Applications

    Science.gov (United States)

    2005-01-01

    Future NASA missions and space explorations rely on the use of materials that are strong ultra lightweight and able to withstand extreme temperatures. Aerogels are low density (0.01-0.5 g/cu cm) high porosity materials that contain a glass like structure formed through standard sol-gel chemistry. As a result of these structural properties, aerogels are excellent thermal insulators and are able to withstand temperatures in excess of l,000 C. The open structure of aerogels, however, renders these materials extremely fragile (fracturing at stress forces less than 0.5 N/sq cm). The goal of NASA Glenn Research Center is to increase the strength of these materials by templating polymers and metals onto the surface of an aerogel network facilitating the use of this material for practical applications such as structural components of space vehicles used in exploration. The work this past year focused on two areas; (1) the research and development of new templated aerogels materials and (2) process development for future manufacturing of structural components. Research and development occurred on the production and characterization of new templating materials onto the standard silica aerogel. Materials examined included polymers such as polyimides, fluorinated isocyanates and epoxies, and, metals such as silver, gold and platinum. The final properties indicated that the density of the material formed using an isocyanate is around 0.50 g/cc with a strength greater than that of steel and has low thermal conductivity. The process used to construct these materials is extremely time consuming and labor intensive. One aspect of the project involved investigating the feasibility of shortening the process time by preparing the aerogels in the templating solvent. Traditionally the polymerization used THF as the solvent and after several washes to remove any residual monomers and water, the solvent around the aerogels was changed to acetonitrile for the templating step. This process

  5. Wear properties of nanosilica filled epoxy polymers and FRP composites

    Directory of Open Access Journals (Sweden)

    A. Jumahat

    2015-09-01

    Full Text Available This paper is aimed to determine the wear properties of nanosilica filled epoxy polymers and FRP composites. Woven fiberglass has been deployed as the reinforcement material. The fibers were mixed with three different percentages of nanosilica-modified epoxy resin, i.e: 5wt%; 13wt%; 25wt%, in order to fabricate the desired samples of FRP composites. The effect of nanosilica on wear properties was evaluated using dry sliding wear and slurry tests. The results show that increasing the amount of nanosilica content has reduced the amount of accumulated mass loss. It was found that the FRP laminates with 25wt% of nanosilica have the highest wear resistance. The nanosilica filled fiber reinforced polymer composites have a high potential in tribological application such as ball bearing housing and snow sleds.

  6. Study of wear performance of deep drawing tooling

    Science.gov (United States)

    Naranje, Vishal G.; Karthikeyan, Ram; Nair, Vipin

    2017-09-01

    One of the most common challenges for many of the mechanical engineers and also in the field of materials science is the issue of occurrences of wear of the material parts which is used in certain applications that involves such surface interactions. In this paper, wear behaviour of particular grade High Carbon High Chromium Steel and many most famously D2, H13, O1 known as the Viking steel has been studied, evaluated and analyzed under certain processing parameters such as speed, load, track diameter and time required for deep drawing process to know it’s the wear rate and coefficient of friction. Also, the significance of the processing parameters which is used for wear testing analysis is also examined.

  7. Adverse events in allergy sufferers wearing contact lenses

    Science.gov (United States)

    Urgacz, Agnieszka; Mrukwa, Ewa

    2015-01-01

    Allergy is the fifth leading chronic condition in industrialized countries among all ages, and the third most common chronic disease among children under 18 years old. Many of allergic patients also have problems with vision and want to improve their quality of life by wearing contact lenses. They are most frequently young and active individuals, for whom contact lenses provide greater convenience and more satisfying vision correction than spectacles. However, application of high quality and immunologically neutral products do not protect from allergic side reactions. Nowadays, eye-related allergy and contact lens wear concern larger and larger populations worldwide. The purpose of this review is to summarize the studies on ocular complications associated with wearing contact lenses. The article presents indications for allergic patients especially on the care system and wear schedule. PMID:26161062

  8. Investigation of silicon carbon nitride nanocomposite films as a wear resistant layer in vitro and in vivo for joint replacement applications.

    Science.gov (United States)

    Liang, Y; Liu, D G; Bai, W Q; Tu, J P

    2017-05-01

    Silicon-contained CNx nanocomposite films were prepared using the ion beam assisted magnetron sputtering under different nitrogen gas pressure. With increase of the nitrogen pressure, silicon and nitrogen content of the CNx films drastically increase, and is saturated as the PN2 reach about 40%. Surface roughness and the contact angle are increase, while the friction coefficient decreased. The CNx film with 5.7at.% Si content possess the lowest friction coefficient of only 0.07, and exhibited the best tribological properties. The impact of CNx films with different silicon content on the growth and the activation of osteoblasts were compared to that of Ti6Al4V. The incorporation of silicon in the CNx film also showed an increase cell adhesion. Bonding structure and surface energy were determined to be the factors contributing to the improved biocompatibility. Macrophages attached to 5.7at.% Si contained CNx films down regulated their production of cytokines and chemokines. Moreover, employed with Si contained CNx coated joint replacements, which were implanted subcutaneously into Sprague-Dawley mice for up to 36days, the tissue reaction and capsule formation was significantly decreased compared to that of Ti6Al4V. A mouse implantation study demonstrated the excellent in vivo biocompatibility and functional reliability of wear resist layer for joint replacements with a Si doped a-CNx coating for 36days. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Applications of the PID control. Temperature and position servo-control; Applications de la commande PID. Asservissement temperature et position

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D. [Institut Universitaire de Technologie, 86 - Poitiers (France)

    2004-09-15

    The proportional integral derived function (PID) control is certainly not the most efficient but it is the most widely control used in regulation systems. The implementation of a PID regulator does not offer all adjustment possibilities of modern methods and it is in general impossible to make open-loop tests to identify the regulated system. This paper presents two concrete applications of PID control systems: one for a temperature regulation and the other for the servo-control of a mechanical system driven by a brush-less motor. The adjustment is performed using the classical momentum and frequency methods: 1 - PID control; 2 - efficiencies obtained in close loop configuration; 3 - principle of the experimental adjustment method of PID systems; 4 - experimental identification in close-loop configuration; 5 - calculation principle of a PID corrector; 6 - PID control for a class 0 system; 7 - calculation of a PID corrector for a class 1 system; 8 - PID position regulation of a brush-less motor; 9 - remarks about the numerical calculation of the control; 10 - summary of the models presented. (J.S.)

  10. The influence of laser line hardening of carbon steel AISI 1045 on the lubricated wear against steel AISI 52100

    NARCIS (Netherlands)

    Visscher, H.; de Rooij, Matthias B.; Vroegop, P.H.; Schipper, Dirk J.

    1995-01-01

    To diminish wear in tribological systems it is not always necessary to provide the entire surface with a wear resistant layer. Depending on the application it is sufficient to harden locally the load carrying areas which are subjected to wear. Such areas can be treated properly by a laser, either

  11. 26 CFR 1.1016-4 - Exhaustion, wear and tear, obsolescence, amortization, and depletion; periods during which income...

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Exhaustion, wear and tear, obsolescence...) INCOME TAXES Basis Rules of General Application § 1.1016-4 Exhaustion, wear and tear, obsolescence... be made for exhaustion, wear and tear, obsolescence, amortization, and depletion to the extent...

  12. 26 CFR 1.1016-3 - Exhaustion, wear and tear, obsolescence, amortization, and depletion for periods since February...

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Exhaustion, wear and tear, obsolescence... Rules of General Application § 1.1016-3 Exhaustion, wear and tear, obsolescence, amortization, and... be decreased for exhaustion, wear and tear, obsolescence, amortization, and depletion by the greater...

  13. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  14. Tool Wear in Friction Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  15. Gear Tooth Wear Detection Algorithm

    Science.gov (United States)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  16. Application of Phosphor Thermometry to a Galvanneal Temperature Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Beshears, D.L.; Allison, S.W.; Andrews, W.H.; Cates, M.R.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.; Childs, R.M.; Vehec, J.; Zhang, L.

    1999-06-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 840 to 1292 F with an accuracy of better than {+-}9 F. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control.

  17. Effect of warm compress application on tissue temperature in healthy dogs.

    Science.gov (United States)

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  18. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  19. Temperature effects on surface activity and application in oxidation ...

    Indian Academy of Sciences (India)

    Correspondingly, the CMC of CTAB-SDS decreases almost by half. The increase of surface activity of CTAB-SDS can be attributed to the relatively weak electrostatic interaction at high temperature, which is supported by the increase of solubility of CTAB-SDS with rise in temperature. Catalytic effect on oxidation of toluene ...

  20. Chemical temperature indicators for geothermal applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaven, J.V. Jr.; Bak, C.S.; Jones, V.V.; Grow, B.

    1978-03-01

    The objective of this program was the development of a simple, reliable method for temperaure measurement in geotherml wells duing drilling operations. The method of choice involves the use of a series of chemical temperature indicator materials, with sharply defined melting temperatures over the temperature range 80/sup 0/C less than or equal to T less than or equal to 350/sup 0/C. The most promising candidate temperature indicator materials were selected for laboratory experimentation. Differential Scanning Calorimeter measurements were used to determine normal melting point, sharpness of melting point and heat of fusion of the candidate materials. As a result of these experiments, 42 alloys and 9 organic compounds were demonstrated to be acceptable temperature indicators. Since 7 organics had melting temperatures close to corresponding alloys, the useful series of temperature indicators is comprised of 44 materials. Experiments were carried out to develop a configuraion for the indicators compatible with direct addition to drilling muds. Preliminary experimentation was performed on stress resistance and hydrodynamic characteristics of the indicator configuration. The temperature indicators can be made in production quantities at an average of $1.00/each or less. Recommendations are made for testing the indicator configurations at elevated pressures in drilling fluid and for carrying out full scale field testing of the indicators under a variety of geothermal conditions.

  1. A probabilistic-based approach to monitoring tool wear state and assessing its effect on workpiece quality in nickel-based alloys

    Science.gov (United States)

    Akhavan Niaki, Farbod

    The objective of this research is first to investigate the applicability and advantage of statistical state estimation methods for predicting tool wear in machining nickel-based superalloys over deterministic methods, and second to study the effects of cutting tool wear on the quality of the part. Nickel-based superalloys are among those classes of materials that are known as hard-to-machine alloys. These materials exhibit a unique combination of maintaining their strength at high temperature and have high resistance to corrosion and creep. These unique characteristics make them an ideal candidate for harsh environments like combustion chambers of gas turbines. However, the same characteristics that make nickel-based alloys suitable for aggressive conditions introduce difficulties when machining them. High strength and low thermal conductivity accelerate the cutting tool wear and increase the possibility of the in-process tool breakage. A blunt tool nominally deteriorates the surface integrity and damages quality of the machined part by inducing high tensile residual stresses, generating micro-cracks, altering the microstructure or leaving a poor roughness profile behind. As a consequence in this case, the expensive superalloy would have to be scrapped. The current dominant solution for industry is to sacrifice the productivity rate by replacing the tool in the early stages of its life or to choose conservative cutting conditions in order to lower the wear rate and preserve workpiece quality. Thus, monitoring the state of the cutting tool and estimating its effects on part quality is a critical task for increasing productivity and profitability in machining superalloys. This work aims to first introduce a probabilistic-based framework for estimating tool wear in milling and turning of superalloys and second to study the detrimental effects of functional state of the cutting tool in terms of wear and wear rate on part quality. In the milling operation, the

  2. Standard guide for measuring the wear volumes of piston ring segments run against flat coupons in reciprocating wear tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide covers and describes a profiling method for use accurately measuring the wear loss of compound-curved (crowned) piston ring specimens that run against flat counterfaces. It does not assume that the wear scars are ideally flat, as do some alternative measurement methods. Laboratory-scale wear tests have been used to evaluate the wear of materials, coatings, and surface treatments that are candidates for piston rings and cylinder liners in diesel engines or spark ignition engines. Various loads, temperatures, speeds, lubricants, and durations are used for such tests, but some of them use a curved piston ring segment as one sliding partner and a flat or curved specimen (simulating the cylinder liner) as its counterface. The goal of this guide is to provide more accurate wear measurements than alternative approaches involving weight loss or simply measuring the length and width of the wear marks. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its ...

  3. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes.

    Science.gov (United States)

    Zhu, Zhiyuan; Ouyang, Chun; Qiao, Yanxin; Zhou, Xiaowei

    2017-01-01

    The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C) were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe)7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  4. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhu

    2017-01-01

    Full Text Available The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C.

  5. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Russell G. May; Tony Peng; Gary Pickrell

    2005-10-31

    Development of practical, high-temperature optical claddings for improved waveguiding in sapphire fibers continued during the reporting period. A set of designed experiments using the Taguchi method was undertaken to efficiently determine the optimal set of processing variables to yield clad fibers with good optical and mechanical properties. Eighteen samples of sapphire fibers were prepared with spinel claddings, each with a unique set of variables. Statistical analyses of the results were then used to predict the set of factors that would result in a spinel cladding with the optimal geometrical, mechanical, and optical properties. To confirm the predictions of the Taguchi analysis, sapphire fibers were clad with the magnesium aluminate spinel coating using the predicted optimal set of factors. In general, the clad fibers demonstrated high quality, exceeding the best results obtained during the Phase I effort. Tests of the high-temperature stability of the clad fibers were also conducted. The results indicated that the clad fibers were stable at temperatures up to 1300 C for the duration of the three day test. At the higher temperatures, some changes in the geometry of the fibers were observed. The design, fabrication, and testing of a sapphire sensor for measurement of temperature was undertaken. The specific sensor configuration uses a polished sapphire wafer as the temperature-sensitive element. The wafer is attached to a sapphire fiber (clad or unclad), and interrogated as a Fabry-Perot sensor. Methods for assembling the sensor were investigated. A prototype sensor was fabricated and tested at room temperature and elevated temperatures. Results were difficult to interpret, due to the presence of modal noise which was found to result from the use of a spectrometer that was not designed for use with multimode fibers. A spectrometer optimized for use of multimode fiber has been obtained, and further evaluation of the sapphire temperature sensor is continuing.

  6. Application of Wireless Sensor Networks for Indoor Temperature Regulation

    DEFF Research Database (Denmark)

    Stojkoska, Biljana Risteska; Popovska Avramova, Andrijana; Chatzimisios, Periklis

    2014-01-01

    Wireless sensor networks take a major part in our everyday lives by enhancing systems for home automation, healthcare, temperature control, energy consumption monitoring, and so forth. In this paper we focus on a system used for temperature regulation for residential, educational, industrial......, and commercial premises, and so forth. We propose a framework for indoor temperature regulation and optimization using wireless sensor networks based on ZigBee platform. This paper considers architectural design of the system, as well as implementation guidelines. The proposed system favors methods that provide...

  7. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  8. Effect of Rhenium Addition on Wear Behavior of Cr-Al2O3 Metal Matrix Composites

    Science.gov (United States)

    Chmielewski, Marcin; Piątkowska, Anna

    2015-05-01

    Materials for applications in the automotive industry are required to be strong, stiff, hard, light weight, and wear resistant, which is very difficult to achieve in the case of conventional materials. To meet all these diverse requirements, it is necessary to combine various types of materials (such as metals and ceramics). In the present study, the chromium and chromium-rhenium matrices were reinforced with aluminum oxide to obtain composite materials with improved wear resistance. The composites were fabricated by a powder metallurgy method. The effects of the rhenium addition and volume fraction of aluminum oxide on the wear rate and the friction coefficient of the composites at room temperature were examined in a ball-on-surface apparatus under dry conditions. The worn surfaces and debris were studied by scanning electron microscopy. The final values of the friction coefficient were 0.9 and 0.8 for the Cr-25%Al2O3 and Cr-40%Al2O3 composites, respectively. Alloying Cr matrix with Re improved wear resistance of composite but, at the same time, it caused an increase in its coefficient of friction.

  9. A review of the use of wear-resistant coatings in the cutting-tool industry

    Science.gov (United States)

    Salik, J.

    1983-01-01

    The main mechanisms involved in the wear of cutting tools are reviewed. Evaluation of the different coating properties required for the reduction of the different kinds of wear was also reviewed. The types of coatings and their ranges of applicability are presented and discussed in view of their properties. Various coating processes as well as their advantages and shortcomings are described. Potential future developments in the field of wear-resistant coatings are discussed.

  10. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  11. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  12. Temperature sensitivity of surface tension-driven flows: Application to time-temperature integration

    Science.gov (United States)

    Thomas, John; Hunter, Lawrence; Boyle, Michael

    2011-11-01

    The effects of time-dependent temperature fluctuations on surface-tension driven fluid flow inside a capillary are modeled using classical hydrodynamics. To begin, we use Newton's second law to derive a non-dimensional equation of motion that describes capillary flow as a function of system geometry, fluid properties, and fluid temperature. We use this model to examine how temperature excursions affect the instantaneous and long-term position and velocity of the fluid front inside the capillary. Next, we examine the combined effects of orientation change and temperature change on fluid movement through the capillary. Using this data, we show how to design a non-powered time-temperature integration device for recording the cumulative temperature exposure history of an asset or local environment. By selecting an appropriate fluid and capillary geometry, we show how such devices can be designed to exhibit arbitrary temperature sensitivities, operate over arbitrary monitoring periods (months to decades), and operate in a manner that does not depend on orientation.

  13. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  14. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  15. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  16. Wear Measurement of Ceramic Bearings in Gas Turbines

    Science.gov (United States)

    1990-03-01

    temperatures. The disk, on the other hand has a ring wear groove which has time to recover and cool during each revolution . In addition to the nuclear...Service de Physique Nucleaire a Basse Energie, La Documentation Francaise , Secretariat General Du Government, Direction De La Documentation, 16, Rue

  17. 9 Cr-- 1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  18. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Mansoureh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, P.O. Box 1875-4413, Tehran (Iran, Islamic Republic of); Mahboubi, Farzad, E-mail: mahboubi@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, P.O. Box 1875-4413, Tehran (Iran, Islamic Republic of); Naimi-Jamal, M. Reza [Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Highlights: • Effect of pulsed DC PACVD deposition temperature, duty cycle, hydrogen flow and argon/CH4 flow ratio on the wear rate and durability of DLC films was studied. • Results show that wear rate of the DLC films, reduced from 14×E-4 mm3/Nm to 1×E-6 mm3/Nm with increasing the duty cycle from 50% to 80%. • In low duty cycle (around 50%), wear rate increases with increasing in Argon/CH4 flow ratio. • Oxidation, fatigue, abrasion and graphitization are main wear mechanisms in the DLC film. - Abstract: The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH{sub 4} flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH{sub 4} ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH{sub 4} flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  19. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2016-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  20. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  1. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2014-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  2. Metals Technology for Aerospace Applications in 2020: Development of High Temperature Aluminum Alloys For Aerospace Applications

    Science.gov (United States)

    Dicus, Dennis (Technical Monitor); Starke, Edgar A., Jr.

    2003-01-01

    The role of trace additions on the nucleation and stability of the primary strengthening phase, omega, is of paramount importance for the enhancement of mechanical properties for moderate temperature application of Al-Cu-Mg-(Ag) alloys. In order to better understand the competition for solute, which governs the microstructural evolution of these alloys, a series of Al-Cu-Mg-Si quaternary alloys were prepared to investigate the role of trace Si additions on the nucleation of the omega phase. Si additions were found to quell omega nucleation in conjunction with the enhanced matrix precipitation of competing phases. These initial results indicate that it is necessary to overcome a critical Mg/Si ratio for omega precipitation, rather than a particular Si content.

