WorldWideScience

Sample records for temperature water consumption

  1. The effects of floor heating on body temperature, water consumption, stress response and immune competence around parturition in loose-housed sows

    DEFF Research Database (Denmark)

    Damgaard, B M; Malmkvist, J; Pedersen, L J

    2009-01-01

    The aim of the present study was to study whether floor heating from 12 h after onset of nest building until 48 h after birth of the first piglet had any effect on measures related to body temperature, water consumption, stress response and immune competence in loose-housed sows (n = 23......). In conclusion, the present results indicate that floor heating for a limited period around parturition did not compromise physiological and immunological parameters, water intake and body temperature in loose-housed sows. The water intake peaked the day before parturition and the body temperature peaked...

  2. Water consumption in pediatrics

    Directory of Open Access Journals (Sweden)

    Rodríguez Weber Miguel Ángel

    2014-07-01

    Full Text Available Special considerations must be taken to calculate water require- ments of newborns and breastfeeding children; however, all their water needs should be covered with breast milk or breast-milk substitute formula. There is a need for 100 mL of water per 100 kcal consumed, or of 1,800 mL per square meter body surface area. From the age of six months, it is advisable to start providing 30 to 60 mL of water per day, with progressive increase; before that age, any other liquid must be avoided. Inadequate preparation of a substitute formula may cause hydric intoxication, or infections if the water used is contaminated. The increase in obesity and overweight is the result of increased intake of sugary beverages in children. This increased intake can also be linked to diabetes and other physiological and cognitive problems. Mexican children and teenagers have increased their caloric intake from sugary beverages in 126% between 1999 and 2006. As one of many healthy habits that children must acquire from home, is the avoi- dance of sugary beverages and the acknowledgment of water as a preferred hydration source.

  3. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature

    Directory of Open Access Journals (Sweden)

    Ali Akbar Mohammadi

    2017-08-01

    Full Text Available Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river was in the range mg/l 0.28–10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7–16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.

  4. Water Consumption, Soil Temperature and Soil Respiration in Model Ecosystems of Young Oak Stands Treated by Air-warming and Drought

    Science.gov (United States)

    Kuster, Thomas; Arend, Matthias; Günthardt-Goerg, Madeleine S.; Schulin, Rainer

    2010-05-01

    IPCC scenarios predict a global mean annual temperature increase during the 21st century of 2 - 6 °C, as well as changes in precipitation patterns. The multidisciplinary project "Querco" addresses the question how increased air temperature and extended drought periods will influence stands of young oaks. For this purpose, mixed stands of young Q. robur, Q. pubescens and Q. petrea (4-year-old trees from seeds of four different provenances each) were composed in the WSL open-top model-ecosystem chambers on either acid or calcareous forest soils and grown under four different climate treatments (control, air-warming, drought, air-warming & drought) from 2007 to 2009. Drought treated chambers only received about one third of water during the growing seasons from May to October as compared to the control. Further, we established longer drought periods without any irrigation. The air-warming treatment was established by keeping the side walls of the open-top chambers more closed than in the controls. Unsurprisingly, evapotranspiration from dry soils was much lower than from irrigated soils. There was significantly more evapotranspiration from the acidic than from the calcareous soil. These findings are in line with increased leaf transpiration rates and a tendency towards higher leaf biomass in oaks growing on acid as compared to calcareous soil. The higher evapotranspiration from acid soils also was in line with the fact that soil water potentials decreased more in acidic than in calcareous soils, an effect that became particularly significant during periods of high consumptive water demand by the trees. While soil water potentials were strongly decreased by the drought treatments down to 1 m depth, the air-warming treatment had almost no effect on soil water potential. Treatments, air-warming and drought, significantly increased soil temperature. In drought treated soils, this effect was related to the lower water content as compared to the control soils. As intended

  5. Influence of air temperature on electric consumption in Moscow

    Science.gov (United States)

    Lokoshchenko, Mikhail A.; Nikolayeva, Nataliya A.

    2017-04-01

    ' contribution). A relation of energy consumption with the relative humidity is absent whereas a relation of energy consumption with the water vapor pressure e indirectly reflects a dependence of this parameter on the air temperature. Use of multiple and partial correlation between E, T and e confirmed an absence of direct relation between energy consumption and water vapor pressure. Authors are much grateful to System Operator of Unified Energy System of Russia for given data about electric power consumption in Moscow region.

  6. Modelling Forest Water Consumption in The Netherlands

    NARCIS (Netherlands)

    Dolman, A.J.; Nonhebel, S.

    1988-01-01

    The water consumption of oak, beech, spruce and pine forest is predicted from routinely measured meteorological data for five locations in the Netherlands. Differences in water consumption are found to be primarily a result of differences in interception loss. Predicted interception loss was found

  7. The water footprint of cotton consumption

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2005-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  8. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    water hardness as a chemical parameter that may impact the power consumption of electrical geyser heating elements. An accelerated scaling .... pictures of the geyser heating elements tested are shown in Fig. 1. Water hardness meters .... The aim of heating cycle and temperature experiments was to show whether scaling ...

  9. Domestic metered water consumption and free basic water volumes

    African Journals Online (AJOL)

    2009-12-18

    relational rather than ... aspect of resources; Harvey (1977: 236) like Marx, in the con- text of a society dominated by elites posits its .... device (limiting water consumption to 12 kℓ per month); and sign an acknowledgement of debt ...

  10. Water and feed consumption in broiler birds during a typical hot ...

    African Journals Online (AJOL)

    This study investigates the variability in feed and water consumption in broiler birds during a typical hot weather condition in Akure, Nigeria. Feed and water consumption as well as air temperature and relative humidity were monitored and the relationship between them was analyzed. The results showed that the daily water ...

  11. Target Water Consumption Calculation for Human Water Management based on Water Balance

    Science.gov (United States)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  12. Global energy consumption for direct water use

    Science.gov (United States)

    Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.

    2015-12-01

    Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.

  13. 2014 Navajo Nation Energy and Water Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Suzanne L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woods, Sam [Navajo Transitional Energy Company, Farmington, NM (United States)

    2017-03-31

    The Navajo Nation is the home of the largest land-based Indian reservation in the U.S., covering more than twenty-seven thousand square miles. The land in the southwestern U.S. holds an abundance of natural resources, which are intimately integrated in the history, economy, and growth of the Navajo tribe. This report aims to wholly visualize the Navajo Nation’s resources and energy and water consumption using quantitative data and systems engineering analysis. The energy and water flow chart visualizations provide structured information for tribal leaders, policymakers, and educators around energy and water system discussions, technology development opportunities, and policy decisions. The analysis of both energy and water is a first step to visualizing the interconnectedness and complexities of the energy-water-food nexus of the nation. The goal of this energy analysis was to first estimate coal resource consumption because of the considerable impact coal has on the Navajo economy, recently as much as $26 million per year in coal royalties.

  14. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    ABSTRACT: Water savings can be improved through reducing agricultural water consumption. The crop water requirement (CWR) depends on several factors including temperature and growing seasons. This study investigated the effects of temperature and growing seasons on CWR in Saudi Arabia. Increase in ...

  15. Urban water consumption and its influencing factors in China

    NARCIS (Netherlands)

    Fan, Liangxin; Gai, Lingtong; Tong, Yan; Li, Ruihua

    2017-01-01

    Factors that affect water consumption should be identified to develop effective public policies. However, factors influencing domestic water consumption in cities in China, particularly on a national scale, are unclear. In this study, urban water consumption and its influencing factors in 286

  16. Minimizing water consumption when producing hydropower

    Science.gov (United States)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  17. Assessing water consumption in extreme diet scenarios

    Science.gov (United States)

    Jalava, Mika; Guillaume, Joseph; Kummu, Matti

    2017-04-01

    Most of the food for humanity comes from agriculture. Producing it requires enormous resources, and the projected population growth will further increase the stress on the environment. A number of strategies have been suggested to make food production sustainable. One of them, changing the human diet, has been shown to have a considerable potential in reducing use of resources, including water. Using water footprint methodology, our results show that moving to a mostly plant-based diet or a more conservative diet change combined with halving food losses would reduce the number of people living under water scarcity by hundreds of millions. Alternatively, it would enable producing sufficient, healthy food supply for a much larger population. Questions are still remaining, though. While water footprints alone have been criticised for only concentrating on water volumes and not the impacts of consumption, with proper attention to existing resources and the ecological relevance of using them, the water footprints allow straightforward analysis of limited modifications to food systems. On the other hand, large changes to the demand of each of the crops as well as shifts in ratios between plant- and animal-based foodstuffs alter some of the underlying assumptions, which are based on the current production. We present concepts to try to tackle the dynamics involved with diet change. Specifically, we discuss and present results related to: 1) Effects of changes in the areas used for production of a crop on its marginal water footprint 2) Use of non-food grade crop production as feed 3) Use of feed from co-production systems

  18. Impact of gari consumption on the water resource of Nigeria

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-29

    Dec 29, 2009 ... The consumption of gari (or roasted cassava granule) is connected to a chain of impacts on the water resource in the ... household level (blue water use), while water pollution impacts during processing and consumption (at households) .... water (Colombia, 2007), cannot be stored for long be- cause they ...

  19. Modelling water temperature in TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.

    2010-01-01

    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the

  20. Temperature effect upon blood consumption in Triatoma infestans

    Directory of Open Access Journals (Sweden)

    Silvia Catalá

    1992-12-01

    Full Text Available Different blood consumption speed was observed in Triatoma infestans - nymphs and adults - exposed to 12 degrees C and 28 degrees C. Exposure to optimal temperature (28 degrees C allows the insects to consume blood at a rate of 9% per day. Significative relationship between blood amount present in the promesenteron and consumed blood was found at 28 degrees. Consumption of blood was drastically reduced at the lowest temperature. Accordingly, lack of ovaric development, oviposition and mating behaviour was observed in insects kept at 12 degrees C. Relationship between laboratory and field observations are discussed.

  1. Daily temperature integration: a simulation study to quantify energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, O. [The Royal Veterinary and Agricultural University, Taastrup (Denmark). Department of Agricultural Sciences, Section Horticulture; Bakker, M.J.; Heuvelink, E. [Wageningen University (Netherlands). Department of Plant Sciences, Horticultural Production Chains Group

    2004-03-01

    A combined greenhouse climate and control model was used to study energy consumption in year-round cut chrysanthemum. Temperature was either controlled for energy saving with temperature integration within 24 h using the margin between heating and ventilation temperature b as control (TI) or the temperature integration regime was restricted within 24 h by a set point for negative temperature difference between average day and average night temperature T{sub DIF} to attain a temperature regime for stem length control (TI{sub DIF}). Energy consumption was reduced by both regimes compared to a standard regime according to commercial practice when heating in winter was shifted to nighttime using a screen. With increasing weather fluctuations in spring and autumn, weekly energy consumption could decrease by more than 60% for TI with {+-}6{sup o}C temperature bandwidth. With TI{sub DIF} in the same period, only 37 or 17% (T{sub DIF} of -6 and -12{sup o}C, respectively) less energy was used than with a standard recommended climate regime (TP). In general, TI{sub DIF} reduced energy demand compared to TP, but energy saving was higher with TI. In deciding whether to apply either TI or TI{sub DIF}, the actual cultivation period is the most important criterion. Controlling stem length with a negative temperature difference in spring and autumn has the highest additional costs, control with almost no negative day to night temperature difference is possible in summer; during winter, both temperature control regimes result in an almost similar greenhouse climate. (author)

  2. Malaysian water footprint accounts: Blue and green water footprint of rice cultivation and the impact of water consumption in Malaysia

    Science.gov (United States)

    Fadillah, M. G. Nor; Marlia, M. H.

    2016-11-01

    Following water footprint approach, this study estimates the blue and green water consumption of rice cultivation in 11 states located in Peninsular Malaysia. The latter part evaluates the potential of water deprivation for freshwater resources in Malaysia. Climate data such as rainfall, temperature, humidity, sunshine and wind speed were used to calculate evapotranspiration rate and crop water use. The water footprint for cultivating rice was estimated for both main and off seasons range between 1600 m3/ton to 3300 m3/ton. The result of this study showed that the green water footprint is higher compared to the blue water footprint for both seasons. In conclusion, the potential water deprivation can be determined by integrating the water footprint and water stress index of different watersheds of Malaysia.

  3. Potential presence of trihalomethanes in water intended for human consumption

    Directory of Open Access Journals (Sweden)

    C. Lasagna

    2011-01-01

    Full Text Available Since the 1970s it is well known that, though water for human consumption must generally be disinfected before being distributed along the network, the use of chemicals results in the formation of many different Disinfeection By-Products (DBPs. In the case of chlorine-based disinfectants, trihalomethanes (THMs are the most widely studied: the present work first compares some national and international regulations on this subject, then, in the experimental part, compares the results of a test carried out by disinfecting water of different origin collected in three different Italian regions with different amounts of chlorine. Samples were stored at ambient temperature for seven days, then the determination of THMs was carrried out by Purge and Trap extraction coupled with gas cromatography with Electron Capture Detection (ECD. The result obtained are finally compared and discussed.

  4. 77 FR 21143 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-04-09

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f...

  5. 77 FR 55893 - Projects Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... INFORMATION: This notice lists the projects, described below, being rescinded for the consumptive use of water...

  6. 78 FR 17281 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-03-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f...

  7. 77 FR 59240 - Projects Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... INFORMATION: This notice lists the projects, described below, being rescinded for the consumptive use of water...

  8. 77 FR 66909 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-11-07

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f...

  9. 77 FR 16317 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f...

  10. 77 FR 59239 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f...

  11. Water intake and consumption in sheep differing in growth potential ...

    African Journals Online (AJOL)

    Water intake and consumption in sheep differing in growth potential and adaptability. S.J. Schoeman* and J.A. Visser. Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria, 0002 Republic of South Africa. Received I0 February 1995; accepted 18 July 1995. Water intake, efficiency and consumption of ...

  12. Water consumption in the energy sector

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Gani, Rafiqul

    2016-01-01

    Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil...... or biofuels. Hydropower is based on water in rivers or reservoirs. Feedstock production for biofuels may depend on water for irrigation. On the other hand, energy is necessary for pumping of ground- and surface water, for water treatment as well as for transport and distribution of water to end......-users. The waste water is often returned to the environment after energy requiring waste water management....

  13. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Science.gov (United States)

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This.../100 lbs ice). (b) Testing and Calculations. Determine the energy consumed and the condenser water use...

  14. Estimation of energy consumption for domestic hot water in hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Katsanis, J.S.; Tsarabaris, P.T.; Bourkas, P.D. [National Technical Univ. of Athens, Athens (Greece). Dept. of Electrical and Computer Engineering; Halaris, P.G. [Asklepieon Voulas General Hospital, Athens (Greece). Electrical Engineering Dept. of Biomedical Technology; Malahias, G.N. [Hellenic Naval Academy, Athens (Greece)

    2006-07-01

    Hospitals are among the largest energy consumers in the building sector, with hot water constituting the largest part of the base load which consists of partial loads for heating, sanitary hot water, sterilization, disinfection, kitchen thermal load and laundry thermal load. This study estimated the energy consumption for domestic hot water (DHW) for Greek hospitals. The purpose was to evaluate the feasibility of using cogeneration systems in hospitals, which would combine electric and thermal energy from the same energy source. In this study, only the data for the consumption of DHW was presented. DHW in Greek hospitals is 45 degrees C except for the kitchen, laundry and anatomic room supply where hot water reaches 65 degrees C. Water consumption varies considerably depending on the condition of the hospital and extent of outpatients and clinical provisions. Hot water production is typically achieved in thermal substations through hot water production centres that include hot water storage tanks; heat exchangers; heating medium circuits; pipework for domestic hot water and connection with cold water supply. This presentation described the sizing of the DHW system and estimated the simultaneity factor for hot and cold water in hospitals. The hot water demand curve was used to estimate the energy consumption per day for hot water based on 18 hours of operation. Assuming that the hot water demand curve is typical, the energy consumption was estimated for sanitary hot water per day as a function of the specific water consumption for hospital with different number of beds. The hot water energy use was nearly 50 kWh per cubic meter water. The thermal losses in the hot water piping network were not considered in this study. 17 refs., 6 tabs., 6 figs.

  15. Water consumption in the energy sector

    OpenAIRE

    Larsen, Morten Andreas Dahl; Drews, Martin; Gani, Rafiqul

    2016-01-01

    Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil or biofuels. Hydropower is based on water in rivers or reservoirs. Feedstock production for biofuels may depend on water for irrigation. On the other hand, energy is necessary for pumping of ground- and...

  16. Air temperature and energy consumption feedbacks within urbanized areas

    Science.gov (United States)

    Ginzburg, A. S.; Demchenko, P. F.

    2017-09-01

    In the 21st century, the climate of expanding megacities and urbanized areas is increasingly forming and changing under the influence of the growing power consumption of the urban economy. To understand the urban climate dynamic and estimate the energy needs of cities in the 21st century, it is necessary to consider not only global and regional climatic factors, but also the presence of feedback between temperature and energy consumption in urbanized areas. This feedback can be both negative and positive, and their significance depends essentially on the climate and landform of the region, system of electricity and heat supply of a city, and some other factors. This article describes the main factors of formation and development of temperature and energy-consumption feedback within urbanized areas in cold and warm seasons when indoor heating or air conditioning is being used. The role of advection in strengthening and weakening of this feedback is studied. The estimates of the parameter and coefficient of feedback strengthening with the influence of anthropogenic heat fluxes and advection on the urban air temperature are presented.

  17. Trend analysis of the water requirements, consumption and deficit

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Boogaard, H.L.; Ludwig, F.; Baruth, B.

    2010-01-01

    Recent trends in European seasonal weather conditions and related crop water requirements, crop water consumption and crop water deficits were studied using the Crop Growth Monitoring System of the Joint Research Centre of the European Commission for the period 1976–2005. Soft wheat was selected as

  18. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  19. ANN modeling of water consumption in the lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Mohammad Ali [Department of Chemistry, Payame-Noor University of Sirjan, Sirjan (Iran); Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran); Karami, Hassan [Department of Chemistry, Payame-Noor University of Abhar, Abhar (Iran); Mahdipour, Maryam [Department of Chemistry, Payame-Noor University of Sirjan, Sirjan (Iran); R and D Center, Sepahan Battery Industrial Complex, Oshtorjan Industrial Zone, Isfahan (Iran)

    2007-10-25

    Due to importance of the quantity of water loss in the life cycle of lead-acid batteries, water consumption tests were performed on 72 lead-acid batteries with low antimony grid alloy at different charge voltages and temperatures. Weight loss of batteries was measured during a period of 10 days. The behavior of batteries in different charge voltages and temperatures were modeled by artificial neural networks (ANNs) using MATLAB 7 media. Four temperatures were used in the training set, out of which three were used in prediction set and one in validation set. The network was trained by training and prediction data sets, and then was used for predicting water consumption in all three temperatures of prediction set. Finally, the network obtained was verified while being used in predicting water loss in defined temperatures of validation set. To achieve a better evaluation of the model ability, three models with different validation temperatures were used (model 1 = 50 C, model 2 = 60 C and model 3 = 70 C). There was a good agreement between predicted and experimental results at prediction and validation sets for all the models. Mean prediction errors in modeling charge voltage-temperature-time behavior in the water consumption quantity for models 1-3 were below 0.99%, 0.03%, and 0.76%, respectively. The model can be simply used by inexpert operators working in lead-acid battery industry. (author)

  20. ANN modeling of water consumption in the lead-acid batteries

    Science.gov (United States)

    Karimi, Mohammad Ali; Karami, Hassan; Mahdipour, Maryam

    Due to importance of the quantity of water loss in the life cycle of lead-acid batteries, water consumption tests were performed on 72 lead-acid batteries with low antimony grid alloy at different charge voltages and temperatures. Weight loss of batteries was measured during a period of 10 days. The behavior of batteries in different charge voltages and temperatures were modeled by artificial neural networks (ANNs) using MATLAB 7 media. Four temperatures were used in the training set, out of which three were used in prediction set and one in validation set. The network was trained by training and prediction data sets, and then was used for predicting water consumption in all three temperatures of prediction set. Finally, the network obtained was verified while being used in predicting water loss in defined temperatures of validation set. To achieve a better evaluation of the model ability, three models with different validation temperatures were used (model 1 = 50 °C, model 2 = 60 °C and model 3 = 70 °C). There was a good agreement between predicted and experimental results at prediction and validation sets for all the models. Mean prediction errors in modeling charge voltage-temperature-time behavior in the water consumption quantity for models 1-3 were below 0.99%, 0.03%, and 0.76%, respectively. The model can be simply used by inexpert operators working in lead-acid battery industry.

  1. Mapping water consumption for energy production around the Pacific Rim

    Science.gov (United States)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  2. Public Perception of Water Consumption and Its Effects on Water Conservation Behavior

    NARCIS (Netherlands)

    Fan, L.X.; Wang, F.; Liu, G.B.; Yang, X.; Qin, W.

    2014-01-01

    The usual perception of consumers regarding water consumption is that their bills do not match their actual water consumption. However, this mismatch has been insufficiently studied; particularly for cases related to specific water-use patterns, water conservation practices, and user

  3. Water footprints of cities - indicators for sustainable consumption and production

    Science.gov (United States)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2014-01-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  4. Water consumption habits of a south-western Ontario community.

    Science.gov (United States)

    Pintar, K D M; Waltner-Toews, D; Charron, D; Pollari, F; Fazil, A; McEwen, S A; Nesbitt, A; Majowicz, S

    2009-06-01

    A cross-sectional telephone survey (n = 2,332) was performed to better understand the drinking water consumption patterns among residents in Waterloo Region, Ontario, Canada. We investigated the daily volume of water consumed (including tap and bottled) and factors related to that consumption. In addition, we investigated the daily volume of cold tap water consumed by those respondents who consumed no bottled water and the factors that influence this consumption. Among study respondents, 51% exclusively drank tap water, 34% exclusively drank bottled water and 14.5% drank both, with 10 to 75% of all cold water consumed in the previous day being bottled. The mean volume of water consumed in a day (including bottled and tap water) was 1.39 l. Among those who reported to exclusively consume tap water, the mean daily volume of tap water consumed was 1.45 l. The daily amount of cold water consumed in a day was lower for older respondents, more markedly for men than women. More educated respondents consumed more water during the day. Roughly 45% of households reported that they used a carbon filter to treat their water. Roughly 5% of respondents used advanced home treatment devices, including ultraviolet light, reverse osmosis, ozonation or distillation.

  5. Consumptive water use to feed humanity - curing a blind spot

    Directory of Open Access Journals (Sweden)

    M. Falkenmark

    2005-01-01

    Full Text Available Since in large parts of the world it is getting difficult to meet growing water demands by mobilising more water, the discourse has turned its focus to demand management, governance and the necessary concern for aquatic ecosystems by reserving an 'environmental flow' in the river. The latter calls for attention to river depletion which may be expected in response to changes in consumptive water use by both natural and anthropogenic systems. Basically, consumptive use has three faces: runoff generation influenced by land cover changes; consumptive use of water withdrawn; and evaporation from water systems (reservoirs, canals, river based cooling. After demonstrating the vulnerability to changes in consumptive use under savanna region conditions - representative of many poverty and hunger prone developing countries subject to attention in the Millennium Development Goal activities - the paper exemplifies; 1 changes in runoff generation in response to regional scale land cover changes; 2 consumptive use in large scale irrigation systems. It goes on to analyse the implications of seeing food as a human right by estimating the additional consumptive use requirements to produce food for the next two generations. Attention is paid to remaining degrees of freedom in terms of uncommitted water beyond an environmental flow reserve and to potential food trade consequences (so-called virtual water. The paper concludes that a human-right-to-food principle will have major consequences in terms of altered consumptive water use. It will therefore be essential for humanity to address river depletion to avoid loss of resilience of the life support system. This will demand a deep-going cooperation between hydrology, ecology and water governance.

  6. BENTHIC MACROFAUNA CONSUMPTION BY WATER BIRDS

    OpenAIRE

    Ponsero, Alain; Sturbois, Anthony; Alicia, Simonin; Godet, Laurent; Le Mao, Patrick

    2011-01-01

    The diversity and abundance of birds present in intertidal coastal ecosystems are closely related to the biomass of benthic invertebrates. The assessment of energy consumed compared with the available resource is one of the fundamental aspects of intertidal foodweb studies. The feeding of birds on benthic invertebrates was studied in the bay of Saint-Brieuc, a 2900ha tidal bay located on the Côtes d'Armor coast (Brittany). The consumption of the nine most numerous wader and duck species prese...

  7. Water consumption in the production of ethanol and petroleum gasoline.

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  8. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  9. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu

    2016-10-21

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  10. 78 FR 27471 - Projects Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e) and...

  11. 78 FR 15402 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-03-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR Sec. 806.22(e) and Sec...

  12. 77 FR 34455 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the time...

  13. water intake, feed consumption and milk production of intensively ...

    African Journals Online (AJOL)

    do not eat as much food as those animals that have access to water ad libitum. This results in poor growth, reproduction and lactation (Book and Carpenter, 1990). Consumption of water is a key point in animal feeding particularly in the arid regions where seasonal variation has been observed to have a detrimental effect on.

  14. Water intake and consumption in sheep differing in growth potential ...

    African Journals Online (AJOL)

    Water intake, efficiency and consumption of 30 growing individually fed Blackhead Persian, Dorper and South African Mutton Merino (Mutton Merino) ewe lambs were investigated.A veraged aily water intakes were2.2,4.6 and 5.4 litre for the BlackheadP ersian,D orper and Mutton Menno, respectively.T he BlackheadP ...

  15. Water Consumption Estimates of the Biodiesel Process in the US

    Science.gov (United States)

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  16. Drinking water consumption patterns in Canadian communities (2001-2007).

    Science.gov (United States)

    Roche, S M; Jones, A Q; Majowicz, S E; McEwen, S A; Pintar, K D M

    2012-03-01

    A pooled analysis of seven cross-sectional studies from Newfoundland and Labrador, Waterloo and Hamilton Regions, Ontario and Vancouver, East Kootenay and Northern Interior Regions, British Columbia (2001 to 2007) was performed to investigate the drinking water consumption patterns of Canadians and to identify factors associated with the volume of tap water consumed. The mean volume of tap water consumed was 1.2 L/day, with a large range (0.03 to 9.0 L/day). In-home water treatment and interactions between age and gender and age and bottled water use were significantly associated with the volume of tap water consumed in multivariable analyses. Approximately 25% (2,221/8,916) of participants were classified as bottled water users, meaning that 75% or more of their total daily drinking water intake was bottled. Approximately 48.6% (4,307/8,799) of participants used an in-home treatment method to treat their tap water for drinking purposes. This study provides a broader geographic perspective and more current estimates of Canadian water consumption patterns than previous studies. The identified factors associated with daily water consumption could be beneficial for risk assessors to identify individuals who may be at greater risk of waterborne illness.

  17. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, dai...

  18. Physisorbed Water on Silica at Mars Temperatures

    Science.gov (United States)

    Sutter, B.; Sriwatanapongse, W.; Quinn, R.; Klug, C.; Zent, A.

    2002-01-01

    The usefulness of nuclear magnetic resonance spectroscopy in probing water interactions on silica at Mars temperatures is discussed. Results indicate that two types of water occur with silica at Mars temperatures. Additional information is contained in the original extended abstract.

  19. An Evaluation of Adults' Water and Fluid Consumption

    OpenAIRE

    Hülya Yardimci; Yahya Özdoğan; Esma Asil; Eylül Damla Hovland; Ayşe Özfer Özçelik

    2016-01-01

    Aim: This study was aimed to determine the daily water and fluid consumption of health professionals. Methods: The sample included 313 subjects (female: 222, male: 91) between 22 and 49 years of age. The questionnaire solicited demographic information from the participants and asked about their fluid consumption and its frequency. The principal variable was gender. To analyze the data statistically, tables of means, standard deviations (X±SD) and percentage (%) values were used. When identify...