  3. Wearing the Playware

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    In this conceptual paper, we describe and define the range of possible applications and the technical contours of a robotic system to be worn on the body for playful interactions. Earlier work on Modular Robotic Wearable, MRW, described how, by using modular robotics for creating wearable......, it is possible to obtain a flexible wearable processing system, where freely interchangeable input/output modules can be positioned on the body suit in accordance with the task at hand. Here, we drive the attention on early prototypes to show the potentialities of such an approach, and focus on depicting...... possible application in the electronic games domain. Indeed, the Modular Robotic Wearable is an example of modular playware, which can create playful interactions for many application domains, including electronic games....

  4. Inkjet printing and low temperature sintering for organic electronic applications

    NARCIS (Netherlands)

    Wünscher, S.; Teichler, A.; Perelaer, J.; Abbel, R.J.; Schubert, U.S.

    2012-01-01

    In recent years, inkjet printing is increasingly used as a flexible and digital patterning technique in order to deposit functional materials for the manufacturing of microelectronic applications, including radio frequency identification (RFID) tags, organic photovoltaics (OPV), organic light

  5. Application Of Fourier Series Analysis To Temperature Data ...

    African Journals Online (AJOL)

    This Paper seeks to model a periodic time series using Fourier Series Analysis Method and to use such model to forcast future values of such data. The mean monthly temperature of Uyo Metropolis consisting of 180 data points (1991 – 2006) are collected for the study. The parameter estimates of the Fourier series model ...

  6. Applications of Land Surface Temperature from Microwave Observations

    Science.gov (United States)

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  7. Spectroscopy for Industrial Applications: High-Temperature Processes

    DEFF Research Database (Denmark)

    Fateev, Alexander; Grosch, Helge; Clausen, Sønnik

    The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spec...

  8. Combination Thermal Barrier And Wear Coatings For Engines

    Science.gov (United States)

    Weingart, Mike; Moller, Paul

    1995-01-01

    Thermal-barrier layers covered with self-lubricating surface layers. Zirconia thermal-barrier coat applied to surface of combustion chamber in engine by plasma-arc spraying. Then PS-200 plasma-arc sprayed onto zirconia. Self-lubricating coat prevents sliding contact between thermal barrier and piston ring, effectively preventing both wear and production of additional heat via friction. Other combinations of thermal-barrier and self-lubricating, wear-resistant coating materials used as long as two materials adhere to each other, applied by use of similar or compatible processes, have similar coefficients of thermal expansion, sufficiently strong at high temperatures, and affordable.

  9. Nitrocarburizing for wear, corrosion, and fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, G. [Durferrit GmbH Thermotechnik, Hanau (Germany)

    1996-04-01

    Demands for higher strength and corrosion resistance at higher temperatures cannot always be met by advanced materials and designs alone. In many cases, surface engineering can provide required properties and extend service life. A thermochemical surface engineering treatment has been developed that improves the dynamic strength of parts and overcomes many corrosion and wear problems. Known as Melonite, the process was developed by Durferrite GmbH Thermotechnik, and is used to enhance the surface properties of steel and iron parts. The quench, quench-polish, and quench-polish-quench salt bath nitrocarburizing system can provide surface layers with a range of beneficial properties. This article will discuss details of the Melonite process, component properties after treatment, the effects of raising or lowering treatment temperatures, and environmental impact.

  10. Thin film system with integrated load and temperature sensors for the technical application in deep drawing process

    Science.gov (United States)

    Biehl, Saskia; Paetsch, Nancy; Meyer-Kornblum, Eike

    2017-05-01

    In these days industry 4.0 resounded throughout the land and means the fourth industrial revolution. The industry has to tackle the task of a flexible and customer-oriented production. Therefor the need of sensor systems for the measurement of temperature and load, the two most important categories in production, is rising. For getting the real specification during the production process the integration of sensor elements in high load regions of machinery is very important. Thus wear resistant thin film sensor systems directly applied onto the surface of plant components are in development. These multilayer systems combine excellent wear resistance with sensory behaviour. The sensor data will lead to a deeper process understanding, to optimization of simulation tools, to reduction of rejects and to an improvement of flexibility in production.

  11. Couple of biomimetic surfaces with different morphologies for remanufacturing nonuniform wear rail surface

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Yang, Lin; Zhang, Haifeng; Feng, Li; Zhang, Peng

    2018-02-01

    In this work, biomimetic laser treatment was performed on repairing and remanufacturing the nonuniform worn rail surface. The wearing depth distribution of three work regions of a failure rail surface was discussed, and different thickness hardening layers with different microstructure, microhardness and wear resistances were detected from the worm surfaces. Varying wear resistances of the surfaces with different biomimetic morphologies were obtained by biomimetic laser treatments, and the corresponding effect on the lubrication sliding wear of treated and untreated surfaces were studied for comparative study. In addition, the relationship between wear resistance and the spacing of units was also provided, which can lay the important theoretical foundation for avoiding the wear resistance of the serious worn surface is less than that of the slight worn surface in the future practical applications.

  12. New Challenges in Tribology: Wear Assessment Using 3D Optical Scanners.

    Science.gov (United States)

    Valigi, Maria Cristina; Logozzo, Silvia; Affatato, Saverio

    2017-05-18

    Wear is a significant mechanical and clinical problem. To acquire further knowledge on the tribological phenomena that involve freeform mechanical components or medical prostheses, wear tests are performed on biomedical and industrial materials in order to solve or reduce failures or malfunctions due to material loss. Scientific and technological advances in the field of optical scanning allow the application of innovative devices for wear measurements, leading to improvements that were unimaginable until a few years ago. It is therefore important to develop techniques, based on new instrumentations, for more accurate and reproducible measurements of wear. The aim of this work is to discuss the use of innovative 3D optical scanners and an experimental procedure to detect and evaluate wear, comparing this technique with other wear evaluation methods for industrial components and biomedical devices.

  13. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  14. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  15. Temperature feedback-controlled photothermal treatment with diffusing applicator: theoretical and experimental evaluations.

    Science.gov (United States)

    Nguyen, Trung Hau; Park, Suhyun; Hlaing, Kyu Kyu; Kang, Hyun Wook

    2016-05-01

    To minimize thermal injury, the current study evaluated the real-time temperature monitoring with a proportional-integrative-derivative (PID) controller during 980-nm photothermal treatment with a radially-diffusing applicator. Both simulations and experiments demonstrated comparable thermal behaviors in temperature distribution and the degree of irreversible tissue denaturation. The PID-controlled application constantly maintained the pre-determined temperature of 353 K (steady-state error = temperature feedback with diffuser-assisted photothermal treatments can provide a feasible therapeutic modality to treat pancreatic tumors in an effective manner.

  16. The role of oxidation in the fretting wear process

    Science.gov (United States)

    Bill, R. C.

    1980-01-01

    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined.

  17. APPLICATION OF REMOTE SENSING FOR TEMPERATURE MONITORING: THE TECHNIQUE FOR LAND SURFACE TEMPERATURE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Teerawong Laosuwan

    2017-05-01

    Full Text Available This research aimed to present the technique for land surface temperature analysis with the data from Landsat-8 Operational Land Imager (OLI /Thermal Infrared Sensors (TIR in Meuang Maha Sarakham District, Maha Sarakham Province, Northeastern, Thailand. The research was conducted as following three steps: 1 Collecting the satellite data in thermal infrared band from Landsat-8 TIR satellite to adjust the value of Top of Atmosphere (ToA Reflectance and then analyzing the land surface temperature 2 Collecting multi-band data from Landsat-8 OLI satellite to adjust the value of Top of Atmosphere (ToA Reflectance and then analyzing values of Normalized Difference Vegetation Index (NDVI, Fractional Vegetation Cover (FVC and Land surface Emissivity (LSE 3 Bringing the results of 1 and 2 to analyze the land surface temperature with split window algorithm. The research results indicated that the analysis of the data from Landsat-8 OLI/TIR satellites in 18 March 2015 indicated a mean temperature of 33.57 °C.

  18. Industrial heat pumps for high temperature process applications

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær

    Industrial processes often consume large quantities of heat, while of-ten dissipating large quantities of waste heat to the ambient. The main energy source for industrial heat supply is fossil fuels, either oil or nat-ural gas. Thus, the heat consumption of industrial processes often entail large...... with the absorber. It is found that the cost of most components are evenly distributed between operational and capital investment cost. The highest rate of avoidable environmental impact stems from the compressor. It is shown that the environmental impact of construction, transportation and disposal was negligible...... CO2 emissions as well as emission of other harmful pollutants. As heat pumps can upgrade low temperature waste heat to a high temperature heat supply using only a fraction of primary energy, heat pumps may be applied to improve the energy efficiency of industrial processes. Further, Replacing oil...

  19. Thermal Barrier/Seal for Extreme Temperature Applications

    Science.gov (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Phelps, Jack; Bauer, Paul; Bond, Bruce; McCool, Alex (Technical Monitor)

    2002-01-01

    Large solid rocket motors, as found on the Space Shuttle, are fabricated in segments for manufacturing considerations, bolted together, and sealed using conventional Viton O-ring seals. Similarly the nine large solid rocket motor nozzles are assembled from several different segments, bolted together, and sealed at six joint locations using conventional O-ring seals. The 5500 F combustion gases are generally kept a safe distance away from the seals by thick layers of phenolic or rubber insulation. Joint-fill compounds, including RTV (room temperature vulcanized compound) and polysulfide filler, are used to fill the joints in the insulation to prevent a direct flow-path to the O-rings. Normally these two stages of protection are enough to prevent a direct flow-path of the 900-psi hot gases from reaching the temperature-sensitive O-ring seals. However, in the current design 1 out of 15 Space Shuttle solid rocket motors experience hot gas effects on the Joint 6 wiper (sacrificial) O-rings. Also worrisome is the fact that joints have experienced heat effects on materials between the RTV and the O-rings, and in two cases O-rings have experienced heat effects. These conditions lead to extensive reviews of the post-flight conditions as part of the effort to monitor flight safety. We have developed a braided carbon fiber thermal barrier to replace the joint fill compounds in the Space Shuttle solid rocket motor nozzles to reduce the incoming 5500 F combustion gas temperature and permit only cool (approximately 100 F) gas to reach the temperature-sensitive O-ring seals. Implementation of this thermal barrier provides more robust, consistent operation with shorter turn around times between Shuttle launches.

  20. Thin Film Materials and Devices for Resistive Temperature Sensing Applications

    Science.gov (United States)

    2015-05-21

    is based on the phenomenon known as the Seebeck effect . Named after the T. Seebeck who first observed this effect , he noted that there is a current...this effect is known as the thermal electromotive force. A device which uses the Seebeck effect for the measurement of temperature is known as a...21 Figure 2-7. Graph showing the effect of total deposition pressure on TCR and resistivity of deposited pm-Ge:H thin films

  1. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  2. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  3. Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post-Welding Heat Treatments (PWHT was analysed by Finite Element (FE simulation and experiments. Taking hot forging process of a crankshaft as an example, a wear model of the hot forging die coated with surfacing layer was established using FE software DEFORM-3D. The simulation results indicated that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 °C and 4 h respectively. To verify the wear computational results, 16 groups of PWHT orthogonal wear tests were performed at a temperature of 400 °C, which is a similar temperature to that occurs in an actual hot forging die. The wear-test result showed a good agreement with the FE simulation. SEM observation of the wear debris on 16 specimens showed that oxidative wear is dominant when the temperature was in 400 °C. Furthermore, when tempering temperature and holding time were 550 °C and 4 h respectively, the carbide alloy dispersively distributes in the metallographic structure, which helps to improve the wear resistance of the surfacing layer.

  4. Automotive brake wear: a review.

    Science.gov (United States)

    Wahid, Syed M S

    2018-01-01

    Road transport systems generate toxic particulate matter (PM) when in motion, that ultimately finds its way to the atmosphere. The PM produced by road transport systems can be broadly classified as exhaust and non-exhaust emissions. Exhaust emission is primarily due to product of combustion, as is the case of internal combustion engines and the PM is released to the atmosphere through the tail. Non-exhaust PM sources can be classified as sources such as emissions due to brake wear, tyre wear, road surface wear and resuspension. Both exhaust and non-exhaust sources generate PM of various sizes and shapes that has an impact on our health. Strict legislations by authorities have led to reduced exhaust emissions; however, due to the nature of complexity of PM generation by non-exhaust sources, effective control of non-exhaust emission still needs to be developed. Thus, as exhaust emissions are being controlled, non-exhaust is becoming a significant source of PM emission. The present paper reviews work done by previous researchers on non-exhaust PM and specifically, brake wear from road transport systems as this is one of the most important non-exhaust source of PM in the environment. The finding of the paper would be beneficial to policy makers and researchers.

  5. Should School Nurses Wear Uniforms?

    Science.gov (United States)

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  6. A study on mechanism of wear on body seat in nozzle of diesel fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    Jeonggee, Son; Yamashita, Toru; Sato, Susumu; Kosaka, Hidenori; Masuko, Masabumi [Tokyo Institute of Technology (Japan)

    2013-06-01

    Wear of nozzle's body seat of diesel fuel injector, which is caused by the collision of needle on the body seat in a nozzle, affects fuel spray behaviors and injection characteristics. Recently, to reduce the wear of body seat, DLC nozzles are widely used. The DLC on the needle which is called diamond-like carbon has a certain effect in reducing wear of body seat. However, disallowable wear is reported at limited engine operating conditions. Moreover, the wear mechanism of body seat with DLC coated needle has not been made clear yet. In this study, the influence of temperature of the body seat and fuel property on the wear of DLC nozzle was investigated with a newly developed wear testing device which was constructed based on common-rail injection system. Worn surfaces of body seat were observed by FE-SEM, laser scanning microscope and EPMA. The obtained results from the measurements show that DLC nozzle has much less wear amount than non-DLC nozzle on the body seat and the corrosive wear effect is suppressed with DLC nozzle. (orig.)

  7. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  8. Detailed study of oxidation/wear mechanism in lox turbopump bearings

    Science.gov (United States)

    Chase, T. J.; McCarty, J. P.

    1993-12-01

    Wear of 440C angular contact ball bearings of the phase 2 high pressure oxygen turbopump (HPOTP) of the space shuttle main engine (SSME) has been studied by means of various advanced nondestructive techniques (NDT) and modeled with reference to all known material, design, and operation variables. Three modes dominating the wear scenario were found to be the adhesive/sheer peeling (ASP), oxidation, and abrasion. Bearing wear was modeled in terms of the three modes. Lacking a comprehensive theory of rolling contact wear to date, each mode is modeled after well-established theories of sliding wear, while sliding velocity and distance are related to microsliding in ball-to-ring contacts. Microsliding, stress, temperature, and other contact variables are evaluated with analytical software packages of SHABERTH(TM)/SINDA(TM) and ADORE(TM). Empirical constants for the models are derived from NIST experiments by applying the models to the NIST wear data. The bearing wear model so established precisely predicts quite well the average ball wear rate for the HPOTP bearings. The wear rate has been statistically determined for the entire population of flight and development bearings based on Rocketdyne records to date. Numerous illustrations are given.

  9. Synthesis and Study on Effect of Parameters on Dry Sliding Wear Characteristics of AL-SI Alloys

    Directory of Open Access Journals (Sweden)

    Francis Uchenna OZIOKO

    2012-08-01

    Full Text Available The effect of parameters on dry sliding wear characteristics of Al-Si alloys was studied. Aluminium-silicon alloys containing 7%, 12% and 14% weight of silicon were synthesized using casting method. Dry sliding wear characteristics of sample were studied against a hardened carbon steel (Fe-2.3%Cr-0.9%C using a pin-on-disc. Observations were recorded keeping two parameters (sliding distance, sliding speed and load constant against wear at room temperature. Microstructural characterization was done using optical microscope (OM and scanning electron microscope (SEM. Hardness and wear characteristics of different samples have shown near uniform behaviour. The wear rate decreased when the percentage of silicon increases. Wear was observed to increase at higher applied load, higher sliding speed and higher sliding distance. The wear characteristics of Al-14%Si was observed superior to those of Al-7%Si and Al-12%Si due to the degree of refinement of their eutectic silicon.

  10. APPLICATION OF REMOTE SENSING FOR TEMPERATURE MONITORING: THE TECHNIQUE FOR LAND SURFACE TEMPERATURE ANALYSIS

    OpenAIRE

    Teerawong Laosuwan; Torsak Gomasathit; Tanutdech Rotjanakusol

    2017-01-01

    This research aimed to present the technique for land surface temperature analysis with the data from Landsat-8 Operational Land Imager (OLI) /Thermal Infrared Sensors (TIR) in Meuang Maha Sarakham District, Maha Sarakham Province, Northeastern, Thailand. The research was conducted as following three steps: 1) Collecting the satellite data in thermal infrared band from Landsat-8 TIR satellite to adjust the value of Top of Atmosphere (ToA) Reflectance and then analyzing the land surface temper...

  11. Wearing the playware

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2011-01-01

    In this conceptual paper, we describe and defi ne the range of possible applications, and the technical contours, of a robotic system to be worn on the body for playful interactions. Earlier work on a modular robotic wearable (MRW) described how, by using modular robotics to create a wearable......, it is possible to obtain a fl exible wearable processing system where freely interchangeable input/output modules can be positioned on a body suit in accordance with the task at hand. Here, we guide attention toward early prototypes to show the potentialities of such an approach, and focus on depicting possible...

  12. Wear Particle Atlas. Revised

    Science.gov (United States)

    1982-06-28

    I J?Hf DTIC TAP D Uwnunouncpd □ JUG 11 f i c n 11 on Bv . Di5tril--.it Ion/ Aval Dist Labi lit Avail ’ Epoc y Codes md/or Lai A...other common metal is so colored, with the exception of gold , which is used only in exotic applications. However, other metal particles can display...bit of red oxide is also present, and that category must be included as well. Figure 2.7.2 shows a black oxide particle with gold adhered to it

  13. Titanium nitride as a refractory plasmonic material for high temperature applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Boltasseva, Alexandra

    2014-01-01

    The use of titanium nitride as a plasmonic material for high temperature applications such as solar/thermophotovoltaics is studied numerically and experimentally. Performance of titanium nitride is compared with widely used materials in each field. © 2014 OSA....

  14. Hybrid High-Temperature Superconductor Current Leads for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tai-Yang Research Company (TYRC) of Tallahassee, Florida proposes to build hybrid high-temperature superconducting current leads for space applications,...