  20. Drinking Water Temperature Modelling in Domestic Systems

    OpenAIRE

    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  1. Consumptive water footprint and virtual water trade scenarios for China - with a focus on crop production, consumption and trade

    NARCIS (Netherlands)

    Zhuo, L.; Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2016-01-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and

  2. Water footprints of cities - indicators for sustainable consumption and production

    Science.gov (United States)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2013-02-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We have further developed the existing water footprint methodology by globally resolving virtual water flows and import and source regions at 5 arc minutes spatial resolution, and by assessing local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2% and 0.5%, respectively, roughly equal to local drinking water abstractions of these cities. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  3. Addressing Water Consumption of Evaporative Coolers with Greywater

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Rashmi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  4. National water footprint accounts: the green, blue and grey water footprint of production and consumption

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies and maps the water footprints of nations from both a production and consumption perspective and estimates international virtual water flows and national and global water savings as a result of trade. The entire estimate includes a breakdown of water footprints, virtual water

  5. Water footprints of nations: water use by people as a function of their consumption pattern

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Chapagain, Ashok

    2007-01-01

    The water footprint shows the extent of water use in relation to consumption of people. The water footprint of a country is defined as the volume of water needed for the production of the goods and services consumed by the inhabitants of the country. The internal water footprint is the volume of

  6. Emotions toward water consumption: Conservation and wastage

    Directory of Open Access Journals (Sweden)

    Jorge Artur Peçanha de Miranda Coelho

    2016-01-01

    Full Text Available El agua es un elemento clave para la supervivencia humana, pero los patrones no sostenibles de consumo de agua siguen siendo evidentes. Muchos factores influyen en la conservación del agua, pero la literatura existente que investiga los determinantes psicológicos de la conservación del agua, hasta el momento, se han centrado en los factores cognitivos o motivacionales. Sin embargo, existe una creciente evidencia de la importancia del papel de las emociones como predictores de la participación en la conservación del medio ambiente en general y del agua en particular. El presente artículo contribuye a este reconocimiento del papel de las emociones en la exposición de 2 estudios sobre el desarrollo y validación de una medida para acceder a las emociones negativas con respecto a desperdicio de agua, la Escala de Evaluación de las Emociones hacia el Desperdicio de Agua (Rating Scale of Emotions towards Water Wastage [RSEWW]. Los resultados confirmaron que esta escala de 12 ítems forma una medida unidimensional que prevé de manera fiable la intención de conducta de los participantes para intervenir en las actividades para la conservación de agua. Implicaciones teóricas y prácticas de los hallazgos se discuten en relación con la literatura existente.

  7. An Evaluation of Adults' Water and Fluid Consumption

    Directory of Open Access Journals (Sweden)

    Hülya Yardimci

    2016-10-01

    Full Text Available Aim: This study was aimed to determine the daily water and fluid consumption of health professionals. Methods: The sample included 313 subjects (female: 222, male: 91 between 22 and 49 years of age. The questionnaire solicited demographic information from the participants and asked about their fluid consumption and its frequency. The principal variable was gender. To analyze the data statistically, tables of means, standard deviations (X±SD and percentage (% values were used. When identifying the fluid intake of healthcare staff, the independent t test was used to account for gender. Results: The fluid consumption of the participants was examined, and the average was 2,262.6±845.2 mL. The mean consumption of water was 1,404.0±719.8 mL. Other significant fluid intake included black tea at 314.4±147.9 mL, instant coffee at 160.5±52.2 mL, milk/ayran/kefir at 157.7±134.8 mL, soft drinks at 61.6±104.7 mL and fruit juice at 72.5±103.9 mL. It was also found that the gender differences in total fluid and soft drink consumption were statistically significant (p.05. Conclusion: To precisely determine water and fluid intake, studies should be planned and conducted with large samples using standardized assessment tools.

  8. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  9. Triple dividends of water consumption charges in South Africa

    Science.gov (United States)

    Letsoalo, Anthony; Blignaut, James; de Wet, Theuns; de Wit, Martin; Hess, Sebastiaan; Tol, Richard S. J.; van Heerden, Jan

    2007-05-01

    The South African government is exploring ways to address water scarcity problems by introducing a water resource management charge on the quantity of water used in sectors such as irrigated agriculture, mining, and forestry. It is expected that a more efficient water allocation, lower use, and a positive impact on poverty can be achieved. This paper reports on the validity of these claims by applying a computable general equilibrium model to analyze the triple dividend of water consumption charges in South Africa: reduced water use, more rapid economic growth, and a more equal income distribution. It is shown that an appropriate budget-neutral combination of water charges, particularly on irrigated agriculture and coal mining, and reduced indirect taxes, particularly on food, would yield triple dividends, that is, less water use, more growth, and less poverty.

  10. The potential for energy savings when reducing the water consumption in a kraft pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Berntsson, Thore [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science; Stuart, Paul [Ecole Polytechnique, Montreal (Canada). Dept. of Chemical Engineering

    2004-05-01

    In this paper an existing pulp and paper mill has been studied in a systematic way regarding the reduction of water consumption, and the resulting increased potential for energy integration. It has been found that when the mill's hot water consumption is decreased, the live steam demand for the mill also decreases. Also when decreasing the hot water consumption, the quantity and temperature of available excess heat increases. This excess heat can be used for evaporation, thereby reducing the live steam demand further by up to 1.5 GJ/t. A pinch analysis was performed at an existing mill and it was found that if pinch violations are removed, the hot water consumption is not an important factor any more. Removing all the pinch violations and using the remaining excess heat for evaporation yields a significantly larger energy savings for the mill (4.0 GJ/t). From an economic optimum perspective it is probably most profitable to do a combination of reducing water consumption, removing pinch violations, and use the remaining excess heat for evaporation.

  11. Water withdrawal and consumption reduction analysis for electrical energy generation system

    Science.gov (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  12. Intermediate Temperature Water Heat Pipe Tests

    Science.gov (United States)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  13. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process.

    Science.gov (United States)

    Tu, Qingshi; Lu, Mingming; Thiansathit, Worrarat; Keener, Tim C

    2016-01-01

    Although water is one of the most critical factors affecting the sustainable development of algal biofuels, it is much less studied as compared to the extensive research on algal biofuel production technologies. This paper provides a review of the recent studies on water consumption of the algae biofuel process and presents the water conservation technologies applicable at different stages of the algal biofuel process. Open ponds tend to have much higher water consumption (216 to 2000 gal/gal) than photobioreactors (25 to 72 gal/gal). Algae growth accounts for the highest water consumption (165 to 2000 gal/gal) in the open pond system. Water consumption during harvesting, oil extraction, and biofuel conversion are much less compared with the growth stage. Potential water conservation opportunities include technology innovations and better management practices at different stages of algal biofuel production.

  14. Management of Water for Consumption and Pollution in the Yitenga ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    13 sept. 2007 ... Management of Water for Consumption and Pollution in the Yitenga Basin, Burkina Faso - Phase II ... 13, mars 2008. Rapports. Gestion de l'eau de consommation et de la pollution dans le bassin versant de Yitenga : application à l'amélioration des conditions socio-sanitaires des populations et à la lutte ...

  15. Growth performance and water consumption pattern of broiler chicks ...

    African Journals Online (AJOL)

    Feed intake, weight gain, feed conversion efficiency, water consumption and final live weights at four (4) weeks were significantly different (p0.05). The results of the trial favored the inclusion of GWM up to 20% in normal maize-soyabean diet ...

  16. New approach to reducing water consumption in commercial kitchen hood

    Science.gov (United States)

    Asmuin, N.; Pairan, M. R.

    2017-09-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. The modern commercial kitchen hood ventilation system was adopted with the water mist nozzle technology as an additional tool to increase the filtration efficiency. However, low level of filtration effectiveness and high water consumption were the major problems among the Commercial Kitchen Ventilation expert. Therefore, this study aims to develop a new mist spray technology to replacing the conventional KSJB nozzle (KSJB is a nozzle’s name). At the same time, an appropriate recommended location to install the nozzle in kitchen hood system was suggested. An extensive simulation works were carried out to observe the spray characteristics, ANSYS (FLUENT) was used for simulation wise. In the case of nozzle studies, nozzles were tested at 1 bar pressure of water and air. In comparison with conventional nozzles configuration, this new approach suggested nozzle configuration was reduce up to 50% of water consumption, which by adopted 3 numbers of nozzles instead of 6 numbers of nozzles in the commercial kitchen hood system. Therefore, this nozzle will be used in industry for their benefits of water consumption, filtration efficiency and reduced the safety limitations.

  17. Methods for estimating water consumption for thermoelectric power plants in the United States

    Science.gov (United States)

    Diehl, Timothy H.; Harris, Melissa; Murphy, Jennifer C.; Hutson, Susan S.; Ladd, David E.

    2013-01-01

    Water consumption at thermoelectric power plants represents a small but substantial share of total water consumption in the U.S. However, currently available thermoelectric water consumption data are inconsistent and incomplete, and coefficients used to estimate consumption are contradictory. The U.S. Geological Survey (USGS) has resumed the estimation of thermoelectric water consumption, last done in 1995, based on the use of linked heat and water budgets to complement reported water consumption. This report presents the methods used to estimate freshwater consumption at a study set of 1,284 power plants based on 2010 plant characteristics and operations data.

  18. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  19. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  20. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  1. [Water consumption in Saharan nomads. A remarkably reduced and constant consumption].

    Science.gov (United States)

    Paque, C

    1976-10-02

    The writer has carried out two studies of the Western Sahara (Missions UNESCO-Institut Scientifique Cherifien 1961 and 1964) bearing upon the consumption of water by the Saharan nomads. In spite of their environment, the consumption appeared to be remarkably low and constant. Very strict dietary practices, the salinity of the water, and special behavioural customs seemed to be the basis of this strict economy of fluid intake. Genetic factors could also, of course, be partly responsible. The dietary practices are characterised essentially: 1) by a regime which in general contains the minimum of protein: milk foods, cereals, and sugars, and 2) by the habitual exclusion of salt in the preparation of meals; the sodium necessary for water/sodium balance deriving solely from the salinity of the water. Water with little or average salt content (total 2-3 g/l) seems to meet the normal needs of the body - there is no need for the salt pill - and, moreover, to quench the thirst more effectively than pure water (Paque, 1964) - presumably by making good the deficit (cf. Stricker, 1970). On the other hand, saltier water (total 4-8g/; Na 1 g/l or more) appears to pose more complex physiological problems for which the prime solution is to apply the Saharan rule, i.e. that no supplementary salt should be added to the diet (Paque, 1963). In desert life there are thus certain rules which must be obeyed. As for the matter of behavioural customs influencing water balance, they consist in the main of habitually limiting the frequency of water intake (often just twice daily, sometime only once daily) together with a careful choice of clothing and the wearing of the veil. Finally, genetic factor could result in a more efficiently controlled loss of water (and of salt?) VIA THE SKIN.

  2. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    Science.gov (United States)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  3. How much water is enough? Domestic metered water consumption ...

    African Journals Online (AJOL)

    This article is based on an in-depth case study of urban water services to poor households in the community of Eastwood, Pietermaritzburg, in the province of KwaZulu-Natal, South Africa, for the period 2005-2007. The article adopts a mixedmethodological approach. Despite government progress in delivering water ...

  4. Data-driven behavioural modelling of residential water consumption to inform water demand management strategies

    Science.gov (United States)

    Giuliani, Matteo; Cominola, Andrea; Alshaf, Ahmad; Castelletti, Andrea; Anda, Martin

    2016-04-01

    The continuous expansion of urban areas worldwide is expected to highly increase residential water demand over the next few years, ultimately challenging the distribution and supply of drinking water. Several studies have recently demonstrated that actions focused only on the water supply side of the problem (e.g., augmenting existing water supply infrastructure) will likely fail to meet future demands, thus calling for the concurrent deployment of effective water demand management strategies (WDMS) to pursue water savings and conservation. However, to be effective WDMS do require a substantial understanding of water consumers' behaviors and consumption patterns at different spatial and temporal resolutions. Retrieving information on users' behaviors, as well as their explanatory and/or causal factors, is key to spot potential areas for targeting water saving efforts and to design user-tailored WDMS, such as education campaigns and personalized recommendations. In this work, we contribute a data-driven approach to identify household water users' consumption behavioural profiles and model their water use habits. State-of-the-art clustering methods are coupled with big data machine learning techniques with the aim of extracting dominant behaviors from a set of water consumption data collected at the household scale. This allows identifying heterogeneous groups of consumers from the studied sample and characterizing them with respect to several consumption features. Our approach is validated onto a real-world household water consumption dataset associated with a variety of demographic and psychographic user data and household attributes, collected in nine towns of the Pilbara and Kimberley Regions of Western Australia. Results show the effectiveness of the proposed method in capturing the influence of candidate determinants on residential water consumption profiles and in attaining sufficiently accurate predictions of users' consumption behaviors, ultimately providing

  5. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-09-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The effect of saturated steam vapor temperature on heat consumption in the process of color modification of acacia wood

    Science.gov (United States)

    Dzurenda, Ladislav

    2017-09-01

    This paper presents the heat consumption on the process of colour modification of acacia timber with measures 30 x 55 x 500 mm in pressure autoclaves AZ 240 using saturated water steam with temperatures from t = 110 to 140 °C following the regimes of colour homogenisation of I., II. and III. degree. The dependance of the heat consumption normative QTFS on the temparature of saturated water steam in the process of colour homogenisation of acacia timber following these regimes describes the equation: QTFS = 1.1122.t -13.903 kWh.m-3.

  7. Improving a pavement-watering method on the basis of pavement surface temperature measurements

    CERN Document Server

    Hendel, Martin; Diab, Youssef; Royon, Laurent

    2014-01-01

    Pavement-watering has been studied since the 1990's and is currently considered a promising tool for urban heat island reduction and climate change adaptation. However, possible future water resource availability problems require that water consumption be optimized. Although pavement heat flux can be studied to improve pavement-watering methods (frequency and water consumption), these measurements are costly and require invasive construction work to install appropriate sensors in a dense urban environment. Therefore, we analyzed measurements of pavement surface temperatures in search of alternative information relevant to this goal. It was found that high frequency surface temperature measurements (more than every 5 minutes) made by an infrared camera can provide enough information to optimize the watering frequency. Furthermore, if the water retaining capacity of the studied pavement is known, optimization of total water consumption is possible on the sole basis of surface temperature measurements.

  8. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  9. Mobilization strategy to overcome global crisis of water consumption

    Science.gov (United States)

    Suzdaleva, Antonina; Goryunova, Svetlana; Marchuk, Aleksey; Borovkov, Valery

    2017-10-01

    Today, the global water consumption crisis is one of the main threats that can disrupt socio-economic and environmental conditions of life of the majority of the world’s population. The water consumption mobilization strategy is based on the idea of increasing the available water resources. The main direction for the implementation of this strategy is the construction of anti-rivers – the systems for inter-basin (interregional) water resources redistribution. Antirivers are intended for controlled redistribution of water resources from regions with their catastrophic excess to regions with their critical shortage. The creation of anti-rivers, taking into account the requirements of environmental safety, will form large-scale managed natural- engineering systems and implement the principle of sustainable development adopted by the United Nations. The aim of the article is to substantiate a new methodological approach to address the problem, where the implementation of this approach can prevent large-scale humanitarian and environmental disasters expected in the coming years.

  10. Characteristics of water consumption by the population of industrial city

    Directory of Open Access Journals (Sweden)

    Koval V.V.

    2015-03-01

    Full Text Available The article presents the characteristics of water consumption by population of a modern industrial city. Results of the study show that the problem of drinking tap water is relevant for the residents of the industrial city. Methods of drinking tap water purification used by population of the industrial city at home in order to improve its quality were identified. It is found that a certain part of the population (5.7%, mostly middle-aged persons with secondary education, consume tap water without pre-treatment or are limited to boiling it before use (6.3%. Considerable part of the population of the industrial city for drinking and cooking every day uses additionaly purified water. Of them, 27.6% prefer additionaly purified pre-packed water, 16.1% of respondents use drinking water from water spill points. The results of the survey indicate that 4.5% of respondents for purification of tap water use intrahouse filters, 20.3% - local (domestic filters.

  11. [Stem sap flow and water consumption of Tamarix ramosissima in hinterland of Taklimakan Desert].

    Science.gov (United States)

    Xu, Hao; Zhang, Xi-Ming; Yan, Hai-Long; Yao, Shi-Jun

    2007-04-01

    From April to November 2005, the stem sap flow and water consumption of Tamarix ramosissima in the hinterland of Taklimakan Desert was measured by Flow-32 System. The results showed that, in the extremely arid hinterland of Taklimakan Desert and under enough water supply, the average daily water consumption of T. ramosissima with a stem diameter of 3.5 cm and 2.0 cm was 6.322 kg and 1.179 kg, respectively in one growth season. The stem sap flow of T. ramosissima presented a single-peaked curve, with an obvious day and night variation rhythm and fluctuated with environment factors. Under enough water supply, the environmenal factors such as total radiation, wind speed and air temperature were the main factors affecting the stem sap flow, and the dynamics of stem sap flow could be predicted by the liner regression model based on total radiation and wind speed. Because of the extremely arid environment and enough water supply, T. ramosissima had a relatively higher stem sap flow rate and a great water consumption.

  12. Water consumption related to different diets in Mediterranean cities.

    Science.gov (United States)

    Vanham, D; Del Pozo, S; Pekcan, A G; Keinan-Boker, L; Trichopoulou, A; Gawlik, B M

    2016-12-15

    Providing the sustainable development goals (SDGs) water, food and energy security to cities relies strongly on resource use outside city borders. Many modern cities have recently invested in a sustainable urban water system, and score high in international city rankings regarding water management and direct urban water use. However, these rankings generally neglect external resource use for cities. Here we quantify the water resources related to food consumption in thirteen cities located in Mediterranean countries, by means of the water footprint (WF) concept. These WFs amount from 3277l per capita per day (l/cap/d) to 5789l/cap/d. These amounts are about thirty times higher than their direct urban water use. We additionally analyse the WF of three diet scenarios, based upon a Mediterranean dietary pattern. Many authors identify the Mediterranean diet as cultural heritage, being beneficial for human health and a model for a sustainable food system. The first diet scenario, a healthy Mediterranean diet including meat, leads to WF reductions of -19% to -43%. The second diet scenario (pesco-vegetarian), leads to WF reductions of -28% to -52%. The third diet scenario (vegetarian), leads to WF reductions of -30% to -53%. In other words, if urban citizens want to save water, they need to look at their diets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Deconstructing Demand: The Anthropogenic and Climatic Drivers of Urban Water Consumption.

    Science.gov (United States)

    Hemati, Azadeh; Rippy, Megan A; Grant, Stanley B; Davis, Kristen; Feldman, David

    2016-12-06

    Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.

  14. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  15. 76 FR 1037 - Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other...

    Science.gov (United States)

    2011-01-06

    ... Commission 16 CFR Part 305 Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances... Consumption and Water Use of Certain Home Appliances and Other Products Required Under the Energy Policy and... Consumption and Water Use of Certain Home Appliances and Other Products Required Under the Energy Policy and...

  16. The effect of the water tariff structures on the water consumption in Mallorcan hotels

    Science.gov (United States)

    Deyà-Tortella, Bartolomé; Garcia, Celso; Nilsson, William; Tirado, Dolores

    2016-08-01

    Tourism increases water demand, especially in coastal areas and on islands, and can also cause water shortages during the dry season and the degradation of the water supply. The aim of this study is to evaluate the impact of water price structures on hotel water consumption on the island of Mallorca (Spain). All tourist municipalities on the island use different pricing structures, such as flat or block rates, and different tariffs. This exogenous variation is used to evaluate the effect of prices on water consumption for a sample of 134 hotels. The discontinuity of the water tariff structure and the fixed rate, which depends on the number of hotel beds, generate endogeneity problems. We propose an econometric model, an instrumental variable quantile regression for within artificial blocks transformed data, to solve both problems. The coefficients corresponding to the price variables are not found to be significantly different from zero. The sign of the effect is negative, but the magnitude is negligible: a 1% increase in all prices would reduce consumption by an average of only 0.024%. This result is probably due to the small share of water costs with respect to the total hotel operational costs (around 4%). Our regression model concludes that the introduction of water-saving initiatives constitutes an effective way to reduce consumption.

  17. Water consumption and wastewaters in fresh-cut vegetable production

    Directory of Open Access Journals (Sweden)

    Marja Lehto

    2014-12-01

    Full Text Available Controlled water use is an important component of sustainable fresh-cut vegetable production because of limited water resources, and also for controlling the quality of wastewater re-used in vegetable processing or for irrigating on fields. In our study the water consumption in vegetable processing plants varied from 1.5 to 5.0 m3 t-1 of finished product. In one plant, monitored over three years, almost 90% of water was used for washing and rinsing of vegetables, but more than 90% of the organic load of the wastewater was generated from the processing stage. The results including organic load and the microbial quality of the wastewaters showed that the wastewater should be treated beforere-use.Separate treating of wastewaters from processing stage is recommended.  Pre-treatment of wastewater using precipitation chemicals and sedimentation in basins decreased the organic load and total solids in the water, allowing further treatment of the waters.

  18. Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Shakhawat Chowdhury

    2015-01-01

    Full Text Available Understanding of water resources and trends of water consumptions is important to offer sustainable water resources management strategy. In this research, water resources and trends of water consumptions in Saudi Arabia were investigated. The non-renewable groundwater reserves were estimated to be 259.1–760.6 billion cubic meters (BCM with an effective annual recharge of 886 million cubic meters (MCM. The total internal renewable water was estimated to be 2.4 BCM/year. Approximately 1.4 BCM/year of runoff is collected by 302 dams. The country produces approximately 1.06 BCM desalinated water annually. The wastewater treatment plants treat approximately 0.73 BCM/year of domestic wastewater from which 0.33 BCM is recycled. The water demand in 2009 was 18.51 BCM in which 83.5% were for agriculture. From 2004 to 2009, agricultural water demand was decreased by 2.5%/year, while the domestic and industrial water demands were increased by 2.1%/year and 2.2%/year, respectively. Between 1999 and 2008, domestic water subscribers were increased by 22.7%, while the annual domestic water consumption was increased from 1391 (609–2164 to 3818 (1687–7404 m3/subscriber. The industrial water demands were increased from 56 to 713 MCM/year between 1980 and 2009. Following characterization, nonlinear equations were developed to predict the domestic, industrial and agricultural water demands. The predicted water demands were within 1–10% of the historically reported values. The findings might be useful in understanding water sources, water demands and identifying new sources for sustainable water resources management.

  19. Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis

    Science.gov (United States)

    Darzi-Naftchali, Abdullah; Karandish, Fatemeh

    2017-12-01

    Sustainable utilization of blue water resources under climate change is of great significance especially for producing high water-consuming crops in water-scarce regions. Based on the virtual water concept, we carried out a comprehensive field-modeling research to find the optimal agricultural practices regarding rice blue water consumption under prospective climate change. The DSSAT-CERES-Rice model was used in combination with 20 GCMs under three Representative Concentration Pathways of low (RCP2.6), intermediate (RCP4.6), and very high (RCP8.5) greenhouse concentrations to predict rice yield and water requirement and related virtual water and economic return for the base and future periods. The crop model was calibrated and validated based on the 2-year field data obtained from consolidated paddy fields of the Sari Agricultural Sciences and Natural Resources University during 2011 and 2012 rice cropping cycles. Climate change imposes an increase of 0.02-0.04 °C in air temperature which consequently shifts rice growing seasons to winter season, and shorten the length of rice physiological maturity period by 2-15 days. While rice virtual water reduces by 0.1-20.6% during 2011-2070, reduced rice yield by 3.8-22.6% over the late twenty-first century results in a considerable increase in rice virtual water. By increasing the contribution of green water in supplying crop water requirement, earlier cropping could diminish blue water consumption for rice production in the region while cultivation postponement increases irrigation water requirement by 2-195 m3 ha-1. Forty days delay in rice cultivation in future will result in 29.9-40.6% yield reduction and 43.9-60% increase in rice virtual water under different scenarios. Earlier cropping during the 2011-2040 and 2041-2070 periods would increase water productivity, unit value of water, and economic value of blue water compared to the base period. Based on the results, management of rice cultivation calendar is a

  20. NOAA NOS SOS, EXPERIMENTAL - Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and evaluation...

  1. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pthermal swimsuit than with a normal swimsuit in both water temperatures (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pthermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  2. Fluoride Intake through Consumption of Tap Water and Bottled Water in Belgium

    Directory of Open Access Journals (Sweden)

    Herman van Oyen

    2009-05-01

    Full Text Available There is a tendency to align higher levels of fluoride in natural mineral water with the existing higher levels in tap water. Treatment of natural mineral waters could harm the preservation of their natural character. In this study fluoride intake through bottled and tap water consumption in the Belgian adult population was assessed, taking into account regional differences. A deterministic approach was used whereby consumption quantities of tap water and different brands of bottled water were linked with their respective fluoride concentrations. Data from the national food consumption survey (2004 were used and the Nusser methodology was applied to obtain usual intake estimates. Mean intake of fluoride through total water consumption in Flanders was 1.4±0.7 mg/day (97.5th percentile: 3.1 mg/day, while in the Walloon region it was on average 0.9±0.6 mg/day (97.5th percentile: 2.4 mg/day. The probability of exceeding the UL of 7 mg per day via a normal diet was estimated to be low. Consequently, there is no need to revise the existing norms, but higher fluoride concentrations should be more clearly indicated on the labels. Reliable data about total dietary fluoride intake in children, including intake of fluoride via tooth paste and food supplements, are needed.

  3. The effect of temperature and salinity on oxygen consumption in the ...

    African Journals Online (AJOL)

    The aquatic oxygen consumption of the estuarine brachyuran crab, Cyclograpsus punctatus, was investigated after a 24-hour acclimation period at different temperature (12.5, 20, 30°C) and salinity (9, 17.5, 35, and 44‰) combinations . Salinity had no significant effect on oxygen consumption at 12.5 and 20°C in both large ...

  4. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  5. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  6. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    OpenAIRE

    J. A. Olorunmaiye; O. O. Awolola; J. F. Oladiji

    2012-01-01

    One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150) THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in...

  7. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    Directory of Open Access Journals (Sweden)

    J. A. Olorunmaiye

    2012-12-01

    Full Text Available One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150 THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in a room with the air-conditioner switched off and near an oven in a bakery. The electric power consumption of the refrigerator was measured using "Watts up?.net" Watt meter and the ambient temperature was measured using FLUKE temperature/humidity meter. The average hourly energy consumption of the refrigerator operating at mean ambient temperatures of 25.4°C, 30.7oC, 38.8°C were 93.844 Wh, 100.32 Wh and 105.08 Wh respectively. Some possible ways to reduce the increase in power consumption of refrigerators due to global warming include using compressors of higher efficiency and condensers of greater effectiveness.

  8. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High...

  9. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  10. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  11. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  12. Spanish Agriculture and Water: Educational Implications of Water Culture and Consumption from the Farmers’ Perspective

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Tójar-Hurtado

    2017-12-01

    Full Text Available The responsible management and consumption of water is a challenge that involves all segments of society. Having access to sufficient quality and quantity of water is not only a technological issue, but requires that the adopted measures and programmes take into account the dimensions of society and education. Spanish agriculture, as in other areas of the world, is a major consumer of water and more so than other sectors, including household consumption. Within the field of environmental education, this study covered the water culture and consumption of Andalusian farmers, based on their own perceptions. For this purpose, a questionnaire was created and validated, and included a sample of 1030 farmers selected with pseudorandom number sampling. An analysis of the data showed relevant results with respect to the values and notions supporting the justification for farmer behaviours, both from a cognitive-representative viewpoint and from an affective-expressive stance, as well as assertions made by the irrigators about other key sectors concerning the responsible management of water usage and water consumption. The findings of this study may assist in the design of environmental education programmes addressing this sector, which could also include other similar populations.

  13. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  14. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency

  15. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    Science.gov (United States)

    Stoler, Justin; Weeks, John R; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  16. Predictors of Drinking Water Boiling and Bottled Water Consumption in Rural China: A Hierarchical Modeling Approach.

    Science.gov (United States)

    Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha

    2017-06-20

    Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p China's economy continues to grow then bottled water use will increase.

  17. Quantifying the influence of environmental and water conservation attitudes on household end use water consumption.

    Science.gov (United States)

    Willis, Rachelle M; Stewart, Rodney A; Panuwatwanich, Kriengsak; Williams, Philip R; Hollingsworth, Anna L

    2011-08-01

    Within the research field of urban water demand management, understanding the link between environmental and water conservation attitudes and observed end use water consumption has been limited. Through a mixed method research design incorporating field-based smart metering technology and questionnaire surveys, this paper reveals the relationship between environmental and water conservation attitudes and a domestic water end use break down for 132 detached households located in Gold Coast city, Australia. Using confirmatory factor analysis, attitudinal factors were developed and refined; households were then categorised based on these factors through cluster analysis technique. Results indicated that residents with very positive environmental and water conservation attitudes consumed significantly less water in total and across the behaviourally influenced end uses of shower, clothes washer, irrigation and tap, than those with moderately positive attitudinal concern. The paper concluded with implications for urban water demand management planning, policy and practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    Science.gov (United States)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored

  19. Energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L.D.; Wensink, R.B.; Wolfe, J.W.; Shearer, M.N.

    1977-09-01

    Irrigation in the Pacific Northwest is an energy-intensive process which represents a major part of the total energy used in farm level food production. Since 1950, several major developments have precipitated pronounced increases in irrigation energy requirements. For example, the invention of efficient high-lift pumps, labor-saving equipment, new uses for irrigation sprinklers, and profitable cropping patterns have substantially escalated irrigation energy consumption in the Pacific Northwest in the past 25 years. Until recently, energy prices have remained relatively low and constant. The next 25 years will continue to experience advanced irrigation technologies. In addition to technological development, however, the cost of energy and water will certainly rise while their availabilities become increasingly constrained. The depletion of ground water in several parts of the United States could also potentially increase the irrigation burden of the Pacific Northwest. Lastly, parts of the Pacific Northwest water supply are directly convertible to energy via hydroelectric generation. This study proposes to make realistic projections relative to present and future interactions of the above components.

  20. The effect of cool water ingestion on gastrointestinal pill temperature.

    Science.gov (United States)

    Wilkinson, David M; Carter, James M; Richmond, Victoria L; Blacker, Sam D; Rayson, Mark P

    2008-03-01

    Telemetric gastrointestinal (GI) temperature pills are now commonly used to measure core body temperature and could minimize the risk of heat illness while maximizing operational effectiveness in workers subject to high levels of thermal strain. To quantify the effect of repeated cool water ingestion on the accuracy of GI pill temperature. Ten operational firefighters ingested a pill to measure GI temperature (T1int) before overnight sleep. Two hours following breakfast and 11.5 h after ingesting T1int, the firefighters ingested a second pill (T2int) before performing 8.5 h of intermittent activity (repetitive cycles of 30 min of seated rest followed by 30 min of general firefighter duties). During the first 2 min of each 30-min rest period, the firefighters consumed 250 mL of chilled water (5-8 degrees C). Water ingestion had a highly variable effect both within and between subjects in transiently (32 +/- 10 min) reducing the temperature of T2int in comparison with T1int. In general, this transient reduction in T2int became progressively smaller as time following ingestion increased. In some firefighters, the difference between T1int and T2int became negligible (+/- 0.1 degrees C) after 3 h, whereas in two others, large differences (peaking at 2.0 degrees C and 6.3 degrees C) were still observed when water was consumed 8 h after pill ingestion. These results show that a GI pill ingested immediately prior to physical activity cannot be used to measure core body temperature accurately in all individuals during the following 8 h when cool fluids are regularly ingested. This makes GI temperature measurement unsuitable for workers who respond to emergency deployments when regular fluid consumption is recommended operational practice.

  1. Dynamic water vapor and temperature calibration system.

    Science.gov (United States)

    Montague, F W; Primiano, F P; Saidel, G M

    1984-06-01

    The objective evaluation of thermal and humidification processes in the pulmonary system requires accurate dynamic measurements of temperature and water vapor concentration of a flowing gas mixture. The adequacy of instruments used for such measurements can only be determined by dynamic calibration techniques. We have developed a method of producing step changes in temperature and water vapor content of a gas mixture undergoing controlled steady flow. The system consists of two reservoirs and a slide valve that switches a test section between them. The inlet (usually a probe or catheter tip) of the device to be calibrated is positioned in the test section. The flow rate through the test section is minimally changed during the transition between gas from one reservoir to that of the other. The system has been used to analyze the response of a thermistor and a respiratory mass spectrometer to changes in gas temperature and water vapor.

  2. Energy consumption and temperature correlations for 4 Greek Ionian Sea islands

    Science.gov (United States)

    Psiloglou, B.; Giannakopoulos, C.; Dagoumas, A.; Skourtis, K.

    2012-04-01

    Energy consumption, especially for space heating and cooling, is linked to several weather variables, mainly air temperature. This study investigates the relationship between residential energy consumption load demand and daily mean air temperature for 4 Greek islands in the Ionian Sea for the period 2005-2011.These islands are Zante, Cephallonia, Corfu and Lefkada and were selected due to their data availability as they are interconnected to the mainland power distribution system. We present the time series of diurnal, daily, monthly and yearly variations of energy consumption for each of the selected sites and subsequently identify correlations with mean daily air temperature. Several effects such as weekly and holiday effects, unrelated to weather conditions, can be detected. Daily and monthly seasonal effects have been studied separately to isolate the weather influence on energy consumption. The most important finding, however, is the outstanding increase in consumption during the tourism season. Depending on the island, increased levels of consumption are present for 4,5 or more months per year, related to tourists arrivals on the island. This effect combined with energy consumption peaks on the hot days of the year should be taken into account during energy conservation planning.

  3. Promotion of water consumption in elementary school children in San Diego, USA and Tlaltizapan, Mexico.

    Science.gov (United States)

    Elder, John P; Holub, Christina K; Arredondo, Elva M; Sánchez-Romero, Luz María; Moreno-Saracho, Jessica E; Barquera, Simón; Rivera, Juan

    2014-01-01

    Consumption of water may help promote health and prevent obesity in children by decreasing consumption of sugar-sweetened beverages. This study used evidence-based strategies to increase water consumption in Mexican-American and Mexican children. In 2012, two schools in San Diego, USA and two other in Tlaltizapan, Mexico were recruited to Agua para Niños (Water for Kids), a program designed to promote water consumption among elementary grade students. Guided by operant psychology, the intervention focused on school and classroom activities to encourage water consumption. One control and one intervention school in each country were included. Agua para Niños resulted in increases in observed water consumption and bottle possession among US and Mexican students. Teacher receptivity to the program was very positive in both countries. Agua para Niños yielded sufficiently positive behavioral changes to be used in a future fully randomized design, and to contribute to school nutrition policy changes.

  4. The water footprint of coffee and tea consumption in the Netherlands

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert

    2007-01-01

    A cup of coffee or tea in our hand means manifold consumption of water at the production location. The objective of this study is to assess the global water footprint of the Dutch society in relation to its coffee and tea consumption. The calculation is carried out based on the crop water

  5. Food consumption patterns and their effect on water requirement in China

    NARCIS (Netherlands)

    Liu, J.; Savenije, H.H.G.

    2008-01-01

    It is widely recognized that food consumption patterns significantly impact water requirements. The aim of this paper is to quantify how food consumption patterns influence water requirements in China. The findings show that per capita water requirement for food (CWRF) has increased from 255 m3

  6. 76 FR 53526 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2011-08-26

    ... County, Pa.; Consumptive Use of up to 2.000 mgd; Approval Date: July 12, 2011. 35. Cabot Oil & Gas... County, Pa.; Consumptive Use of up to 6.000 mgd; Approval Date: July 26, 2011. 61. Cabot Oil & Gas...

  7. 77 FR 25010 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-04-26

    ....; Consumptive Use of Up to 4.000 mgd; Approval Date: March 13, 2012. 13. Cabot Oil & Gas Corporation, Pad ID..., Sullivan County, Pa.; Consumptive Use of Up to 7.500 mgd; Approval Date: March 14, 2012. 15. Cabot Oil....; Consumptive Use of Up to 3.575 mgd; Approval Date: March 14, 2012. 16. Cabot Oil & Gas Corporation, Pad ID...

  8. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  9. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Geissen, V.; Ritsema, C.J.

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently

  10. Water treatment in public swimming pools - reduction of energy consumption; Vandbehandling i svoemmebade - reduktion af energiforbrug

    Energy Technology Data Exchange (ETDEWEB)

    Hammerich, H.; Radisch, N. (Ramboell, Koege (Denmark)); Olesen, Jens Christian (Gladsaxe Sportscenter, Gladsaxe (Denmark)) (and others)

    2010-04-15

    Measurements were made in five public swimming baths, and energy savings were achieved using new filters, pumps, water treatment control depending on bather load, etc. In a 50 metre pool, electricity consumption for water treatment decreased by 50%, and in a hot-water/paddling pool, electricity consumption decreased by 30-40% while still maintaining satisfactory water quality - even during periods of heavy bather load. In another swimming bath, ventilation electricity consumption was reduced by 15%. The results will e.g. be used to revise the Danish executive order on swimming pools and water quality to allow bather load-dependent water circulation. (ln)

  11. Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China

    Directory of Open Access Journals (Sweden)

    Bingzhen Du

    2015-05-01

    Full Text Available A burgeoning population, pressing development needs and increasing household consumption are rapidly accelerating water use in direct and indirect ways. Increasingly, regions around the world face growing pressure on sustainable use of their water resources especially in arid and semi-arid regions, such as Northern China. The aim of this research is to obtain an overview of the cumulative water requirement for direct (domestic water use and indirect water use for the basic food consumption of the households in the Inner Mongolia Autonomous Region (IMAR, in order to reduce the pressure on grassland of Western China by encouraging sustainable water consumption. For indirect water use, we use VWC (virtual water content analysis theory to analyze the total consumption package of 15 basic food types that were identified and quantified based on the household survey in 2011. In this survey, domestic water consumption data and food consumption data were collected from 209 representative households with spatial variation across three sub-regions (including meadow steppe in Hulun Buir, typical steppe in Xilin Gol, and semi-desert steppe in Ordos and temporal variation from 1995 to 2010. The results show that the total amounts of food consumption per capita in three sub-regions all show an increasing trend, especially in Hulun Buir and Ordos. Compared to the direct water consumption, the indirect water consumption behind food production made up a major portion of total water consumption, which is affected (1 geographic locations (grassland types; (2 economic development levels and (3 grassland use policy measures. From 1995 to 2010, indirect water consumption displays a decreasing trend in Xilin Gol and Ordos due to the decrease of meat consumption and increase of fruit and vegetable consumption. When considering the amount of land per household, the grassland in Ordos still faces the great threat of high water consumption pressure. Such water consumption

  12. Withdrawal and consumption of water by thermoelectric power plants in the United States, 2010

    Science.gov (United States)

    Diehl, Timothy H.; Harris, Melissa A.

    2014-01-01

    Estimates of water use at thermoelectric plants were developed by the U.S. Geological Survey based on linked heat and water budgets, and complement reported thermoelectric water withdrawals and consumption. The heat- and water-budget models produced withdrawal and consumption estimates, including thermodynamically plausible ranges of minimum and maximum withdrawal and consumption, for 1,290 water-using plants in the United States for 2010. Total estimated withdrawal for 2010 was about 129 billion gallons per day (Bgal/d), and total estimated consumption was about 3.5 Bgal/d. In contrast, total withdrawal reported by the U.S. Department of Energy, Energy Information Administration (EIA), was about 24 percent higher than the modeled estimates, and total EIA-reported consumption was about 8 percent lower. Most thermoelectric generation in 2010 was not associated with thermodynamically plausible EIA-reported values of both withdrawal and consumption.

  13. Scheduling of Domestic Water Heater Power Demand for Maximizing PV Self-Consumption Using Model Predictive Control

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Kosek, Anna Magdalena; Martinenas, Sergejus

    2013-01-01

    This paper presents a model predictive control (MPC) strategy for maximizing photo-voltaic (PV) selfconsumption in a household context exploiting the flexible demand of an electric water heater. The predictive controller uses a water heater model and forecast of the hot Water consumption in order...... to predict the future temperature of the water and it manages its state (on and off) according to the forecasted PV production, which are computed starting from forecast of the solar irradiance. Simulations for the proof of concept and for validating the proposed control strategy are proposed. Results...... of the control approach are compared with a traditional thermostatic controller using historical measurements of a 10 kW PV installation. Economic results based on the Italian self consumption tariffs are also reported. The model of the water heater complex is a mixed grey and white box and its parameters have...

  14. Economic analysis of domestic water consumption, sewage water disposal and its health impact

    Directory of Open Access Journals (Sweden)

    Boopathi S

    2017-02-01

    Full Text Available We investigate the economic impact of the by-product of rapid urbanization especially focusing on the negative externalities created in the urban ecosystem i.e. contamination of potable water, air pollution, noise pollution, automobile pollution, solid waste and sewage water disposal. Specifically, the domestic water consumption and sewage water disposal are the two variables of interest since these variables have a has a direct bearing on human health but has received scant attention in the literature, so far. Hence, our paper addresses issues like drinking water consumption, quantity disposal of waste water, diseases affected and costs of treatment. Using an intensive field survey, we estimate the loss of opportunity cost for a sample of 140 households. Our result concludes that the provision drinking water and availability of drainage facilities are weakened in the peripheral part of urbanization which associated with high health treatment cost. Moreover, in a slum, even with the proximity of availing these facilities is closer but the socially and economically vulnerable groups are deprived this basic facility.

  15. Methane Consumption in Marine Waters Impacted by Gas Seepage

    Science.gov (United States)

    Heintz, M. B.; Mau, S.; Valentine, D. L.; Yang, J.; Hallam, S. J.; Reed, J. H.

    2007-12-01

    Microbially mediated methane oxidation in the coastal marine water column is an important sink term in the global methane budget, but remains a relatively uncharacterized process. While oxidation in the water column prevents up to two-thirds of methane released from the sea-floor from transiting to the atmosphere, only a limited number of oxidation rates have been measured, and identities of the microorganisms responsible for methane consumption in this environment remain unknown. To date, there have been no comprehensive studies on the relationship between methane oxidation rates and the microbial population responsible for methane oxidation. As a result of the perennially elevated methane concentrations in the water column at cold seeps, these environments are ideal for investigating the composition and efficacy of pelagic marine methane oxidizing communities. A suite of filter samples were collected, and corresponding methane concentrations and oxidation rates measured, in a series of vertical hydrocasts at seep and background sites in the Santa Barbara and Santa Monica Basins during the SEEPS'07 cruise. Here we present data from samples collected in a grid through the methane plume emanating from the Coal Oil Point (COP) seep field in the Santa Barbara Basin, and from a series of vertical casts above a mud volcano in the Santa Monica Basin. Methane oxidation rate measurements were made using a 3H-CH4 tracer. Preliminary calculations of fractional turnover rates in the water column down- current from the COP seep field indicate a maximum fractional turnover rate of 0.04 day-1 at 50-70 m depth, approximately 25 km from the seep field, along the path of plume advection. In the Santa Monica Basin, fractional turnover rates are highest at the bottom (0.03 day-1 at 800 m), decrease to a minimum (0.002 day-1) at 600 m, and increase from 0.003 day-1 at 300 m to 0.009 day-1 at 25 m. Current molecular work will be presented, and is focused on identifying methanotrophic

  16. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    Science.gov (United States)

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski,; ,; Engel, Frank

    2014-01-01

    A principal component of evaluating and managing water use is consumptive use. This is the portion of water withdrawn for a particular use, such as residential, which is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. The amount of consumptive use may be estimated by a water (mass)-balance approach; however, because of the difficulty of obtaining necessary data, its application typically is restricted to the facility scale. The general governing mass-balance equation is: Consumptive use = Water supplied - Return flows.

  17. 76 FR 20802 - Projects Approved or Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin... projects, described below, receiving approval or rescission for the consumptive use of water pursuant to...

  18. 75 FR 71177 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... notice lists the projects, described ] below, receiving approval for the consumptive use of water...

  19. 76 FR 50536 - Projects Approved or Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2011-08-15

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin... projects, described below, receiving approval or rescission for the consumptive use of water pursuant to...

  20. Guided design of heating and cooling mains for lower water and energy consumption and increased efficiency

    CSIR Research Space (South Africa)

    Gololo, V

    2011-01-01

    Full Text Available Water cooling and water heating is an important source of energy consumption, accounting for more than 20% of all energy consumption in manufacturing industry. It is clear that the development of heat recycling schemes and better structural design...

  1. Escherichia coli survival in waters: temperature dependence.

    Science.gov (United States)

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  2. 78 FR 27470 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-05-10

    ... County, Pa.; Consumptive Use of Up to 4.999 mgd; Approval Date: March 15, 2013. 7. Cabot Oil & Gas... County, Pa.; Consumptive Use of Up to 7.500 mgd; Approval Date: March 15, 2013. 11. Cabot Oil & Gas...; Approval Date: March 29, 2013. 14. Cabot Oil & Gas Corporation, Pad ID: CarpenettiR P1, ABR- 201303014...

  3. Effects of ventilation-heating control strategies for early weaning pig barns on energy consumption and 3-D temperature distributions

    Energy Technology Data Exchange (ETDEWEB)

    Choiniere, Y. [Les Consultants Yves Choiniere, St-Cesaire, PQ (Canada); Laberge, B. [Thevco Electronique Inc., St-Hubert, PQ (Canada)

    1995-07-01

    A ventilation control chamber was built for a modern livestock barn at Alfred College to measure temperature distribution, humidity, and propane and electricity consumption. Performance of the control systems on ambient temperature distribution and energy consumption was analyzed. Tests were conducted with and without recirculation ducts. Results showed that the use of recirculation ducts reduced the floor to ceiling temperature gradients. Propane consumption was reduced by 20 per cent with the use of the recirculation duct. 3 tabs., 11 figs.

  4. Effects of temperature and pH on the oxygen consumption Rate of ...

    African Journals Online (AJOL)

    The oxygen consumption rate of a freshwatersub-terrestrial crab, Sudanonautes floweri in relation to different temperatures and pHwas investigated. The average temperatureand pH of the crab\\'s peaty stream habitat were 29.50C and 7.5 respectively. The lethal temperatures at pH 7.0 recorded for the species were 14.50C ...

  5. Water consumption beliefs and practices in a rural Latino community: implications for fluoridation.

    Science.gov (United States)

    Scherzer, Teresa; Barker, Judith C; Pollick, Howard; Weintraub, Jane A

    2010-01-01

    Adequate fluoride exposure is especially important for those experiencing disproportionately high prevalence of dental caries, such as rural Latino farm-workers and their children. Water is an important source of fluoride. This qualitative study examined water consumption beliefs and practices among Latino parents of young children in a rural community. Focus groups and open-ended in-depth interviews explored parents beliefs about tap water, beverage preferences, and knowledge of fluoride. A questionnaire documented socio-demographic characteristics and water consumption practices. Qualitative analysis revealed how water-related beliefs, social and cultural context, and local environment shaped participants' water consumption. The vast majority of participants (n = 46) avoided drinking unfiltered tap water based on perceptions that it had poor taste, smell, and color, bolstered by a historically justified and collectively transmitted belief that the public water supply is unsafe. Water quality reports are not accessible to many community residents, all of whom use commercially bottled or filtered water for domestic consumption. Most participants had little knowledge of fluoride beyond a general sense it was beneficial. While most participants expressed willingness to drink fluoridated water, many emphatically stated that they would do so only if it tasted, looked, and smelled better and was demonstrated to be safe. Perceptions about water quality and safety have important implications for adequate fluoride exposure. For vulnerable populations, technical reports of water safety have not only to be believed and trusted but matched or superseded by experience before meaningful change will occur in people's water consumption habits.

  6. Modelling highly variable daily maximum water temperatures in a ...

    African Journals Online (AJOL)

    ... hourly water temperatures were used to calculate daily maximum water temperatures for nine sites within the Sabie-Sand River system, Mpumalanga Province, South Africa. A suite of statistical models for simulating daily maximum water temperatures, of differing complexity and using inputs of air temperature, flow rates, ...

  7. 21 CFR 880.5560 - Temperature regulated water mattress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature... heating and water circulating components, and an optional cooling component. The temperature control may...

  8. Away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya.

    Science.gov (United States)

    Onyango-Ouma, W; Gerba, Charles P

    2011-12-01

    A cross-sectional descriptive study was conducted to examine away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya. The study involved adults and schoolchildren. Data were collected using focus group discussions, questionnaire survey, observations, diaries and interviews. The findings suggest that away-from-home drinking water consumption is a common practice in the study area; however, the microbiological quality of the water consumed is poor. While some respondents perceive the water to be safe for drinking mainly because of the clear colour of the water, others are forced by circumstances to drink the water as it is owing to a lack of alternative safe sources. It is concluded that there is a need for new innovative approaches to address away-from-home drinking water consumption in resource-poor settings in order to complement and maximize the benefits of point-of-use water treatment at the household level.

  9. The effect of temperature, salinity and nitrogen products on food consumption of pink shrimp Farfantepenaeus paulensis

    Directory of Open Access Journals (Sweden)

    Wilson Wasielesky Jr.

    2003-01-01

    Full Text Available Studies were carried out to investigate the effect of temperature, salinity, ammonia, nitrite and nitrate on food consumption of pink shrimp Farfantepenaeus paulensis. Juveniles (0.2 - 0.4 g were acclimated for 15 days in seawater with different temperatures, salinities and concentrations of ammonia, nitrite and nitrate. After the acclimation period, 20 shrimps per treatment were individualized in order to have their ration intake analyzed through the amount of ration offered and left over within a 24-hour period. Mean food consumption presented significant alterations (P0.05. According to the results obtained, temperature and nitrite affected F. paulensis food consumption. On the other hand, variables as salinity, ammonia and nitrate did not affect shrimp appetite. However, the possibility of this to happen over long periods, prejudicing the species culture in captivity, reinforced the necessity of regular water quality management.Nos cultivos de organismos aquáticos, a manutenção da qualidade da água é fundamental para o sucesso da atividade, tendo em vista que variações nos parâmetros físico-químicos implicam em alterações metabólicas. O consumo de alimento por parte dos camarões pode ser afetado por estas variações, o que interfere nas taxas de crescimento e conseqüentemente na biomassa final produzida. O objetivo deste trabalho foi investigar o efeito da temperatura, salinidade, amônia, nitrito e nitrato sobre o consumo alimentar do camarão-rosa Farfantepenaeus paulensis. Desta forma, juvenis (0,2-0,4 g foram aclimatados por 15 dias em água do mar com diferentes temperaturas, salinidades, concentrações de amônia, nitrito e nitrato. Após o período de aclimatação, 20 camarões de cada tratamento foram individualmente analisados para observar a relação entre a quantidade de alimento oferecido e a quantidade de alimento ingerido, em um período de 24 horas. O consumo médio apresentou alterações significativas (p0

  10. Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-03-01

    Full Text Available Unprecedented economic achievement in China’s textile industry (TI has occurred along with rising water consumption. The goal of industrial sustainable development requires the decoupling of economic growth from resource consumption. This paper examines the relationship between water consumption and economic growth, and the internal influence mechanism of China’s TI and its three sub-sectors: the manufacture of textiles (MT sector, the Manufacture of Textile Wearing Apparel, Footwear, and Caps (MTWA sector, and the manufacture of chemical fibers (MCF sector. A decoupling analysis was performed and the Laspeyres decomposition method was applied to the period from 2001 to 2014. We showed that six of the fourteen years analyzed (2003, 2006, 2008, 2009, 2011, and 2013 exhibited a strong decoupling effect and three of the fourteen years (2005, 2007, and 2010 exhibited a weak decoupling effect. Overall, China’s TI experienced a good decoupling between economic growth and water consumption from 2002 to 2014. For the three sub-sectors, the MTWA sector experienced a more significant positive decoupling than the MT and MCF sectors. The decomposition results confirm that the industrial scale factor is the most important driving force of China’s TI water consumption increase, while the water efficiency factor is the most important inhibiting force. The industrial structure adjustment does not significantly affect water consumption. The industrial scale and water use efficiency factors are also the main determinants of change in water consumption for the three sub-sectors.

  11. 78 FR 11947 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-02-20

    ....; Consumptive Use of Up to 4.999 mgd; Approval Date: December 7, 2012. 6. Cabot Oil & Gas Corporation, Pad ID..., 2012. 8. Cabot Oil & Gas Corporation, Pad ID: ZickW P1, ABR-201212008, Lenox Township, Susquehanna...

  12. 77 FR 55891 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2012-09-11

    ... period specified above: Approvals by Rule Issued Under 18 CFR 806.22(f) 1. Cabot Oil & Gas Corporation....; Consumptive Use of Up to 3.575 mgd; Approval Date: May 4, 2012. 2. Cabot Oil & Gas Corporation, Pad ID...

  13. Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California

    Directory of Open Access Journals (Sweden)

    Chih-Hao Wang

    2017-02-01

    Full Text Available Using data from the 2015 Residential Water Consumption Survey, this study examines residential water-use behavior and attitudes after the recent drought in Fresno, California. Spatial autoregressive models of residential water consumption were estimated, accounting for the effects of social interactions in communities (i.e., neighborhood effects, while controlling for indoor and outdoor house attributes, economic conditions, and attitudes toward water uses. The findings show that the spatial autocorrelations do exist. This suggests that the neighborhood effects can be a useful lever to facilitate initiatives aiming at promoting community engagement on water-saving practices. The results also indicate that a larger house tends to incur more water use, so does the presence of pools. Using a drip irrigation system for watering the backyard can help reduce water consumption. Medium income families turn out to use the least amount of water among different income groups, suggesting that water-saving policies may yield different results among residents of various income levels. Interestingly, respondents who considered themselves heavy water users actually used less water. This implies that the awareness of water importance can significantly influence residents’ water-use behavior and therefore the promotion of a water-saving culture can help reduce residential water consumption.

  14. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newmark, Robin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hallett, K. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  15. An accounting system for water and consumptive use along the Colorado River, Hoover Dam to Mexico

    Science.gov (United States)

    Owen-Joyce, Sandra J.; Raymond, Lee H.

    1996-01-01

    An accounting system for estimating and distributing consumptive use of water by vegetation to water users was developed for the Colorado River to meet the requirements of a U.S. Supreme Court decree and used with data from calendar year 1984. The system is based on a water-budget method to estimate total consumptive use by vegetation which is apportioned to agricultural users by using percentages of total evapotranspiration by vegetation estimated from digital-image analysis of satellite data.

  16. The Effect of Consumer Learning Behavior on the Rising Bottled Water Consumption

    OpenAIRE

    Huang, Lu; Liu, Yizao

    2013-01-01

    This paper examines the impact of consumer learning behavior on the rising bottled water consumption. Consumers are assumed with initial prior beliefs about the distribution of health effect of beverages and update their beliefs using health information in a Baysian manner. We find that the health effect perception for bottled water is much higher than for sugar sweetened soft drinks, which can explain the increase in bottled water consumption over time. According to our findings, health info...

  17. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City

    Directory of Open Access Journals (Sweden)

    Jiefeng Kang

    2017-01-01

    Full Text Available Decomposition of the urban water footprint can provide insight for water management. In this paper, a new decomposition method based on the log-mean Divisia index model (LMDI was developed to analyze the driving forces of water footprint changes, attributable to food consumption. Compared to previous studies, this new approach can distinguish between various factors relating to urban and rural residents. The water footprint of food consumption in Xiamen City, from 2001 to 2012, was calculated. Following this, the driving forces of water footprint change were broken down into considerations of the population, the structure of food consumption, the level of food consumption, water intensity, and the population rate. Research shows that between 2001 and 2012, the water footprint of food consumption in Xiamen increased by 675.53 Mm3, with a growth rate of 88.69%. Population effects were the leading contributors to this change, accounting for 87.97% of the total growth. The food consumption structure also had a considerable effect on this increase. Here, the urban area represented 94.96% of the water footprint increase, driven by the effect of the food consumption structure. Water intensity and the urban/rural population rate had a weak positive cumulative effect. The effects of the urban/rural population rate on the water footprint change in urban and rural areas, however, were individually significant. The level of food consumption was the only negative factor. In terms of food categories, meat and grain had the greatest effects during the study period. Controlling the urban population, promoting a healthy and less water-intensive diet, reducing food waste, and improving agriculture efficiency, are all elements of an effective approach for mitigating the growth of the water footprint.

  18. Nanotechnology for potable water and general consumption in developing countries

    CSIR Research Space (South Africa)

    Hillie, T

    2012-08-01

    Full Text Available that affect people in developing and developed countries. The challenges outlined are; poor governance, water scarcity, sanitation and climate change. Nanotechnology is sufficiently advanced to help provide potable water and water for general assumption...

  19. Lettuce growth and water consumption in NFT hydroponic system using brackish water

    Directory of Open Access Journals (Sweden)

    Hammady R. Soares

    2015-07-01

    Full Text Available The qualitative aspects of water, such as the preparation or replenishment of the nutrient solution, are critical to the success of hydroponic crops. Therefore, the aim of this study was to evaluate the behavior of “Americana” lettuce (cv. Tainá under increasing levels of saline stress (0.2 - control, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1, replenishing the evapotranspiration with brackish water in Experiment I and supply water (0.2 dS m-1 in Experiment II, both used in the preparation of the nutrient solution. In both experiments, the treatments were arranged in a randomized block design, with six treatments and four replicates. Shoot fresh matter, shoot dry matter and leaf area in Experiment I suffered reductions of 15.22, 12.67 and 15.6% per unit increase of EC, respectively. In Experiment II, reductions of 8.01, 6.90 and 8.14% were observed for the same variables, respectively. In Experiments I and II, linear decrease in water consumption due to the increase in salinity was observed, with reductions of 8.83 and 5.63% for each unit increase of electrical conductivity of water when the evapotranspiration was replenished using brackish and supply water, respectively.

  20. [Use of social marketing to increase water consumption among school-age children in Mexico City].

    Science.gov (United States)

    Carriedo, Ángela; Bonvecchio, Anabelle; López, Nancy; Morales, Maricruz; Mena, Carmen; Théodore, Florence L; Irizarry, Laura

    2013-01-01

    To increase water consumption in school children in Mexico City through a social marketing intervention. Cluster quasi-experimental design. Intervention of three months in schools, including water provision and designed based on social marketing. Reported changes in attitude, knowledge and behavior were compared pre and post intervention. Children of the intervention group (n=116) increased in 38% (171 ml) water consumption during school time, control group (n=167) decreased its consumption in 21% (140 ml) (pchildren, strategy that might contribute to mitigate childhood obesity.

  1. 78 FR 2315 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2013-01-10

    .... Cabot Oil & Gas Corporation, Pad ID: AldrichL P1, ABR-201210002, Gibson Township, Susquehanna County, Pa.; Consumptive Use of Up to 3.575 mgd; Approval Date: October 3, 2012. 3. Cabot Oil & Gas Corporation, Pad ID...; Approval Date: October 3, 2012. 4. Cabot Oil & Gas Corporation, Pad ID: BrayB P1, ABR-201210004, Auburn...