  15. The Delamination Theory of Wear - III

    Science.gov (United States)

    1977-12-01

    approximate, it shows excellent agreement with the above postulate and with experimental observations of wear. It was shown that void nucleation is...purposes: to predict wear arnd to reduce wear, Mathematical modelo are necessary in order to predict wear 40 qualitatively. They are also useful in the...the substrate and on the physical and chemical properties of the materials involved, There are a number of excellent references on coating techniques

  16. Complications Caused by Contact Lens Wearing

    OpenAIRE

    Beljan, Jasna; Beljan, Kristina; Beljan, Zdravko

    2013-01-01

    Complications in wearing contact lenses are very rare and caused by poor maintenance, over-extended wear and wearing of contact lenses in a polluted environment. Regular control by a professional person can efficiently reduce the number of complications. This paper describes the most common risks factors for complications, and complications of wearing contact lenses with the classification according to the anatomic parts of the eye: eyelids, tear film, limbus, corneal epithelium, corneal stro...

  17. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  18. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  19. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  20. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  1. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  2. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  3. Martensitic high nitrogen steel for applications at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berns, H.; Escher, C. [Bochum Univ. (Germany); Streich, W.-D. [TRW Deutschland GmbH, Blumberg (Germany)

    1999-07-01

    Based on required material properties for inlet valves in combustion engines a martensitic high nitrogen steel was created. After selecting an alloy system with 14-17 w/o Cr, 1-3 w/o Mo, 0.1-0.3 w/o V and 0.4-0.7 w/o N by method of thermodynamical calculations of phase equilibria the newly developed martensitic steel was produced by pressurized electroslag remelting. Hot tensile tests and corrosion tests were carried out on hardened and tempered specimens in comparison with two standard valve steels. The high nitrogen steel shows a distinctly better corrosion resistance and high-temperature strength than the standard steel X45CrSi9-3 and is therefore comparable with the steel X85CrMoV18-2. Due to finer nitrides the newly developed steel is characterized by a fatigue strength which is 26% higher at 500 C service temperature. (orig.)

  4. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  5. Skin Protectants Made of Curable Polymers: Effect of Application on Local Skin Temperature

    OpenAIRE

    Walt, Michael J.; Atwood, Nancy; Bernatchez, St?phanie F.; Ekholm, Bruce P.; Asmus, Robert

    2017-01-01

    Objective: To measure the skin temperature after application of a new skin protectant intended for incontinence-associated dermatitis (IAD), compared with a commercial product with an analogous cyanoacrylate-based chemistry. Approach: Twelve healthy human volunteers received an application of the new product on one thigh and of the comparator on the other thigh. An infrared camera using ThermaCAM? software imaged the skin and measured the temperature at the skin surface over time to character...

  6. A Multiple Model Prediction Algorithm for CNC Machine Wear PHM

    Directory of Open Access Journals (Sweden)

    Huimin Chen

    2011-01-01

    Full Text Available The 2010 PHM data challenge focuses on the remaining useful life (RUL estimation for cutters of a high speed CNC milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors. We present a multiple model approach for wear depth estimation of milling machine cutters using the provided data. The feature selection, initial wear estimation and multiple model fusion components of the proposed algorithm are explained in details and compared with several alternative methods using the training data. The final submission ranked #2 among professional and student participants and the method is applicable to other data driven PHM problems.

  7. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  8. Ca-Sr-Ga-Nb mixed oxide system for high temperature superconductor substrate applications

    Energy Technology Data Exchange (ETDEWEB)

    Erdei, S.; Cross, L.E.; Ainger, F.W.; Bhalla, A. (Materials Research Lab., The Pennsylvania State Univ., Univ. Park, Pennsylvania (United States))

    1994-05-01

    Twin-free crystals with relatively low melting temperatures are desirable as substrates for high temperature superconductor (HTSC) oxide substrate materials. In the selection of new oxide substrate compositions, special requirements (e.g. suitable dielectric properties for microwave application and perovskite structure with good lattice matching with YBa[sub 2]Cu[sub 3]O[sub 7-[delta

  9. Standard guide for determining synergism between wear and corrosion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide covers and provides a means for computing the increased wear loss rate attributed to synergism or interaction that may occur in a system when both wear and corrosion processes coexist. The guide applies to systems in liquid solutions or slurries and does not include processes in a gas/solid system. 1.2 This guide applies to metallic materials and can be used in a generic sense with a number of wear/corrosion tests. It is not restricted to use with approved ASTM test methods. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.

    1996-12-31

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  11. Microstructure and wear behavior of austempered high carbon high silicon steel

    Directory of Open Access Journals (Sweden)

    Acharya Palaksha

    2018-01-01

    Full Text Available In the present investigation, the influence of austempering temperature and time on the microstructure and dry sliding wear behavior of high silicon steel was studied. The test specimens were initially austenitised at 900°C for 30 minutes, thereafter austempered at various temperatures 280°C, 360°C and 400°C, for varying duration from 30 to 120 minutes. These samples after austempering heat treatment were subsequently air cooled to room temperature, to generate typical ausferritic microstructures and then correlated with the wear property. The test outcomes demonstrate the slight increase in specific wear rate with increase in both austempering temperature and time. Specific wear rate was found to be minimum at an austempering temperature of 280°C, that exhibits lower bainite microstructure with high hardness, on the other hand specific wear rate was found to be slightly high at increased austempering temperatures at 360°C and 400°C, due to the upper bainite structure that offered lower hardness to the matrix. The sample austempered at 280°C for 30 minutes offered superior wear resistance when compared to other austempering conditions, mainly due to the presence of fine acicular bainitic ferrite along with stabilized retained austenite and also some martensite in the microstructure.

  12. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    Science.gov (United States)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  13. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  14. Application of displacement monitoring system on high temperature steam pipe

    Science.gov (United States)

    Ghaffar, M. H. A.; Husin, S.; Baek, J. E.

    2017-10-01

    High-energy piping systems of power plants such as Main Steam (MS) pipe or Hot Reheat (HR) pipe are operating at high temperature and high pressure at base and cyclic loads. In the event of transient condition, a pipe can be deflected dramatically and caused high stress in the pipe, yielding to failure of the piping system. Periodic monitoring and walk down can identify abnormalities but limitations exist in the standard walk down practice. This paper provides a study of pipe displacement monitoring on MS pipe of coal-fired power plant to continuously capture the pipe movement behaviour at different load using 3-Dimensional Displacement Measuring System (3DDMS). The displacement trending at Location 5 and 6 (north and south) demonstrated pipes displace less than 25% to that of design movement. It was determined from synchronisation analysis that Location 7 (north) and Location 8 (south) pipe actual movement difference has exceeded the design movement difference. Visual survey at specified locations with significant displacement trending reveals issues of hydraulic snubber and piping interferences. The study demonstrated that the displacement monitoring is able to capture pipe movement at all time and allows engineer to monitor pipe movement behaviour, aids in identifying issue early for remedy action.

  15. Ultra high temperature ceramics for hypersonic vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

    2006-01-01

    HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

  16. High Strength Aluminum Alloy For High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  17. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  18. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  19. THERMOGRAPHIC APPLICATIONS OF TEMPERATURE SENSITIVE FLUORESCENCE OF SrS:Cu PHOSPHORS

    Directory of Open Access Journals (Sweden)

    R. PUROHIT

    2010-12-01

    Full Text Available The present work aims at investigating the temperature sensitive fluoro-optic behaviour of Cu-activated strontium sulphide (SrS phosphors and its possible application in thermography. Accordingly, SrS (Cu phosphors have been synthesized and painted with the help of adhesive on silica substrate. The excitation and emission spectra of such phosphor coatings have been recorded at room temperature (25C. The temperature dependence of fluorescence intensity and the lifetime of phosphorescence have also been studied. From the systematic variation of these two parameters with temperature, it appears that these phosphors are good candidates for thermographic application, at least, in the temperature range of investigation (25-150C.

  20. Fluoridation and tooth wear in Irish adults.

    LENUS (Irish Health Repository)

    Burke, F M

    2010-10-01

    The aim of this study was to determine the prevalence of tooth wear in adults in Ireland and its relationship with water fluoridation. The National Survey of Adult Oral Health was conducted in 2000\\/2001. Tooth wear was determined using a partial mouth examination assessing the upper and lower anterior teeth. A total of 2456 subjects were examined. In this survey, increasing levels and severity of tooth wear were associated with ageing. Men were more affected by tooth wear and were more likely to be affected by severe tooth wear than women. It was found that age, and gender were significant predictors of tooth wear (P < 0.01). Overall, there was no significant relationship between fluoridation and tooth wear in this study.

  1. Development of lead-free solders for high-temperature applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek

    -temperature applications. Unfortunately, even the substitute technologies that are currently being developed cannot address several critical issues of high-temperature soldering. Therefore, further research and development of high-temperature lead-free soldering is obviously needed. It is hoped that this thesis can serve......This work also reviews the alternative technologies for replacing the high-temperature soldering since it was determined that even the expensive candidate alloys involving Au too could not cover the spectrum of properties required for being accepted as a standard soft solder for high...

  2. Note: Production of stable colloidal probes for high-temperature atomic force microscopy applications.

    Science.gov (United States)

    Ditscherlein, L; Peuker, U A

    2017-04-01

    For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.

  3. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    2010-01-01

    Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV). Subcutaneous tissue temperatures obtained by the implantable......C lower than the rectal temperature. However, a simple linear relationship between the measures of the two methods was found. Conclusions Our study showed that the tested body monitoring system may represent a promising tool to obtain an approximate correlate of body temperatures in groups of pigs...

  4. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  5. Mechanisms for fatigue and wear of polysilicon structural thinfilms

    Energy Technology Data Exchange (ETDEWEB)

    Alsem, Daniel Henricus [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of ~4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles (~50-100 nm) created by fracture through the silicon grains (~500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer (~20-200 nm) forms at worn regions. No dislocations or

  6. Application of Combined Sustained and Cyclic Loading Test Results to Alloy 617 Elevated Temperature Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Global Egineering and Technology, LLC, Coral Gables, FL (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-25

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of 900-950°C . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200°F (650°C). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, 1200 °F, is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures.

  7. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989-2014. Our preliminary results show a good model performance with R(2) = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  9. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  10. Relationship Between Simulated Gap Wear and Generalized Wear of Resin Luting Cements.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miayazaki, M

    The relationship between the simulated gap wear and generalized wear of resin luting cements was investigated. Five resin luting cements, G-Cem LinkForce (GL), Multilink Automix (MA), NX3 Nexus, Panavia V5 (PV), and RelyX Ultimate were evaluated and subsequently subjected to a wear challenge in a Leinfelder-Suzuki (Alabama) wear simulation device. Half of the specimens from each resin luting cement were photo-cured for 40 seconds and the other half were not photo-cured. The simulated gap and generalized wear were generated using a flat-ended stainless steel antagonist. Wear testing was performed in a water slurry of polymethyl methacrylate beads, and the simulated gap and generalized wear were determined using a noncontact profilometer (Proscan 2100) in conjunction with the Proscan and AnSur 3D software. A strong relationship was found between the gap wear and generalized wear simulation models. The simulated gap wear and generalized wear of the resin luting cements followed similar trends in terms of both volume loss and mean depth of wear facets with each curing method. Unlike the simulated gap wear and generalized wear of GL and PV, those of MA, NX, and RU were influenced by the curing method. The results of this study indicate that simulated gap wear of resin luting cements is very similar to simulated generalized wear. In most cases, dual curing appears to ensure greater wear resistance of resin luting cements than chemical curing alone. The wear resistance of some resin luting cements appears to be material dependent and is not influenced by the curing method.

  11. Investigation of Neutron Detector Response to Varying Temperature and Water Content for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice [ORNL

    2010-01-01

    Nuclear logging techniques have been used for oil well logging applications for decades. The basic principle is to use a neutron and/or photon source and neutron and photon detectors for characterization purposes. Although the technology has matured, it is not directly applicable to geothermal logging due to even more challenging environmental conditions, both in terms of temperature and pressure. For geothermal logging, the operating temperature can go up to 376 C for depths up to 10,000 km. In this paper, the preliminary computational results for thermal neutron detector response for varying temperature and water content for geothermal applications are presented. In this summary, preliminary results for neutron detector response for varying formation temperature and water content are presented. The analysis is performed for a steady state source (AmBe) and time dependent source (PNG) in pulsed mode. The computational results show significant sensitivity to water content as well as temperature changes for both steady state and time dependent measurements. As expected, the most significant change is due to the temperature change for S({alpha}, {beta}) nuclear data instead of individual isotope cross sections for the formation. Clearly, this is partially because of the fact that strong absorbers (i.e., chlorine) are not taken into account for the analysis at this time. The computational analysis was performed using the temperature dependent data in the ENDF/B-VII libraries, supplied with MCNP. Currently, the data for intermediate temperatures are being generated using NJOY and validated. A series of measurements are planned to validate the computational results. Further measurements are planned to determine the neutron and photon detector response as a function of temperature. The tests will be performed for temperatures up to 400 C.

  12. Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yohei Kotsuchibashi

    2016-10-01

    Full Text Available The development of stimuli responsive polymers has progressed significantly with novel preparation techniques, which has allowed access to new materials with unique properties. Dual thermoresponsive (double temperature responsive block copolymers are particularly of interest as their properties can change depending on the lower critical solution temperature (LCST or upper critical solution temperature (UCST of each segment. For instance, these block copolymers can change from being hydrophilic, to amphiphilic or to hydrophobic simply by changing the solution temperature without any additional chemicals and the block copolymers can change from being fully solubilized to self-assembled structures to macroscopic aggregation/precipitation. Based on the unique solution properties, these dual thermo-responsive block copolymers are expected to be suitable for biomedical applications. This review is divided into three parts; LCST-LCST types of block copolymers, UCST-LCST types of block copolymers, and their potential as biomedical applications.

  13. Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides

    Science.gov (United States)

    Mori, T.

    2016-10-01

    A need exists to develop high-temperature thermoelectric materials which can utilize high-temperature unutilized/waste heat in thermal power plants, steelworks, factories, incinerators, etc., and also focused solar power. The thermal power plant topping application is of potential high impact since it can sizably increase the efficiency of power plants which are the major supply of electrical power for many countries. Higher borides are possible candidates for their particular high-temperature stability, generally large Seebeck coefficients, α, and intrinsic low thermal conductivity. Excellent (|α| > 200 μV/K) p-type or n-type behavior was recently achieved in the aluminoboride YAl x B14 by varying the occupancy of Al sites, x. Finding p-type and n-type counterparts has long been a difficulty of thermoelectric research not limited to borides. This paper reviews possible high-temperature thermoelectric applications, and recent developments and perspectives of thermoelectric aluminoborides.

  14. Investigation of Thermographic Phosphors for Gas-Phase Temperature Measurements in Combustion Applications

    Science.gov (United States)

    Witkowski, Dustin

    The feasibility of a planar gas temperature diagnostic, termed aerosol phosphor thermometry (APT), was investigated for combustion applications. APT has several advantages over other thermometry methods, such as the potential to measure both the reactants and products of a combusting flow, and the capability of providing simultaneous spatially-resolved planar temperature and velocity measurements. Unfortunately, thermal quenching of the phosphor signal due to nonradiative relaxation at elevated temperatures has limited the state-of-the-art for accurate single-shot APT to measurements below approximately 800 K. Therefore, the primary focus of this work was to establish a methodology that utilizes configurational coordinate diagrams in combination with host-referred binding energy diagrams to systematically select new phosphors for high-temperature thermometry applications. Oxide hosts doped with trivalent ions were investigated, and based on the analysis Ce3+ doped ortho-phosphates were selected for testing. All selected phosphors had high measured quenching temperatures (T50>800 K), partially validating the methodology. One particular phosphor, Ce:GdPO4, had a quenching temperature of T50=1000 K and demonstrated usable signal levels out to 1300 K, representing a substantial improvement on the current state-of-the-art from a temperature quenching perspective. Following this, an experimental setup designed to characterize the properties of thermographic phosphors in an environment representative of APT applications was presented. Luminescence imaging and spectrally-resolved measurements of aerosolized phosphor particles in a seeded jet were presented. A significant result of this work was the ability to quantitatively assess systematic errors due to radiative trapping in the measured spectra of the furnace by making a head-to-head comparison with data collected in the jet. Finally, the current viability of APT for high-temperature applications was assessed by using

  15. Electrical Properties of Materials for Elevated Temperature Resistance Strain Gage Application. Ph.D. Thesis

    Science.gov (United States)

    Lei, Jih-Fen

    1987-01-01

    The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.

  16. Dense nanostructured t-ZrO2 coatings at low temperatures via modified emulsion precipitation

    NARCIS (Netherlands)

    Woudenberg, F.C.M.; Sager, W.F.C.; Sibelt, N.G.M.; Verweij, H.

    2001-01-01

    Nanostructured coatings on metals, plastics, and textiles have numerous applications, for example, as antifogging and self-cleaning coatings as well as protective coatings against corrosion, heat, or wear. Here the preparation at low temperature of dense nanostructured tetragonal ZrO2 coatings via a

  17. The response of rice (Oryza sativa L. to elevated night temperature with application of Pyraclostobin

    Directory of Open Access Journals (Sweden)

    T.Y. Wahjanto

    2016-07-01

    Full Text Available Rice productivity is having a problem related with climate change phenomenon, mainly the global warming. The rising of temperature in some country threat the rice production. The increasing of temperature is a major limiting factor that affects yield through the growth and development of rice plant. This study was aimed to examine the response of rice (Oryza sativa L. to elevated night temperature with the application of Pyraclostobin. A glasshouse experiment that was conducted from March to August 2015 at Brawijaya University Research Station of Jatikerto – Malang, used nested plot design with three replications and two treatments. The first treatments were the night temperature level (normal temperature, increased 2oC, and increased 4oC. The second treatments were the concentration of Pyraclostrobin (0 ppm, 400 ppm and 800 ppm. Results of the study showed that the increase of temperature at night for about 2oC and 4oC, as well as application of Pyraclostrobin, affected growth and yield of rice. Application of Pyraclostrobin by concentrations of 400 ppm and 800 ppm effectively reduced yield loss by increasing night temperature of 2oC, which resulted in 20.20% and 24.93%, respectively, in comparison with the control; while the increase of night temperature by 4oC have resulted 26.86% and 33.33% in comparison with the control. Pyraclostrobin was effective in maintaining percentage of the filled spikelets by the increase of temperature at night for about 2oC and 4oC.

  18. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2016-08-01

    An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed sample from a Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an instance-dependent effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning architectures. We also provide a comparison to k -step contrastive divergence (CD-k ) with k up to 100. Although assuming a suitable fixed effective temperature also allows us to outperform one-step contrastive divergence (CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of CD-100 for the case studied here.

  19. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  20. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    Science.gov (United States)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  1. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    Science.gov (United States)

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  2. Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors

    Science.gov (United States)

    Blau, P. J.; Qu, J.; Lu, R.

    2016-11-01

    Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.