  2. 76 FR 66117 - Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2011-10-25

    ... Township, Bradford County, Pa.; Consumptive Use of up to 6.000 mgd; Approval Date: August 1, 2011. 5. Cabot.... Cabot Oil & Gas Corporation, Pad ID: CorbinJ P1, ABR-201108049, Brooklyn Township, Susquehanna County...: September 26, 2011. 83. Cabot Oil & Gas Corporation, Pad ID: HeitzenroderA P1, ABR- 201109025, Springville...

  3. Temperature and energy consumption for clothing dryer; Temperatura e consumo de energia em secadora de vestuario

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Jefferson Almeida; Magalhaes Filho, Paulo [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia]. E-mail: pfilho@feg.unesp.br

    2000-07-01

    The cloth dehumidification is done by hot air circulation through it in dryers. The air circulation is done by a fan, run by an electrical motor, and the air temperature raise, which goes through the cloths aiming their moisture dragging, is gotten by the heat dissipation from electrical resistance. This work shows the results of an experimental modeling, examining the behavior of several kinds of cloth in a vertical suspense-type dryer, such as: polyester, cotton-spandex, flannel, blue-jeans and viscose rayon. It was analyzed the behavior of the moisture content in these cloths related to controlled-temperature-air flows, determining the needed heat to reach the required drying standards. The drying device fans were tested for the determination of their flow rate and energy consumption, establishing a flow rate versus consumption relationship. Comparative results among the various kinds of cloths are presented. (author)

  4. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    Science.gov (United States)

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

  5. Water reuse for domestic consumption. A key element for environmental and economic sustainability

    OpenAIRE

    Coimbra, José; Almeida, Manuela Guedes de

    2013-01-01

    In a context of increasing social awareness about resources conservation, residential water management is essential in ensuring environmental and economic sustainability. An adequate management is attained with integrated solutions, which simultaneously reduce potable water consumption at least in 25% and enable the storage of recovered water. The recovery and storage of underground water can be ensured with the installation of a groundwater drainage network and an underground water deposi...

  6. Water hardness and the effects of Cd on oxygen consumption ...

    African Journals Online (AJOL)

    In hard water no change in the MO2 was found when T. sparrmanii was exposed to 1, 5, 10, or 20 mg of Cd.l-1 of water. In soft alkaline water all fish died when exposed for 96 h in 20 mg Cd.l-1 . For 10 mg Cd.l-1, the MO2 was reduced significantly (p< 0.05) by 30%. The percentage cadmium dissolved in hard water was, ...

  7. EPA Office of Water (OW): Fish Consumption Advisories and Fish Tissue Sampling Stations NHDPlus Indexed Datasets

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Fish Consumption Advisories dataset contains information on Fish Advisory events that have been indexed to the EPA Office of Water NHDPlus v2.1 hydrology and...

  8. Estimating Monthly Water Withdrawals, Return Flow, and Consumptive Use in the Great Lakes Basin

    Science.gov (United States)

    Shaffer, Kimberly H.; Stenback, Rosemary S.

    2010-01-01

    Water-resource managers and planners require water-withdrawal, return-flow, and consumptive-use data to understand how anthropogenic (human) water use affects the hydrologic system. Water models like MODFLOW and GSFLOW use calculations and input values (including water-withdrawal and return flow data) to simulate and predict the effects of water use on aquifer and stream conditions. Accurate assessments of consumptive use, interbasin transfer, and areas that are on public supply or sewer are essential in estimating the withdrawal and return-flow data needed for the models. As the applicability of a model to real situations depends on accurate input data, limited or poor water-use data hampers the ability of modelers to simulate and predict hydrologic conditions. Substantial differences exist among the many agencies nationwide that are responsible for compiling water-use data including what data are collected, how the data are organized, how often the data are collected, quality assurance, required level of accuracy, and when data are released to the public. This poster presents water-use information and estimation methods summarized from recent U.S. Geological Survey (USGS) reports with the intent to assist water-resource managers and planners who need estimates of monthly water withdrawals, return flows, and consumptive use. This poster lists references used in Shaffer (2009) for water withdrawals, consumptive use, and return flows. Monthly percent of annual withdrawals and monthly consumptive-use coefficients are used to compute monthly water withdrawals, consumptive use, and return flow for the Great Lakes Basin.

  9. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    South Africa is an electricity-stressed country with a growing energy demand. Globally, hot water appliances are major consumers of electricity. Poor water quality for domestic purposes is a concern that may affect the efficiency of hot water appliances. Therefore, the Eskom Research, Testing, and Development Business ...

  10. Efficiency in the disinfection of water for human consumption in rural communities using solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Dominguez, A. [Instituto de Investigaciones Electricas, Mor (Mexico); Alarcon-Herrera, M.T.; Martin-Dominguez, I.R. [Centtro de Investigacion en Materiales Avanzados, Chih (Mexico); Gonzalez-Herrera, A. [Instituto Mexicano de Tecnologia del Agua, Mor (Mexico)

    2005-01-01

    The efficiency of solar disinfection for the inactivation of Total Coliforms (TC) and Escherichia coli (EC) in drinking water was tested in rural communities of the Guachochi Municipality, in the Tarahumara Sierra, State of Chihuahua, Mexico. The study zone was selected mostly because it lacks formal water supply systems and the population is forced to consume untreated water directly from rivers and shallow or artesian wells without treatment. To determine the bacteriological quality of the water consumed by the population, the amount of TC and EC in the water supplies of 23 communities in the studied municipality was determined. The efficiency of the solar energy based water disinfection process was determined for several months of the humid and dry seasons with water from the most contaminated sources of the study zone. The performed tests consisted in studying the effect of disinfecting water by direct exposure to sunlight during the whole day, with and without solar concentrators, in plastic bottles of commercial beverages. The three types of bottles used were transparent, partially painted black (one half of the bottle, along the longitudinal axis), and totally black. The study shows that, in this geographic zone, the available water must be disinfected before consumption and disinfection efficiency can reach 100% through the use of solar radiation. It was found that, since more than 6 h of daily solar radiation are available during most of the year in this zone, no solar concentrators are really necessary to ensure the complete elimination of bacteria. A complete disinfection takes place by simply placing water bottles in the sunlight during the whole day. Nevertheless, the use of solar concentrators and bottles partially painted black increases the TC and EC inactivation efficiency, reducing the solar exposure time required for a total disinfection to just 2 h. With the use of solar concentrators and partially blackened bottles, the water temperature

  11. Consumptive Water Use Analysis of Upper Rio Grande Basin in Southern Colorado.

    Science.gov (United States)

    Dubinsky, Jonathan; Karunanithi, Arunprakash T

    2017-04-18

    Water resource management and governance at the river basin scale is critical for the sustainable development of rural agrarian regions in the West. This research applies a consumptive water use analysis, inspired by the Water Footprint methodology, to the Upper Rio Grande Basin (RGB) in south central Colorado. The region is characterized by water stress, high dessert conditions, declining land health, and a depleting water table. We utilize region specific data and models to analyze the consumptive water use of RGB. The study reveals that, on an average, RGB experiences three months of water shortage per year due to the unsustainable extraction of groundwater (GW). Our results show that agriculture accounts for 77% of overall water consumption and it relies heavily on an aquifer (about 50% of agricultural consumption) that is being depleted over time. We find that, even though potato cultivation provides the most efficient conversion of groundwater resources into economic value (m3 GW/$) in this region, it relies predominantly (81%) on the aquifer for its water supply. However, cattle, another important agricultural commodity produced in the region, provides good economic value but also relies significantly less on the aquifer (30%) for water needs. The results from this paper are timely to the RGB community, which is currently in the process of developing strategies for sustainable water management.

  12. Measuring household consumption and waste in unmetered, intermittent piped water systems

    Science.gov (United States)

    Kumpel, Emily; Woelfle-Erskine, Cleo; Ray, Isha; Nelson, Kara L.

    2017-01-01

    Measurements of household water consumption are extremely difficult in intermittent water supply (IWS) regimes in low- and middle-income countries, where water is delivered for short durations, taps are shared, metering is limited, and household storage infrastructure varies widely. Nonetheless, consumption estimates are necessary for utilities to improve water delivery. We estimated household water use in Hubli-Dharwad, India, with a mixed-methods approach combining (limited) metered data, storage container inventories, and structured observations. We developed a typology of household water access according to infrastructure conditions based on the presence of an overhead storage tank and a shared tap. For households with overhead tanks, container measurements and metered data produced statistically similar consumption volumes; for households without overhead tanks, stored volumes underestimated consumption because of significant water use directly from the tap during delivery periods. Households that shared taps consumed much less water than those that did not. We used our water use calculations to estimate waste at the household level and in the distribution system. Very few households used 135 L/person/d, the Government of India design standard for urban systems. Most wasted little water even when unmetered, however, unaccounted-for water in the neighborhood distribution systems was around 50%. Thus, conservation efforts should target loss reduction in the network rather than at households.

  13. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, David J. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [American Association for the Advancemetn of Science (AAAS), Washington, DC (United States)

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  14. Diurnal Water Table Fluctuations: An Underutilized Indicator of Ground-water Consumption by Plants

    Science.gov (United States)

    Bauer, J. P.; Shea, J.; Keller, J.; Butler, J. J.; Kluitenberg, G.; Whittemore, D. O.

    2005-12-01

    Hydrographs from shallow wells in areas with phreatophytes frequently display a distinctive pattern of diurnal fluctuations. Although first linked to variations in plant water use early in the last century, these diurnal fluctuations have received relatively little attention in the ecohydrology literature. In particular, little attention has been given to exploiting the information embedded in the water-level data to improve understanding of plant water use. Results from two field sites in western Kansas will be presented to demonstrate the insights that can be gleaned from these fluctuations. At one site the vegetation is representative of the native riparian-zone assemblage found over much of the Great Plains (major phreatophyte is the cottonwood [ Populus spp.]), whereas at the other site the vegetation is dominated by invasive species (salt cedar [ Tamarix spp.] and Russian olive [ Elaeagnus angustifoli]). Both sites have a network of shallow wells and neutron probe access tubes for monitoring water-table position and moisture content, respectively. The onset and termination of ground-water use by plants during the growing season is readily identifiable at both sites. Data from the first site show that the maximum depth from which phreatophytes can draw water depends on the previous hydrologic conditions experienced at the site, and not the physiological limits of the plant. Phreatophyte control actions (mulch cutting and chemical treatment) have recently been applied in a sequential fashion to a portion of the second site. The initial impact of those actions on ground-water consumption was not as large as expected, suggesting that forbs and grasses, which were not significantly impacted by these actions, also use substantial amounts of ground water. The magnitude of the diurnal fluctuations ranges appreciably between the sites, and even between wells at the same site. A portion of this difference can be attributed to variations in plant water uptake across a

  15. Factors Influencing Water Consumption in Multifamily Housing in Tempe Arizona

    Science.gov (United States)

    Wentz, E. A.

    2012-12-01

    Central to the "Smart Growth" movement is that compact development reduces vehicle miles traveled, carbon emissions, and water use. Empirical efforts to evaluate compact development have examined residential densities, but have not distinguished decreasing lot sizes from multifamily apartments as mechanisms for compact development. Efforts to link design features to water use have emphasized single-family at the expense of multifamily housing. This study isolates the determinants of water use in large (>50) unit apartment complexes in the city of Tempe, Arizona. In July 2007, per-bedroom water use increased with pool area, dishwashers, in-unit laundry facilities, and irrigated landscaping. We explain nearly 50% of the variation in water use with these variables. These results inform public policy for reducing water use in multifamily housing structures, suggesting strategies to construct and market "green" apartment units.

  16. WATER CONSUMPTION HABITS OF FAMILIES IN CONSUMER SOCIETY

    OpenAIRE

    ÖZCAN, Ayşegül; ŞERMET-KAYA, Şenay; ÖZDİL, Kamuran; SEZER, Fatma

    2017-01-01

    AbstractIntroductionand Objective: To meet water needs of families, it is important to know the kind ofwater they use, their usage reasons and storage conditions, to raise awareness ofthe community and individuals about the water usage habits in terms of directingwater policy. So, this research was  planned to determine the water consumptionhabits of families.Materialand Method: The universeconsisted of the families living in seven districts in the center of the AvanosDistrict, Nevşe...

  17. Effect of Different Temperatures on Consumption of Two Spotted Mite, Tetranychus urticae, Eggs by the Predatory Thrips, Scolothrips longicornis

    Science.gov (United States)

    Pakyari, Hajar; Enkegaard, Annie

    2012-01-01

    Environmental variables such as temperature are important factors affecting the efficacy of biological control agents. This study evaluated the predation rate of the predatory thrips Scolothrips longicornis Priesner (Thysanoptera: Thripidae) against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions. Based on daily and total prey consumption of different life stages of S. longicornis on spider mite eggs at temperatures covering the range suitable for development and survival of the predator (15° C to 37° C, 60 ± 10% RH, 16:8 L:D), there was a significant effect of temperature on prey consumption. The number of prey consumed daily by first and second instar larvae increased linearly with increasing temperature from 15 °C to 37 °C, whereas daily consumption of preovipositing and postovipositing females was uninfluenced by temperature. Lower temperature thresholds for consumption by first and second instar larvae of S. longicornis was estimated to be 6.8 ± 0.04° C and 4.6 ± 0.03° C, respectively. The daily consumption of ovipositing females followed a nonlinear pattern, with maximum daily predation estimated at 32.8° C. From the model used to describe consumption of ovipositing females, an upper threshold for consumption of 41.4° C was estimated. The performance of S. longicornis at the different temperatures is discussed in relation to its practical use in integrated pest control programs. PMID:23425212

  18. Effect of diet composition on water consumption in growing pigs.

    Science.gov (United States)

    Shaw, M I; Beaulieu, A D; Patience, J F

    2006-11-01

    Concerns relating to use of water resources by the livestock industry, combined with the rising cost of manure management, have resulted in greater interest in identifying ways to reduce drinking water utilization by pigs while maintaining animal well-being and achieving satisfactory growth performance. The objective of this experiment was to determine if increasing the dietary CP or mineral concentrations increases water intake and excretion and, conversely, if reducing the dietary CP content reduces water intake and excretion. Forty-eight barrows (34.3 +/- 4.6 kg of BW; 12/treatment) were given free access to diets containing a low protein (16.9% CP), high protein (20.9% CP), or excess protein (25.7% CP) level, or a diet with excess levels of Ca, P, Na, and Cl. Water was available to each pig on an ad libitum basis via dish drinkers that were determined to waste less than 3% of total water flow. The excess CP diet tended to increase average daily water intake (ADWI) and urinary excretion (P luxury intake is a significant experimental challenge. Because the impact of dietary treatment on water utilization was small, we conclude that factors other than dietary protein and mineral concentration and daily protein and mineral intake have a relatively large effect on water intake and excretion. Consequently, strategies to reduce water intake must recognize, understand, and manage these additional behavioral and physiological factors. Diet composition may be a part of strategies designed to reduce excessive water utilization by the pig industry but may have a limited effect if other important factors are ignored.

  19. Dependence of national consumption on unsustainable blue water footprints: A global overview

    Science.gov (United States)

    Hoekstra, A. Y. Y.; Mekonnen, M. M.

    2014-12-01

    The water footprint of consumers in a country is generally partly in other countries. For example, 10% of the water footprint of Chinese consumers is outside China; in the US this is 20%, and in the UK even 75%. National consumption thus always depends, partly, on water resources outside the national territory. Earlier research has resulted in global water footprint maps for all countries in the world, showing for each country where in the world water resources are being consumed and polluted in relation to consumption within the country considered. Recent research shows at a high spatial and temporal resolution level in which catchments in the world, the blue water footprint exceeds the maximum sustainable blue water footprint. The current study overlays the global water footprint maps per country with the global map showing locations of unsustainable water use in order to estimate, per country, the dependence of national consumption on unsustainable water footprints. Countries are ranked according to their fraction of their water footprint that is unsustainable and an in-depth analysis of the implications of this dependence is carried out for the top-10 of the list. The in-depth analysis explores which commodities are behind the unsustainable parts of a country's water footprint, where these footprints are located and what options a country has to reduce its dependence on unsustainable water use.

  20. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  1. Evaluation of Water Consumption by Car Wash Facilities in Bauchi ...

    African Journals Online (AJOL)

    PROF HORSFALL

    ABSTRACT: Car wash can be defined as a facility used to clean the exterior and in some cases, the interior of motor vehicles. These facilities are common in Bauchi and other cities in Nigeria. They use water as a major input thereby causing serious challenges to water resources management. Car wash facilities in Bauchi ...

  2. Moisture Absorption Model of Composites Considering Water Temperature Effect

    Directory of Open Access Journals (Sweden)

    HUI Li

    2016-11-01

    Full Text Available The influence of water temperature on composite moisture absorption parameters was investigated in temperature-controlled water bath. Experiments of carbon fiber/bismaleimide resin composites immersed in water of 60℃, 70℃and 80℃ were developed respectively. According to the moisture content-time curves obtained from the experimental results, the diffusion coefficient and the balanced moisture content of the composites immersed in different water temperature could be calculated. What's more, the effect of water temperature on the diffusion coefficient and the balanced moisture content were discussed too. According to the Arrhenius equation and the law of Fick, a moisture absorption model was proposed to simulate the hygroscopic behaviour of the composite laminates immersed in different water temperature which can predict the absorption rate of water of the composites immersed in distilled water of 95℃ at any time precisely and can calculate how long it will take to reach the specific absorption rate.

  3. Change of water consumption and its potential influential factors in Shanghai: A cross-sectional study

    Science.gov (United States)

    2012-01-01

    Background Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents’ drinking water choices. Methods We conducted a cross-sectional survey to investigate residents’ water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. Results The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one’s health belief and drinking water choices (P water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Conclusions Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai. PMID:22708830

  4. Change of water consumption and its potential influential factors in Shanghai: a cross-sectional study.

    Science.gov (United States)

    Chen, Hanyi; Zhang, Yaying; Ma, Linlin; Liu, Fangmin; Zheng, Weiwei; Shen, Qinfeng; Zhang, Hongmei; Wei, Xiao; Tian, Dajun; He, Gengsheng; Qu, Weidong

    2012-06-18

    Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents' drinking water choices. We conducted a cross-sectional survey to investigate residents' water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one's health belief and drinking water choices (P models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai.

  5. The blue, green and grey water footprint of rice from a production and consumption perspectives

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert

    2011-01-01

    The paper makes a global assessment of the green, blue and grey water footprint of rice, using a higher spatial resolution and local data on actual irrigation. The national water footprint of rice production and consumption is estimated using international trade and domestic production data. The

  6. The consumptive water footprint of electricity and heat: a global assessment

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2015-01-01

    Water is essential for electricity and heat production. This study assesses the consumptive water footprint (WF) of electricity and heat generation per world region in the three main stages of the production chain, i.e. fuel supply, construction and operation. We consider electricity from power

  7. Changing Food Consumption Patterns and Impact on Water Resources in the Fragile Grassland of Northern China

    NARCIS (Netherlands)

    Du, B.; Zhen, L.; Groot, de R.S.; Long, X.; Cao, X.; Wu, R.; Sun, C.; Wang, C.

    2015-01-01

    A burgeoning population, pressing development needs and increasing household consumption are rapidly accelerating water use in direct and indirect ways. Increasingly, regions around the world face growing pressure on sustainable use of their water resources especially in arid and semi-arid regions,

  8. Temperature, Humidity and Energy Consumption Forecasting in the Poultry Hall Using Artificial Neural Networknetwork

    Directory of Open Access Journals (Sweden)

    N Gholamrezaei

    2017-10-01

    Full Text Available Introduction Energy consumption management is one of the most important issues in poultry halls management. Considering the situation of poultry as one of the largest and most developed industries, it is needed to control growing condition based on world standards. The neural networks as one of the intelligent methods are applied in a lot of fields such as classification, pattern recognition, prediction and modeling of processes. To detect and classify several agricultural crops, a research was conducted based on texture and color feature. The highest classification accuracy for vegetables, grains and fruits with using artificial neural network were 80%, 86% and 70%. In this research, the ability to Multilayer Perceptron (MLP Neural Network in predicting energy consumption, temperature and humidity in different coordinate placement of electronic control unit sensors in the poultry house environment was examined. Materials and Methods The experiments were conducted in a poultry unit (3000 pieces that is located in Fars province, Marvdasht city, Ramjerd town, with dimensions of 32 meters long, 7 meters wide and 2.2 meters height. To determine the appropriate placement of the sensor, 60 different points in terms of length, width and height in poultry were selected. Initially, the data was divided into two datasets. 80 percent of total data as a training set and 20 percent of total data as a test set. From180 observations, 144 data were used to train network and 36 data were used to test the process. There are several criteria for evaluating predictive models that they are mainly based according to the difference between the predicted outputs and actual outputs. To evaluate the performance of the model, two statistical indexes, mean squared error (MSE and the coefficient of determination (R² were used. Results and Discussions In this study, to train artificial neural network for predicting the temperature, humidity and energy consumption, the

  9. Evolutions in Water Withdrawal and Consumption Factors for Thermoelectric Power Plants in the United States

    Science.gov (United States)

    Wang, Y.; Bielicki, J. M.

    2016-12-01

    Accurate estimation of the water withdrawal and consumption rates by thermoelectric power plants is important for water resources management, planning of new electricity generation capacity additions, and understanding potential water stress on agricultural systems. But estimates of water demand by power plants are limited by the availability of temporally resolved and high quality data and are influenced by numerous aspects of the climate, cooling technology, and energy technology. In 2010, the U.S. thermoelectric power sector accounted for about 45% of the total water withdrawal—the largest end-use sector for water withdrawal in the country—but withdrawal and consumption rates are evolving with the popularity of recirculating cooling systems and fuel switching from coal to natural gas. We used data from the U.S. Energy Information Administration to derive monthly water withdrawal and consumption factors for thermoelectric power plants across the United States from 2010 to 2014 and combined that data with information on power plant design, location, and cooling systems from various sources and previous annual datasets. We developed and applied a model that relates the water use factors to cooling system designs, intake water sources, power generation technologies, boiler efficiencies, and weather conditions. We present our analysis of the factors that influence the inter-power plant, seasonal, and inter-annual variability in water-use factors and provide lessons for electricity capacity planning and regional water availability for other uses, including agriculture.

  10. Estimates of consumptive use and ground-water return flow using water budgets in Palo Verde Valley, California

    Science.gov (United States)

    Owen-Joyce, Sandra J.; Kimsey, Steven L.

    1987-01-01

    Palo Verde Valley, California, is an agricultural area in the flood plain of the Colorado River where irrigation water is diverted from the river and groundwater is discharged to a network of drainage ditches and (or) the river. Consumptive use by vegetation and groundwater return flow were calculated using water budgets. Consumptive use by vegetation was 484,000 acre-ft in 1981, 453,600 acre-ft in 1982, 364,400 acre-ft in 1983, and 374,300 acre-ft in 1984. The consumptive-use estimates are most sensitive to two measured components of the water budget, the diversion at Palo Verde Dam and the discharge from drainage ditches to the river. Groundwater return flow was 31,700 acre-ft in 1981, 24,000 acre-ft in 1982, 2,500 acre-ft in 1983, and 7 ,900 acre-ft in 1984. The return-flow estimates are most sensitive to discharge from drainage ditches; various irrigation requirements and crop areas, particularly alfalfa; the diversion at Palo Verde Dam; and the estimate of consumptive use. During increasing flows in the river, the estimate of groundwater return flow is sensitive also to change in groundwater storage. Change in groundwater storage was estimated to be -5,700 acre-ft in 1981, -12,600 acre-ft in 1982, 5,200 acre-ft in 1983, and 11 ,600 acre-ft in 1984. Changes in storage can be a significant component in the water budget used to estimate groundwater return flow but is negligible in the water budget used to estimate consumptive use. Change in storage was 1 to 3% of annual consumptive use. Change in storage for the area drained by the river ranged from 7 to 96% of annual groundwater return flow during the 4 years studied. Consumptive use calculated as diversions minus return flows was consistently lower than consumptive use calculated in a water budget. Water-budget estimates of consumptive use account for variations in precipitation, tributary inflow, river stage, and groundwater storage. The calculations for diversions minus return flows do not account for these

  11. A thirst for power: A global analysis of water consumption for energy production

    Science.gov (United States)

    Spang, Edward

    Producing energy resources requires significant quantities of freshwater. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. A number of reports exist that specify water consumption by discrete energy production technologies. This research synthesizes and expands this previous work by examining the global distribution of water consumption intensity of national-level energy portfolios. By defining and calculating indicators to quantify the relative water use intensity of national energy systems, it was possible to highlight potentially problematic areas of high water use intensity while also providing examples of water-efficient energy production. The results of the research show a high variability in the national water consumption of energy production (WCEP) for the 158 countries that were assessed. However, looking across the indicators for WCEP internationally, the countries that were heavily producing fossil fuel or biofuels demonstrated the greatest intensity of energy-based water consumption. The economic imperative to develop fossil fuels drives high water consumption in countries that already lack sufficient water supplies. Meanwhile, biofuels require so much water over their lifecycle per unit of produced energy that any modest commitment to producing biofuels has significant water consumption ramifications for the country. While these results are based on a comprehensive review of available data, future research in this area could be significantly enhanced through better data and widespread adoption of consistent reporting mechanisms. Additional opportunities to expand the field include increasing the resolution of the study regions, tracking these indicators over time, and exploring innovative policy approaches to managing national WCEP effectively. For nations facing the greatest limitations in the availability of local water and energy

  12. Investigation of average daily water consumption and its impact on ...

    African Journals Online (AJOL)

    Twenty five (25) common buzzards were studied at the wildlife hospital and rehabilitation centre, Aegina, Greece with weight ranging between 498.4g and 911g. Large quantity of potable water was measured equally into same size ceramic bowls and served each bird under study in separate individual paper boxes.

  13. Water hardness and the effects of Cd on oxygen consumption ...

    African Journals Online (AJOL)

    DRINIE

    2004-01-01

    Jan 1, 2004 ... geographical transportation, exposure to a target organism and the responses of the individual organism .... In this manner the centrally placed perforated drain pipe collects faeces and left-over food in the fish ..... fish died before the 96 h exposure period expired (Fig.3). Effects of hypoxic water on the MO2 ...

  14. The effect of pavement-watering on subsurface pavement temperatures

    OpenAIRE

    Hendel, Martin; Royon, Laurent

    2015-01-01

    International audience; Pavement-watering is currently viewed as a potential climate change adaptation and urban heat island mitigation technique. The effects of pavement-watering on pavement temperature measured 5 cm deep are presented and discussed. Subsurface temperature measurements could not be used to improve or optimize pavement-watering methods as was seen in previous work on surface temperatures or subsurface pavement heat flux measurements.

  15. Consumptive water use associated with food waste: case study of fresh mango in Australia

    Science.gov (United States)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  16. Consumption and loss of potable water in the metropolitan region of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Wallace Silva Carvalho

    2015-12-01

    Full Text Available Before the water problem that has taken place in Brazil and the need to reduce energy consumption in the country, it was thought the objective of this study was to evaluate the conditions of use and loss of potable water in the Baixada Fluminense, part of the metropolitan region of Rio de Janeiro (RMRJ, since it is the emergency waste reduction and the efficient and sustainable use of water. This exploratory study aims through a documentary approach, identify the number of water loss in the region. It proves that the loss in the region is more serious than in other states and that awareness campaigns should be implemented as local public policies. Also suggests that cleantech water use can be incorporated into the daily lives of homes and businesses enabling the reduction of water consumption.

  17. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  18. Impact of gari consumption on the water resource of Nigeria | Adeoti ...

    African Journals Online (AJOL)

    Using the 2007 cassava production estimates for Nigeria as baseline, the water impact related to the consumption of gari either as snack or as “eba” (gari reconstituted with hot water to form a dough-like paste) is estimated at 10.52 x 109 m3, out of which 0.38% is due to the use of blue water and 91.3% is due to the use of ...

  19. Consumptive water use in the production of ethanonl and petroleum gasoline.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

    2009-01-30

    The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

  20. Prediction of annual water consumption in Guangdong Province based on Bayesian neural network

    Science.gov (United States)

    Tian, Tao; Xue, Huifeng

    2017-06-01

    In the context of the implementation of the most stringent water resources management system, the role of water demand forecasting for regional water resources management is becoming increasingly significant. Based on the analysis of the influencing factors of water consumption in Guangdong Province, we made the forecast index system of annual water consumption, and constructed the forecast model of annual water consumption of BP neural network, then optimized the regularization BP neural network in utilization rate of water. The results showed that the average absolute percentage error of Bayesian neural network prediction model and BP neural network prediction model is 0.70% and 0.46% respectively. BP neural network model by Bayesian regularization is more ability to improve the accuracy of about 0.24%, more in line with the regional annual water demand forecast high precision requirements. Take the planning index value of Guangdong Province’s thirteen five plan into Bayesian neural network forecasting model, and its forecast value is 45.432 billion cubic meters, which will reach 456.04 billion cubic meters of red water in Guangdong Province in 2020.

  1. Subjective thirst moderates changes in speed of responding associated with water consumption

    Directory of Open Access Journals (Sweden)

    Caroline Jane Edmonds

    2013-07-01

    Full Text Available Participants (N=34 undertook a CANTAB battery on two separate occasions after fasting and abstaining from fluid intake since the previous evening. On one occasion they were offered 500 ml water shortly before testing, and on the other occasion no water was consumed prior to testing. Reaction times, as measured by Simple Reaction Time (SRT, were faster on the occasion on which they consumed water. Furthermore, subjective thirst was found to moderate the effect of water consumption on speed of responding. Response latencies in the SRT task were greater under the no water condition than under the water condition, but only for those participants with relatively high subjective thirst after abstaining from fluid intake overnight. For those participants with relatively low subjective thirst, latencies were unaffected by water consumption, and were similarly fast as those recorded for thirsty participants who had consumed water. These results reveal the novel finding that subjective thirst moderates the positive effect of fluid consumption on speed of responding. The results also showed evidence that practice also affected task performance. These results imply that, for speed of responding at least, the positive effects of water supplementation may result from an attenuation of the central processing resources consumed by the subjective sensation of thirst that otherwise impair the execution of speeded cognitive processes.

  2. Assimilation of water temperature and discharge data for ensemble water temperature forecasting

    Science.gov (United States)

    Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André

    2017-11-01

    Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.

  3. Water and energy consumption of Populus spp. bioenergy systems: A case study in Southern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sevigne, Eva [SosteniPrA (UAB-IRTA), Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Gasol, Carles M. [SosteniPrA (UAB-IRTA), Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Inedit Innovacio S.L. Parc de Recerca de la Universitat Autonoma de Barcelona (UAB), Carretera de Cabrils Km2, 08348 Barcelona (Spain); Brun, Filippo [Dipartimento di Economia e Ingegneria Agraria Forestale e Ambientale, University of Torino (Italy); Rovira, Laura; Pages, Josep Maria; Camps, Francesc [IRTA-Mas Badia, Institut de Recerca i Tecnologia Agroalimentaria (IRTA), Estacion Experimental Fundacion Mas Badia Ctra, De la Tallada, s/n, 17134 La Tallada, Girona (Spain); Rieradevall, Joan; Gabarrell, Xavier [SosteniPrA (UAB-IRTA), Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Chemical Engineering Department, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

    2011-02-15

    With the objectives of climate change mitigation and energy independence, energy crops have been proposed as an alternative to fossil fuels. In recent years short rotation energy crops have been promoted because they provide biomass in short periods of time. However, the impacts of water consumption, in both the impact on the energy balance due to the consumption of irrigation as the impacts on existing water resources, have not been analyzed in depth. This study evaluates the relationship between water, energy and CO{sub 2} emissions of a plot of Populus spp. in Spain with the aim of evaluating the feasibility of its implementation as large-scale cultivation. For the energy and environmental assessment it has been used the life cycle analysis methodology. The results show positive energy balance and environmental improvement respect other energies such as natural gas. Consumption of water required to avoid a kg of CO{sub 2} is 4.6 m{sup 3} and per unit of energy obtained is 45 m{sup 3} GJ{sup -1} considering a life cycle approach and in relation to the water availability of the basin could increase the pressure. Hence, in order to establish energy crops for climate change mitigation water consumption associated must be taken into account for future energy planning. (author)

  4. College Cafeteria Signage Increases Water Intake but Water Position on the Soda Dispenser Encourages More Soda Consumption.

    Science.gov (United States)

    Montuclard, Astrid Linn; Park-Mroch, Jennifer; O'Shea, Amy M J; Wansink, Brian; Irvin, Jill; Laroche, Helena H

    2017-10-01

    To evaluate the effects of improved water location visibility and water dispenser position on the soda dispenser on undergraduate students' beverage choices. Two focus groups with pilot intervention surveys before and after, adding a small sign above the soda dispensers' water button for 6 weeks in a large US university's all-you-can-eat, prepaid dining hall (measured with chi-square tests and logistic and ordinal logistic regression). Focus groups included 15 students. Survey participants included 357 students before and 301 after the intervention. After the intervention, more students reported ever having drunk water with the meal (66.4% to 77.0%; P = .003) and water consumption frequency increased (P = .005). Postintervention, the odds of drinking water increased by 1.57. Preference for other drinks was the main reason for not drinking water. A total of 59% of students had ever changed their preference from water to soda. The clear indication of the water's location increased students' reported water consumption. Further investigation is needed into how a non-independent water dispenser influences students' beverage choice. Clearly labeled, independent water dispensers are recommended. Copyright © 2017 Society for Nutrition Education and Behavior. All rights reserved.

  5. [Characteristics of Caragana microphylla sap flow and water consumption under different weather conditions on Horqin sandy land of northeast China].

    Science.gov (United States)

    Yue, Guang-Yang; Zhao, Ha-Lin; Zhang, Tong-Hui; Yun, Jian-Ying; Niu, Li; He, Yu-Hui

    2007-10-01

    Employing heat balance Dynamax packaged sap flow measuring system and automatic weather recording system, the sap flow of artificial Caragana microphylla community on Horqin sandy land of northeast China was monitored consecutively in 2006, and the photosynthetically effective radiation, air temperature, relative humidity and wind velocity were measured synchronously. According to the manual records of weather conditions, four most representative weather conditions were gathered up to analyze the relationships of C. microphylla sap flow and its single branch water consumption with test meteorological factors. The results showed that under high air temperature and intense radiation on sunny days, the diurnal variation of C. microphylla sap flow appeared a broad peak curve, so as to adapt the circumstance of drought and water shortage via lower transpiration. The diurnal variations of sap flow and its dominant affecting factors differed with weather conditions, and photosynthetically effective radiation was always the dominant factor affecting the sap flow. The variation of the sap flow was the result of comprehensive effects of multi-meteorological factors, and the overall variation trend of water consumption of single branch was declined in the order of sunny days > cloudy days > windy days > rainy days, with the mean value being 459, 310, 281 and 193 mg x d(-1), respectively.

  6. EPA Office of Water (OW): Fish Consumption Advisories and Fish Tissue Sampling Stations NHDPlus Indexed Datasets

    Science.gov (United States)

    The Fish Consumption Advisories dataset contains information on Fish Advisory events that have been indexed to the EPA Office of Water NHDPlus v2.1 hydrology and stored in the Reach Addressing Database (RAD). NHDPlus is a database that interconnects and uniquely identifies the millions of stream segments or reaches that comprise the Nations' surface water drainage system. NHDPlus provides a national framework for assigning reach addresses to water quality related entities, such as fish advisories locations. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network in a manner similar to street addresses. The assignment of reach addresses is accomplished through a process known as reach indexing. Fish consumption advisories and fish tissue sampling stations are reported to EPA by the states. Sampling stations are the locations where a state has collected fish tissue data for use in advisory determinations. Fish consumption advisory locations are coded onto NHDPlus flowline features to create point and linear events. Fish consumption advisory locations are also coded onto NHDPlus waterbody features to create area events. In addition to NHDPlus-reach indexed data, there may also be custom events (point, line, or area) that are not associated with NHDPlus. Although these Fish consumption advisories are not represented in NHDPlus, the data created for them are in an EPA standard format that is co

  7. [Fluoride intake through consumption of water from municipal network in the INMA-Gipuzkoa cohort].

    Science.gov (United States)

    Jiménez-Zabala, Ana; Santa-Marina, Loreto; Otazua, Mónica; Ayerdi, Mikel; Galarza, Ane; Gallastegi, Mara; Ulibarrena, Enrique; Molinuevo, Amaia; Anabitarte, Asier; Ibarluzea, Jesús

    2017-05-22

    To estimate fluoride intake through consumption of water from the municipal network in pregnant women and their children from the INMA-Gipuzkoa cohort and to compare these intakes with recommended levels. In Euskadi (Spain), fluoridation of drinking water is compulsory in water supplies for more than 30,000 inhabitants. 575 pregnant women (recruitment, 2006-2008) and 424 4-year-old children (follow-up, 2010-2012) have been included. Fluoride levels in drinking water were obtained from the water consumption information system of the Basque Country (EKUIS). Water consumption habits and socioeconomic variables were obtained by questionnaire. 74.9% and 87.7% of women and children consumed water from the municipal network. Average fluoride levels in fluoridated water were 0.805 (SD: 0.194) mg/L during baseline recruitment and 0.843 (SD: 0.080) mg/L during follow up, at 4 years old of the children. Average and 95th percentile of fluoride intake were 0.015 and 0.026mg/kg per day in women and 0.033 and 0.059mg/kg per day in children. Considering only fluoride provided by drinking water, 8.71% of children living in fluoridated areas exceeded intake level recommended by the European Food Safety Authority, consisting in 0.05mg/kg per day. The results show that ingested levels of fluoride through consumption of municipal water can exceed the recommended levels in children and encourages further studies that will help in fluoridation policies of drinking water in the future. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Science.gov (United States)

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education).

  9. Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Mesfin M. Mekonnen

    2015-02-01

    Full Text Available This paper assesses the sustainability, efficiency and equity of water use in Latin America and the Caribbean (LAC by means of a geographic Water Footprint Assessment (WFA. It aims to provide understanding of water use from both a production and consumption point of view. The study identifies priority basins and areas from the perspectives of blue water scarcity, water pollution and deforestation. Wheat, fodder crops and sugarcane are identified as priority products related to blue water scarcity. The domestic sector is the priority sector regarding water pollution from nitrogen. Soybean and pasture are priority products related to deforestation. We estimate that consumptive water use in crop production could be reduced by 37% and nitrogen-related water pollution by 44% if water footprints were reduced to certain specified benchmark levels. The average WF per consumer in the region is 28% larger than the global average and varies greatly, from 912 m3/year per capita in Nicaragua to 3468 m3/year in Bolivia. Ironically, the LAC region shows significant levels of undernourishment, although there is abundant water and food production in the region and substantial use of land and water for producing export crops like soybean.

  10. [Quality of water for human consumption and its association with morbimortality in Colombia, 2008-2012].

    Science.gov (United States)

    Guzmán, Blanca Lisseth; Nava, Gerardo; Díaz, Paula

    2015-08-01

    The quality of water for human consumption has been correlated with the occurrence of different diseases. Studying the relationship between these parameters would allow determining the impact of water quality on human health, and to direct preventative measures and promote environmental health. To analyze the quality of water intended for human consumption and its association with morbimortality in Colombia, 2008-2012. The database for surveillance of water quality was analyzed by means of descriptive statistics of the principal indicators (total coliforms, Escherichia coli , turbidity, color, pH, free residual chlorine and water quality risk index). The results were correlated with infant mortality and morbidity due to acute diarrheal diseases, foodborne diseases and hepatitis A. A risk map was prepared to identify those municipalities with the highest risk of water contamination and infant mortality. A high percentage of municipalities did not conform to existing standards for water potability values. Problems were identified that were related to presence of E. coli and total coliforms, as well as absence of free residual chlorine, a situation that was exacerbated in rural areas. Water quality showed a high correlation with infant mortality, highlighting its importance for children's health. Water quality was found to have an important impact on infant mortality. Improving water quality in Colombia will require policies that strengthen water supply systems in this country. Strengthening of environmental health surveillance programs is essential to guide actions aimed at improving water quality and exert a positive impact on health.

  11. Presence of enteric viruses in water samples for consumption in Colombia: Challenges for supply systems.

    Science.gov (United States)

    Peláez, Dioselina; Guzmán, Blanca Lisseth; Rodríguez, Johanna; Acero, Felipe; Nava, Gerardo

    2016-04-15

    Since drinking water can be a vehicle for the transmission of pathogens, the detection of enteric viruses in these water samples is essential to establish the appropriate measures to control and prevent associated diseases.  To analyze the results obtained for enteric viruses in water samples for human consumption received at the Colombian Instituto Nacional de Salud and establish their association with the data on water quality in Colombian municipalities.  We conducted a descriptive-retrospective analysis of the results obtained in the detection of rotavirus, enterovirus, hepatitis A virus and adenovirus in water samples received for complementary studies of enteric hepatitis, acute diarrheal disease and foodborne diseases. Data were correlated with the results of water quality surveillance determined by the national human consumption water quality index (IRCA).  Of the 288 samples processed from 102 Colombian municipalities, 50.7% were positive for viruses: 26.73% for hepatitis A virus, 20.48% for enterovirus and rotavirus and 18.05% for adenovirus. Viruses were detected in 48.26% of non-treated water samples and in 45.83% of treated water samples. The IRCA index showed no correlation with the presence of viruses.  The presence of viruses in water represents a public health risk and, therefore, the prevention of virus transmission through water requires appropriate policies to reinforce water supply systems and improve epidemiological surveillance.

  12. Fire flow water consumption in sprinklered and unsprinklered buildings an assessment of community impacts

    CERN Document Server

    Code Consultants, Inc.

    2012-01-01

    Fire Flow Water Consumption in Sprinklered and Unsprinklered Buildings offers a detailed analysis for calculating the fire water demand required in buildings with existing and non-existant sprinkler systems. The installation of automatic sprinkler systems can significantly reduce the amount of water needed during a fire, but it requires water for commissioning, inspection, testing, and maintenance (CITM). This book provides an estimate of fire water used under both fire conditions, including CITM, to allow communities to develop fire water fees for both sprinklered and unsprinklered buildings that are proportional to the anticipated fire water usage. The types of buildings analyzed include residential (family dwellings as well as those up to four stories in height), business, assembly, institutional, mercantile, and storage facilities. Water volume was studied using guidelines from the International Code Council, the National Fire Protection Association, and the Insurance Services Office. Fire Flow Water Cons...

  13. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  14. Alternative Solution for Consumption Hot Water Recirculation for the Civil Buildings

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2007-01-01

    Full Text Available The sanitary comfort and the effective cost of maintenance in the civil buildings (block of flats are badly affected by the absence of the consumption hot water recirculation. From the technical point of view, the classical solution imposes the doubling of the transport and distribution pipes on the entire route, between the source and the consumption points. The materialization of the solution requires important financial investment, discouraging most of the time and the postponement of the problem solving with important consequences. This paper proposes an alternative technical solution which limits to a minimum the intervention, only in the interior hot water distribution system.

  15. Research and Development Opportunities for Technologies to Influence Water Consumption Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    In April 2015, Argonne National Laboratory hosted a two-day workshop that convened water experts and stakeholders from across industry, government, and academia to undertake three primary tasks: 1) identify technology characteristics that are favorable for motivating behavioral change, 2) identify barriers that have prevented the development and market adoption of technologies with these characteristics in the water sector, and 3) identify concrete research and development pathways that could be undertaken to overcome these barriers, increase the penetration of technologies that influence water consumption behavior, and ultimately reduce domestic water consumption. While efforts to reduce water consumption have gained momentum in recent years, there are a number of key barriers that have limited the effectiveness of such efforts. Chief among these is the fact that many consumers have limited awareness of their water consumption patterns because of poor data availability, and/or are unmotivated to reduce their consumption because of low costs and split incentives. Without improved data availability and stronger price signals, it will be difficult to effect true transformative behavioral change. This report also reviews a number of technology characteristics that have successfully motivated behavioral change in other sectors, as well as several technologies that could be developed specifically for the water sector. Workshop participants discussed how technologies that provide active feedback and promote measurable goals and social accountability have successfully influenced changes in other types of behavior. A range of regulatory and policy actions that could be implemented to support such efforts are also presented. These include institutional aggregation, revenue decoupling, and price structure reforms. Finally, several R&D pathways were proposed, including efforts to identify optimal communication strategies and to better understand consumer perceptions and

  16. Decoupling Water Consumption and Environmental Impact on Textile Industry by Using Water Footprint Method: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-02-01

    Full Text Available The rapid development of China’s textile industry has led to consumption and pollution of large volumes of water. Therefore, the textile industry has been the focus of water conservation and waste reduction in China’s 13th Five-Year Plan (2016–2020. The premise of sustainable development is to achieve decoupling of economic growth from water consumption and wastewater discharge. In this work, changes in the blue water footprint, grey water footprint, and the total water footprint of the textile industry from 2001 to 2014 were calculated. The relationship between water footprint and economic growth was then examined using the Tapio decoupling model. Furthermore, factors influencing water footprint were determined through logarithmic mean Divisia index (LMDI method. Results show that the water footprint of China’s textile industry has strongly decoupled for five years (2003, 2006, 2008, 2011, and 2013 and weakly decoupled for four years (2005, 2007, 2009, and 2010. A decoupling trend occurred during 2001–2014, but a steady stage of decoupling had not been achieved yet. Based on the decomposition analysis, the total water footprint mainly increased along with the production scale. On the contrary, technical level is the most important factor in inhibiting the water footprint. In addition, the effect of industrial structure adjustment is relatively weak.

  17. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  18. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Variability in estuarine water temperature gradients and influence on the distribution of zooplankton: a biogeographical perspective. TH Wooldridge, SHP Deyzel. Abstract. Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis ...

  19. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana

    Directory of Open Access Journals (Sweden)

    Jim Wright

    2016-03-01

    Full Text Available There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012−2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR = 32.3, p < 0.001, whilst packaged (sachet or bottled water use had the greatest protective effect (RRR = 0.06, p < 0.001, compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision.

  20. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana

    Science.gov (United States)

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A.; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-01-01

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012−2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p water use had the greatest protective effect (RRR = 0.06, p water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision. PMID:27005650

  1. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana.

    Science.gov (United States)

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-03-09

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012-2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p water use had the greatest protective effect (RRR = 0.06, p water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision.

  2. Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    Wim G.M. Bastiaanssen

    2014-10-01

    Full Text Available The increasing competition for water resources requires a better understanding of flows, fluxes, stocks, and the services and benefits related to water consumption. This paper explains how public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer (MODIS, Second Generation Meteosat (MSG, Tropical Rainfall Measurement Mission (TRMM and various altimeter measurements can be used to estimate net water production (rainfall (P > evapotranspiration (ET and net water consumption (ET > P of Nile Basin agro-ecosystems. Rainfall data from TRMM and the Famine Early Warning System Network (FEWS-NET RainFall Estimates (RFE products were used in conjunction with actual evapotranspiration from the Operational Simplified Surface Energy Balance (SSEBop and ETLook models. Water flows laterally between net water production and net water consumption areas as a result of runoff and withdrawals. This lateral flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and non-stream flow using the discharge data. A series of essential water metrics necessary for successful integrated water management are explained and computed. Net water withdrawal estimates (natural and humanly instigated were assumed to be the difference between net rainfall (Pnet and actual evapotranspiration (ET and some first estimates of withdrawals—without flow meters—are provided. Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water withdrawals for the irrigation sector. There is a strong need for the development of more open-access Earth Observation databases, especially for information related to actual ET. The fluxes, flows and storage changes presented form the basis for a global framework to describe monthly and annual water accounts in ungauged river basins.

  3. Earth observation based assessment of the water production and water consumption of Nile Basin agro-ecosystems

    Science.gov (United States)

    Bastiaanssen, Wim G.M.; Karimi, Poolad; Rebelo, Lisa-Maria; Duan, Zheng; Senay, Gabriel; Muthuwatte, Lal; Smakhtin, Vladimir

    2014-01-01

    The increasing competition for water resources requires a better understanding of flows, fluxes, stocks, and the services and benefits related to water consumption. This paper explains how public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer (MODIS), Second Generation Meteosat (MSG), Tropical Rainfall Measurement Mission (TRMM) and various altimeter measurements can be used to estimate net water production (rainfall (P) > evapotranspiration (ET)) and net water consumption (ET > P) of Nile Basin agro-ecosystems. Rainfall data from TRMM and the Famine Early Warning System Network (FEWS-NET) RainFall Estimates (RFE) products were used in conjunction with actual evapotranspiration from the Operational Simplified Surface Energy Balance (SSEBop) and ETLook models. Water flows laterally between net water production and net water consumption areas as a result of runoff and withdrawals. This lateral flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and non-stream flow using the discharge data. A series of essential water metrics necessary for successful integrated water management are explained and computed. Net water withdrawal estimates (natural and humanly instigated) were assumed to be the difference between net rainfall (Pnet) and actual evapotranspiration (ET) and some first estimates of withdrawals—without flow meters—are provided. Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water withdrawals for the irrigation sector. There is a strong need for the development of more open-access Earth Observation databases, especially for information related to actual ET. The fluxes, flows and storage changes presented form the basis for a global framework to describe monthly and annual water accounts in ungauged river basins.

  4. Food consumption patterns and their effect on water requirement in China

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-06-01

    Full Text Available It is widely recognized that food consumption patterns significantly impact water requirements. The aim of this paper is to quantify how food consumption patterns influence water requirements in China. The findings show that per capita water requirement for food (CWRF has increased from 255 m3 cap-1y−1 in 1961 to 860 m3 cap-1 y−1 in 2003, largely due to an increase in the consumption of animal products in recent decades. Although steadily increasing, the CWRF of China is still much lower than that of many developed countries. The total water requirement for food (TWRF has been determined as 1127 km3 y-1 in 2003. Three scenarios are proposed to project future TWRF, representing low, medium, and high levels of modernization (S1, S2, and S3, respectively. Analysis of these three scenarios indicates that TWRF will likely continue to increase in the next three decades. An additional amount of water ranging between 407 and 515 km3 y-1 will be required in 2030 compared to the TWRF in 2003. This will undoubtedly put high pressure on China's already scarce water resources. We conclude that the effect of the food consumption patterns on China's water resources is substantial both in the recent past and in the near future. China will need to strengthen "green water" management and to take advantage of "virtual water" import to meet the additional TWRF.

  5. Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water

    Directory of Open Access Journals (Sweden)

    Christian Klassert

    2015-07-01

    Full Text Available Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 m3 per year significantly below the absolute scarcity threshold of 500 m3, and strong population growth, especially due to the Syrian refugee crisis. A transition to more sustainable water consumption patterns will likely require Jordan’s water authorities to rely more strongly on water demand management in the future. We conduct a case study of the effects of pricing policies, using an agent-based model of household water consumption in Jordan’s capital Amman, in order to analyze the distribution of burdens imposed by demand-side policies across society. Amman’s households face highly intermittent piped water supply, leading them to supplement it with water from storage tanks and informal private tanker operators. Using a detailed data set of the distribution of supply durations across Amman, our model can derive the demand for additional tanker water. We find that integrating these different supply sources into our model causes demand-side policies to have strongly heterogeneous effects across districts and income groups. This highlights the importance of a disaggregated perspective on water policy impacts in order to identify and potentially mitigate excessive burdens.

  6. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  7. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water.

    Science.gov (United States)

    Martínez-Villafañe, J F; Montero-Ocampo, C; García-Lara, A M

    2009-12-30

    A systematic study of the effect of design and operation conditions of an electrochemical reactor on the treatment time for arsenic (As) electro-removal from underground water (GW) was carried out to analyse the energy and electrode consumption. The effects of four factors--current density, interelectrode distance, electrode area-volume ratio, and liquid motion driving mode--were evaluated. The response variables were the energy and the electrode consumption and the treatment time to reduce the GW residual As concentration to 10 microg L(-1), which is the maximum contaminant level (MCL) established by the World Health Organization (WHO) in drinking water. The results obtained in this study showed that the factor that had the greatest effect on most of the response variables was the liquid motion driving mode. The best residence time was 20s, which favoured low energy consumption (58.78 Wh m(-3)) and low electrode material loss (9.59 g m(-3)).

  8. Energy consumption and control response evaluations of AODV routing in WSANs for building-temperature control.

    Science.gov (United States)

    Booranawong, Apidet; Teerapabkajorndet, Wiklom; Limsakul, Chusak

    2013-06-27

    The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.

  9. Energy Consumption and Control Response Evaluations of AODV Routing in WSANs for Building-Temperature Control

    Directory of Open Access Journals (Sweden)

    Chusak Limsakul

    2013-06-01

    Full Text Available The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs, focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.

  10. Hotel water consumption at a seasonal mass tourist destination. The case of the island of Mallorca.

    Science.gov (United States)

    Deyà Tortella, Bartolomé; Tirado, Dolores

    2011-10-01

    While it is true that tourism is one of the main driving forces behind economic growth in several world regions, it is also true that tourism can have serious negative environmental impacts, especially with regard to water resources. The tourist water demand can generate big problems of sustainability, mainly in those regions where water is scarce, as occurs in most coastal and small island destinations where a large part of world tourism is concentrated. Given the shortage of literature on the subject, further research into the tourist water demand is required, with particular attention to the hotel sector, since hotels are the most popular option for tourists, displaying higher levels of water consumption. The main purpose of this study is to develop a model to analyse hotel water consumption at a mature sun and sand destination with a strong seasonal pattern and scarcity of water; characteristics shared by some of the world's main tourist destinations. Our model includes a set of different hotel variables associated with physical, seasonal and management-related factors and it improves on the capacity to explain water consumption at such destinations. Following a hierarchical regression methodology, the model is empirically tested through a survey distributed to managers of a representative sample of hotels on the island of Mallorca. From the obtained results, interesting recommendations can be made for both hotel managers and policy makers. Among these, it should be highlighted that the strategic move contemplated by many mature destinations towards a higher quality, low-season model could have significant negative effects in terms of the sustainability of water resources. Our results also conclude that managerial decisions, like the system of accommodation that is offered (i.e. the proliferation of the "all-inclusive" formula, both at mature and new destinations), could give rise to the same negative effect. Development of water saving initiatives (usually

  11. 21 CFR 1250.42 - Water systems; constant temperature bottles.

    Science.gov (United States)

    2010-04-01

    ... and protected as to minimize the hazard of contamination of the water supply. (c) On all new or... containers used for storing or dispensing potable water shall be kept clean at all times and shall be... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water systems; constant temperature bottles. 1250...

  12. Experimental investigation of stabilization of flowing water temperature with a water-PCM heat exchanger

    Directory of Open Access Journals (Sweden)

    Charvat Pavel

    2014-03-01

    Full Text Available Experiments have been carried out in order to investigate the stabilization of water temperature with a water-PCM heat exchanger. The water-PCM heat exchanger was of a rather simple design. It was a round tube, through which the water flowed, surrounded with an annular layer of PCM. The heat exchanger was divided into one meter long segments (modules and the water temperature was monitored at the outlet of each of the segments. A paraffin-based PCM with the melting temperature of 42 °C was used in the experiments. The experimental set-up consisted of two water reservoirs kept at different temperatures, the water-PCM heat exchanger, PC controlled valves and a data acquisition system. As the first step a response to a step change in the water temperature at the inlet of the heat exchanger was investigated. Subsequently, a series of experiments with a square wave change of temperature at the inlet of the exchanger were carried out. The square wave temperature profile was achieved by periodic switching between the two water reservoirs. Several amplitudes and periods of temperature square wave were used. The results of experiments show that a water-PCM heat exchanger can effectively be used to stabilize the flowing water temperature when the inlet temperature changes are around the melting range of the PCM.

  13. RESEARCH REGARDING THE WATER CONSUMPTION OF TOMATOES, GREEN PEPPER AND CUCUMBERS CULTIVATED IN SOLARIUMS

    Directory of Open Access Journals (Sweden)

    M DIRJA

    2003-12-01

    Full Text Available In such conditions, saving water represents a very important aspect, both economically and socially. But in horticulture saving water must consider another very important aspect, that of providing food for a continuously growing population. So horticultors have the difficult task of obtaining big productions as well as saving water. Our research come to support the cultivators who grow tomatoes, green peppers and cucumbers in solariums. Determining precisely the water consumption of this species will create the possibility of avoiding both the excess and the lack of water of the tomatoes, green peppers and cucumbers grown in solariums, each of them having negative effects on production. Establishing the best water regime of this crop will lead to the application of optimum water quantities, at the right time and by the most efficient irrigation methods. This way, the cultivators will have the possibility of obtaining high productions, of superior quality, justified economically.

  14. Income-based projections of water footprint of food consumption in Uzbekistan

    Science.gov (United States)

    Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur

    2013-11-01

    Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.

  15. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    Science.gov (United States)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  16. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2010-09-01

    Full Text Available This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources. A model of multi-criteria optimization for energy efficiency based on water and environmental management policies, including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution, was developed and applied to a water supply system. The methodology developed includes three solutions: (1 the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed, (2 the optimization of pumping operation according to the electricity tariff and water demand, and (3 the use of other renewable energy sources, including a wind turbine, to supply energy to the pumping station, with the remaining energy being sold to the national electric grid. The use of an integrated solution (water and energy proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power, and the use of a wind source allows for the reduction of energy consumption in pumping stations, as well as of the CO2 emission to the atmosphere.

  17. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  18. Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well

    Science.gov (United States)

    2013-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input–output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20 000 m3 (with a range from 6700 to 33 000 m3) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300–3000 kg N-eq eutrophication potential, 900–23 000 kg 2,4D-eq freshwater ecotoxicity potential, 0–370 kg benzene-eq carcinogenic potential, and 2800–71 000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well

  19. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    Science.gov (United States)

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is

  20. Rational Consumption of Water in Administrative Public Buildings: The Experience of the Bahia Administrative Center, Brazil

    Directory of Open Access Journals (Sweden)

    Samara Fernanda da Silva

    2014-08-01

    Full Text Available The government has to lead, by example, the effort for more rational water use. Nevertheless, public buildings in countries like Brazil lack the operational and maintenance organization necessary to induce better environmental practices. This paper presents the results of a five-year effort to control and reduce water use in governmental facilities in Salvador, Bahia. Seventeen state government headquarters in Bahia took part in this initiative. The basic actions taken include: daily monitoring and analysis of water consumption, inspections and adjustments of hydraulic equipment flow, rapid repair of leaks and layout improvements in toilets. All of these are part of the main initiative, which aims to implement water management in the facilities. Ecoteams were created and trained to conduct these efforts. Water control, consumption analysis and communication have been made using AGUAPURA VIANET, an Internet software designed by the Federal University of Bahia for this specific purpose. From June 2008, to December 2013, an estimated 270,000 m3 of potable water have been saved, which represents US$ 2.7 million in water and waste water costs. This represents a monthly savings of 31% in expenses compared to the practices before the program started.