  3. Consideration of Wear Rates at High Velocity

    Science.gov (United States)

    2010-03-01

    Ayers and Second Lieutenant Julius Puentes pro- vided excellent support with dynamic model data, and slipper/rail specimens. Mr. Larry Perkins, Mr...Wear Research . . . . . . . . . . . . . . . . 29 1.10 Key Concepts from the Literature Search . . . . . . . . . 30 II. Metallographic Analysis...to AFIT for physical on-site investigation. 1.4 Description of Wear The literature search revealed that there are many different definitions of wear

  4. Feasibility of Carbonaceous Nanomaterial-Assisted Photocatalysts Calcined at Different Temperatures for Indoor Air Applications

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2012-01-01

    Full Text Available This study examined the characteristics and photocatalytic activity of multiwall carbon nanotube-assisted TiO2 (MWNT-TiO2 nanocomposites calcined at different temperatures to assess their potential indoor air applications. It was confirmed that the composites calcined at low temperatures (300 and 400°C contained TiO2 nanoparticles bound intimately to the MWNT networks. Meanwhile, almost no MWNTs were observed when the calcination temperature was increased to 500 and 600°C. The MWNT-TiO2 composites calcined at low temperatures showed higher photocatalytic decomposition efficiencies for aromatic hydrocarbons at indoor concentrations than those calcined at high temperatures. The mean efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX by the composite calcined at 300°C were 32, 70, 79, and 79%, respectively, whereas they were 33, 71, 78, and 78% for the composite calcined at 400°C, respectively. In contrast, the efficiencies decreased to close to zero when the calcination temperature was increased to 600°C. Moreover, the MWNT-TiO2 exhibited superior photocatalytic performance for the decomposition efficiencies compared to TiO2 under conventional UV-lamp irradiations. Consequently, these carbonaceous nanomaterial-assisted photocatalysts can be applied effectively to indoor air applications depending upon the calcination temperature.

  5. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications

    Directory of Open Access Journals (Sweden)

    Marie-Caroline Jullien

    2013-01-01

    Full Text Available This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from −3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique.

  6. Application of time-temperature-stress superposition on creep of wood-plastic composites

    Science.gov (United States)

    Chang, Feng-Cheng; Lam, Frank; Kadla, John F.

    2013-08-01

    Time-temperature-stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature-stress hybrid shift factor and a modified Williams-Landel-Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood-plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time-temperature superposition, whereas vertical shifting would be needed for time-stress superposition. The shift factor was independent of the stress for horizontal shifts in time-temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously.

  7. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications

    Science.gov (United States)

    Miralles, Vincent; Huerre, Axel; Malloggi, Florent; Jullien, Marie-Caroline

    2013-01-01

    This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from −3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature) and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique. PMID:26835667

  8. Effect of post weld heat treatment on wear resistance of hot forging cast steel die coated with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post Weld Heat Treatments (PWHT was analysed by Finite Element Method (FEM simulation and experiments. Taking the hot forging process of crankshaft as example, a wear model of hot forging die coated with surfacing layer was established by the software DEFORM-3D. The simulation results indicate that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 ∘C and 4h respectively. To verify the wear calculation result, 16 groups of different PWHT orthogonal wear tests were performed under atmospheric condition at 400 ∘C. The wear test result shows a good agreement with the FEM simulation result. SEM observation of the wear debris shows that oxidative wear plays a dominant role in 400 ∘C among 16 specimens. Furthermore, when tempering temperature and holding time are 550 ∘C and 4h respectively, the alloy carbide dispersively distributes in the metallographic structure, which can improve the wear resistance of the surfacing.

  9. Wear Characteristics of Polymer -Based Composites

    Science.gov (United States)

    Şahin, Y.; Mirzayev, H.

    2015-11-01

    The dry wear of polytetrafluoroethylene (PTFE)-based composites, including bronze-filled composites (B60), glass-filled composites (G15), and carbon-filled composites (C25), produced by the mold casting method were investigated under different sliding conditions. The Taguchi L27 method and the analysis of variance were used to identify the effect of process parameters on the wear of tested materials. Experimental results showed that the wear resistance of G15 polymer composites was better than those of C25 and B60 ones. The specific wear rate decreased with increasing sliding distance and load, but partly decreased with increasing tensile strength.

  10. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    Science.gov (United States)

    Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)

    1991-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.

  11. High Power Density and High Temperature Converter Design for Transportation Applications

    OpenAIRE

    Wang, Ruxi

    2012-01-01

    The continual development of high-power-density power electronic converters is driven particularly by modern transportation applications like electrical vehicles and more electric aircraft where the space and carrier capability is limited. However, there are several challenges related to transportation applications such as fault tolerance for safety concern, high temperature operation in extreme environments and more strict electromagnetic compatibility requirement. These challenges will incr...

  12. A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2014-01-01

    The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4, and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps

  13. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  14. The Abrasive Wear Resistance of Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2014-03-01

    Full Text Available The resistance of cast iron to abrasive wear depends on the metal abrasive hardness ratio. For example, hardness of the structural constituents of the cast iron metal matrix is lower than the hardness of ordinary silica sand. Also cementite, the basic component of unalloyed white cast iron, has hardness lower than the hardness of silica. Some resistance to the abrasive effect of the aforementioned silica sand can provide the chromium white cast iron containing in its structure a large amount of (Cr, Fe7C3 carbides characterised by hardness higher than the hardness of the silica sand in question. In the present study, it has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Moreover, the study compares the results of abrasive wear resistance tests performed on the examined types of cast iron. Tests of abrasive wear resistance were carried out on a Miller machine. Samples of standard dimensions were exposed to abrasion in a double to-and-fro movement, sliding against the bottom of a trough filled with an aqueous abrasive mixture containing SiC + distilled water. The obtained results of changes in the sample weight were approximated with a power curve and shown further in the study.

  15. Wear rate control of peek surfaces modified by femtosecond laser

    Science.gov (United States)

    Hammouti, S.; Pascale-Hamri, A.; Faure, N.; Beaugiraud, B.; Guibert, M.; Mauclair, C.; Benayoun, S.; Valette, S.

    2015-12-01

    This paper presents the effect of laser texturing on the tribological properties of PEEK surfaces under a ball-on-flat contact configuration. Thus, surfaces with circular dimples of various diameters and depth were created. Tests were conducted with a normal load of 5 N and a sliding velocity of 0.01 m s-1, using bovine calf serum at 37.5 °C as a lubricant. The tribological conditions including the sliding frequency and the lubricant viscosity indicate that tests were performed under boundary lubrication regime. Results showed that discs with higher dimple depth exhibited higher friction coefficient and caused more abrasive wear on the ball specimen. Nevertheless, tribosystems (ball and disc) with dimpled disc surfaces showed a higher wear resistance. In the frame of our experiments, wear rates obtained for tribosystems including dimpled surfaces were 10 times lower than tribosystems including limited patterned or untextured surfaces. Applications such as design of spinal implants may be concerned by such a surface treatment to increase wear resistance of components.

  16. On the Durability and Wear Resistance of Transparent Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Ilker S. Bayer

    2017-01-01

    Full Text Available Transparent liquid repellent coatings with exceptional wear and abrasion resistance are very demanding to fabricate. The most important reason for this is the fact that majority of the transparent liquid repellent coatings have so far been fabricated by nanoparticle assembly on surfaces in the form of films. These films or coatings demonstrate relatively poor substrate adhesion and rubbing induced wear resistance compared to polymer-based transparent hydrophobic coatings. However, recent advances reported in the literature indicate that considerable progress has now been made towards formulating and applying transparent, hydrophobic and even oleophobic coatings onto various substrates which can withstand certain degree of mechanical abrasion. This is considered to be very promising for anti-graffiti coatings or treatments since they require resistance to wear abrasion. Therefore, this review intends to highlight the state-of-the-art on materials and techniques that are used to fabricate wear resistant liquid repellent transparent coatings so that researchers can assess various aptitudes and limitations related to translating some of these technologies to large scale stain repellent outdoor applications.

  17. The prevalence of cervical tooth wear in patients with bruxism and other causes of wear.

    Science.gov (United States)

    Shah, Punit; Razavi, Sheri; Bartlett, David W

    2009-07-01

    The aim of this study was to investigate the prevalence of cervical wear lesions in three groups of patients: bruxists, combined tooth wear, and controls. The hypothesis was that those subjects presenting with bruxism were more likely to develop cervical wear lesions. Of 119 subjects, 31 were bruxists with a mean age 48.7 years [standard deviation (SD): 11.6]; 22 had combined wear, aged 43.5 years (14.2); and 66 controls aged 44.9 years (17.0). The clinical appearance of the tooth wear was used to recruit subjects to the bruxist and combined tooth wear groups. Control subjects were randomly selected from those attending for routine dental examination at two general dental practices. A tooth wear index (TWI) was used by two trained examiners to record the severity of wear in each group. There was a statistically significant difference between the controls and both the bruxist and combined tooth wear groups for wear on all surfaces (p < or = 0.001). There was no significant difference between the bruxist and the combined tooth wear group for wear on any surface. There was a statistically significant difference between the control group and both the bruxist and the combined tooth wear group for the severity of cervical wear (p < or = 0.005), but no difference between the bruxist and combined tooth wear groups. There was also no statistical difference in the number of cervical lesions between the groups. In this study, the likely cause of cervical tooth wear was multifactorial.

  18. Multiwavelength Pyrometer Developed for Use at Elevated Temperatures in Aerospace Applications

    Science.gov (United States)

    Ng, Daniel L.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a unique multiwavelength pyrometer for aerospace applications. It has been shown to be a useful and versatile instrument for measuring the surface temperatures of ceramic zirconia thermal barrier coatings (TBCs) and alumina, even when their emissivity is unknown. The introduction of fiber optics into the pyrometer has greatly increased the ease of using this instrument. Direct comparison of measurements obtained using the pyrometer and thin film thermocouples on a sample provided independent verification of pyrometry temperature measurement. Application of the pyrometer has also included simultaneous surface and bulk temperature measurement in a transparent material, the measurement of combustion gas temperatures in the flames of an atmospheric burner, the measurement of the temperature distribution appearing on a large surface from the recording of just a single radiation spectrum emitted from this nonuniform temperature surface, and the measurement of some optical properties for special aeronautical materials-such as nanostructured layers. The multiwavelength pyrometer temperature is obtained from a radiation spectrum recorded over a broad wavelength region by transforming it into a straight line segment(s) in part or all of the spectral region. The intercept of the line segment(s) with the vertical axis at zero wavelength gives the inverse of the temperature. In a two-color pyrometer, the two data points are also amenable to this analysis to determine the unknown temperature. Implicit in a two-color pyrometer is the assumption of wavelength-independent emissivity. Its two (and minimum) pieces of data are sufficient to determine this straight line. However, a multiwavelength pyrometer not only has improved accuracy but also confirms that the wavelength-independent emissivity assumption is valid when a multitude of data points are shown to lie on a simple straight line.

  19. Use of a Multiwavelength Pyrometer in Several Elevated Temperature Aerospace Applications

    Science.gov (United States)

    Ng, Daniel; Fralick, Gustave

    2001-01-01

    A multiwavelength pyrometer was developed for applications unique to aerospace environments. It was shown to be a useful and versatile technique for measuring temperature, even when the emissivity is unknown. It has also been used to measure the surface temperatures of ceramic zircomia thermal barrier coatings and alumina. The close agreement between pyrometer and thin film thermocouple temperatures provided an independent check. Other applications of the multiwavelength pyrometer are simultaneous surface and bulk temperature measurements of a transparent material, and combustion gas temperature measurement using a special probe interfaced to the multiwavelength pyrometer via an optical fiber. The multiwavelength pyrometer determined temperature by transforming the radiation spectrum in a broad wavelength region to produce a straight line (in a certain spectral region), whose intercept in the vertical axis gives the temperature. Implicit in a two-color pyrometer is the assumption of wavelength independent emissivity. Though the two data points of a two-color pyrometer similarly processed would result immediately in a similar straight line to give the unknown temperature, the two-color pyrometer lacks the greater data redundancy of the multiwavelength pyrometer, which enables it to do so with improved accuracy. It also confirms that emissivity is indeed wavelength independent, as evidenced by a multitude of the data lying on a simple straight line. The multiwavelength pyrometer was also used to study the optical transmission properties of a nanostructured material from which a quadratic exponential functional frequency dependence of its spectral transmission was determined. Finally, by operating the multiwavelength pyrometer in a very wide field of view mode, the surface temperature distribution of a large hot surface was obtained through measurement of just a single radiation spectrum.

  20. Influence of Lubricant Additives on Friction and Wear Characteristics of Compressor parts under the Alternative Refrigerant

    Science.gov (United States)

    Yamaguchi, Hidehiro; Imai, Hachiro; Yamamoto, Tetsuya; Yamamoto, Tsutomu; Ueki, Yutaka; Takizawa, Kikuo; Fukushima, Kiyoshi

    From the standpoint of lubricative deficit under the alternative refrigerant/lubricants coexistence, the influence of additives on friction and wear characteristics for compressor parts have been investigated by the wear tester reappeared on friction condition similarly to actual compressor. It has been shown that an ester type base oil containing TCP (tricresyl phosphate) as an extreme pressure agents indicates satisfactory lubrication because of its EP effect. However owning to the deterioration of base oil caused by a cresol which is a reactant of TCP, a hydrolysis inhibitor must be necessary. The results indicates that a hydrolysis inhibitor added to POE is able to not only prevent the base oil from deteriorating but also feed the strength into oil films. On the other hands, in such a case that TCP concentration added in an alkylbenzen type base oil is excess or wear track temperature is higher, wear amounts of compressor parts are increased on account of corrosion wear. The reactivity of TCP depends on wear track temperature and its concentration. Consequently, it is possible that EP effect of TCP has been considered in terms of its concentration and temperature to be appropriated.

  1. Development of a FBG vortex flow sensor for high-temperature applications

    NARCIS (Netherlands)

    Cheng, L.K.; Schiferli, W.; Nieuwland, R.A.; Franzen, A.; Boer, J.J. den; Jansen, T.H.

    2011-01-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300°C and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are

  2. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    was carried out to study the wear monitoring in single point cutting tool using acoustic emission techniques. 2. Propagation of stress wave due to crater wear and flank wear. Figure 1 show the crater wear occurred on the rake face of the tool. This crater wear emits stress wave, which propagates as spherical wave front and ...

  3. Surface and sliding wear behaviour of different coatings and steels

    Energy Technology Data Exchange (ETDEWEB)

    Vera-Cardenas, E.E. [Universidad Politecnica de Pachuca, Zempoala, Hidalgo (Mexico)]. E-mail: evera@upp.edu.mx; Vite-Torres, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico)]. E-mail: drmanulvite9@hotmail.com; Lewis, R. [University of Sheffield (United Kingdom)]. E-mail: roger.lewis@sheffield.ac.uk

    2012-01-15

    In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 degrees Celsius and 45% - 50% relative humidity). The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa) and 7.84 N (Po = 1.52 GPa). Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles) where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS) was performed, as well as Scanning Electron Microscopy (SEM) and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings. [Spanish] En este trabajo se estudio el comportamiento en desgaste por deslizamiento de los recubrimientos de TiN, CrN y WC/C aplicados sobre sustratos de acero. Las pruebas se realizaron con una maquina reciprocante en condiciones secas a temperatura ambiente (20-23 grados centigrados y 45% - 50% de humedad relativa). Se empleo una velocidad promedio de 0.08 m/s y una amplitud de 2 mm. Las cargas aplicadas fueron de 11.76N (Po = 1.74 GPa) y de 7.84 N (Po = 1.52 GPa). Se realizo microscopia optica para observar las caracteristicas de las zonas de desgaste y sus posibles causas de formacion. Se obtuvo graficamente la variacion del coeficiente de friccion con el numero de ciclos. Estos datos se emplearon para determinar con mayor precision el

  4. Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

  5. Summary of workshop on alloys for very high-temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In current fossil energy systems, the maximum operating temperatures experienced by critical metal structures do not exceed approximately 732{degrees}C and the major limitation on the use of the alloys typically is corrosion resistance. In systems intended for higher performance and higher efficiency, increasingly higher working fluid temperatures will be employed, which will require materials with higher-temperature capabilities, in particular, higher creep strength and greater environmental resistance. There have been significant developments in alloys in recent years, from modifications of currently-used wrought ferritic and austenitic alloys with the intent of improving their high-temperature capabilities, to oxide dispersion-strengthened alloys targeted at extremely high-temperature applications. The aim of this workshop was to examine the temperature capability of these alloys compared to current alloys, and compared to the needs of advanced fossil fuel combustion or conversion systems, with the goals of identifying where modified/new alloys would be expected to find application, their limitations, and the information/actions required or that are being taken to qualify them for such use.

  6. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Rammelsberg, P; Schmitter, M

    2014-04-01

    The purpose of this study was to evaluate enamel wear caused by monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia crowns were placed in 20 patients requiring full molar crowns. For measurement of wear, impressions of both jaws were made at baseline after crown cementation and at 6-month follow-up. Mean and maximum wear of the occlusal contact areas of the crowns, of their natural antagonists and of the two contralateral natural antagonists were measured by the use of plaster replicas and 3D laser scanning methods. Wear differences were investigated by the use of two-sided paired Student's t-tests and by linear regression analysis. Mean vertical loss (maximum vertical loss in parentheses) was 10 (43) μm for the zirconia crowns, 33 (112) μm for the opposing enamel, 10 (58) μm for the contralateral teeth and 10 (46) μm for the contralateral antagonists. Both mean and maximum enamel wear were significantly different between the antagonists of the zirconia crowns and the contralateral antagonists. Gender and activity of the masseter muscle at night (bruxism) were identified as possible confounders which significantly affected wear. Under clinical conditions, monolithic zirconia crowns seem to be associated with more wear of opposed enamel than are natural teeth. With regard to wear behaviour, clinical application of monolithic zirconia crowns is justifiable because the amount of antagonistic enamel wear after 6 months is comparable with, or even lower than, that caused by other ceramic materials in previous studies. © 2014 John Wiley & Sons Ltd.

  7. Stainless steels reinforced with intermetallics useful against corrosion and wear

    OpenAIRE

    Torralba Castello, José Manuel

    2008-01-01

    Powder Technology Research Group has developed an innovative family of composite materials is presented. Metallic matrix are austenitic and ferritic stainless steels, and as reinforcements, intermetallics, have been used in quantities from 1% to 15% (vol.). These materials combine excellent properties against corrosion and wear, so they become very useful for structural applications, in areas like aerospace and automotive. The research group is trying to find companies in order to establis...

  8. Multiscale Multiphysics-Based Modeling and Analysis on the Tool Wear in Micro Drilling

    Science.gov (United States)

    Niu, Zhichao; Cheng, Kai

    2016-02-01

    In micro-cutting processes, process variables including cutting force, cutting temperature and drill-workpiece interfacing conditions (lubrication and interaction, etc.) significantly affect the tool wear in a dynamic interactive in-process manner. The resultant tool life and cutting performance directly affect the component surface roughness, material removal rate and form accuracy control, etc. In this paper, a multiscale multiphysics oriented approach to modeling and analysis is presented particularly on tooling performance in micro drilling processes. The process optimization is also taken account based on establishing the intrinsic relationship between process parameters and cutting performance. The modeling and analysis are evaluated and validated through well-designed machining trials, and further supported by metrology measurements and simulations. The paper is concluded with a further discussion on the potential and application of the approach for broad micro manufacturing purposes.

  9. Magnetocaloric cycle with six stages: Possible application of graphene at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Reis, M. S., E-mail: marior@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346 Niterói, RJ (Brazil)

    2015-09-07

    The present work proposes a thermodynamic hexacycle based on the magnetocaloric oscillations of graphene, which has either a positive or negative adiabatic temperature change depending on the final value of the magnetic field change. For instance, for graphenes at 25 K, an applied field of 2.06 T/1.87 T promotes a temperature change of ca. −25 K/+3 K. The hexacycle is based on the Brayton cycle and instead of the usual four steps, it has six stages, taking advantage of the extra cooling provided by the inverse adiabatic temperature change. This proposal opens doors for magnetic cooling applications at low temperatures.