  1. Dental fluorosis: concentration of fluoride in drinking water and consumption of bottled beverages in school children.

    Science.gov (United States)

    Pérez-Pérez, N; Torres-Mendoza, N; Borges-Yáñez, A; Irigoyen-Camacho, M E

    2014-01-01

    The purpose of the study was to identify dental fluorosis prevalence and to analyze its association with tap water fluoride concentration and beverage consumption in school children from the city of Oaxaca, who were receiving fluoridated salt. A cross-sectional study was performed on elementary public school children. Dean's Index was applied to assess dental fluorosis. The parents of the children who were studied completed a questionnaire about socio-demographic characteristics and type of beverages consumed by their children. A total of 917 school children participated in this study. Dental fluorosis prevalence was 80.8%. The most frequent fluorosis category was very mild (41.0%), and 16.4% of the children were in the mild category. The mean water fluoride concentration was 0.43 ppm (±0.12). No association was detected between tap water fluoride concentration and fluorosis severity. The multinomial regression model showed an association among the mild fluorosis category and age (OR = 1.25, [95% CI 1.04, 1.50]) and better socio-economic status (OR = 1.78, [95% CI 1.21, 2.60]), controlling for fluoride concentration in water. Moderate and severe fluorosis were associated with soft drink consumption (OR = 2.26, [95% IC 1.01, 5.09]), controlling for age, socio-economic status, and water fluoride concentration. The prevalence of fluorosis was high. Mild fluorosis was associated with higher socio-economic status, while higher fluorosis severity was associated with soft drink consumption.

  2. The linkage between household water consumption and rainfall in the semi-arid region of East Nusa Tenggara, Indonesia

    Science.gov (United States)

    Messakh, J. J.; Moy, D. L.; Mojo, D.; Maliti, Y.

    2018-01-01

    Several studies have shown that the amount of water consumption by communities will depend on the factors of water consumption patterns that are influenced by social, cultural, economic and local climate conditions. Research on the linkage between rainfall and household water consumption in semi-arid areas of Indonesia has never been done. This study has been conducted on 17 regions in NTT, and case study has taken samples in one town and one village. The research used survey and documentation method. The results show that the average amount of household water consumption in semi-arid region of East Nusa Tenggara is 107 liters / person / day. Statistical test results using Pearson correlation found r = -0.194 and sig = 0.448. This means that there is a negative correlation between rainfall and household water consumption. The greater the rainfall the smaller the consumption of water, or the smaller the rainfall the greater the consumption of water, but the linkage is not significant. Research shows that the amount of household water consumption will be influenced by many interrelated factors and none of the most dominant factors, including the size of the rainfall that occurs in a region.

  3. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  4. Effect of Climate Change on Water Temperature and ...

    Science.gov (United States)

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 deg C per decade by 2040-2069. An air temperature increase of 3 deg C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7 to 1.6 deg C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may ameliorate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 deg C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 deg C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (rang

  5. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is

  6. NOS CO-OPS Meteorological Data, Water Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Water Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  7. NOAA NDBC SOS, 2006-present, sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  8. Spatio-temporal attributes of water temperature and ...

    African Journals Online (AJOL)

    2013-01-20

    Jan 20, 2013 ... on macroinvertebrate assemblages, particularly in association with changing altitude within given southern African mountain drainage systems. Thus ... Keywords: Aquatic macroinvertebrates, water temperature, hydraulic biotypes, Drakensberg ..... altitudinal spatial density of monitoring sites be considered.

  9. Surface temperatures and temperature gradient features of the US Gulf Coast waters

    Science.gov (United States)

    Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.

    1977-01-01

    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.

  10. Life cycle water consumption and withdrawal requirements of ethanol from corn grain and residues.

    Science.gov (United States)

    Mishra, Gouri Shankar; Yeh, Sonia

    2011-05-15

    We assessed the water requirements of ethanol from corn grain and crop residue. Estimates are explicit in terms of sources-green (GW) and blue (BW) water, consumptive and nonconsumptive requirements across the lifecycle, including evapotranspiration, application and conveyance losses, biorefinery uses, and water use of energy inputs, and displaced requirements or credits due to coproducts. Ethanol consumes 50-146 L/vehicle kilometer traveled (VKT) of BW and 1-60 L/VKT of GW for irrigated corn and 0.6 L/VKT of BW and 70-137 L/VKT of GW for rain-fed corn after coproduct credits. Extending the system boundary to consider application and conveyance losses and the water requirements of embodied energy increases the total BW withdrawal from 23% to 38% and BW + GW consumption from 5% to 16%. We estimate that, in 2009, 15-19% of irrigation water is used to produce the corn required for ethanol in Kansas and Nebraska without coproduct credits and 8-10% after credits. Harvesting and converting the cob to ethanol reduces both the BW and GW intensities by 13%. It is worth noting that the use of GW is not without impacts, and the water quantity and water quality impacts at the local/seasonal scale can be significant for both fossil fuel and biofuel.

  11. Investigations of hot water temperature changes at the pipe outflow

    Science.gov (United States)

    Wojtkowiak, Janusz; Oleśkowicz-Popiel, Czesław

    2017-11-01

    In this paper a process of cold water withdrawing from hot water supply pipe systems without recirculation is considered. System of partial differential equations was used to describe the pipe and water temperature changes. An exact solution of a simplified form of the equations was obtained and validated experimentally. The exact solution was applied to calculate the hot water temperature changes at the pipe outflow. Calculations were done for typical pipe materials (PP, PE, Cu), different pipe diameters and lengths as well as for various water flow rates. It was shown that in order to obtain the required hot water temperature in the tap, there is necessary to withdrawn much more (even two times) water from the pipe in comparison to the pipe volume. The reason of such significant water wastes is a heat exchange between hot water flowing inside the pipe and the colder pipe walls. The results can be useful for optimal selection of hot water supply pipes as well as for making decision about applying of hot water recirculating systems.

  12. Water temperature modeling in the Garonne River (France

    Directory of Open Access Journals (Sweden)

    Larnier K.

    2010-10-01

    Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.

  13. Water Consumption in European Children: Associations with Intake of Fruit Juices, Soft Drinks and Related Parenting Practices.

    Science.gov (United States)

    Mantziki, Krystallia; Renders, Carry M; Seidell, Jaap C

    2017-05-31

    Background : High intake of fruit juices and soft drinks contributes to excessive weight gain and obesity in children. Furthermore, parenting practices play an important role in the development of children's dietary habits. The way parents play this role in the development of their children's choices of beverages is still unclear. Objectives : To study the associations: (1) of both fruit juices and soft drinks consumption with water consumption of children and (2) The associations between parenting practices towards fruit juices and soft drinks and water consumption of children. Design : Cross-sectional data from 6 to 8 year old children from seven European communities ( n = 1187) were collected. Associations among fruit juices, soft drinks, the respective parenting practices and the child's water consumption were assessed by parental questionnaires. Results : The consumption of water was inversely associated with that of soft drinks but not with the consumption of fruit juices. The child's water intake was favorably influenced when stricter parenting practices towards soft drinks were adopted (e.g., less parental allowance, low home availability and high parental self-efficacy in managing intake). There was less influence observed of parenting practices towards fruit juices. Fruit juices were consumed more often than soft drinks. Conclusions : Low consumption of soft drinks-and not of fruit juices-was associated with high water consumption in children in the current study. Moreover, parenting practices towards both fruit juices and soft drinks were associated with the water intake of the children, irrespective of their socio-economic status.

  14. Energy consumption by forward osmosis treatment of landfill leachate for water recovery.

    Science.gov (United States)

    Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen

    2017-05-01

    Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  16. Encouraging Consumption of Water in School and Child Care Settings: Access, Challenges, and Strategies for Improvement

    Science.gov (United States)

    Hampton, Karla E.

    2011-01-01

    Children and adolescents are not consuming enough water, instead opting for sugar-sweetened beverages (sodas, sports and energy drinks, milks, coffees, and fruit-flavored drinks with added sugars), 100% fruit juice, and other beverages. Drinking sufficient amounts of water can lead to improved weight status, reduced dental caries, and improved cognition among children and adolescents. Because children spend most of their day at school and in child care, ensuring that safe, potable drinking water is available in these settings is a fundamental public health measure. We sought to identify challenges that limit access to drinking water; opportunities, including promising practices, to increase drinking water availability and consumption; and future research, policy efforts, and funding needed in this area. PMID:21680941

  17. Effects of temperature and growing seasons on crop water ...

    African Journals Online (AJOL)

    The crop water requirement (CWR) depends on several factors including temperature and growing seasons. This study investigated the effects of temperature and growing seasons on CWR in Saudi Arabia. Increase in temperature by 1°C increased the CWR by 1.9 - 2.9%, 1.9 – 3.0% and 2.2 – 3.8% for dates, alfalfa and ...

  18. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  19. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  20. The real water consumption behind drinking water: the case of Italy.

    Science.gov (United States)

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Global Changes and Drivers of the Water Footprint of Food Consumption: A Historical Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2014-05-01

    Full Text Available Water is one of the most important limiting resources for food production. How much water is needed for food depends on the size of the population, average food consumption patterns and food production per unit of water. These factors show large differences around the world. This paper analyzes sub-continental dynamics of the water footprint of consumption (WFcons for the prevailing diets from 1961 to 2009 using data from the Food and Agriculture Organization (FAO. The findings show that, in most regions, the water needed to feed one person decreased even if diets became richer, because of the increase in water use efficiency in food production during the past half-century. The logarithmic mean Divisia index (LMDI decomposition approach is used to analyze the contributions of the major drivers of WFcons for food: population, diet and agricultural practices (output per unit of water. We compare the contributions of these drivers through different subcontinents, and find that population growth still was the major driver behind increasing WFcons for food until now and that potential water savings through agricultural practice improvements were offset by population growth and diet change. The changes of the factors mentioned above were the largest in most developing areas with rapid economic development. With the development of globalization, the international food trade has brought more and more water savings in global water use over time. The results indicate that, in the near future and in many regions, diet change is likely to override population growth as the major driver behind WFcons for food.

  2. Interacting Temperature and Water Activity Modulate Production of ...

    African Journals Online (AJOL)

    Online2PDF.com

    This study evaluated the effect of temperature and water activity (aw) on destruxin A (DA) production by two strains of M. ... 32. West African Journal of Applied Ecology, vol. 24 (1), 2016 water stress on destruxin production in ..... Rearing tomato whitefly and field evaluation of modified and unmodified conidia of. Beauveria ...

  3. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Temperature-programmed desorption (TPD) of water and ammonia over. ZrO2 and sulphated ZrO2 prepared by different methods has been investigated for measuring strong acidity and acidity distribution on sulphated zirconia-type solid super-acid catalysts. The TPD of water provides a simple reliable method for ...

  4. Assessment of water consumptions in small mediterranean islands' primary schools by means of a long-term online monitoring

    Science.gov (United States)

    Ferraris, Marco; De Gisi, Sabino; Farina, Roberto

    2017-10-01

    A key challenge of our society is improving schools through the sustainable use of resources especially in countries at risk of desertification. The estimation of water consumption is the starting point for the correct dimensioning of water recovery systems. To date, unlike the energy sector, there is a lack of scientific information regarding water consumption in school buildings. Available data refer roughly to indirect estimates by means of utility bills and therefore no information on the role of water leakage in the internal network of the school is provided. In this context, the aim of the work was to define and implement an on-line monitoring system for the assessment of water consumptions in a small Mediterranean island primary school to achieve the following sub-goals: (1) definition of water consumption profile considering teaching activities and secretarial work; (2) direct assessment of water consumptions and leakages and, (3) quantification of the behaviour parameters. The installed monitoring system consisted of 33 water metres (3.24 persons per water metre) equipped with sensors set on 1-L impulse signal and connected to a data logging system. Results showed consumptions in the range 13.6-14.2 L/student/day and leakage equal to 54.8 % of the total water consumptions. Considering the behavioural parameters, the consumptions related to toilet flushing, personal, and building cleaning were, respectively, 54, 43 and 3 % of the total water ones. Finally, the obtained results could be used for dimensioning the most suitable water recovery strategies at school level such as grey water or rainwater recovery systems.

  5. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction.

    Science.gov (United States)

    Wang, Kai-Tuo; Tang, Qing; Cui, Xue-Min; He, Yan; Liu, Le-Ping

    2016-07-13

    The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology.

  6. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    hygroscopic, while ethanol is renewable and non-toxic (94). Water has a detrimental effect on the reaction because soaps can be formed, which cause...Lavric, V. (2005) Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process, Energy Conversion and...2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Glycerin Reformation in High Temperature and Pressure Water

  7. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  8. The Effects of Mean Radiant Temperature on Thermal Comfort, Energy Consumption and Control – A Critical Overview

    NARCIS (Netherlands)

    V. Soebarto; J. van Hoof; E. Halawa

    2014-01-01

    Halawa, E., van Hoof, J., Soebarto, V. (2014) The Effects of Mean Radiant Temperature on Thermal Comfort, Energy Consumption and Control – A Critical Overview. Renewable & Sustainable Energy Review 37:907-918 doi: 10.1016/j.rser.2014.05.040

  9. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  10. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  11. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China.

    Science.gov (United States)

    Song, Guobao; Li, Mingjing; Semakula, Henry Musoke; Zhang, Shushen

    2015-10-01

    Strategies for reducing food waste and developing sustainable diets require information about the impacts of consumption behavior and waste generation on climatic, water, and land resources. We quantified the carbon, water, and ecological footprints of 17,110 family members of Chinese households, covering 1935 types of foods, by combining survey data with available life-cycle assessment data sets. We also summarized the patterns of both food consumption and waste generation and analyzed the factors influencing the observed trends. The average person wasted (consumed) 16 (415) kg of food at home annually, equivalent to 40 (1080) kg CO2e, 18 (673) m(3), and 173 (4956) gm(2) for the carbon, water and ecological footprints, respectively. The generation of food waste was highly correlated with consumption for various food groups. For example, vegetables, rice, and wheat were consumed the most and accounted for the most waste. In addition to the three plant-derived food groups, pork and aquatic products also contributed greatly to embedded footprints. The data obtained in this study could be used for assessing national food security or the carrying capacity of resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  13. Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981

    Science.gov (United States)

    Paulachok, Gary N.

    1986-01-01

    Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.

  14. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise.

    Science.gov (United States)

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian

    2010-12-01

    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (PEPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (PEPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  15. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  16. The effect of water deficit on body temperature during rugby.

    Science.gov (United States)

    Cohen, I; Mitchell, D; Seider, R; Kahn, A; Phillips, F

    1981-07-04

    Sweat losses, water deficits and changes in rectal temperature were measured in 13 first-league players during a rugby match. Changes in plasma volume, serum electrolyte and blood glucose levels were also determined. Rectal temperatures were markedly elevated after the match. Both temperatures reached levels which are known to be associated with an impairment of physical, mental and psychological function, and could have caused a deterioration in performance during the second half of the match. Body temperatures were high enough to have predisposed to aggressive behaviour. Increases in rectal temperature were related to water deficit. The small volumes of fluid ingested by the players just before and during the match suggest that they are unaware of the importance of preventing dehydration. Recommendations are made to reduce the risk of hyperthermia. Glucose and electrolyte supplementation is not required just before and during rugby.

  17. Plain Water and Sugar-Sweetened Beverage Consumption in Relation to Energy and Nutrient Intake at Full-Service Restaurants.

    Science.gov (United States)

    An, Ruopeng

    2016-05-04

    Drinking plain water, such as tap or bottled water, provides hydration and satiety without adding calories. We examined plain water and sugar-sweetened beverage (SSB) consumption in relation to energy and nutrient intake at full-service restaurants. Data came from the 2005-2012 National Health and Nutrition Examination Survey, comprising a nationally-representative sample of 2900 adults who reported full-service restaurant consumption in 24-h dietary recalls. Linear regressions were performed to examine the differences in daily energy and nutrient intake at full-service restaurants by plain water and SSB consumption status, adjusting for individual characteristics and sampling design. Over 18% of U.S. adults had full-service restaurant consumption on any given day. Among full-service restaurant consumers, 16.7% consumed SSBs, 2.6% consumed plain water but no SSBs, and the remaining 80.7% consumed neither beverage at the restaurant. Compared to onsite SSB consumption, plain water but no SSB consumption was associated with reduced daily total energy intake at full-service restaurants by 443.4 kcal, added sugar intake by 58.2 g, saturated fat intake by 4.4 g, and sodium intake by 616.8 mg, respectively. Replacing SSBs with plain water consumption could be an effective strategy to balance energy/nutrient intake and prevent overconsumption at full-service restaurant setting.

  18. Plain Water and Sugar-Sweetened Beverage Consumption in Relation to Energy and Nutrient Intake at Full-Service Restaurants

    Directory of Open Access Journals (Sweden)

    Ruopeng An

    2016-05-01

    Full Text Available Background: Drinking plain water, such as tap or bottled water, provides hydration and satiety without adding calories. We examined plain water and sugar-sweetened beverage (SSB consumption in relation to energy and nutrient intake at full-service restaurants. Methods: Data came from the 2005–2012 National Health and Nutrition Examination Survey, comprising a nationally-representative sample of 2900 adults who reported full-service restaurant consumption in 24-h dietary recalls. Linear regressions were performed to examine the differences in daily energy and nutrient intake at full-service restaurants by plain water and SSB consumption status, adjusting for individual characteristics and sampling design. Results: Over 18% of U.S. adults had full-service restaurant consumption on any given day. Among full-service restaurant consumers, 16.7% consumed SSBs, 2.6% consumed plain water but no SSBs, and the remaining 80.7% consumed neither beverage at the restaurant. Compared to onsite SSB consumption, plain water but no SSB consumption was associated with reduced daily total energy intake at full-service restaurants by 443.4 kcal, added sugar intake by 58.2 g, saturated fat intake by 4.4 g, and sodium intake by 616.8 mg, respectively. Conclusion: Replacing SSBs with plain water consumption could be an effective strategy to balance energy/nutrient intake and prevent overconsumption at full-service restaurant setting.

  19. Climate and basin drivers of seasonal river water temperature dynamics

    Science.gov (United States)

    Laizé, Cédric L. R.; Bruna Meredith, Cristian; Dunbar, Michael J.; Hannah, David M.

    2017-06-01

    Stream water temperature is a key control of many river processes (e.g. ecology, biogeochemistry, hydraulics) and services (e.g. power plant cooling, recreational use). Consequently, the effect of climate change and variability on stream temperature is a major scientific and practical concern. This paper aims (1) to improve the understanding of large-scale spatial and temporal variability in climate-water temperature associations, and (2) to assess explicitly the influence of basin properties as modifiers of these relationships. A dataset was assembled including six distinct modelled climatic variables (air temperature, downward short-wave and long-wave radiation, wind speed, specific humidity, and precipitation) and observed stream temperatures for the period 1984-2007 at 35 sites located on 21 rivers within 16 basins (Great Britain geographical extent); the study focuses on broad spatio-temporal patterns, and hence was based on 3-month-averaged data (i.e. seasonal). A wide range of basin properties was derived. Five models were fitted (all seasons, winter, spring, summer, and autumn). Both site and national spatial scales were investigated at once by using multi-level modelling with linear multiple regressions. Model selection used multi-model inference, which provides more robust models, based on sets of good models, rather than a single best model. Broad climate-water temperature associations common to all sites were obtained from the analysis of the fixed coefficients, while site-specific responses, i.e. random coefficients, were assessed against basin properties with analysis of variance (ANOVA). All six climate predictors investigated play a role as a control of water temperature. Air temperature and short-wave radiation are important for all models/seasons, while the other predictors are important for some models/seasons only. The form and strength of the climate-stream temperature association vary depending on season and on water temperature. The

  20. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  1. Possible treatments for arsenic removal in Latin American waters for human consumption

    Energy Technology Data Exchange (ETDEWEB)

    Litter, Marta I., E-mail: litter@cnea.gov.a [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, CP 1650, San Martin, Prov. de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, CP 1033, Ciudad de Buenos Aires (Argentina); Instituto de Investigacion e Ingenieria Ambiental, Universidad Nacional de Gral. San Martin, Peatonal Belgrano 3563, 1o piso, CP 1650, San Martin, Prov. de Buenos Aires (Argentina); Morgada, Maria E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, CP 1033, Ciudad de Buenos Aires (Argentina); Bundschuh, Jochen [University of Applied Sciences, Institute of Applied Research, Moltkestr. 30, 76133 Karlsruhe (Germany); Department of Earth Sciences, National Cheng Kung University, University Road, Tainan City 701, Taiwan (China)

    2010-05-15

    Considering the toxic effects of arsenic, the World Health Organization recommends a maximum concentration of 10 mug L{sup -1} of arsenic in drinking water. Latin American populations present severe health problems due to consumption of waters with high arsenic contents. The physicochemical properties of surface and groundwaters are different from those of other more studied regions of the planet, and the problem is still publicly unknown. Methods for arsenic removal suitable to be applied in Latin American waters are here summarized and commented. Conventional technologies (oxidation, coagulation-coprecipitation, adsorption, reverse osmosis, use of ion exchangers) are described, but emphasis is made in emergent decentralized economical methods as the use of inexpensive natural adsorbents, solar light technologies or biological treatments, as essential to palliate the situation in poor, isolated and dispersed populations of Latin American regions. - Low-cost techniques should be urgently investigated to remove arsenic in drinking water in poor disperse rural and urban Latin American populations.

  2. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  3. Urban food consumption and associated water resources: The example of Dutch cities.

    Science.gov (United States)

    Vanham, D; Mak, T N; Gawlik, B M

    2016-09-15

    Full self-sufficiency in cities is a major concern. Cities import resources for food, water and energy security. They are however key to global sustainability, as they concentrate a rapidly increasing and urbanising population (or number of consumers). In this paper, we analysed the dependency of urban inhabitants on the resource water for food consumption, by means of Dutch cities. We found that in extremely urbanised municipalities like Amsterdam and Rotterdam, people eat more meat and cereals and less potatoes than in other Dutch municipalities. Their current water footprint (WF) related to food consumption is therefore higher (3245l/cap/day) than in strongly urbanised cities (3126l/cap/day). Dutch urban citizens who eat too many animal products, crop oils and sugar can reduce their WF (with 29 to 32%) by shifting to a healthier diet. Recommended less meat consumption has the largest impact on the total WF reduction. A shift to a pesco-vegetarian or vegetarian diet would require even less water resources, where the WF can be reduced by 36 to 39% and 40 to 42% respectively. Dutch cities such as Amsterdam have always scored very high in international sustainability rankings for cities, partly due to a long history in integrated (urban) water management in the Netherlands. We argue that such existing rankings only show a certain - undoubtedly very important - part of urban environmental sustainability. To communicate the full picture to citizens, stakeholders and policy makers, indicators on external resource usage need to be employed. The fact that external resource dependency can be altered through changing dietary behaviour should be communicated. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Beverage Consumption Habits among the European Population: Association with Total Water and Energy Intakes

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Galan, Pilar; Turrini, Aida; Arnault, Nathalie; Mistura, Lorenza; Ortiz-Andrellucchi, Adriana; Szabo de Edelenyi, Fabien; D’Addezio, Laura; Serra-Majem, Lluis

    2017-01-01

    Background: Fluid and water intake have received limited attention in epidemiological studies. The aim of this study was to compare the average daily consumption of foods and beverages in adults of selective samples of the European Union (EU) population in order to understand the contribution of these to the total water intake (TWI), evaluate if the EU adult population consumes adequate amounts of total water (TW) according to the current guidelines, and to illustrate the real water intake in Europe. Methods: Three national European dietary surveys have been selected: Spain used the Anthropometry, Intake, and Energy Balance Study (ANIBES) population database, Italy analyzed data from the Italian National Food Consumption Survey (INRAN-SCAI 2005-06), and French data came from the NutriNet-Santé database. Mean daily consumption was used to compare between individuals. TWI was compared with European Food Safety Authority (EFSA) reference values for adult men and women. Results: On average, in Spain, TWI was 1.7 L (SE 22.9) for men and 1.6 L (SE 19.4) for women; Italy recorded 1.7 L (SE 16.9) for men and 1.7 L (SE 14.1) for women; and France recorded 2.3 L (SE 4.7) for men and 2.1 L (SE 2.4) for women. With the exception of women in France, neither men nor women consumed sufficient amounts of water according to EFSA reference values. Conclusions: This study highlights the need to formulate appropriate health and nutrition policies to increase TWI in the EU population. The future of beverage intake assessment requires the use of new instruments, techniques, and the application of the new available technologies. PMID:28406441

  5. EFICIENCIA EN EL CONSUMO DE AGUA DE USO RESIDENCIAL EFFICIENCY OF RESIDENCIAL WATER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Deibys Gildardo Manco Silva

    2012-12-01

    Full Text Available Este artículo de revisión aborda los principales referentes acerca de la gestión de la demanda de agua desde una visión tecnológica y cultural como estrategia para el uso eficiente en sistemas de acueductos urbanos. Se hace necesario conocer las dinámicas y los factores que afectan el consumo de agua en las viviendas con el fin de generar procesos de gestión desde este nivel y trascender a niveles superiores. En la primera parte se presenta la revisión sobre la gestión de la demanda y se exponen algunas experiencias investigativas; luego se describen los aspectos técnicos y tecnológicos de los equipos de medición y los dispositivos de bajo consumo de agua; finalmente se enumeran los mecanismos sociales para lograr un uso eficiente de agua.This revision article encompasses the main models about water demand management from a technological and cultural standpoint as a strategy for having an efficient use in urban water supply systems. It is necessary to know both dynamic and factors affecting household water consumption with the purpose of generating management processes from this level and going forward to higher levels. During the first part of the article a revision is made about demand management and some research experiences are described; then, technical and technological aspects of measurement equipment and low water consumption devices are described; finally, a list of social mechanisms for achieving an efficient consumption of water is provided.

  6. Beverage Consumption Habits among the European Population: Association with Total Water and Energy Intakes.

    Science.gov (United States)

    Nissensohn, Mariela; Sánchez-Villegas, Almudena; Galan, Pilar; Turrini, Aida; Arnault, Nathalie; Mistura, Lorenza; Ortiz-Andrellucchi, Adriana; Edelenyi, Fabien Szabo de; D'Addezio, Laura; Serra-Majem, Lluis

    2017-04-13

    Fluid and water intake have received limited attention in epidemiological studies. The aim of this study was to compare the average daily consumption of foods and beverages in adults of selective samples of the European Union (EU) population in order to understand the contribution of these to the total water intake (TWI), evaluate if the EU adult population consumes adequate amounts of total water (TW) according to the current guidelines, and to illustrate the real water intake in Europe. Three national European dietary surveys have been selected: Spain used the Anthropometry, Intake, and Energy Balance Study (ANIBES) population database, Italy analyzed data from the Italian National Food Consumption Survey (INRAN-SCAI 2005-06), and French data came from the NutriNet-Santé database. Mean daily consumption was used to compare between individuals. TWI was compared with European Food Safety Authority (EFSA) reference values for adult men and women. On average, in Spain, TWI was 1.7 L (SE 22.9) for men and 1.6 L (SE 19.4) for women; Italy recorded 1.7 L (SE 16.9) for men and 1.7 L (SE 14.1) for women; and France recorded 2.3 L (SE 4.7) for men and 2.1 L (SE 2.4) for women. With the exception of women in France, neither men nor women consumed sufficient amounts of water according to EFSA reference values. This study highlights the need to formulate appropriate health and nutrition policies to increase TWI in the EU population. The future of beverage intake assessment requires the use of new instruments, techniques, and the application of the new available technologies.

  7. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.

    Science.gov (United States)

    Wang, Ranran; Zimmerman, Julie

    2016-05-17

    As the fifth global water footprint assessment, this study enhanced previous estimates of national blue water consumption (including fresh surface and groundwater) and main economic activities with (1) improved spatial and sectoral resolution and (2) quantified the impacts of virtual water trade on water use and water stress at both the national and basin level. In 2007, 1194 Gm(3) of blue water was consumed globally for human purposes. The consuming (producing) of primary and manufactured goods and services from the sectors of "Primary Crops and Livestock", "Primary Energy and Minerals", "Processed Food and Beverages", "Non-food Manufactured Products", "Electricity", "Commercial and Public Services", and "Households" accounted for 33% (91%), ∼ 0% (1%), 37% (world's total blue water consumption, respectively. The considerable differences in sectoral water consumption accounted for by the two perspectives (consumption- vs production-based) highlight the significance of the water consumed indirectly, upstream in the supply chain (i.e., > 70% of total blue water consumption) while offering additional insights into the water implications of critical interconnected economic activities, such as the water-energy nexus. With 145 Gm(3) (12%) of the blue water consumption embedded in the goods and services traded internationally, 89 countries analyzed were net blue water importers at the national level. On the basin level, the impacts of virtual water trade on water stress were statistically significant for basins across the world and within 104 countries; virtual water trade mitigated water stress for the basins within 85 of the 104 countries, including all of those where there are moderate and greater water stress countrywide (except Italy).

  8. Effects of Specific Fuel Consumption and Exhaust Emissions of Four Stroke Diesel Engine with CuO/Water Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Senthilraja S.

    2017-03-01

    Full Text Available This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2% of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx, exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

  9. Preparation and power consumption of surfactant-fuel oil-water emulsions using axial, radial, and mixed flow impellers

    Energy Technology Data Exchange (ETDEWEB)

    Torres, L.G.; Zamora, E.R. [Universidad Nacional Autonoma de Mexico, Coyoacan (Mexico). Coordinacion de Ambiental, Intituto de Ingenieria

    2002-12-01

    Surfactant-oil-water emulsions could have applications in enhanced oil recovery and the bio-desulfurization process applied to crude oil and some fractions. A simple way to prepare oil in water (O/W) emulsions is using a tank and an agitation device. The aim of this work is to propose a technology to prepare surfactant-fuel oil-water emulsions by means of a system involving a tank equipped with baffles, and an agitation device. The employed fuel oil was a high-viscosity fraction, which makes it difficult to handle. Axial, radial, and mixed flow impellers were assessed in the preparation of O/W emulsions, with and without the presence of baffles. Sixteen commercial surfactants were evaluated on the O/W emulsion formation. The effect of the storage temperature on the emulsions stability was assessed. The presence of salt on the surfactant-fuel oil-water emulsion was also investigated. Power vs. Reynolds numbers, extremely important data for the scaling up of the process, were calculated in basis of the power drawn when preparing the emulsions. Total consumption of energy applied to the system, as well as pumping capacity were measured and related to the quality of the O/W emulsions obtained. 21 refs., 9 figs., 4 tabs.

  10. The effect of mulching on water consumption, yield and some parameters in apple orchards grafted onto dwarf rootstock

    Directory of Open Access Journals (Sweden)

    Cenk KÜÇÜKYUMUK

    2013-06-01

    Full Text Available This study was conducted to determine the effect of different mulch materials on plant water consumption, yield, fruit quality, vegetative growth, and weed control and soil temperature of Braeburn apple variety grafted onto M9 rootstock in Eğirdir Fruit Growing Research Station in 2010-2011. The experimental design was a randomized block design with three replications. Three different treatments were determined as two different mulch materials (white fabric, black plastic covering and control (without any mulching. Irrigation water was applied by using drip irrigation system in 7 days intervals. Amount of irrigation water to be applied in the each irrigation was determined as water amount needed for raising the soil moisture to the field capacity in 0-60 cm soil depth. As a result, substantial water saving has been provided from both of the mulch materials (%< 22-28 in comparison with the control treatment. The yield results showed statistically significant difference (p<0.05 among the treatments only in the second year. The highest red colour density value, which is an important criterion in apple marketing, was obtained from mulching with white fabric for both years. It was determined that mulch applications with these two materials were positive effects on vegetative growth and they were very effective on weed control. Soil temperature measured in the treatment used white fabric was found 1-2°C lower in comparison with control treatment, while it was found 3-4°C lower in comparison with the black plastic covering.

  11. An improved water footprint methodology linking global consumption to local water resources: a case of Spanish tomatoes.

    Science.gov (United States)

    Chapagain, A K; Orr, S

    2009-02-01

    A water footprint (WF) measures the total water consumed by a nation, business or individual by calculating the total water used during the production of goods and services. This paper extends the existing methods for WF to more localised levels for crops grown partly in open systems and partly in plastic-covered houses with multi-seasonal harvesting, such as the horticulture industry in Spain. This improvement makes it possible to visualise the links of EU tomato consumption to precise production sites in Spain and opens a debate to the usefulness of such findings. This paper also compares existing ecological methodologies with WF and argues that both life cycle analysis (LCA) and ecological footprint (EF) models could benefit from WF methods. Our results show that the EU consumes 957,000 tons of Spanish fresh tomatoes annually, which evaporates 71 Mm(3)/yr of water and would require 7 Mm(3)/yr of water to dilute leached nitrates in Spain. In Spain, tomato production alone evaporates 297 Mm(3)/yr and pollutes 29 Mm(3)/yr of freshwater. Depending upon the local agro-climatic character, status of water resources, total tomato production volumes and production system, the impact of EU consumption of fresh tomatoes on Spanish freshwater is very location specific. The authors suggest that business now seek to report and address negative impacts on the environment. WF opens the door to complex water relationships and provides vital information for policy actors, business leaders, regulators and managers to their draw, dependence and responsibilities on this increasingly scarce resource.

  12. Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

    Directory of Open Access Journals (Sweden)

    Heil Daniel P

    2010-09-01

    Full Text Available Abstract Background The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0. Methods Thirty-eight subjects were matched by gender and self-reported physical activity (SRPA, hrs/week and then split into Control (12 women, 7 men; Mean +/- SD: 23 +/- 2 yrs; 7.2 +/- 3.6 hrs/week SRPA and Experimental (13 women, 6 men; 22 +/- 2 yrs; 6.4 +/- 4.0 hrs/week SRPA groups. The Control group consumed non-mineralized placebo bottled water over a 4-week period while the Experimental group consumed the placebo water during the 1st and 4th weeks and the AK water during the middle 2-week treatment period. Fingertip blood and 24-hour urine samples were collected three times each week for subsequent measures of blood and urine osmolality and pH, as well as total urine volume. Dependent variables were analyzed using multivariate repeated measures ANOVA with post-hoc focused on evaluating changes over time within Control and Experimental groups (alpha = 0.05. Results There were no significant changes in any of the dependent variables for the Control group. The Experimental group, however, showed significant increases in both the blood and urine pH (6.23 to 7.07 and 7.52 to 7.69, respectively, a decreased blood and increased urine osmolality, and a decreased urine output (2.51 to 2.05 L/day, all during the second week of the treatment period (P Conclusions Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine and hydration status when consumed under free-living conditions. In contrast, subjects who consumed the placebo bottled water showed no changes over the

  13. Potential of Rainwater Harvesting and Greywater Reuse for Water Consumption Reduction and Wastewater Minimization

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-06-01

    Full Text Available Northeastern Mexico is a semiarid region with water scarcity and a strong pressure on water sources caused by the rapid increase of population and industrialization. In this region, rainwater harvesting alone is not enough to meet water supply demands due to the irregular distribution of rainfall in time and space. Thus, in this study the reliability of integrating rainwater harvesting with greywater reuse to reduce water consumption and minimize wastewater generation in the Tecnológico de Monterrey, Monterrey Campus, was assessed. Potable water consumption and greywater generation in main facilities of the campus were determined. Rainwater that can be potentially harvested in roofs and parking areas of the campus was estimated based on a statistical analysis of the rainfall. Based on these data, potential water savings and wastewater minimization were determined. Characterization of rainwater and greywater was carried out to determine the treatment necessities for each water source. Additionally, the capacity of water storage tanks was estimated. For the selected treatment systems, an economic assessment was conducted to determine the viability of the alternatives proposed. Results showed that water consumption can be reduced by 48% and wastewater generation can be minimized by 59%. Implementation of rainwater harvesting and greywater reuse systems in the Monterrey Campus will generate important economic benefits to the institution. Amortization of the investments will be achieved in only six years, where the net present value (NPV will be on the order of US $50,483.2, the internal rate of return (IRR of 4.6% and the benefits–investment ratio (B/I of 1.7. From the seventh year, the project will present an IRR greater than the minimum acceptable rate of return (MARR. In a decade, the IRR will be 14.4%, more than twice the MARR, the NPV of US $290,412.1 and the B/I of 3.1, denoting economic feasibility. Based on these results, it is clear that

  14. How are perceptions associated with water consumption in Canadian Inuit? A cross-sectional survey in Rigolet, Labrador.

    Science.gov (United States)

    Wright, Carlee J; Sargeant, Jan M; Edge, Victoria L; Ford, James D; Farahbakhsh, Khosrow; Shiwak, Inez; Flowers, Charlie; Gordon, Allan C; Harper, Sherilee L

    2018-03-15

    Concerns regarding the safety and aesthetic qualities of one's municipal drinking water supply are important factors influencing drinking water perceptions and consumption patterns (i.e. sources used and daily volume of consumption). In northern Canada, Inuit communities face challenges with drinking water quality, and many Inuit have reported concerns regarding the safety of their drinking water. The objectives of this research were to describe perceptions of municipal tap water, examine use of water sources and changes following the installation of a potable water dispensing unit (PWDU) in 2014, and identify factors associated with water consumption in the Inuit community of Rigolet. This study used data from three cross-sectional census surveys conducted between 2012 and 2014. Principal component analysis (PCA) was used to aggregate data from multiple variables related to perceptions of water, and logistic regressions were used to identify variables associated with water consumption patterns. Three quarters of residents reported using the PWDU after its installation, with concomitant declines reported in consumption of bottled, tap, and brook water. Negative perceptions of tap water were associated with lower odds of consuming tap water (ORPCAcomponent1=0.73, 95% CI 0.56-0.94; ORPCAcomponent2=0.67, 95% CI 0.49-0.93); women had higher odds of drinking purchased water compared to men (OR=1.90, 95% CI 1.11-3.26). The median amount of water consumed per day was 1L. Using brook water (OR=2.60, 95% CI 1.22-5.56) and living in a household where no one had full-time employment (OR=2.94, 95% CI 1.35-6.39) were associated with consuming >2L of water per day. Results of this study may inform drinking water interventions, risk assessments, and public health messaging in Rigolet and other Indigenous communities. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.

    Science.gov (United States)

    Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew

    2011-01-01

    The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.

  16. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  17. Development of urban water consumption models for the City of Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2011-12-01

    water use patterns across the City. The performance of the linear regression model is being tested and compared with other algorithm-based simulations for improved modeling of urban water consumption in the region. Ultimately, projects results will contribute to the implementation of sustainable strategies targeted to specific urban areas for a growing population under uncertain climate variability.

  18. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  19. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    NARCIS (Netherlands)

    Zlatanovic, Ljiljana; Moerman, Andreas; Hoek, van der Jan Peter; Vreeburg, Jan; Blokker, Mirjam

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality

  20. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014

    Science.gov (United States)

    Makonin, Stephen; Ellert, Bradley; Bajić, Ivan V.; Popowich, Fred

    2016-06-01

    With the cost of consuming resources increasing (both economically and ecologically), homeowners need to find ways to curb consumption. The Almanac of Minutely Power dataset Version 2 (AMPds2) has been released to help computational sustainability researchers, power and energy engineers, building scientists and technologists, utility companies, and eco-feedback researchers test their models, systems, algorithms, or prototypes on real house data. In the vast majority of cases, real-world datasets lead to more accurate models and algorithms. AMPds2 is the first dataset to capture all three main types of consumption (electricity, water, and natural gas) over a long period of time (2 years) and provide 11 measurement characteristics for electricity. No other such datasets from Canada exist. Each meter has 730 days of captured data. We also include environmental and utility billing data for cost analysis. AMPds2 data has been pre-cleaned to provide for consistent and comparable accuracy results amongst different researchers and machine learning algorithms.

  1. How Will Climate Change Impact Water Consumption for Rice Irrigation in Southern Brazil?

    Science.gov (United States)

    dos Santos, T. V.; Twine, T. E.

    2015-12-01

    Globally, agricultural water use accounts for most of the water that is withdrawn from surface water and groundwater. Rice, one of the world's leading food crops, requires that fields be continuously flooded to obtain optimal yields. High air temperature and consecutive rainless days in rice-growing areas can significantly reduce rice yields, leading to food scarcity. Climate change is expected to affect water demand for rice via changes in rainfall regime, soil water balance, and evapotranspiration. Higher temperatures and increased variability of precipitation are predicted to increase water demand and could potentially require more irrigation in lowland rice-growing areas. In this study we present the first results from model simulations in which we integrated a rice model into the Agro-IBIS dynamic ecosystem model. We predict the impact of climate change on the water use requirement of rice production in southern Brazil and evaluate changes in irrigation needed to meet minimum water demand to sustain current yields. Brazil is the 9th top rice producer in the world, and southern Brazil accounts for about 80% of the national production. The Agro-IBIS model was driven with historic weather data provided by CRU (1961-90) and with two future climate scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for 2015-2100 - Representative Concentration Pathways 4.5 (RCP45) and 8.5 (RCP85). On an hourly time step, Agro-IBIS accounts for gains (precipitation) and losses (evaporation, transpiration, infiltration and runoff) of water in each grid cell, and uses rules to irrigate in order to maintain a specific height of standing water on the field. Simulated historic and future amounts of irrigated water needed to maintain this water height will be evaluated to predict future water demand for rice production in southern Brazil.

  2. Development of solid electrolytes for water electrolysis at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Kopitzke, R.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1995-09-01

    If an electrolyzer could operate at higher temperatures, several benefits would accrue. The first is that the thermodynamic electrical energy requirement to drive the reaction would be reduced. Supplying the total enthalpy of reaction at any temperature involves a combination of electrical and thermal energy inputs. Because of the positive entropy associated with water decomposition, the thermal contribution increases as temperature rises, allowing the free energy requirement to decrease. Thus the open circuit voltage, V{sub oc}, for water splitting drops as temperature rises. At room temperature, V{sub oc} for water decomposition is 1.229 V. At 400{degrees}C, voltage requirement has dropped to 1.1 V; at 1000{degrees}C, it is only 0.92 V. Since electricity is a more expensive form of energy on a btu basis, the more energy taken from the thermal surroundings the better. Moreover, this thermal energy content could be solar-derived. While the cost of solar thermal energy varies in the range of $360-900/peak kilowatt, the installed cost of photovoltaic electricity is in the range of $4,000-5,000/peak kilowatt. Thus if one is compelled to erect an array of photovoltaic panels to generate the e.m.f. necessary to split water, substituting as much area with thermal collectors as possible represents a substantial cost savings.

  3. Local flow regulation and irrigation raise global human water consumption and footprint.

    Science.gov (United States)

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-04

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km(3)/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km(3)/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling. Copyright © 2015, American Association for the Advancement of Science.

  4. Differences in Water Consumption Choices in Canada: the Role of Socio-demographics, Experiences, and Perceptions of Health Risks

    OpenAIRE

    Diane P. Dupont; Adamowicz, W.L. (Vic); Alan Krupnick

    2009-01-01

    In 2000 and 2001 Canadians were shocked by water contamination events that took place in two provinces. In 2004 we undertook an Internet-based survey across Canada that asked respondents to identify in percentage terms their total drinking water consumption according to one of three sources: tap water, bottled water, and home filtered water (either some type of container or an in-tap filter device). In this paper we investigate the determinants of these choices and whether choosing to either ...

  5. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment

    National Research Council Canada - National Science Library

    Steven P. Loheide II; James J. Butler Jr; Steven M. Gorelick

    2005-01-01

    .... Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932...

  6. Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows.

    Science.gov (United States)

    Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció

    2013-01-01

    This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration.

  7. Predicting water consumption habits for seven arsenic-safe water options in Bangladesh

    National Research Council Canada - National Science Library

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2013-01-01

    ...-to-face interviews in November 2009. Habitual use of arsenic-safe water options, severity, vulnerability, affective and instrumental attitudes, injunctive and descriptive norms, self-efficacy, and coping planning were measured...

  8. Efficiency and temperature dependence of water removal by membrane dryers

    Science.gov (United States)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  9. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  10. Estimation of the relationship between growth, consumption, and energy allocation in juvenile pacific cod (Gadus macrocephalus) as a function of temperature and ration

    Science.gov (United States)

    Sreenivasan, Ashwin; Heintz, Ron

    2016-10-01

    Pacific cod (Gadus macrocephalus) are generalist predators in the Gulf of Alaska (GOA), and are an important predator on other commercially important species. Efficient management of this species can benefit by knowing how these fish adapt to changing environmental conditions, with a focus on how growth and condition are affected by changes in temperature and diet. We conducted a feeding study to understand the relationship between growth, ration, and temperature, and how these factors interact to affect energy allocation strategies. Since growth and condition of juveniles can determine recruitment into the population, this study focused on growth and consumption of age 1+Pacific cod held over 4 temperature treatments (4 °C, 8 °C, 12 °C, and 16 °C) and 3 ration levels (unlimited ration, medium ration, and low ration). We also compared cellular nucleic acid (RNA/DNA) ratios, an instantaneous growth index, total-body lipid, and proximate composition between fish. At 4 °C, 8 °C, and 12 °C, fish at medium and low rations had higher growth rates relative to fish at high rations. Higher food consumption appears to negatively affect digestive ability, assimilation efficiency, and nutrient utilization. RNA/DNA was clearly correlated with growth rates at 4 °C and 8 °C, but this relationship did not hold at higher temperatures. A secondary growth study was conducted to test the reliability of the growth/consumption models derived from the main growth study. Temperature influenced energy reserves (lipid) while tissue growth (protein) was influenced by ration level. Average lipid values were higher at 4 °C than at 8 °C or 12 °C, suggesting a predisposition to heightened lipid synthesis at colder temperatures. Longer durations of warmer water temperature in the GOA could consequently affect energy allocation strategies, with dietary changes in the field potentially amplifying this effect in cold and warm years. This energy allocation strategy could be detrimental

  11. Water and beverage consumption patterns among 4 to 13-year-old children in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Florent Vieux

    2017-05-01

    Full Text Available Abstract Background The UK government has announced a tax on sugar-sweetened beverages. The aim of this study was to assess consumption patterns for plain drinking water relative to sugary beverages among UK children. Methods Dietary intake data for 845 children aged 4–13 years came from the nationally representative cross-sectional National Diet and Nutrition Survey, 2008–2011. Beverage categories were drinking water (tap or bottled, milk, 100% fruit juices, soda, fruit drinks, tea, coffee, sports drinks, flavored waters, and liquid supplements. Consumption patterns were examined by age group, gender, household incomes, time and location of consumption, region and seasonality. Total water consumption from drinking water, beverages, and foods, and the water-to-calorie ratios (L/kcal were compared to the EFSA (European Food Safety Authority adequate intake standards. Results Total water intake (1338 ml/d came from plain water (19%, beverages (48%, and food moisture (33%. Plain drinking water provided 258 g/d (241 g/d for children aged 4–8 years; 274 g/d for 9–13 years, mostly (83.8% from tap. Water and beverages supplied 901 g /d of water. Tap water consumption increased with income and was highest in the South of England. The consumption of bottled water, soda, tea and coffee increased with age, whereas milk consumption declined. About 88.7% of children did not meet EFSA adequate intake standards. The daily water shortfall ranged from 322 ml/d to 659 ml/d. Water-to-calorie ratio was 0.845 L/1000 kcal short of desirable levels of 1.0–1.5 L/1000 kcal. Conclusion Total water intake were at 74.8% of EFSA reference values. Drinking water consumption among children in the UK was well below US and French estimates.

  12. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    Directory of Open Access Journals (Sweden)

    Liangxin Fan

    Full Text Available Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use and cultural backgrounds (age, education.

  14. Modeling of microbial growth and ammonia consumption at different temperatures in the production of a polyhydroxyalkanoate (PHA biopolymer

    Directory of Open Access Journals (Sweden)

    Carlos Ocampo-López

    2015-10-01

    Full Text Available Modeling of microbial growth and ammonia consumption at different temperatures was developed in the production of a polyhydroxyalkanoate (PHA biopolymer in Pseudomona fluorescens in the range of 25–35 °C. A logistic model was employed to predict accurately the microbial growth limiting conditions of nitrogen. A new model based in a mixed mathematical equation comprising a logistic model, and a magnetic saturation model resulted appropriate to estimate the ammonia consumption under limiting conditions. Favorable conditions for PHA production in P. fluorescens were found at temperature of 30 °C, reaching the maximum biomass concentration of 2.83 g L−1, and consuming 99.9% of the initial ammonia, to produce 2.13 g L−1 of PHA. The proposed models could be useful to predict the behavior of a fermentation process to produce PHA in real time.

  15. Water-temperature data acquisition activities in the United States

    Science.gov (United States)

    Pauszek, F.H.

    1972-01-01

    Along with the growing interest in water quality during the last decade, the need for data on all types of water-quality parameters has also increased. One parameter of particular interest, because of its many ramifications, is temperature. It influences many of the chemical and physical processes that take place in water. The solubility of gases--for example, oxygen and carbon dioxide--and the solution of mineral matter in water are functions of temperature. Such physical properties as density and viscosity vary with temperature. Oxidation of organic materials, as well as algal and bacterial growth, is promoted or retarded by favorable or unfavorable temperatures. Further, temperature bears on the utility of water: as a source of public water supplies; for industrial use, particularly if the water is used for cooling; and in the field of recreation involving contact sports, fishing, and fish culture. In recent years, temperature changes resulting from inflow of heated industrial waste, particularly effluent from power generating plants, have increased the need for temperature data to determine the degree of change, its effect on ecology, and the effect of any remedial action. Thus, because of the many extensive and intensive effects, a large amount of temperature data is collected on surface and ground waters by many agencies throughout the country. Moreover, because of its importance, there is a widespread interest in temperature even by those who are not active collectors of the data themselves. The industrialist, the manager, the public official, and others at one time or another may have need for temperature data and may well raise the questions: Who is collecting temperature data? What is the extent of the activity? Where are the data being collected? The purpose of this report is to answer these questions. The information in the report is confined to the activities of Federal and non-Federal agencies. It is based on information furnished to the Office of

  16. Effects of supplemental irrigation on water consumption characteristics and grain yield in different wheat cultivars

    Directory of Open Access Journals (Sweden)

    Meng Weiwei

    2015-06-01

    Full Text Available Shortage of water resources is a major limiting factor for wheat (Triticum aestivum L. production in the North China Plain. The objectives of this study were to evaluate the effects of supplemental irrigation (SI on water use characteristics and grain yield of the wheat cultivars 'Jimai 22'and 'Zhouyuan 9369'. Two supplemental irrigation treatment regimens were designed based on target relative soil moisture contents in 0-140 cm soil layers at jointing rising to 75% of field capacity (FC for each cultivar, and at anthesis rising to 65% and 75% (W1, and 70% and 80% (W2 in 2009-2010 and 2010-2011, respectively. Rain-fed (W0 treatment was used as control. Under W1, grain yield of 'Jimai 22' was 5.22% higher than that of W2, and water use efficiency (WUE of 'Zhouyuan 9369' was 4.0% higher than that under W2. No significant differences in WUE of 'Jimai 22' and grain yield of 'Zhouyuan 9369' were observed for the two treatment regimens in 2009-2010. Grain yield and WUE in W1 were higher than those of W2 for both cultivars in 2010-2011. W1 enhanced soil water consumption compared to W2, especially in the 100-200 cm soil layers, for both cultivars in 2009-2011. Meanwhile, 'Jimai 22' showed higher soil water consumption and ET from anthesis to mature stage, which resulted in increase in grain yield and WUE of 'Jimai 22' by 8.15-21.7% and 7.75-11.73% in 2009-2010 and 2010-2011, respectively, compared with 'Zhouyuan 9369'. Thus, our results showed that SI increased the yield and WUE of 'Jimai 22' and W1 was the better treatment regimen.

  17. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise

    NARCIS (Netherlands)

    Chen, Jianye|info:eu-repo/dai/nl/370819071; Niemeijer, André|info:eu-repo/dai/nl/370832132; Yao, Lu; Ma, Shengli

    2017-01-01

    We investigated the frictional properties of carbonate-rich gouge layers at a slip rate of 1.3 m/s, under dry and water-saturated conditions, while monitoring temperature at different locations on one of the gouge-host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7,

  18. Spatio-temporal attributes of water temperature and ...

    African Journals Online (AJOL)

    The study demonstrates that decreasing water temperatures, both spatially (with increasing altitude) and seasonally (from summer to winter), and/or decreasing diversity of hydraulic biotypes associated with stream-channel narrowing in Drakensberg rivers/streams, are associated with a general decrease in the absolute ...

  19. Possible effects of regulating hydroponic water temperature on plant ...

    African Journals Online (AJOL)

    Yomi

    2010-12-29

    Dec 29, 2010 ... production of antioxidants in cells exposed to heat stress. EFFECTS OF REGULATING HYDROPONIC WATER. TEMPERATURE ON NUTRIENT UPTAKE AND. ACCUMULATION IN PLANT TISSUES. Plant nutrients have a great potential for increasing yield and are capable of promoting plant growth ( ...

  20. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 4. Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for ... Author Affiliations. Vasant R Choudhary1 Abhijeet J Karkamkar1. Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  1. Defluoridation of drinking water with pottery: effect of firing temperature.

    Science.gov (United States)

    Hauge, S; Osterberg, R; Bjorvatn, K; Selvig, K A

    1994-12-01

    Excessive fluoride (F) in drinking water should be removed, but simple, inexpensive methods of fluoride removal are not readily available. This study examines the F(-)-binding capacity of clay and clayware, especially the effect of the firing temperature on the F(-)-binding process. A series of pots were made from ordinary potter's clay and fired at 500-1000 degrees C. Likewise, small clay bricks were fired and then crushed and sieved. NaF solutions containing 10 mg/l F- (10 ppm F-) were prepared. Suitable aliquots of the solutions were poured into clay pots or exposed to powdered clayware. Samples were taken at storage periods of 30 min to 20 days and analyzed for F- by ion-selective electrodes. The rate and capacity of F(-)-binding in the clayware varied with the firing temperature. Clay fired at approximately 600 degrees C was most effective. Temperatures over 700 degrees C caused a decline in F(-)-binding, and pottery fired at 900 degrees C and above seemed unable to remove F- from water. Pots fired at 500 degrees C or less cracked in water. The findings indicate that clayware, fired at an optimal temperature, may be of practical value for partial defluoridation of drinking water.

  2. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  3. Differences in water consumption choices in Canada: the role of socio-demographics, experiences, and perceptions of health risks.

    Science.gov (United States)

    Dupont, Diane; Adamowicz, W L Vic; Krupnick, Alan

    2010-12-01

    In 2000 and 2001 Canadians were shocked by water contamination events that took place in two provinces. In 2004 we undertook an internet-based survey across Canada that asked respondents to identify in percentage terms their total drinking water consumption according to one of three sources: tap water, bottled water, and home-filtered water (either some type of container or an in-tap filter device). In this paper we investigate the factors that influence these choices and whether choosing to either filter or purchase water is linked to perceptions of health concerns with respect to tap water. A series of one-way analysis of variance (ANOVA) tests suggest that the presence of children in a household and self-reported concern that tap water causes health problems lead to significantly greater consumption of bottled water or filtered water and significantly less tap water consumption. In order to examine these choices in a multivariate framework, we estimate a multinomial logit model. Factors yielding higher probabilities of a respondent being primarily a bottled water drinker (relative to the choice of tap water) include: higher income, unpleasant taste experiences with tap water, non-French-speaking, and being a male with children in one's household. Similar factors yield higher probabilities of a respondent being primarily a filtered tap water drinker. An important finding is that two key variables linking a person's health perceptions regarding tap water quality are significant factors leading to the choice of either filtered tap water or bottled water over tap water. They are: a variable showing the degree of health concerns a respondent has with respect to tap water and a second variable indicating whether the respondent believes bottled water is safer than tap water.

  4. [24 hour rhythm of feed and water consumption by BD IX rats in relation to pregnancy and lactation].

    Science.gov (United States)

    Neubauer, G; Mletzko, I

    1990-01-01

    The 24-hour rhythms of food and water consumption of non-fertilized female rats, of pregnant and lactating animals of a conventionally maintained BD IX stock has been determined. The mean food consumption has been found to be, in the same order, 20.6 g/d, 25.3 g/d, and 48.6 g/d, respectively. In the dark the corresponding values were, respectively, 79, 76 and 67.5%. Maximum food consumption of these 3 animal groups were registered between 10.00 p.m. and 02.00 a.m., from 06.00 p.m. to 10.00 p.m., and from 06.00 p.m. to 10.00 p.m., respectively. At first the pattern is unimodal, but it becomes bimodal during pregnancy and lactation. In corresponding time periods the mean water consumption was, respectively, 28.7, 33.8 and 64.7 ml/d. The maxima corresponded to those of food consumption. Food and water consumption was estrous-dependent and decreased significantly in the perinatal phase. During laction the food and water consumption showed a 2-day rhythm, beginning from day 9 onwards.