  10. Brazing of titanium at temperatures below 800 C: review and prospective applications

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.E. [Titanum Brazing, Inc., Columbus (United States); Flom, Y.A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2007-07-01

    Brazing temperature of conventional Ti-Cu-Ni and Ti-Zr-Cu-Ni filler metals is usually above the {beta}-transus temperature of titanium base metals that hurts mechanical properties of the base metal. Brazing titanium below the {beta}-transus temperature using the Ag-based and Al-based filler metals of various compositions has been evaluated in the review. Some new Al-based filler metals were tested experimentally for joining thin-wall titanium structures. The effect of alloying elements on the aluminum braze alloys, especially for the intermetallic formation in the brazed titanium joints, was examined. Prospective applications of low-temperature brazing of titanium in Aerospace, Aviation, and Electronics are discussed, as well as potential technical solutions to improve mechanical properties of brazed joints. (orig.)

  11. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2003-06-26

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  12. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Unknown

    ordered intermetallic alloy (Johnson et al 1990, 1994,. 1996; Maupin et al 1992, 1993; Tu and Liu 1997; Kim and Kim 1998). Maupin et al (1992, 1993) had shown that the Fe3Al alloy having DO3 structure possesses mar- ginally lower wear rate than those with B2 structure. The wear resistance of Fe3Al alloy was found to ...

  13. Effective tool wear estimation through multisensory information ...

    African Journals Online (AJOL)

    Effective tool wear estimation through multisensory information fusion using Artificial Neural Network. ... On-line tool wear monitoring plays a significant role in industrial automation for higher productivity and product quality. In addition, an intelligent system is required to make a timely decision for tool change in machining ...

  14. Wear Behaviour of Iron Matrix Composite Reinforced by ZTA Particles in Impact Abrasion

    Science.gov (United States)

    Qiu, B.; Xing, S. M.; Dong, Q.

    2017-11-01

    Zirconia toughened alumina (ZTA) particles reinforced high chromium cast iron composites (ZTA/Iron composites) were prepared by a two-step processing method, i.e. mixing particles by the molten metal and cohering by high pressure, which based on the squeeze casting process. The impact wear resistance under different impact energies were investigated using dynamically loaded abrasive wear tester at room temperature. For comparison, the wear tests of high chromium cast iron were also carried out under the same conditions. Worn surfaces of the samples were observed under scanning electron microscopy equipped with an energy dispersive detector. The results showed that the composites have better impact wear resistance than that of high Cr cast iron regardless of impact energy level, and the wear resistance of the two materials all decrease with the increase of the impact energy. The main wear mechanisms of the high Cr cast iron were micro-cutting and fatigue peeling, while the wear of composites occurred through micro-cutting of the matrix (lower impact energy) and breaking and shedding of the reinforced particles (higher impact energy).

  15. Asphalt wear and pollution transport

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Asa [Division of Traffic Engineering, Lulea University of Technology Lulea (Sweden)

    1996-09-06

    Studded tires cause extensive wear of road surfaces during winter producing small particles. Besides transporting different adsorbed pollutants these particles also discharge metal ions by their own natural content. The major part (95%) of the asphalt is composed of stone fractions. The rest consists mainly of bitumen, which contains trace quantities of metals. Laboratory studies in this study have demonstrated different adsorbing properties of metal ions, as well as differences in adsorption when comparing stone materials. Two stone materials, a gabbro and a porphyry, have been tested for their adsorption properties concerning Pb, Cu, Zn and Cd. The gabbro showed better adsorption capacity than the porphyry. Gabbro has coarser grains, it is softer, and also has a higher content of most metals compared to the porphyry. In all tests lead and copper are more adsorbed than zinc and cadmium. All metal ions are released at about the same pH ({approx}4)

  16. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.

    Science.gov (United States)

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-09-08

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  17. Physical vapor deposition of CdTe thin films at low temperature for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Heisler, Christoph; Brueckner, Michael; Lind, Felix; Kraft, Christian; Reisloehner, Udo; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2012-07-01

    Cadmium telluride is successfully utilized as an absorber material for thin film solar cells. Industrial production makes use of high substrate temperatures for the deposition of CdTe absorber layers. However, in order to exploit flexible substrates and to simplify the manufacturing process, lower deposition temperatures are beneficial. Based on the phase diagram of CdTe, predictions on the stoichiometry of CdTe thin films grown at low substrate temperatures are made in this work. These predictions were verified experimentally using additional sources of Cd and Te during the deposition of the CdTe thin films at different substrate temperatures. The deposited layers were analyzed with energy-dispersive X-ray spectroscopy. In case of CdTe layers which were deposited at substrate temperatures lower than 200 C without usage of additional sources we found a non-stoichiometric growth of the CdTe layers. The application of the additional sources leads to a stoichiometric growth for substrate temperatures down to 100 C which is a significant reduction of the substrate temperature during deposition.

  18. Wear-testing of a temporomandibular joint prosthesis : UHMWPE and PTFE against a metal ball, in water and in serum

    NARCIS (Netherlands)

    Van Loon, JP; Verkerke, GJ; de Bont, LGM; Liem, RSB

    For a temporomandibular joint prosthesis, an estimation of the wear rate was needed, prior to patient application. Therefore, we determined the in vitro wear rate of the ball-socket articulation of this prosthesis, consisting of a metal head and an ultra-high molecular weight polyethylene (UHMWPE)

  19. Complications caused by contact lens wearing.

    Science.gov (United States)

    Beljan, Jasna; Beljan, Kristina; Beljan, Zdravko

    2013-04-01

    Complications in wearing contact lenses are very rare and caused by poor maintenance, over-extended wear and wearing of contact lenses in a polluted environment. Regular control by a professional person can efficiently reduce the number of complications. This paper describes the most common risks factors for complications, and complications of wearing contact lenses with the classification according to the anatomic parts of the eye: eyelids, tear film, limbus, corneal epithelium, corneal stroma and corneal endothelium. Every complication has been described by the characteristic signs and symptoms, etiology and pathology, as well as therapy and prognosis. The paper describes how to select adequate customers as contact lens users, with proper education in order to ensure minimal incidence of complications due to contact lens wear, thus attracting a lot of satisfied and healthy customers.

  20. Biologically Based Restorative Management of Tooth Wear

    Directory of Open Access Journals (Sweden)

    Martin G. D. Kelleher

    2012-01-01

    Full Text Available The prevalence and severity of tooth wear is increasing in industrialised nations. Yet, there is no high-level evidence to support or refute any therapeutic intervention. In the absence of such evidence, many currently prevailing management strategies for tooth wear may be failing in their duty of care to first and foremost improve the oral health of patients with this disease. This paper promotes biologically sound approaches to the management of tooth wear on the basis of current best evidence of the aetiology and clinical features of this disease. The relative risks and benefits of the varying approaches to managing tooth wear are discussed with reference to long-term follow-up studies. Using reference to ethical standards such as “The Daughter Test”, this paper presents case reports of patients with moderate-to-severe levels of tooth wear managed in line with these biologically sound principles.

  1. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  2. Adhesive Wear of Rollers in Vacuum

    Science.gov (United States)

    Shaeef, Iqbal; Krantz, Timothy L.

    2012-01-01

    This work was done to support NASA's James Webb Space Telescope that is equipped with a Near Infrared Camera and Spectrograph and Micro Shutter Assembly (MSA). A MSA mechanism's qualification test in cryogenic vacuum at 30deg K for 96K cycles resulted in roller wear and formation of some debris. Lab tests in vacuum were conducted at NASA Glenn Research Center (GRC) to understand the wear of Ti6Al4V mated with 440F steel rollers. Misalignment angle was found to have the most significant effect on debris formation. At misalignment angle of 1.4deg, significant amount of wear debris were formed within 50,000 cycles. Very few wear particles were found for a zero misalignment angle, and the total wear was small even after 367,000 cycles. The mode of wear in all the tests was attributed to adhesion, which was clearly evident from video records as well as the plate-like amalgamated debris material from both rollers. The adhesive wear rate was found to be approximately proportional to the misalignment angle. The wear is a two-way phenomenon, and the mixing of both roller materials in wear debris was confirmed by x-ray fluorescence (XRF) and EDX spectra. While there was a net loss of mass from the steel rollers, XRF and energy dispersive x-ray (EDX) spectra showed peaks of Ti on steel rollers, and peaks of Fe on Ti rollers. These results are useful for designers in terms of maintaining appropriate tolerances to avoid misalignment of rolling elements and the resulting severe wear

  3. Advanced Multi-Junction Photovoltaic Device Optimization For High Temperature Space Applications

    Science.gov (United States)

    Sherif, Michael

    2011-10-01

    Almost all solar cells available today for space or terrestrial applications are optimized for low temperature or "room temperature" operations, where cell performances demonstrate favourable efficiency figures. The fact is in many space applications, as well as when using solar concentrators, operating cell temperature are typically highly elevated, where cells outputs are severely depreciated. In this paper, a novel approach for the optimization of multi-junction photovoltaic devices at such high expected operating temperature is presented. The device optimization is carried out on the novel cell physical model previously developed at the Naval Postgraduate School using the SILVACO software tools [1]. Taking into account the high cost of research and experimentation involved with the development of advanced cells, this successful modelling technique was introduced and detailed results were previously presented by the author [2]. The flexibility of the proposed methodology is demonstrated and example results are shown throughout the whole process. The research demonstrated the capability of developing a realistic model of any type of solar cell, as well as thermo-photovoltaic devices. Details of an example model of an InGaP/GaAs/Ge multi-junction cell was prepared and fully simulated. The major stages of the process are explained and the simulation results are compared to published experimental data. An example of cell parameters optimization for high operating temperature is also presented. Individual junction layer optimization was accomplished through the use of a genetic search algorithm implemented in Matlab.

  4. Lauric and myristic acids eutectic mixture as phase change material for low-temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Keles, Sadat; Kaygusuz, Kamil [Karadeniz Technical Univ., Dept. of Chemistry, Trabzon (Turkey); Sari, Ahmet [Gaziosmanpasa Univ., Dept. of Chemistry, Tokat (Turkey)

    2005-07-01

    Lauric acid (m.p.: 42.6 deg C) and myristic acid (m.p.: 52.2 deg C) are phase change materials (PCM) having quite high melting points which can limit their use in low-temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of lauric acid (LA) and myristic acid (MA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 66.0 wt% LA forms a eutectic mixture having melting temperature of 34.2 deg C and the latent heat of fusion of 166.8 J g{sup -1} . This study also considers the experimental establishment of thermal characteristics of the eutectic PCM in a vertical concentric pipe-in-pipe heat storage system. Thermal performance of the PCM was evaluated with respect to the effect of inlet temperature and mass flow rate of the heat transfer fluid on those characteristics during the heat charging and discharging processes. The DSC thermal analysis and the experimental results indicate that the LA-MA eutectic PCM can be potential material for low-temperature solar energy storage applications in terms of its thermo-physical and thermal characteristics. (Author)

  5. Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy

    National Research Council Canada - National Science Library

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy...

  6. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  7. Application of hydrogen injection and oxidation to low temperature solution-processed oxide semiconductors

    Directory of Open Access Journals (Sweden)

    Masashi Miyakawa

    2016-08-01

    Full Text Available Solution-processed oxide semiconductors are promising candidates for the low cost, large scale fabrication of oxide thin-film transistors (TFTs. In this work, a method using hydrogen injection and oxidation (HIO that allows the low temperature solution processing of oxide semiconductors was demonstrated. We found that this method significantly decreases the concentration of residual species while improving the film densification. Additionally, enhanced TFT performance was confirmed following the use of processing temperatures as low as 300 °C. The proposed process is potentially applicable to the fabrication of a wide variety of solution-processed oxide semiconductors.

  8. Microstructure Evolution of Laves Phase Strengthened Ferritic Steels for High Temperature Applications

    OpenAIRE

    Lopez Barrilao, Jennifer

    2017-01-01

    The present investigation focuses on a new concept of high strength, high chromium (18-23 wt.%), fully ferritic steels on the technical basis of Crofer® 22 H for the application in high temperature energy conversion systems. Fully ferritic means, that these steels possess a ferritic matrix at any temperature below the melting point, i.e. no martensitic transformation occurs. During Crofer® 22 APU and Crofer® 22 H development, over 50 trial alloys with slight changes in chemical composition we...

  9. Evaluation of CVI SiC/SiC Composites for High Temperature Applications

    Science.gov (United States)

    Kiser, D.; Almansour, A.; Smith, C.; Gorican, D.; Phillips, R.; Bhatt, R.; McCue, T.

    2017-01-01

    Silicon carbide fiber reinforced silicon carbide (SiC/SiC) composites are candidate materials for various high temperature turbine engine applications because of their high specific strength and good creep resistance at temperatures of 1400 C (2552 F) and higher. Chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composites (CMC) incorporating Sylramic-iBN SiC fiber were evaluated via fast fracture tensile tests (acoustic emission damage characterization to assess cracking behavior), tensile creep testing, and microscopy. The results of this testing and observed material behavior degradation mechanisms are reviewed.

  10. Dual-core fiber based strain sensor for application in extremely high temperatures

    Science.gov (United States)

    Ziolowicz, Anna; Szostkiewicz, Lukasz; Kolakowska, Agnieszka; Bienkowska, Beata; Budnicki, Dawid; Ostrowski, Lukasz; Wysokinski, Karol; Stanczyk, Tomasz; Fidelus, Janusz; Nasilowski, Piotr; Tenderenda, Tadeusz; Napierala, Marek; Mergo, Pawel; Nasilowski, Tomasz

    2017-04-01

    This paper focuses on the utilization of crosstalk phenomenon to construct an innovative strain sensor. In our experiments, we take advantage of special fiber design and technology of fiber post-processing in order to receive strain sensing areas. We present results, which indicate possibility of achieving strain sensitivity at level of several mɛ/nm with negligible temperature cross-sensitivity at the same time. Furthermore after coating the sensor with the developed copper and gold coatings, it can be easily applied in extremely high temperature (e.g. 500 - 800 °C) and/or aggressive media applications.

  11. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  12. Accuracy and precision of estimating age of gray wolves by tooth wear

    Science.gov (United States)

    Gipson, P.S.; Ballard, W.B.; Nowak, R.M.; Mech, L.D.

    2000-01-01

    We evaluated the accuracy and precision of tooth wear for aging gray wolves (Canis lupus) from Alaska, Minnesota, and Ontario based on 47 known-age or known-minimum-age skulls. Estimates of age using tooth wear and a commercial cementum annuli-aging service were useful for wolves up to 14 years old. The precision of estimates from cementum annuli was greater than estimates from tooth wear, but tooth wear estimates are more applicable in the field. We tended to overestimate age by 1-2 years and occasionally by 3 or 4 years. The commercial service aged young wolves with cementum annuli to within ?? 1 year of actual age, but under estimated ages of wolves ???9 years old by 1-3 years. No differences were detected in tooth wear patterns for wild wolves from Alaska, Minnesota, and Ontario, nor between captive and wild wolves. Tooth wear was not appropriate for aging wolves with an underbite that prevented normal wear or severely broken and missing teeth.

  13. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  14. Multi-objective optimization of swash plate forging process parameters for the die wear/service life improvement

    Science.gov (United States)

    Hu, X. F.; Wang, L. G.; Wu, H.; Liu, S. S.

    2017-12-01

    For the forging process of the swash plate, the author designed a kind of multi-index orthogonal experiment. Based on the Archard wear model, the influences of billet temperature, die temperature, forming speed, top die hardness and friction coefficient on forming load and die wear were numerically simulated by DEFORM software. Through the analysis of experimental results, the best forging process parameters were optimized and determined, which could effectively reduce the die wear and prolong the die service life. It is significant to increase the practical production of enterprise, especially to reduce the production cost and to promote enterprise profit.

  15. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    Science.gov (United States)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  16. Dynamic and kinematic effects in the friction and wear of rubber

    Science.gov (United States)

    Gerrard, David Peter

    face of the pattern. For both blade and abrasive wear, the application of the intrinsic wear model was shown to be capable of predicting many of the recognized behaviors of rubber pattern wear. (Abstract shortened by UMI.)

  17. Crystal Orientation Dependence of Gallium Nitride Wear.

    Science.gov (United States)

    Zeng, Guosong; Sun, Wei; Song, Renbo; Tansu, Nelson; Krick, Brandon A

    2017-10-26

    We explore how crystallographic order and orientation affect the tribological (friction and wear) performance of gallium nitride (GaN), through experiments and theory. Friction and wear were measured in every direction on the c-plane of GaN through rotary wear experiment. This revealed a strong crystallographic orientation dependence of the sliding properties of GaN; a 60° periodicity of wear rate and friction coefficient was observed. The origin of this periodicity is rooted in the symmetry presented in wurtzite hexagonal lattice structure of III-nitrides. The lowest wear rate was found as 0.6 × 10 -7 mm 3 /Nm with , while the wear rate associated with had the highest wear rate of 1.4 × 10 -7 mm 3 /Nm. On the contrary, higher friction coefficient can be observed along while lower friction coefficient always appeared along . We developed a simple molecular statics approach to understand energy barriers associated with sliding and material removal; this calculated change of free energy associated with sliding revealed that there were smaller energy barriers sliding along as compared to the direction.

  18. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies

    Science.gov (United States)

    Savage, Kara A.

    Recent government initiatives and commercial activities have targeted asteroids for in situ material characterization, manipulation, and possible resource extraction. Most of these activities and missions have proposed significant robotic components, given the risks and costs associated with manned missions. To successfully execute these robotic activities, detailed mechanical characteristics of the target space bodies must be known prior to contact, in order to appropriately plan and direct the autonomous robotic protocols. Unfortunately, current estimates of asteroid mechanical properties are based on limited direct information, and significant uncertainty remains specifically concerning internal structures, strengths, and elastic properties of asteroids. One proposed method to elucidate this information is through in situ, nondestructive testing of asteroid material immediately after contact, but prior to any manipulation or resource extraction activities. While numerous nondestructive rock characterization techniques have been widely deployed for terrestrial applications, these methods must be adapted to account for unique properties of asteroid material and environmental conditions of space. For example, asteroid surface temperatures may range from -100°C to 30°C due to diurnal cycling, and these low temperatures are especially noteworthy due to their deleterious influence on non-destructive testing. As a result, this thesis investigates the effect of low temperature on the mechanical characteristics and nondestructive technique responses of rock material. Initially, a novel method to produce low temperature rock samples was developed. Dry ice and methanol cooling baths of specific formulations were used to decrease rock to temperatures ranging from -60°C to 0°C. At these temperatures, shale, chalk, and limestone rock samples were exposed to several nondestructive and conventional mechanical tests, including Schmidt hammer, ultrasonic pulse velocity, point

  19. Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.

  20. Temperature rises during application of Er:YAG laser under different primary dentin thicknesses.

    Science.gov (United States)

    Hubbezoglu, Ihsan; Unal, Murat; Zan, Recai; Hurmuzlu, Feridun

    2013-05-01

    The present study investigated the effects of the Er:YAG laser's different pulse repetition rates on temperature rise under various primary dentin thicknesses. The Er:YAG laser can be used for restorative approaches in clinics and is used to treat dental caries. There are some reports that explain the temperature rise effect of the Er:YAG laser. Recently, the Er:YAG laser has been found to play an important role in temperature rises during the application on dentin. Caries-free primary mandibular molars were prepared to obtain dentin discs with 0.5, 1, 1.5, and 2 mm thicknesses (n=10). These discs were placed between the Teflon mold cylinders of a temperature test apparatus. We preferred three pulse repetition rates of 10, 15, and 20 Hz with an energy density of 12.7 J/cm2 and a 230 μs pulse duration. All dentin discs were irradiated for 30 sec by the Er:YAG laser. Temperature rises were recorded using an L-type thermocouple and universal data loggers/scanners (E-680, Elimko Co., Turkey). Data were analyzed by two-way ANOVA and Tukey tests. Whereas the lowest temperature rise (0.44±0.09 °C) was measured from a 10 Hz pulse repetition rate at a dentin thickness of 2 mm, the highest temperature rise (3.86±0.43 °C) was measured from a 20 Hz pulse repetition rate at a 0.5 mm dentin thickness. Temperature rise did not reach critical value for pulpal injury in any primary dentin thicknesses irradiated by a high repetition rate of the Er:YAG laser.

  1. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application

    Science.gov (United States)

    Wang, Daoming; Zi, Bin; Zeng, Yishan; Qian, Sen; Qian, Jun

    2017-09-01

    The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify the correctness and feasibility of the simulation.

  2. Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos Kontis

    2008-09-01

    Full Text Available This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable.

  3. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000/sup 0/F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500/sup 0/F could be developed with a high degree of assurance. Process heat at 1600/sup 0/F would require considerably more materials development. While temperatures up to 2000/sup 0/F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR.

  4. Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications

    Science.gov (United States)

    Khalid, Ashiq Hussain; Kontis, Konstantinos

    2008-01-01

    This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable. PMID:27873836

  5. Low temperature grown GaNAsSb: A promising material for photoconductive switch application

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. H.; Yoon, S. F.; Wicaksono, S.; Loke, W. K.; Li, D. S. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Saadsaoud, N.; Tripon-Canseliet, C. [Laboratoire d' Electronique et Electromagnétisme, Pierre and Marie Curie University, 4 Place Jussieu, 75005 Paris (France); Lampin, J. F.; Decoster, D. [Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Universite des Sciences et Technologies de Lille, BP 60069, 59652 Villeneuve d' Ascq Cedex (France); Chazelas, J. [Thales Airborne Systems, 2 Avenue Gay Lussac, 78852 Elancourt (France)

    2013-09-09

    We report a photoconductive switch using low temperature grown GaNAsSb as the active material. The GaNAsSb layer was grown at 200 °C by molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and a valved antimony cracker source. The low temperature growth of the GaNAsSb layer increased the dark resistivity of the switch and shortened the carrier lifetime. The switch exhibited a dark resistivity of 10{sup 7} Ω cm, a photo-absorption of up to 2.1 μm, and a carrier lifetime of ∼1.3 ps. These results strongly support the suitability of low temperature grown GaNAsSb in the photoconductive switch application.

  6. A new and inexpensive temperature-measuring system. Application to photovoltaic solar facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bohorquez, Miguel Angel Martinez; Enrique Gomez, Juan Manuel; Andujar Marquez, Jose Manuel [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva, Carretera Huelva - Palos de la, Frontera S/N, 21819 Huelva (Spain)

    2009-06-15

    This article presents the design, construction and testing of a new and inexpensive digital sensor-based temperature-measuring system, whose principal characteristics are: precision, ease of connection, immunity to noise, remote operation and easy scaling, and all this at a very low cost. This new digital sensor-based measuring system overcomes the traditional problems of digital measuring sensors, offering characteristics similar to Pt100-based measuring systems, and therefore can be used in any installation where reliable temperature measurement is necessary. It is especially suitable for installations where cost is a deciding factor in the choice of measuring system. It presents a practical application of the developed instrumentation system for use in photovoltaic solar facilities. This new temperature-measuring system has been registered in the Spanish Patent and Trademark Office with the number P200803364. (author)

  7. An application of high-temperature superconductors YBCO to magnetic separation

    Science.gov (United States)

    Guo, Qiudong; Zhang, Peng; Bo, Lin; Zeng, Guibin; Li, Dengqian; Fan, J. D.; Liu, Huajun

    2017-10-01

    With the rapid development of manufacturing technology of high temperature superconductive YBa2Cu3O7‑x YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.

  8. A Corrosion Investigation of Solder Candidates for High-Temperature Applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Ambat, Rajan

    2009-01-01

    , corrosion investigation was carried out on potential ternary lead-free candidate alloys based on these binary alloys for high temperature applications. These promising ternary candidate alloys were determined by the CALPHAD approach based on the solidification criterion and the nature of the phases...... predicted in the bulk solder. This work reveals that the Au-Sn based candidate alloys close to the eutectic composition (20 wt. % Sn) are more corrosion resistant than the Au-Ge based ones....

  9. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  10. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  11. Copper Alloy For High-Temperature Uses

    Science.gov (United States)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  12. Prediction of Wear in Crosslinked Polyethylene Unicompartmental Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Jonathan Netter

    2015-05-01

    Full Text Available Wear-related complications remain a major issue after unicompartmental arthroplasty. We used a computational model to predict knee wear generated in vitro under diverse conditions. Inverse finite element analysis of 2 different total knee arthroplasty designs was used to determine wear factors of standard and highly crosslinked polyethylene by matching predicted wear rates to measured wear rates. The computed wear factor was used to predict wear in unicompartmental components. The articular surface design and kinematic conditions of the unicompartmental and tricompartmental designs were different. Predicted wear rate (1.77 mg/million cycles was very close to experimental wear rate (1.84 mg/million cycles after testing in an AMTI knee wear simulator. Finite element analysis can predict experimental wear and may reduce the cost and time of preclinical testing.

  13. [Research on parameters of dynamic colorimetric temperature sensor and it's application to fuel air explosion temperature field detection].

    Science.gov (United States)

    Li, Lei; Liu, Qing-ming; Wang, Jian-ping

    2013-09-01

    According to the theory of colorimetric thermometry,the influences of center wavelength, wavelength bandwidth and solid angle on response speed and the precision of the sensor was analyzed systematically, and the operating parameters for transient high temperature measurement system were determined. A calculation method based on photoelectric conversion coefficient, and higher and lower operating wavelength of the colorimetric temperature sensor was given. At the optimal operating temperature, calibration experiment was conducted in a high temperature blackbody furnace. Based on the experimental results, the operating parameters of the sensor were determined and the colorimetric temperature response was calculated. The results show that the errors between the calculated response and the experiment one are less than 1%. By using the colorimetric temperature sensor, the temperature response of fuel air explosion field was detected and the variations of temperature with time and space in detonation field were obtained.

  14. The Feasibility of Conformal Thermal Therapy with Transurethral Ultrasound Heating Applicators and MR Temperature Feedback

    Science.gov (United States)

    Choy, Vanessa; Tang, Kee; Wachsmuth, Jeff; Chopra, Rajiv; Bronskill, Michael

    2006-05-01

    Transurethral thermal therapy offers a minimally invasive alternative for the treatment of prostate diseases including benign prostate hyperplasia (BPH) and prostate cancer. Accurate heating of a targeted region of the gland can be achieved through the use of a rotating directional heating source incorporating planar ultrasound transducers, and the implementation of active temperature feedback along the beam direction during heating provided by magnetic resonance (MR) thermometry. The performance of this control method with practical spatial, temporal, and temperature resolution (such as angular alignment, spatial resolution, update rate for temperature feedback (imaging time), and the presence of noise) for thermal feedback using a clinical 1.5 T MR scanner was investigated in simulations. As expected, the control algorithm was most sensitive to the presence of noise, with noticeable degradation in its performance above ±2°C of temperature uncertainty. With respect to temporal resolution, acceptable performance was achieved at update rates of 5s or faster. The control algorithm was relatively insensitive to reduced spatial resolution due to the broad nature of the heating pattern produced by the heating applicator, this provides an opportunity to improve signal-to-noise ratio (SNR). The overall simulation results confirm that existing clinical 1.5T MR imagers are capable of providing adequate temperature feedback for transurethral thermal therapy without special pulse sequences or enhanced imaging hardware.

  15. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    Science.gov (United States)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature

  16. Automated visual inspection of brake shoe wear

    Science.gov (United States)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  17. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2017-11-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  18. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2018-01-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  19. An approach to predict subsurface temperature from the Argo sea surface data and its applications

    Science.gov (United States)

    Hwang, J.; Jo, Y. H.

    2016-12-01

    The mixed layer is formed by energy exchange between ocean and atmosphere. Estimating the spatio-temporal characteristics of the mixed layer depth (MLD) is very important to understand future climate changes. In general, MLD can be observed by in-situ data such as a Argo-floating. The gridded Argo field data, most widely used, has a coarse spatial resolution and uncertainty due to the horizontal gradient in the spatial density of the Argo data. On account of their high spatial and temporal resolution, satellite-derived data must be required for more precise study on the MLD. However, satellite data are limited only on surface. To overcome the limitation, the multi-linear algorithm was employed in order to predict subsurface temperature from surface data. Prior to application of satellite data, the examination of the feasibility of the approach using monthly surface and subsurface Argo data from 2005 to 2013 was conducted. Subsurface temperature anomaly (STA) at certain depths (100 m interval, from surface to 500 m) was estimated with sea surface temperature anomaly (SSTA) and dynamic height anomaly (DHA) derived from Argo data based on their linear relationship, and then the accuracy was assessed through the comparison between estimated and real subsurface Argo data. The averaged global root mean square error (RMSE) of temperature anomaly was about 0.08°C ± 0.04, and the spatial averaged bias of temperature anomaly was about 0.24 °C ± 0.13. In particular, high biases between estimated and real Argo temperature anomaly data were mainly examined in the 4 boundary regions located within the western boundary current systems (Kuroshio and Gulf Stream, Brazil-Malvinas/Falkland Confluence and Agulhas Current). In these regions, averaged temperature bias and RMSE were (0.36°C ± 0.29) and (0.12°C ± 0.06), respectively.

  20. Effect of post-boronizing heat treatment on wear behaviour and pit formation in AISI-8620 gear steel

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, H.; Sevim, V.; Demirci, A.H. [Uludag Univ., Gorukle-Bursa (Turkey)

    2007-07-01

    In this study the effect of post-boronizing heat treatment on wear behaviour and pit formation on a starter motor pinion gear, made from AISI-8620 steel, was investigated. This involved using a rotary wear test, where the number of cycles at a fixed load and a fixed rotational speed were varied. Boronizing was performed on starter motor pinion gears (test specimens) in a solid medium consisting of B{sub 4}C, SiC, KBF{sub 4} at a temperature of 900 C for 4 h. Following boronizing, test specimens were quenched in water at room temperature from the boronizing temperature and were subsequently tempered at 180 C for 1, 2 and 3 hours. As part of this investigation, microstructure and microhardness distribution of the boride layer and wear resistance and pitting damage rate of the specimens were examined for each of the tempering heat treatments. Morphology of the boride layer and pit formation were characterized using optical microscopy. Wear and pitting evaluations were carried out using a wear test apparatus made for this purpose, which simulates the pinion and flywheel starter ring gear pair. For each wear test the number of cycles was 25 x 10{sup 5}, inspected at 5 x 10{sup 5}-cycle intervals. It was concluded from these examinations that tempering heat treatments following boronizing contribute to the increase of microhardness alongside the surface layer, as well as an increase in wear resistance and pitting damage. (orig.)

  1. Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

    Directory of Open Access Journals (Sweden)

    Dave Maharaj

    2012-11-01

    Full Text Available Nano-object additives are used in tribological applications as well as in various applications in liquids requiring controlled manipulation and targeting. On the macroscale, nanoparticles in solids and liquids have been shown to reduce friction and wear. On the nanoscale, atomic force microscopy (AFM studies have been performed in single- and multiple-nanoparticle contact, in dry environments, to characterize friction forces and wear. However, limited studies in submerged liquid environments have been performed and further studies are needed. In this paper, spherical Au nanoparticles were studied for their effect on friction and wear under dry conditions and submerged in water. In single-nanoparticle contact, individual nanoparticles, deposited on silicon, were manipulated with a sharp tip and the friction force was determined. Multiple-nanoparticle contact sliding experiments were performed on nanoparticle-coated silicon with a glass sphere. Wear tests were performed on the nanoscale with AFM as well as on the macroscale by using a ball-on-flat tribometer to relate friction and wear reduction on the nanoscale and macroscale. Results indicate that the addition of Au nanoparticles reduces friction and wear.

  2. Paleo-tribology: development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions self-wear to enable functionality

    Science.gov (United States)

    Erickson, Gregory M.; Sidebottom, Mark A.; Curry, John F.; Kay, David Ian; Kuhn-Hendricks, Stephen; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.

    2016-06-01

    In most mammals and a rare few reptilian lineages the evolution of precise dental occlusion led to the capacity to form functional chewing surfaces due to pressures generated while feeding. The complex dental architectures of such teeth and the biomechanics of their self-wearing nature are poorly understood. Our research team composed of paleontologists, evolutionary biologists, and engineers have developed a protocol to: (1) determine the histological make-up of grinding dentitions in extant and fossil taxa; (2) ascertain wear-relevant material properties of the tissues; (3) determine how those properties relate to inter-tissue-biomechanics leading the dental functionality using a three-dimensional Archard’s wear model developed specifically for dental applications; (4) analyze those data in phylogenetic contexts to infer evolutionary patterns as they relate to feeding. Finally we discuss industrial applications that are emerging from our paleontologically-inspired research.

  3. Effect of Heat Treatment on the Hardness and Wear of Grinding Balls

    Science.gov (United States)

    Aissat, Sahraoui; Sadeddine, Abdelhamid; Bradai, Mohand Amokrane; Younes, Rassim; Bilek, Ali; Benabbas, Abderrahim

    2017-09-01

    The effect quenching and tempering by different regimes on Rockwell hardness and wear processes of grinding balls 50 and 70 mm in diameter made of two melts of chromium-molybdenum cast iron is studied. The heating temperature for quenching is 850, 950, and 1050°C; the tempering temperature is 250, 400, and 600°C. Iron is analyzed in an electron microscope. Diffraction patterns are obtained. A model of cast iron wear is suggested and compared to the Davis model and to experimental results. An optimum heat treatment regime is proposed.

  4. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Energy Technology Data Exchange (ETDEWEB)

    Sliney, H.E.; Dellacorte, C. (NASA Lewis Research Center, Cleveland, OH (United States))

    1994-07-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  5. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    Energy Technology Data Exchange (ETDEWEB)

    Unice, Kenneth M., E-mail: ken.unice@cardno.com; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.

    2015-11-15

    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f{sub C}), tire wear (f{sub W}), terrestrial weathering (f{sub S}), leaching from TRWP (f{sub L}), and environmental availability from TRWP (f{sub A}) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F{sub T}) and release to water (F{sub R}) were calculated for the tire chemicals and 13 transformation products. F{sub T} for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10{sup −4} (6-PPD) to 0.06 (CBS) was observed for F{sub R} at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f{sub S}, were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f{sub L}, and environmental availability factor, f{sub A,} was also observed when chemicals were categorized by log K{sub ow}. Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization

  6. Wear calculation possibility of slide-friction pair "shaft-plain bearing" for four-stroke engines

    Science.gov (United States)

    Springis, Guntis; Rudzitis, Janis; Avisane, Anita; Kumermanis, Maris

    2013-12-01

    The issues of the service life and its prediction for main four stroke engine parts such as shaft-plain bearing have always been of particular importance. The article determines the most suitable mathematical calculation model allowing considering the set of parameters needed for the slide-friction pair's calculation, thus achieving a result as precise as possible. Since the wear process is variable and many-sided it is influenced by very many different parameters, for example, the surface geometry (roughness, waviness, form deviation, etc.), the physical and mechanical conditions of the upper layer, component material, wear regime, wear temperature, etc. The offered wear calculation model taking into consideration as much as possible wear affecting parameters is based on the fatigue theory regularities of the friction surface's destroying, using the approach of probability theory.

  7. How Chronic Fatigue Syndrome Wears Patients Out

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_167452.html How Chronic Fatigue Syndrome Wears Patients Out Study suggests body amplifies fatigue ... what it's like for those who struggle with chronic fatigue syndrome, and researchers suggest in a new report that ...

  8. Wear and repair of stainless steel crowns

    National Research Council Canada - National Science Library

    Yilmaz, Y; Kara, N Belduz; Yilmaz, A; Sahin, H

    2011-01-01

    The purpose of this study was to determine the wear of stainless steel crowns (SSCs) in children, and compare the extent of microleakage in SSCs that had been repaired using either a cermet glass-ionomer cement...

  9. Mammalian dental function and wear: A review

    Directory of Open Access Journals (Sweden)

    Peter S. Ungar

    2015-03-01

    Full Text Available This paper presents a brief synopsis of work on relationships between mammalian tooth form and function, and considers the role of dental wear in studies of mammal teeth. Mammalian teeth function both as guides for chewing and as tools for initiating and propagating cracks through food items. They tend to vary in form and structure with the mechanical properties of foods a species has evolved to eat; and we can learn a lot about relationships between teeth and diet by comparing species. One area of special interest is tooth wear. Dental structure and chemistry combine in ways that lead wear to sculpt occlusal surfaces so a tooth can develop or maintain its functional efficiency. Dental wear, especially that on microscopic scales, can also serve as a proxy for diet in fossil species, as specific types of food leave distinctive patterns.

  10. Prediction of wear rates in comminution equipment

    DEFF Research Database (Denmark)

    Jensen, Lucas Roald Dörig; Fundal, Erling; Møller, Per

    2010-01-01

    Raw material comminution equipment may be exposed to excessive wear, which makes it difficult to operate minerals processing plants continuously because lengthy and unplanned shut-downs interrupt the overall process. In general, most comminution equipment is fine-tuned to operate at low vibrations...... and to achieve guaranteed performance. From an economical point of view, it is always preferred to replace all worn parts during the planned maintenance shutdowns. When operating comminution equipment, the wear rate receives little attention and is considered a secondary matter. However, experience shows......-resistant high chromium white cast iron (21988/JN/HBW555XCr21), a heat-treated wear resistant steel (Hardox 400) and a plain carbon construction steel (S235). Quartz, which accounts for the largest wear loss in the cement industry, was chosen as abrasive. Other process parameters such as velocity (1–7 m...

  11. STUDIES ON TOOL WEAR CONDITION MONITORING

    Directory of Open Access Journals (Sweden)

    Hüseyin Metin ERTUNÇ

    2001-01-01

    Full Text Available In this study, wear mechanisms on cutting tools, especially for the drill bits, during the cutting operation have been investigated. As the importance of full automation in industry has gained substantial importance, tool wear condition monitoring during the cutting operation has been the subject of many investigators. Tool condition monitoring is very crucial in order to change the tool before breakage. Because tool breakage can cause considerable economical damage to both the machine tool and workpiece. In this paper, the studies on the monitoring of drill bit wear in literature have been introduced; the direct/indirect techniques used and sensor fusion techniques have been summarized. The methods which were proposed to determine tool wear evolution as processing the sensor signals collected have been provided and their references have been given for detailed information.

  12. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Matthew [Composite Tehcnology Development, Inc., Lafayette, CO (United States); Fabian, Paul [Composite Tehcnology Development, Inc., Lafayette, CO (United States)

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  13. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  14. Using Distributed Temperature Sensing for evaporation measurements: background, verification, and future applications.

    Science.gov (United States)

    Schilperoort, Bart; Coenders-Gerrits, Miriam; van Iersel, Tara; Jiménez Rodríguez, Cesar; Luxemburg, Willem; Cisneros Vaca, Cesar; Ucer, Murat

    2017-04-01

    , with quality control applied to both methods. When comparing the daytime values, there is a high correlation (R2=0.75), a low bias (mean difference of ±15W/m2) and a good accuracy (standard deviation of the difference of 40W/m2) for both the latent and sensible heat flux. This can lead to a small error. Nonetheless, the results show that when the system is set up with care, and by eliminating sources of errors, the DTS based Bowen ratio is in agreement with an eddy covariance system, even above a tall forest canopy, which is notoriously hard to measure. Further applications of the DTS data in evaporation measurement studies are the flux-variance method (where the standard deviations of the air temperature and absolute humidity are used to estimate the sensible and latent heat fluxes), the surface-renewal method, and correcting the Bowen ratio for the non-unity of the eddy diffusivity ratios. These can all be used to gather additional data on the evaporation to increase the accuracy.

  15. Pseudomembranous candidiasis in patient wearing full denture

    Directory of Open Access Journals (Sweden)

    Nurdiana Nurdiana

    2009-06-01

    Full Text Available Background: Oral candidiasis is a common opportunistic infection of the oral cavity caused by an overgrowth of Candida species, the commonest being Candida albicans. Candida albicans is a harmless commensal organism inhabiting the mouths but it can change into pathogen and invade tissue and cause acute and chronic disease. Dentures predispose to infection with Candida in as many as 65% of elderly people wearing full upper dentures. Purpose: The purpose of this case report is to discuss thrush in patient wearing full denture which rapidly developed. Case: This paper report a case of 57 year-old man who came to the Oral Medicine Clinic Faculty of Dentistry Airlangga University with clinical appearance of pseudomembranous candidiasis (thrush. Case Management: Diagnosis of this case is confirmed with microbiology examination. Patient was wearing full upper dentures, and from anamnesis known that patient wearing denture for 24 hours and he had poor oral hygiene. Patient was treated with topical (nystatin oral suspension and miconazole oral gel and systemic (ketoconazole antifungal. Patient also instructed not to wear his denture and cleaned white pseudomembrane on his mouth with soft toothbrush. Conclusion: Denture, habit of wearing denture for 24 hours, and poor oral hygiene are predisposing factors of thrush and it can healed completely after treated with topical and systemic antifungal.

  16. Influence of high sintering pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites

    Directory of Open Access Journals (Sweden)

    Osipov Oleksandr Sergueevitch

    2004-01-01

    Full Text Available The work reported on here involved the development of several samples of "diamond-SiC" composite produced under sintering pressures of up to 9.0 GPa at temperatures of up to 1973 7K. The average size of the diamond micropowder crystals used was 40/28 µm. The sintering process was carried out in a 2500-ton hydraulic press equipped with an anvil-type high-pressure device having a toroidal work surface and a central concavity diameter of 20 mm. The microhardness and wear resistance of the samples were found to be dependent on the sintering pressure. The experimental results indicated that the maximum microhardness and minimum wear resistance coefficients of each compact were attained when the pressure applied during sintering exceeded 6.5 GPa. Based on the established values of pressure, this study served to identify the types of devices applicable for the manufacture of composite material inserts for a variety of rock drilling applications.

  17. Development and Performance Evaluation of an Abrasive Wear ...

    African Journals Online (AJOL)

    The wear of tillage tools is a major source of economic constraints to local farmers. Estimating wear in the field is time consuming and expensive. Abrasive wear testing machines developed in advanced countries are not available in Ghana. This makes the study of wear related problems at laboratory levels difficult in the ...

  18. Detection and Monitoring of Wear Using Imaging Methods

    NARCIS (Netherlands)

    Zhang, Jindang

    2006-01-01

    Wear is traditionally measured offline. A new methodology for online detection and monitoring of wear has been investigated in this thesis. This methodology consists of design of an online wear testing apparatus and development of techniques for online wear detection and monitoring using imaging

  19. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  20. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy.

    Science.gov (United States)

    Chen, Qingqiang; Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Tao, Kai

    2018-02-06

    In this study, the effects of cerium (Ce) addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg 17 Al 12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg 17 Al 12 , while generating Al₄Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  1. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  2. Post-processing GCM daily rainfall and temperature forecasts for applications in water management and agriculture

    Science.gov (United States)

    Schepen, Andrew; Wang, Qj; Everingham, Yvette; Zhao, Tongtiegang

    2017-04-01

    Ensemble time series forecasts of rainfall and temperature up to six months ahead are sought for applications in water management and agricultural production. Raw GCM forecasts are generally not suitable for direct use in hydrological models or agricultural production simulators and must be post-processed first, to ensure they are reliable, as skilful as possible, and have realistic temporal patterns. In this study, we test two post-processing approaches to produce daily forecasts for cropping regions and water supply catchments in Australia. In the first approach, we apply the calibration, bridging and merging (CBaM) method to produce statistically reliable monthly forecasts based on GCM outputs of rainfall, temperature and sea surface temperatures. We then disaggregate the monthly forecasts to obtain realistic daily time series forecasts that can be used as inputs to crop and hydrological models. In the second approach, we develop a method for directly post-processing daily GCM forecasts using a Bayesian joint probability (BJP) model. We demonstrate and evaluate the two approaches through a case study for the Tully sugar region in north-eastern Australia. The daily post-processed forecasts will benefit applications in streamflow forecasting and crop yield forecasting.

  3. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application

    Science.gov (United States)

    Chen, Y.; Tang, X. L.; Chen, B. T.; Qiu, G.

    2013-03-01

    In this study, the novel methods of depositing poly(N-isopropylacrylamide) (PNIPAAm) coatings on the surface of glass slides and PS petri dish by plasma polymerization are provided. PNIPAAm can be obtained by plasma polymerization of N-isopropylacrylamide by using the self-made equipment of plasma vapor treatment. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. SEM analysis has revealed that the poly(N-isopropylacrylamide) (PNIPAAm) coatings were formed on the surface of the smooth glass slides. Further evaluation by using XPS, it has shown the presence of PNIPAAm. The wettability can be significantly modified by changing of the temperatures at above and below of the lower critical solution temperature (LCST) from the data of the contact angle test. These results have advantage for further application on the thermo-sensitive textile materials. On the deposition of PNIPAAm onto Polybutylene Terephthalate (PBT) melt-blown nonwovens in atmospheric pressure plasma, water permeability was significantly modified at around LCST. Due to the LCST is close to the temperature of human body, it has advantage on application of PBT melt-blown nonwovens.

  4. Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications

    Science.gov (United States)

    Wrbanek, John D.; Laster, Kimala L. H.

    2005-01-01

    A study has been made of platinum thin films for application as high temperature resistive sensors. To support NASA Glenn Research Center s high temperature thin film sensor effort, a magnetron sputtering system was installed recently in the GRC Microsystems Fabrication Clean Room Facility. Several samples of platinum films were prepared using various system parameters to establish run conditions. These films were characterized with the intended application of being used as resistive sensing elements, either for temperature or strain measurement. The resistances of several patterned sensors were monitored to document the effect of changes in parameters of deposition and annealing. The parameters were optimized for uniformity and intrinsic strain. The evaporation of platinum via oxidation during annealing over 900 C was documented, and a model for the process developed. The film adhesion was explored on films annealed to 1000 C with various bondcoats on fused quartz and alumina. From this compiled data, a list of optimal parameters and characteristics determined for patterned platinum thin films is given.

  5. Titanium aluminide intermetallic alloys with improved wear resistance

    Science.gov (United States)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  6. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    National Research Council Canada - National Science Library

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-01-01

    ... compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–M...

  7. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    Science.gov (United States)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed

  8. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  9. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  10. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    Science.gov (United States)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  11. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-15

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  12. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  13. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  14. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  15. Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, L.E. Jr.; Sogoian, G.C.

    1983-05-01

    The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

  16. The Low Temperature CFB Gasifier - Further Test Results and Possible Applications

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Sarbæk, L.

    2002-01-01

    The novel "Low Temperature Circulating Fluidised Bed" (LT-CFB) gasification process is described together with the most recent results from the 50 kW LT-CFB test plant located at the Technical University of Denmark. The LT-CFB concept aims at avoiding problems due to ash sintering/agglomeration a......The novel "Low Temperature Circulating Fluidised Bed" (LT-CFB) gasification process is described together with the most recent results from the 50 kW LT-CFB test plant located at the Technical University of Denmark. The LT-CFB concept aims at avoiding problems due to ash sintering...... was approx. 3,5 mass% of supplied amount of fuel, and the content of PAH in the ash was only around 2 mg/kg. The most recent test results and anticipated applications are described in this paper. Keywords: gasification, biomass conversion, circulating fluidised bed (CFB)...

  17. Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion.

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Yin, Zongyou; Zhou, Wenwen; Liu, Zhengdong; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2016-01-13

    Metal or alloy corrosion brings about huge economic cost annually, which is becoming one area of growing concern in various industries, being in bulk state or nanoscale range. Here, single layer or few layers of graphene are deposited on various metallic substrates directly at a low temperature down to 400 °C. These substrates can be varied from hundreds-micrometer bulk metallic or alloy foils to tens of nanometer nanofibers (NFs). Corrosion analysis reveals that both graphene-grown steel sheets and NFs have reduced the corrosion rate of up to ten times lower than that of their bare corresponding counterparts. Moreover, such low-temperature in situ growth of graphene demonstrates stable and long-lasting anticorrosion after long-term immersion. This new class of graphene coated nanomaterials shows high potentials in anticorrosion applications for submarines, oil tankers/pipelines, and ruggedized electronics.

  18. Lithium based alloy-thionyl chloride cells for applications at temperatures to 200 C

    Science.gov (United States)

    Kane, P.; Marincic, N.; Epstein, J.; Lindsey, A.

    A long-life lithium battery for industrial applications at temperatures up to 200 C was developed by combining Li-based alloy anodes with oxyhalide electrolytes. Cathodes were fabricated by rolling the blend of polycarbonomonofluoride, a conductive carbon additive, and a binder, while anodes were fabricated as those used in oxyhalide cells, incorporating a modified anode current collector designed to prevent the formation of 'lithium islands' at the end of discharge; nonwoven glass fiber separators were pretreated to remove excessive binders and lubricants. Various active electrode surface areas were combined with a corresponding thickness of electrodes and separators, matched in capacity. Tests of the high-rate electrode structure, using Li-Mg alloy anode in conjunction with thionyl chloride electrolyte, have demonstrated that the battery with this anode can be used under abusive conditions such as short circuit and external heating (at 175 C). Raising the operating temperature to 200 C did require some modifications of regular cell hardware.

  19. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed...... approach to solve and optimise a Kalina cycle for high temperature (a turbine inlet temperature of 500°C) and high pressure (over 100bar) applications using a computationally efficient solution algorithm. A central receiver solar thermal power plant with direct steam generation was considered as a case...... study. Four different layouts for the Kalina cycle based on the number and/or placement of the recuperators in the cycle were optimised and compared based on performance parameters such as the cycle efficiency and the cooling water requirement. The cycles were modelled in steady state and optimised...

  20. Development of CFRP mirrors for low-temperature application of satellite telescopes

    Science.gov (United States)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2012-09-01

    Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated and their feasibility for low temperature applications was demonstrated. The CFRP mirrors were composed of sandwich panels with CFRP skins and CFRP honeycomb cores. Surface was deposited with epoxy thin layers by using a replica technique. The surface accuracy of the demonstrate mirrors of 150 mm in diameter was 0.8 μm RMS and the surface smoothness was improved to 5 nm RMS. Surface accuracy degradation was 0.6μm RMS (root mean square) from ambient temperature to liquid nitrogen. Surface asperity was classified with respect of their wave intervals and measurement areas. Surface accuracy and dimensional stability were strictly affected by raw materials and manufacturing conditions. Surface accuracy was measured at each process on the way of mirror forming. Manufacturing conditions to depress asperity were discussed.

  1. Wear behavior of Al-Si alloy based metal matrix composite reinforced with TiB2

    Science.gov (United States)

    Sahoo, J. K.; Sahoo, S. K.; Sutar, H.; Sarangi, B.

    2017-02-01

    Al-Si alloy based composites are widely used in automotive, aerospace and for structural application due to improved strength to weight ratio, low density, and better wear resistance. In the present work, Al-xSi-5TiB2 (x=7, 11, 12.6) in-situ composite was synthesized successfully by stir casting method. Here the composites were prepared by the exothermic reaction of K2TiF6 and KBF4 salts with the molten Al-x Si alloy. The dry sliding wear behavior of Al-Si matrix composites reinforced with 5 % TiB2 was studied using a pin-on-disc wear testing machine to study the effect of % Si, load (10, 20, 30 N), sliding speed (1.36, 1.82, 2.27 m.s-1) and sliding distance on stir cast Al-xSi-5TiB2 composites. The Al-Si alloy and the reinforcement mixers were confirmed by the X-ray Diffraction analysis. The microstructure of Al-xSi-5TiB2 composite was investigated by using Optical Microscope to determine the phases present in the prepared composites. The prepared AMC composites were tested for hardness using Vickers Hardness tester with the variation of Si. Wear rate (mm3/m), Wear resistance (m/mm3), Specific Wear rate (m3/N.m) and were analyzed with various conditions. The worn surfaces of the specimens were analyzed before and after wear testing by Scanning Electron Microscope (SEM) to determine the governing wear mechanisms in the composites. Wear rate and specific wear rate decreases at all the operating condition with increase in wt% Si. Wear resistance all most increases with increase in wt% Si. Hardness values are increased with increase in amount of Si.

  2. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  3. Selection of fiber-optical components for temperature measurement for satellite applications

    Science.gov (United States)

    Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.

    2017-11-01

    The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to

  4. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    Directory of Open Access Journals (Sweden)

    A.-M. Kurth

    2013-02-01

    Full Text Available Distributed temperature sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater–surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  5. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    Science.gov (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  6. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  7. Piezoresistive pressure sensors in CVD diamond for high-temperature applications

    Science.gov (United States)

    Otterbach, Ralf; Hilleringmann, Ulrich

    2003-09-01

    The fabrication of piezo-resistive pressure sensors for high temperature applications by the selective removal of CVD-diamond is limited due to the jutting physical properties of this material, which result in insufficient etching rates. A novel technique with distinctly increased etching rates due to a modified sample arrangement inside of a commercially available reactive ion etching (RIE) reactor overcomes this limitation by a restricted plasma volume. Rates up to 334 nm/min imply an increase of more than one order of magnitude in comparison with additional measurements utilizing a standard etching technique. Furthermore, the electrical response of a fabricated sensor on pressure is demonstrated.

  8. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    DEFF Research Database (Denmark)

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai

    2012-01-01

    framework as cross-linker, respectively. Self-cross-linked cationic polymer electrolytes membranes were also prepared for comparison. The diamines were advantageously distributed within the polymeric matrix and its amine function groups interacted with the benzyl bromide of QPAEK, resulting in a double...... that the diamine-cross-linked membranes using the rigid cross-linker show much improved properties than that using the flexible cross-linker. More properties relating to the feasibility in high temperature proton exchange membrane fuel cell applications were investigated in detail....

  9. THE EFFECT OF KANGAROO METHOD APPLICATION TO BODY TEMPERATURE OF BABY WITH LOW BIRTH WEIGHT (LBW)

    OpenAIRE

    Kadek Ayu Erika, Kadek Ayu Erika

    2012-01-01

    - Background: Low Birth Weight (LBW) care in Indonesia is still prioritizing the use of incubators but its presence is still very limited. Kangaroo method is now starting to be used as an alternative to incubator that is economically efficient and effective. Purpose: This study aimed to determine the effect of the application of the kangaroo method to body temperature of baby with LBW. Method: This research was conducted at the Hospital Prof. DR. W.Z. Johannes Kupang with a sample of 25 lo...

  10. The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg-Al-Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meshinchi Asl, Kaveh, E-mail: kaveh_mesh@yahoo.co.uk [School of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); Masoudi, Afshin; Khomamizadeh, Farzad [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2010-03-25

    The effect of Rare earths addition to AZ91 magnesium alloy and its influence on the microstructure and mechanical properties was investigated in this study. Addition of cerium rich misch metal to AZ91 alloy resulted in formation of needle shape particles, which had a very high thermal stability, providing superior mechanical properties compared to AZ91 magnesium alloy. As a result, the grain boundaries were less susceptible for grain boundary sliding at high temperatures. The steady state creep rates were specified and for the AZ91 alloy and the results indicate a mixed mode of creep behavior, with some grain boundary effects contributing to the overall behavior. However for the RE added samples, sliding of grain boundaries was greatly suppressed and the dislocation climb controlled creep was the dominant deformation mechanism. Dry sliding wear tests were also performed to investigate the effect of Rare Earth additives on wear response of AZ91 magnesium alloy. Weight loss values were determined and wear mechanisms of the alloys with different amount of REs were investigated. Abrasion, delamination and gross plastic deformation were identified as prevailing wear mechanisms. Abrasive wear that activated at lower loads and sliding speeds increased wear rates for less ductile specimens of Rare Earth enriched. However AZ91 alloy containing Rare Earth contents show superior resistance to gross plastic deformation which operated at more severe wear conditions. This is due to existence of Al{sub 11}RE{sub 3} phase that posses attractive mechanical properties at elevated temperatures.

  11. An approach to understanding tribological behaviour of dental composites through volumetric wear loss and wear mechanism determination; beyond material ranking.

    Science.gov (United States)

    Altaie, Asmaa; Bubb, Nigel L; Franklin, Paul; Dowling, Adam H; Fleming, Garry J P; Wood, David J

    2017-04-01

    To investigate the fundamental wear mechanisms of six resin-based composite (RBC) formulations during short-term in vitro wear testing. RBC materials were condensed into rectangular bar-shaped specimens and light irradiated using the ISO 4049 specimen manufacture and irradiation protocol. Wear testing (n=10 specimens for each RBC) was performed on a modified pin-on-plate wear test apparatus and wear facets were analysed for wear volume loss using a white light profilometer. The wear tested RBC specimens and their corresponding antagonists were analysed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively to determine the wear mechanism. Data generated using the profilometer showed variations in the mean total wear volume (mm(3)) between the RBCs tested (psystem rather than relying on a simple wear ranking for the RBC materials as is routinely the case in dental research studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. REDUCED ENGINE FRICTION AND WEAR

    Energy Technology Data Exchange (ETDEWEB)

    Ron Matthews

    2005-05-01

    This Final Technical Report discusses the progress was made on the experimental and numerical tasks over the duration of this project regarding a new technique for decreasing engine friction and wear via liner rotation. The experimental subtasks involved quantifying the reduction in engine friction for a prototype rotating liner engine relative to a comparable baseline engine. Both engine were single cylinder conversions of nominally identical production four-cylinder engines. Hot motoring tests were conducted initially and revealed that liner rotation decreased engine friction by 20% under motoring conditions. A well-established model was used to estimate that liner rotation should decrease the friction of a four-cylinder engine by 40% under hot motoring conditions. Hot motoring tear-down tests revealed that the crankshaft and valve train frictional losses were essentially the same for the two engines, as expected. However, the rotating liner engine had much lower (>70%) piston assembly friction compared to the conventional engine. Finally, we used the Instantaneous IMEP method to compare the crank-angle resolved piston assembly friction for the two engines. Under hot motoring conditions, these measurements revealed a significant reduction in piston assembly friction, especially in the vicinity of compression TDC when the lubrication regime transitions from hydrodynamic through mixed and into boundary friction. We have some remaining problems with these measurements that we expect to solve during the next few weeks. We will then perform these measurements under firing conditions. We also proposed to improve the state-of-the-art of numerical modeling of piston assembly friction for conventional engines and then to extend this model to rotating liner engines. Our research team first modeled a single ring in the Purdue ring-liner test rig. Our model showed good agreement with the test rig data for a range of speeds and loads. We then modeled a complete piston

  13. Origin and applicability of tetraether membrane lipids as temperature proxies in French peri-urban lakes

    Science.gov (United States)

    Mainié, François; Huguet, Arnaud; Breban, Alice; Lacroix, Gérard; Anquetil, Christelle; Derenne, Sylvie

    2015-04-01

    The Ile-de-France region is the most populated area in France, with ca. 12 million inhabitants, i.e. about 20 % of French population. The peri-urban aquatic ecosystems of this region are impacted by a large variety of environmental stressors, and especially high anthropogenic pressures (agricultural, industrial and urban pollutants), leading to the increased eutrophication of these water systems. The Ile-de-France lakes are therefore highly vulnerable ecosystems. Over the last years, several environmental markers have been developed to better understand the functioning of aquatic ecosystems, including the so-called GDGTs (glycerol dialkyl glycerol tetraethers). GDGTs are membrane lipids produced by archaea and some unknown bacteria, which are increasingly used to reconstruct mean annual air and surface water temperature as well as pH. These compounds are ubiquitous in terrestrial and aquatic environments, but their origin and applicability as temperature and pH proxies in lakes, especially highly polluted ones, need further investigation. In this study, GDGTs were analysed in 33 lakes from the Ile-de-France region, representing the diversity of the regional landscape and characterised by different levels of eutrophication. The abundance and distribution of GDGTs in lacustrine sediments and surrounding soils were compared. Bacterial GDGTs were systematically much more abundant in sediments than in soils and displayed different distributions in the two types of environments, showing that they are mainly produced in situ in lakes, in the water column and/or sediment. Similarly, the concentration in archaeal GDGTs was much higher in sediments than in soils and the distribution of these compounds differed between soils and sediments, implying that the predominant archaeal communities are not the same in the two environments. When the lakes are distinguished by their eutrophication level, the latter was shown for the first time to have an impact on the microorganisms

  14. Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites

    Science.gov (United States)

    Şahin, Y.; De Baets, Patrick

    2017-12-01

    Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.

  15. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    Science.gov (United States)

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H2O2) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H2O2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H2O2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  16. Dry Sliding Wear Behavior of EN25 Steel Treated by Different Quenching Media

    Directory of Open Access Journals (Sweden)

    Bassam Ali Ahmed

    2010-10-01

    Full Text Available The present investigation aims to study the effect of heat treatment by quenching in different quenching media (salt water, water and oil following by tempering on wear resistance of EN25 steel. EN25 steel is an alloy of medium carbon low alloy steel which is used for many applications requiring high tensile strength and wear resistance such as connecting rods, adapters and in power sectors extensively. The specimens are machined to 20 mm in length and 10 mm in diameter. This study is done by two stages: The first stage is done by austenitizing EN25 steel to 850 for 1 hr by quenching the specimens in three different quenching media and then tempered at 300 in air. While the second stage is performed by wear test. Dry sliding wear test is done by using pin –on-disc technique by varying the loads as 5, 10, 15, 20 and 25 N, also varying the time as 5, 10, 15, 20, 25 and 30 min respectively. The microstructure examination, hardness and followed roughness tests are also done for the specimens before and after wear test. The results of this work showed that an improving in wear resistance and hardness for the specimen quenched by salt water more than for water and oil. At the same time the roughness decreasing for the specimen quenched by salt water more than for water and oil.

  17. Wear and corrosion behaviour of tungsten carbide based coatings with different metallic binder

    Science.gov (United States)

    Kamdi, Z.; Apandi, M. N. M.; Ibrahim, M. D.

    2017-12-01

    Tungsten carbide based coating has been well known as wear and corrosion resistance materials. However, less study is done on comparing the coating with different binder. Thus, in this work the wear and corrosion behaviour of high velocity oxy-fuel (HVOF) coatings, namely (i) tungsten carbide cobalt and (ii) tungsten carbide nickel will be evaluated. Both coatings were characterised using X-ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The wear behaviour has been examined using the modified grinder machine by weight loss measurement. Two types of abrasive have been used that include 3 g by weight alumina and silica. While for the corrosion behaviour, it is monitored by three electrodes of electrochemical test and immersion test for 30 days in an acidic environment. The electrolyte used was 0.5 M sulphuric acids (H2SO4). It was found that the cobalt binder shows higher wear resistance compares to the nickel binder for both slurry types. The harder alumina compared to silica results in higher wear rate with removal of carbide and binder is about the same rate. For silica abrasive, due to slightly lower hardness compared to the carbide, the wear is dominated by binder removal followed by carbide detachment. For corrosion, the nickel binder shows four times higher wear resistance compared to the cobalt binder as expected due to its natural behaviour. These finding demonstrate that the selection of coating to be used in different application in this case, wear and corrosion shall be chosen carefully to maximize the usage of the coating.

  18. Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

    Science.gov (United States)

    Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A.

    2018-01-01

    The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

  19. Characterization of Wear Mechanisms in Distorted Conical Picks After Coal Cutting

    Science.gov (United States)

    Dewangan, Saurabh; Chattopadhyaya, Somnath

    2016-01-01

    The interest in understanding the wear mechanisms of cemented carbide (CC) is not a new development. For a long time, there have been studies on different wear mechanisms under different coal/rock cutting conditions. These studies have helped improving the quality of CC, thereby preventing such wearing of tools. Due to highly unpredictable character of coal/rock, the wearing phenomena cannot be attributed to one single domain of conditions. However, one conclusion that can be drawn in this context is that, under similar working conditions, similar types of CC undergo similar nature of wearing process. An optimum combination of high wear resistance, strength and hardness has facilitated widespread application of CC in the field of mining engineering. The abrasive parts of the mining tools are made of CC materials. The current study is focussed on a detailed characterization of the wear mechanisms of conical picks, which are used for coal mining. Conical picks consist of a steel body with an inserted cone-shaped CC tip. After being used for a certain period of time, both, the CC tip and the steel body get distorted. In this study, selection of appropriate samples was followed by critical observation of them through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). In the previous study, we explained the distortion process of both, the tip as well as the body, using the SEM images. For the present study, two samples were taken from our previous investigation for further analysis. Three other samples were also included in the present study. Seven different types of wear mechanisms, such as, cracking and crushing, cavity formation, coal intermixing, chemical degradation along with abrasion, long and deep cracks, heating effect and body deformation were observed in the five tool samples.

  20. Chemical Vapour Deposition Diamond - Charge Carrier Movement at Low Temperatures and Use in Time-Critical Applications

    CERN Document Server

    Jansen, Hendrik; Pernegger, Heinz

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, to laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  1. Composition, microstructure, hardness, and wear properties of high-speed steel rolls

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W.; Lee, H.C. [Kangwon Industries, Ltd., Pohang (Korea, Republic of). Roll Mfg. Div.; Lee, S. [Pohang Univ. of Science and Technology (Korea, Republic of). Center for Advanced Aerospace Materials

    1999-02-01

    The effects of alloying elements on the microstructural factors, hardness, and wear properties of four high-speed steel (HSS) rolls fabricated by centrifugal casting were investigated. A hot-rolling simulation test was carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. The test results revealed that the HSS roll containing a larger amount of vanadium showed the best wear resistance because it contained a number of hard MC-type carbides. However, it showed a very rough roll surface because of cracking along cell boundaries, the preferential removal of the matrix, and the sticking of the rolled material onto the roll surface during the wear process, thereby leading to an increase in the friction coefficient and rolling force. In order to improve wear resistance with consideration to surface roughness, it is suggested that a reduction in the vanadium content, an increase in solid-solution hardening by adding alloying elements, an increase in secondary hardening by precipitation of fine carbides in the matrix, and formation of refined prior austenite grains by preaustenitization treatment be employed to strengthen the matrix, which can hold hard carbides in it.

  2. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-12-01

    Full Text Available Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44 and water at room temperature to obtain different grades of heat treatment. Microstructures and corresponding micro hardness of the samples have been measured along with Feritscopic studies. Wear characteristics have been studied in a multi tribo-tester (Ducom in dry sliding condition against EN-8 steel roller. Speed, load on job and duration of test run have been considered as the experimental parameters. The wear of the samples have been obtained directly from ‘Winducom 2006’ software. Mass loss of the samples before and after operation has also been considered as the measure of wear in the present study. All the samples have been slid against EN-8 steel roller with fixed experimental parameters. The data have been plotted, compared and analyzed. Effect of microstructures as well as micro hardness on the wear behavior has been studied and concluded accordingly.

  3. Effect of Polypropylene Modification by Impregnation with Oil on Its Wear and Friction Coefficient at Variable Load and Various Friction Rates

    Directory of Open Access Journals (Sweden)

    Paweł Sędłak

    2017-01-01

    Full Text Available Laboratorial two-body wear testing was carried out in order to assess effects of polypropylene modification by impregnating it with oils on friction coefficient and wear in comparison to those parameters of unmodified polypropylene, Teflon, and polyamide during operation under conditions of sliding friction without lubrication. Wear behaviour of the tested specimens was investigated using ASTM G77-98 standard wear test equipment. Recording program made it possible to visualise and record the following parameters: rotational speed and load, linear wear, friction coefficient, temperature of the specimen, and ambient temperature. In addition, wear mechanisms of the analysed materials were determined with use of scanning electron microscopy. In the case of the remaining tested polymers, the most important mechanism of wear was adhesion (PP, PTFE, PA 6.6, and PA MoS2, microcutting (PTFE, PA 6.6, and PA MoS2, fatigue wear (PTFE, forming “roll-shaped particles” combined with plastic deformation (PA 6.6 and PA MoS2, and thermal wear (PP. Impregnation of polypropylene with engine oil, gear oil, or RME results in significant reduction of friction coefficient and thus of friction torque, in relation to not only unmodified polypropylene but also the examined polyamide and Teflon.

  4. Page 1 702 Subrata Ray Table 4. Selected application of cast MMCs ...

    Indian Academy of Sciences (India)

    Table 4. Selected application of cast MMCs for commercial products in Japan. - T. Method of Characteristics of Year. Product MMC system manufacture applied MMC (marker). Ring groove Al,O, Al alloy Squeeze Light weight, wear 1983 reinforced piston casting (SC) resistance at high (Toyota) temperature. Golf goods face ...

  5. Steel-bonded carbides for high reliability wear parts in aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Mandalis, P.; Tarkan, S.E.; Kumar Mal, M.

    1975-01-01

    Properties and uses of Ferro-Tic cemented carbides are discussed. It is noted that owing to the unique combination of desirable mechanical properties, high strength, ability to resist corrosion by some of the most aggressive chemical environments, good oxidation resistance, wear resistance, and favorable strength-to-weight ratio, the steel-bonded carbides are increasingly being used for many severe-environment applications in the aerospace industries, but there is still a great untapped potential. Material engineers and designers are urged to consider steel/alloy bonded machinable and hardenable carbides for their more difficult wear applications. (JRD)

  6. Incisor wear and age in Yellowstone bison

    Science.gov (United States)

    Christianson, D.A.; Gogan, P.J.P.; Podruzny, K.M.; Olexa, E.M.

    2005-01-01

    Biologists commonly use tooth eruption and wear patterns or cementum annuli techniques to estimate age of ungulates. However, in some situations the accuracy or sampling procedures of either approach are undesirable. We investigated the progression of several quantitative measures of wear with age, using permanent first incisors from Yellowstone bison (Bison bison), and tested for differences between sexes and herds. We further investigated the relationship of wear and age to explore an age-estimation method. Labial-lingual width (LLW) correlated best with assigned age (r2=0.66, males; r2=0.76 females). Labial-lingual width differed between sexes, with females showing ∼0.2 mm more wear than males. Additionally, differences in rate of wear existed between bison of the northern and central Yellowstone herds (1.2 and 0.9 mm/year, respectively). We developed a regression formula to test the power of LLW as an estimator of Yellowstone bison age. Our method provided estimated ages within 1 year of the assigned age 73% and 82% of the time for female and male bison, respectively.

  7. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  8. The problem of wear-resistant coatings quality

    Directory of Open Access Journals (Sweden)

    Mi. I. Abashin

    2014-01-01

    Full Text Available The article aims at solving a problem concerning the express evaluation of the wear-resistant nanostructure coatings quality using the method of ultra-fluid jet examination. Conducted research activities have shown that an intensity of the coating delamination from the substrate depends on the stress concentration level in the test sample. The proposed informatively methodological procedure of ultra-fluid jet examination will allow prompt estimation of physical-and-mechanical parameters and operational condition of coatings being deposited on samples and passed fatigue loading. The offered procedure can be effectively used for selecting the coating material, substrate, and efficient modes of application.

  9. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  11. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    Science.gov (United States)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  12. Trimethylsilylcyclopentadiene as a novel electrolyte additive for high temperature application of lithium nickel manganese oxide cathode

    Science.gov (United States)

    Tu, Wenqiang; Ye, Changchun; Yang, Xuerui; Xing, Lidan; Liao, Youhao; Liu, Xiang; Li, Weishan

    2017-10-01

    Electrolyte additives are necessary for the application of high potential cathode in high energy density lithium ion batteries, especially at elevated temperature. However, the electrolyte additives that can effectively suppress the dissolution of transition metal ions from cathode have seldom been developed up to date. In this work, we propose a novel electrolyte additive, trimethylsilylcyclopentadiene (SE), for high temperature application of a representative high potential cathode, lithium nickel manganese oxide (LiNi0.5Mn1.5O4). It is found that the dissolution of Mn and Ni from LiNi0.5Mn1.5O4 can be effectively suppressed by applying SE. With applying 0.25% SE, the dissolved amount of Mn and Ni is decreased by 97.4% and 98%, respectively, after 100 cycles at 55 °C. Correspondingly, the cyclic performance of LiNi0.5Mn1.5O4 is significantly improved. Physical characterizations and electrochemical measurements show that SE can be preferentially oxidized and generate a protective film on LiNi0.5Mn1.5O4. The resulting film inhibits the electrolyte decomposition and the transition metal ion dissolution.

  13. Temperature field reconstruction for minimally invasive cryosurgery with application to wireless implantable temperature sensors and/or medical imaging.

    Science.gov (United States)

    Thaokar, Chandrajit; Rabin, Yoed

    2012-12-01

    There is an undisputed need for temperature-field reconstruction during minimally invasive cryosurgery. The current line of research focuses on developing miniature, wireless, implantable, temperature sensors to enable temperature-field reconstruction in real time. This project combines two parallel efforts: (i) to develop the hardware necessary for implantable sensors, and (ii) to develop mathematical techniques for temperature-field reconstruction in real time-the subject matter of the current study. In particular, this study proposes an approach for temperature-field reconstruction combining data obtained from medical imaging, cryoprobe-embedded sensors, and miniature, wireless, implantable sensors, the development of which is currently underway. This study discusses possible strategies for laying out implantable sensors and approaches for data integration. In particular, prostate cryosurgery is presented as a developmental model and a two-dimensional proof-of-concept is discussed. It is demonstrated that the lethal temperature can be predicted to a significant degree of certainty with implantable sensors and the technique proposed in the current study, a capability that is yet unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    Science.gov (United States)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  15. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  16. Room Temperature Solid State Synthesis, Characterization, and Application of a Zinc Complex with Pyromellitic Acid

    Directory of Open Access Journals (Sweden)

    Rong-Gui Yang

    2018-01-01

    Full Text Available The complex [Zn2(btca(H2O4] was synthesized with 1,2,4,5-benzenetetracarboxylic acid (H4btca and zinc acetate as materials via a room-temperature solid state reaction. The composition and structure of the complex were characterized by elemental analyses (EA, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, and thermogravimetric (TG analysis. The index results of X-ray powder diffraction data showed that the crystal structure of the complex belonged to monoclinic system with cell parameters a = 9.882 Å, b = 21.311 Å, c = 15.746 Å, and β = 100.69°. In order to expand the application of the complex, the nanometer zinc oxide was prepared by using the complex as a precursor, and the effect of the thermal decomposition temperature on the preparation of the nanometer zinc oxide was studied. The results showed that the grain size of zinc oxide gradually grew with the increase of the pyrolysis temperature, the obtained nanometer zinc oxide was spherical, and the diameter of the particles was about 25 nm.

  17. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Fan [CompuTherm LLC, Madison, WI (United States); Zhang, Chuan [CompuTherm LLC, Madison, WI (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States); Xie, Xie [Univ. of Tennessee, Knoxville, TN (United States); Diao, Haoyan [Univ. of Tennessee, Knoxville, TN (United States); Kuo, Chih-Hsiang [Univ. of Tennessee, Knoxville, TN (United States); An, Zhinan [Univ. of Tennessee, Knoxville, TN (United States); Hemphill, Michael [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-30

    tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.

  18. The interactions between attrition, abrasion and erosion in tooth wear.

    Science.gov (United States)

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  19. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond

  20. Quantitative wear particle analysis for osteoarthritis assessment.

    Science.gov (United States)

    Guo, Meizhai; Lord, Megan S; Peng, Zhongxiao

    2017-12-01

    Osteoarthritis is a degenerative joint disease that affects millions of people worldwide. The aims of this study were (1) to quantitatively characterise the boundary and surface features of wear particles present in the synovial fluid of patients, (2) to select key numerical parameters that describe distinctive particle features and enable osteoarthritis assessment and (3) to develop a model to assess osteoarthritis conditions using comprehensive wear debris information. Discriminant analysis was used to statistically group particles based on differences in their numerical parameters. The analysis methods agreed with the clinical osteoarthritis grades in 63%, 50% and 61% of particles for no osteoarthritis, mild osteoarthritis and severe osteoarthritis, respectively. This study has revealed particle features specific to different osteoarthritis grades and provided further understanding of the cartilage degradation process through wear particle analysis - the technique that has the potential to be developed as an objective and minimally invasive method for osteoarthritis diagnosis.