  5. Water Consumption in European Children: Associations with Intake of Fruit Juices, Soft Drinks and Related Parenting Practices

    Directory of Open Access Journals (Sweden)

    Krystallia Mantziki

    2017-05-01

    Full Text Available Background: High intake of fruit juices and soft drinks contributes to excessive weight gain and obesity in children. Furthermore, parenting practices play an important role in the development of children’s dietary habits. The way parents play this role in the development of their children’s choices of beverages is still unclear. Objectives: To study the associations: (1 of both fruit juices and soft drinks consumption with water consumption of children and (2 The associations between parenting practices towards fruit juices and soft drinks and water consumption of children. Design: Cross-sectional data from 6 to 8 year old children from seven European communities (n = 1187 were collected. Associations among fruit juices, soft drinks, the respective parenting practices and the child’s water consumption were assessed by parental questionnaires. Results: The consumption of water was inversely associated with that of soft drinks but not with the consumption of fruit juices. The child’s water intake was favorably influenced when stricter parenting practices towards soft drinks were adopted (e.g., less parental allowance, low home availability and high parental self-efficacy in managing intake. There was less influence observed of parenting practices towards fruit juices. Fruit juices were consumed more often than soft drinks. Conclusions: Low consumption of soft drinks—and not of fruit juices—was associated with high water consumption in children in the current study. Moreover, parenting practices towards both fruit juices and soft drinks were associated with the water intake of the children, irrespective of their socio-economic status.

  6. Asymmetry of agricultural water consumption in arid regions during alternating decadal scale wet and dry periods: explanation using behavioral economics

    Science.gov (United States)

    Tian, Fuqiang

    2017-04-01

    Increase of human water consumption for agriculture and consequent degradation of the ecological environment is a common feature in many arid regions. Understanding the driving mechanisms behind this phenomenon is of critical importance for regional sustainable development. In this study, analyses of temporal patterns of human water consumption are carried out in three hyper-arid inland basins, i.e., Aral Sea Basin in Central Asia, and the Tarim and Heihe River Basins in Northwestern China. Multi-decadal time series of hydrological and human consumption data are divided into decadal sequences of wet and dry years. During the wet phases, the greater water availability inspires economic expansion and human water consumption experiences growth at a rate faster than that of incoming water. During the dry phases, however, the expanded economy (e.g., irrigation land expansion in an agriculture-based economy) has been managed to sustain or even to increase production by over-exploitation of water with sophisticated technologies. Inability to reduce human water consumption at a rate commensurate with the decrease of incoming water supply leads to serious ecosystem degradation. This asymmetric human water consumption response of society to decadal scale hydrologic variability can be explained in terms of prospect theory drawn from behavioral economics, which states that people tend to be risk averse when facing gains and show risk preference when facing losses. In the three socio-hydrological case studies, direct economic gain/loss has relatively low value but high certainty when compared to indirect economic loss/gain (such as environmental or sustainability loss/gain), which has high value but with high uncertainty. According to prospect theory, people tend to gain direct economic benefits at the expense of environmental degradation and at the risk of system collapse. The outcomes of this study have major implications for water resources management at long time scales

  7. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J.

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor (“brownification”) of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development). PMID:26461029

  8. Technologies for Upgrading Light Water Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  9. Oxygen consumption and ammonia excretion of the searobin Prionotus punctatus (Scorpaeniformes, Triglidae at two different temperatures

    Directory of Open Access Journals (Sweden)

    Vicente Gomes

    1999-01-01

    Full Text Available Routine oxygen consumption and ammonia excretion were measured at 20ºC and 25ºC in the searobin Prionotus punctatus collected in Ubatuba region (22º30'S, SP, Brazil, in western South Atlantic, to investigate energy expenditure and losses through metabolic processes. IndividuaIs ranging from 1.00g to 88.47g and from 1.79g to 56.50g were used in experiments at 20ºC and 25ºC, respectively. At 20ºC and 25ºC, the averages of weight-specific oxygen consumption for the weight class of 1.00 - 10.00g, common to both temperatures, were 162.46µ 39.51 µ.10z/g/h and 200.47µ 92.46 µ.10z/g/h, respectively; for the weight class of 50.01 - 60.00g these values were 112.30 µ 22.84 µ.10z/g/h and 114.60 µ 20.36 µ.10zlg/h. At 20ºC and 25ºC, the averages of weight-specific ammonia excretion for the weight class of 1.00 to 1O.00g were 1.03 µ 0.37 fJ.M/g/h and 1.21 µ 0.65 µ.M/g/h, respectively; for the weight class of 50.01 -60.00g these values were 0.68 µ 0.13 fJ.M/g/h and 0.60 µ 0.22 µ.M/g/h. The energy budget for the species was calculated at both temperatures using the experimental data and a model for marine teleosts proposed in the literature.O consumo de oxigênio de rotina e a excreção de amônia de Prionotus punctatus coletados na região de Ubatuba (22º30'S, SP, Brasil, foram medidos a 20ºC e 25ºC, para avaliar os gastos e perdas de energia com os processos metabólicos. Foram utilizados indivíduos variando de 1,00g a 88,47g e de 1,79g a 56,50g, em experimentos a 20ºC e 25ºC, respectivamente. As médias de consumo específico de oxigênio a 20ºC e 25ºC para a classe de peso de 1,00 - 10,00g, comum a ambas as temperaturas, foram 162,46µ 39,51 µ.10z/g/h e 200,47 µ 92,46 µ.10z/g/h, respectivamente; para a classe de peso de 50,01 - 60,00g esses valores foram 112,30 µ 22,84 µ.10z/g/h e 114,60 µ 20,36 µ.10z/g/h. A 20ºC e 25ºC, as médias de excreção específica de amônia para a classe de peso de 1,00 a 10,00g foram 1

  10. The analysis of the hot water consumption and energy performance before and after renovation in multi-apartment buildings

    Science.gov (United States)

    Tumanova, K.; Borodinecs, A.; Geikins, A.

    2017-10-01

    The article presents the results of hot water supply system analysis. Taking into account that the current consumption of hot water differs from normative values, real measured data of hot water consumption in multi-apartment buildings from year 2013 until year 2015 have been analyzed. Also, the thermal energy consumption for hot water preparation has been analyzed. Based on aggregated data and taking into account the fact that renovated systems of hot water supply in existing multi-apartment buildings have same pipelines’ diameters, it was analyzed how these systems are economically and energy efficient. For the study, residential buildings in Riga, which have different architectural and engineering solutions for hot water supply systems, were selected. The study was based on thermal energy consumption measurements, which were taken at the individual heating system’s manifolds. This study was done in order to develop database on hot water consumption in civil buildings and define difference in key performance criteria in unclassified buildings. Obtained results allows to reach European Regional Development Fund project “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS” Nr. 1.1.1.116A048 main targets.

  11. Modeling Household Water Consumption in a Hydro-Institutional System - The Case of Jordan

    Science.gov (United States)

    Klassert, C. J. A.; Gawel, E.; Klauer, B.; Sigel, K.

    2014-12-01

    Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 CM per year significantly below the absolute scarcity threshold of 500 CM, and strong population growth, especially due to the Syrian refugee crisis. This poses a severe challenge to the already strained institutions in the Jordanian water sector. The Stanford-led G8 Belmont Forum project "Integrated Analysis of Freshwater Resources Sustainability in Jordan" aims at analyzing the potential role of water sector institutions in the pursuit of a sustainable freshwater system performance. In order to do so, the project develops a coupled hydrological and agent-based model, allowing for the exploration of physical as well as socio-economic and institutional scenarios for Jordan's water sector. The part of this integrated model in focus here is the representation of household behavior in Jordan's densely populated capital Amman. Amman's piped water supply is highly intermittent, which also affects its potability. Therefore, Amman's citizens rely on various decentralized modes of supply, depending on their socio-economic characteristics. These include water storage in roof-top and basement tanks, private tanker supply, and the purchase of bottled water. Capturing this combination of centralized and decentralized supply modes is important for an adequate representation of water consumption behavior: Firstly, it will affect the impacts of supply-side and demand-side policies, such as reductions of non-revenue water (including illegal abstractions), the introduction of continuous supply, support for storage enhancements, and water tariff reforms. Secondly, it is also necessary to differentiate the impacts of any policy on the different socio-economic groups in Amman. In order to capture the above aspects of water supply, our model is based on the tiered supply curve approach, developed by Srinivasan et al. in 2011 to model a similar situation in Chennai, India

  12. Water and Energy Consumption at King Abdullah University of Science and Technology

    KAUST Repository

    Wiche Latorre, Pia Alexandra

    2012-05-01

    Saudi Arabia is the greatest exporter of oil in the world and also the country with greatest desalination capacity. It is considered a rich country but not a developed one. Because water is scarce while energy is abundant, it becomes important to evaluate the environmental performance of populations in Saudi Arabia with regards to these two aspects. King Abdullah University of Science and Technology (KAUST) is a gated community in Saudi Arabia with high living standards where water and energy are free of cost (no constraint over use). Four environmental sustainability indicators were used to determine the environmental performance of KAUST in comparison to other countries. It was found that per capita, KAUST is between the five greatest water and energy consumers in the world. Important factors to this result are the fact that KAUST is still under construction, that the peak capacity for permanent residents has not yet been reached and that there is little control over the water and energy systems at KAUST. It was concluded that KAUST should reduce its water and energy consumption per capita. To this means, some proposed solutions were to have wide-spread awareness-raising campaigns to all people working and living in KAUST, and to improve control over air conditioning control systems.

  13. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.

    Science.gov (United States)

    Steen-Olsen, Kjartan; Weinzettel, Jan; Cranston, Gemma; Ercin, A Ertug; Hertwich, Edgar G

    2012-10-16

    A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater).

  14. Water fluoridation and the association of sugar-sweetened beverage consumption and dental caries in Australian children.

    Science.gov (United States)

    Armfield, Jason M; Spencer, A John; Roberts-Thomson, Kaye F; Plastow, Katrina

    2013-03-01

    We examined demographic and socioeconomic differences in the consumption of sugar-sweetened beverages (SSBs), its association with dental caries in children, and whether exposure to water fluoridation modifies this association. In a cross-sectional study, we used a stratified, clustered sampling design to obtain information on 16 508 children aged 5 to 16 years enrolled in Australian school dental services in 2002 to 2005. Dental staff assessed dental caries, and parents completed a questionnaire about their child's residential history, sources of drinking water, toothbrushing frequency, socioeconomic status (SES), and SSB consumption. Children who brushed their teeth less often and were older, male, of low SES, from rural or remote areas consumed significantly more SSBs. Caries was significantly associated with greater SSB consumption after controlling for potential confounders. Finally, greater exposure to fluoridated water significantly reduced the association between children's SSB consumption and dental caries. Consumption of SSBs should be considered a major risk factor for dental caries. However, increased exposure to fluoridated public water helped ameliorate the association between SSB consumption and dental decay. These results reconfirm the benefits of community water fluoridation for oral health.

  15. Sustainable water use in cities: water tariff as tool for consumption control; El uso sostenible del agua en nucleos urbanos: las tarifas como herramienta de control del consumo

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Garcia, V.E.; Blanco Jimenez, F.J.

    2012-07-01

    The Water Framework Directive requires the adoption of a tariff system that recovers the costs of water resources and the establishment of national water-pricing policies that help to achieve a sustainable water use. Water rates (tariffs) should be used as an auxiliary tool for consumption control, seeking for efficiency and a sustainable resource use. In this research, we studied the characteristics of the existing rates in seven Spanish cities, analyzing the behavior of consumption of domestic water during the period 2003-2010, in order to check whether the current Spanish rates conforms to the state of resources and the objectives of the Directive. The main conclusion of our work is that the current system has lost its effectiveness as a control consumption tool, making it necessary to rethink the pricing policy and a new tariff system in Spain. (Author)

  16. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  17. Copper as water consumption enhancer during the vase life of Lilium ‘Elite’

    Directory of Open Access Journals (Sweden)

    Arriaga-Frias, A.

    2014-07-01

    Full Text Available The effect of copper chloride at 0, 10, 15, 30 and 60 μM in fresh weight, water consumption, chlorophyll concentration and vase life of Lilium ‘Elite’ was evaluated. In all treatments 4 % of sucrose was added and the pH adjusted to 3.5 with citric acid. In the results, it was observed that floral stems of Lilium with 60 μM copper increased their fresh weight, and inflection point produced a day after compared with other treatments, which indicates the beginning of the weight loss. The water consumption at day 7 was 55, 37 and 21 % higher in the stems of flowers with 60, 30 and 15 μM of copper chloride, respectively, compared with the control. Regardless of the treatment, at day 12, the concentration of chlorophyll a, b and total was five times higher in the upper stratum, as compared to the bottom. A good ornamental appearance of the flowers on the lower stratum ranged from 3.8 to 4.5 days (d, while for the top stratum registered a range between 2.7 to 4.0 d; in the latter, the flower stems treated with 60 μM copper sulfate increased the life of flowers.

  18. Study on the method of maintaining bathtub water temperature

    Science.gov (United States)

    Wang, Xiaoyan

    2017-05-01

    In order to make the water temperature constant and the spillage to its minimum, we use finite element method and grid transformation and have established an optimized model for people in the bathtub both in time and space, which is based on theories of heat convection and heat conduction and three-dimensional second-order equation. For the first question, we have worked out partial differential equations for three-dimensional heat convection. In the meantime, we also create an optimized temperature model in time and space by using initial conditions and boundary conditions. For the second question we have simulated the shape and volume of the tub and the human gestures in the tub based on the first question. As for the shape and volume of the tub, we draw conclusion that the tub whose surface area is little contains water with higher temperature. Thus, when we are designing bathtubs we can decrease the area so that we'll have less loss heat. For different gestures when people are bathing, we have found that gestures have no obvious influence on variations of water temperature. Finally, we did some simulating calculations, and did some analysis on precision and sensitivity

  19. A margin of exposure approach to assessment of non-cancerous risk of diethyl phthalate based on human exposure from bottled water consumption.

    Science.gov (United States)

    Zare Jeddi, Maryam; Rastkari, Noushin; Ahmadkhaniha, Reza; Yunesian, Masud; Nabizadeh, Ramin; Daryabeygi, Reza

    2015-12-01

    Phthalates may be present in food due to their widespread presence as environmental contaminants or due to migration from food contact materials. Exposure to phthalates is considered to be potentially harmful to human health as well. Therefore, determining the main source of exposure is an important issue. So, the purpose of this study was (1) to measure the release of diethyl phthalate (DEP) in bottled water consumed in common storage conditions specially low temperature and freezing conditions; (2) to evaluate the intake of DEP from polyethylene terephthalate (PET) bottled water and health risk assessment; and (3) to assess the contribution of the bottled water to the DEP intake against the tolerable daily intake (TDI) values. DEP migration was investigated in six brands of PET-bottled water under different storage conditions room temperature, refrigerator temperature, freezing conditions (40 °C ,0 °C and -18 °C) and outdoor] at various time intervals by magnetic solid extraction (MSPE) using gas chromatography-mass spectroscopy (GC-MS). Eventually, a health risk assessment was conducted and the margin of exposure (MOE) was calculated. The results indicate that contact time with packaging and storage temperatures caused DEP to be released into water from PET bottles. But, when comprising the DEP concentration with initial level, the results demonstrated that the release of phthalates were not substantial in all storage conditions especially at low temperatures (water was much lower than the reference value. However, the lowest MOE was estimated for high water consumers (preschooler > children > lactating women > teenagers > adults > pregnant women), but in all target groups, the MOE was much higher than 1000, thus, low risk is implied. Consequently, PET-bottled water is not a major source of human exposure to DEP and from this perspective is safe for consumption.

  20. Water and Beverage Consumption: Analysis of the Australian 2011-2012 National Nutrition and Physical Activity Survey.

    Science.gov (United States)

    Sui, Zhixian; Zheng, Miaobing; Zhang, Man; Rangan, Anna

    2016-10-26

    Water consumption as a vital component of the human diet is under-researched in dietary surveys and nutrition studies. To assess total water and fluid intakes and examine demographic, anthropometric, and dietary factors associated with water consumption in the Australian population. Dietary intake data from the 2011 to 2012 National Nutrition and Physical Activity Survey were used. Usual water, fluid and food and nutrient intakes were estimated from two days of dietary recalls. Total water includes plain drinking water and moisture from all food and beverage sources; total fluids include plain drinking water and other beverages, but not food moisture. The mean (SD) daily total water intakes for children and adolescents aged 2-18 years were 1.7 (0.6) L for males and 1.5 (0.4) L for females, and for adults aged 19 years and over were 2.6 (0.9) L for males and 2.3 (0.7) L for females. The majority of the population failed to meet the Adequate Intake (AI) values for total water intake (82%) and total fluids intake (78%) with the elderly at highest risk (90%-95%). The contributions of plain drinking water, other beverages and food moisture to total water intake were 44%, 27%, and 29%, respectively, among children and adolescents, and 37%, 37% and 25% among adults. The main sources of other beverages were full-fat plain milk and regular soft drinks for children and adolescents, and tea, coffee, and alcoholic drinks for adults. For adults, higher total water intake was associated with lower percent energy from fat, saturated fat, and free sugars, lower sodium and energy-dense nutrient poor food intakes but higher dietary fibre, fruit, vegetable, caffeine, and alcohol intakes. No associations were found between total water consumption and body mass index (BMI) for adults and BMI z -score for children and adolescents. Reported water consumption was below recommendations. Higher water intakes were suggestive of better diet quality.

  1. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...

  2. Water consumption characteristics and water use efficiency of winter wheat under long-term nitrogen fertilization regimes in northwest China.

    Directory of Open Access Journals (Sweden)

    Yangquanwei Zhong

    Full Text Available Water shortage and nitrogen (N deficiency are the key factors limiting agricultural production in arid and semi-arid regions, and increasing agricultural productivity under rain-fed conditions often requires N management strategies. A field experiment on winter wheat (Triticum aestivum L. was begun in 2004 to investigate effects of long-term N fertilization in the traditional pattern used for wheat in China. Using data collected over three consecutive years, commencing five years after the experiment began, the effects of N fertilization on wheat yield, evapotranspiration (ET and water use efficiency (WUE, i.e. the ratio of grain yield to total ET in the crop growing season were examined. In 2010, 2011 and 2012, N increased the yield of wheat cultivar Zhengmai No. 9023 by up to 61.1, 117.9 and 34.7%, respectively, and correspondingly in cultivar Changhan No. 58 by 58.4, 100.8 and 51.7%. N-applied treatments increased water consumption in different layers of 0-200 cm of soil and thus ET was significantly higher in N-applied than in non-N treatments. WUE was in the range of 1.0-2.09 kg/m3 for 2010, 2011 and 2012. N fertilization significantly increased WUE in 2010 and 2011, but not in 2012. The results indicated the following: (1 in this dryland farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic.

  3. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune K.; Hansen, Anders Rhiger

    2016-01-01

    in saving energy for the sake of the environment and for their own economy, and quite a lot of households indicate that they know their own energy consumption, though only few follow it closely. Thus being concerned about energy is not necessarily related to an interest in detailed feedback on one’s own...

  4. IMPROVEMENTS IN WATER SUPPLY SYSTEMS BASED ON OPTIMIZATION AND RECOGNITION OF CONSUMPTION PATTERNS

    Directory of Open Access Journals (Sweden)

    A. M. F. DINIZ

    2015-05-01

    Full Text Available Water supply systems consume large amounts of energy because of the pumping processes involved. The operational strategy of using frequency converters enables the system to work with better adjusted discharge rate to meet demand. In this case, an optimization strategy can establish an optimal procedure in order to schedule the rotational speed of pumps over a period and guarantee a volume of water in the supply tank. This work presents and solves an optimization problem that provides the optimal schedule for the rotational speed of pumps in a real water supply system considering minimizing the use of electricity and the cost thereof and maintenance. The optimization problem is based on two Artificial Neural Networks (ANN models that provide the total power consumption in the pumping system and level of water in the tank. Pattern recognition techniques in univariate time series based on the real data are used to forecast the demand curve according to the season ofthe year. The results show the potential savings generated by the proposed method and show the feasibility of scheduling the rotational speed of the pumps to ensure the minimum energy cost without affecting hourly demand and the security of the supply system.

  5. Water consumption of the estevia (Stevia rebaudiana (Bert. Bertoni crop estimated through microlysimeter

    Directory of Open Access Journals (Sweden)

    Fronza Diniz

    2003-01-01

    Full Text Available The knowledge of water requirement of crops in the different growing phases elicits higher crop yield and rational use of water resource. The aim of this work was to estimate the water consumption of stevia using two constant watertable microlysimeters. The research was conducted in San Piero a Grado, Pisa, Italy. The data were collected daily from June, 1st, to October, 22th, 2000. Reference evapotranspiration was determined by the Penman-Monteith-FAO method, in the same period. Microlysimeters watertables level were maintained at the 35 cm depth. Crop evapotranspiration for the total cicle (80 days was 464 mm. For the most water consuming phase, crop average evapotranspiration was 5.44 mm day-1. The crop coefficient values were 1.45 for the first 25 days, 1.14 for the next period (26 to 50 days, and 1.16 for the latest period (51 to 80 days. The stevia leaf yield of the microlysimeters was 4.369 kg ha-1 and their steviosideo content 6.49%.

  6. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  7. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Temperature Effect on the Nanostructure of SDS Micelles in Water.

    Science.gov (United States)

    Hammouda, Boualem

    2013-01-01

    Sodium dodecyl sulfate (SDS) surfactants form micelles when dissolved in water. These are formed of a hydrocarbon core and hydrophilic ionic surface. The small-angle neutron scattering (SANS) technique was used with deuterated water (D2O) in order to characterize the micelle structure. Micelles were found to be slightly compressed (oblate ellipsoids) and their sizes shrink with increasing temperature. Fits of SANS data to the Mean Spherical Approximation (MSA) model yielded a calculated micelle volume fraction which was lower than the SDS surfactant (sample mixing) volume fraction; this suggests that part of the SDS molecules do not participate in micelle formation and remain homogeneously mixed in the solvent. A set of material balance equations allowed the estimation of the SDS fraction in the micelles. This fraction was found to be high (close to one) except for samples around 1 % SDS fraction. The micelle aggregation number was found to decrease with increasing temperature and/or decreasing SDS fraction.

  9. The “Puzzle” of Water Behavior at Low Temperature

    Directory of Open Access Journals (Sweden)

    José Teixeira

    2010-09-01

    Full Text Available Thermodynamic and transport properties of liquid water are not fully understood despite a large amount of research work both experimental and theoretical. The maximum of density and the enhanced anomalies observed at low temperatures are at the origin of several models that, in some cases, predict specific and unique behavior such as spinodal lines or critical points. We show that a careful analysis of the neutron quasi-elastic scattering data, both the incoherent spectra and the dynamic of the partials, is compatible with a polymer-like model, where the hydrogen bond dynamics explains the behavior of water in the non-accessible temperature region extending from −30° C to the glass transition.

  10. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    Science.gov (United States)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental

  11. Viscosity of water-in-oil emulsions. Variation with temperature and water volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Marco A.; Caldas, Jorge Navaes [Petroleo Brasileiro S.A., Rua General Canabarro, 500, Maracana, Rio, CEP 2057-900 (Brazil); Oliveira, Roberto C. [Petroleo Brasileiro S.A., Cenpes, Cidade Universitaria (Brazil); Rajagopal, Krishnaswamy [LATCA-Laboratorio de Termodinamica e Cinetica Aplicada-Escola de Quimica, Departamento de Engenharia Quimica, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitaria, C.P. 68452, CEP 21949-900, Rio de Janeiro (Brazil)

    2005-09-15

    Water-in-oil emulsions are important in the petroleum industry in production operations, where the water content of the emulsion can be as high as 60% in volume, also in petroleum refining operations where generally the water content is low. The effective viscosity of water-in-oil emulsions depends mainly on the volume fraction of dispersed phase and temperature, along with several minor effects, such as shear rate, average droplet size, droplet size distribution, viscosity and density of oil. Using six different crude oils, the effective viscosities of several synthetic water-in-oil emulsions are measured at atmospheric pressure using a dynamic viscosimeter for different shear rates, temperatures and volume fractions of the dispersed phase. The ASTM equation, method D-341, for describing viscosity as a function of temperature is extended to include the variation of dispersed phase volume fraction. The proposed equation gives good correlation between the measured viscosities of water-in-oil emulsions as a function of temperature and the volume fraction of water.

  12. Domestic Refrigerators Temperature Prediction Strategy for the Evaluation of the Expected Power Consumption

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Kosek, Anna Magdalena

    2013-01-01

    . The experiments are conducted at SYSLAB facility at DTU Risø Campus having a set of refrigerators working at different set point temperatures, with different ambient temperatures and under different thermal load conditions. The prediction strategy is tested using a set of different refrigerators in order...... to validate the performances. The challenges to calculate the time with less error pronouncement in temperature, regulating power supply and its duration are also discussed....

  13. The influence of temperature on corn seed water uptake

    Directory of Open Access Journals (Sweden)

    Lekić Slavoljub S.

    2000-01-01

    Full Text Available Temperature is a very important factor which effects seed water uptake. In this paper we investigated the effect of high temperature and high humidity on seed rate imbibition for five corn hybrids. Seeds were placed at the temperature of 41°C and 95-100% relative humidity (treatment . These seeds were compared with control. Seeds were hydrated at 12°C and 20°C for 6, 12, 24, 48 h. The highest imbibition rate was shown by ZP SC 599 hydride seed. The lowest imbibition rate was shown by ZP SC 599 hybrid seed. The seed treated at 12°C had the lowest imbibition rate. At 20°C differences in imbibition rate were lower than at 12°C. .

  14. Investigation the Effects of Operation Methods on Energy Consumption in Agricultural Water Pumping Stations

    Directory of Open Access Journals (Sweden)

    M. DelfanAzari

    2017-01-01

    Full Text Available Introduction: The energy crisis has led the world toward the reduction of energy consumption. More than 70 percent of the energy in agriculture sector is used by pumps. In our country, there is no clear standard and guideline and also no adequate supervision for the design, selection, installation and operation of pumping systems appropriate to the circumstances and needs. Consequently, these systems operate with low efficiency and high losses of energy. While more than 20 percent of the world's electricity is consumed by pumps, average pumping efficiency is less than 40%. So evaluation of pumping stations and providing some solutions to increase efficiency and pumping system’s life time and to reduce energy consumption can be an effective in optimization of energy consumption in the country. The main reasons for the low efficiency of pumping systems comparing to potential efficiency are using unsuitable techniques for flow control, hydraulic and physical changes of pumping system during the time, using pumps or motors with low efficiency and poor maintenance. Normally the amount of flow is not constant over the time in a pumping system and needed flow rate is changed at different times. Designing of pumping system should be responsible for peak requirements as well as it must suggest the suitable flow control method to achieve least energy losses for minimum flow requirements. Also one of the main capabilities to reduce energy consumption in pumping stations is improving the flow control method. Using the flow control valves and bypass line with high energy losses is very common. While the use of variable speed pumps (VSPs that supply water requirement with sufficient pressure and minimum amount of energy, is limited due to lack of awareness of designers and (or high initial costs. Materials and Methods: In this study, the operation of the pumping stations under four scenarios (for discharge control in a drip irrigation system was analyzed

  15. Radiation dose to the Malaysian populace via the consumption of bottled mineral water

    Science.gov (United States)

    Khandaker, Mayeen Uddin; Nasir, Noor Liyana Mohd; Zakirin, Nur Syahira; Kassim, Hasan Abu; Asaduzzaman, Khandoker; Bradley, D. A.; Zulkifli, M. Y.; Hayyan, Adeeb

    2017-11-01

    Due to the geological makeup of the various water bodies, mineral- and groundwater can be expected to contain levels of naturally occurring radioactive material (NORM) exceeding that of tap and surface water. Acknowledging mineral water to form a vital component of the intake in maintaining the healthy life of an individual, it nevertheless remains important to study the associated radiological implications of NORM content, especially in regard to the consumption of bottled mineral water, the presence of which is prevalent in modern urban society. In present study, various brands of bottled mineral waters that are commonly available in Malaysia were obtained from local markets, the presence of NORM subsequently being assessed by HPGe γ-ray spectrometry. The activity concentrations of the radionuclides of particular interest, 226Ra, 232Th and 40K, were found to be within the respective ranges of 1.45±0.28‒3.30±0.43, 0.65±0.18‒3.39±0.38 and 21.12±1.74‒25.31±1.84 Bq/L. The concentrations of 226Ra, of central importance in radiological risk assessment, exceed the World Health Organisation (WHO, 2011) recommended maximum permissible limit of 1.0 Bq/L; for all three radionuclides taken together, the annual effective doses are greater than the WHO recommended limit of 0.1 mSv/y, a matter of especial concern for those in the developmental stages of life.

  16. Grab a Cup, Fill It Up! An Intervention to Promote the Convenience of Drinking Water and Increase Student Water Consumption During School Lunch.

    Science.gov (United States)

    Kenney, Erica L; Gortmaker, Steven L; Carter, Jill E; Howe, M Caitlin W; Reiner, Jennifer F; Cradock, Angie L

    2015-09-01

    We evaluated a low-cost strategy for schools to improve the convenience and appeal of drinking water. We conducted a group-randomized, controlled trial in 10 Boston, Massachusetts, schools in April through June 2013 to test a cafeteria-based intervention. Signage promoting water and disposable cups were installed near water sources. Mixed linear regression models adjusting for clustering evaluated the intervention impact on average student water consumption over 359 lunch periods. The percentage of students in intervention schools observed drinking water during lunch nearly doubled from baseline to follow-up compared with controls (+ 9.4%; P < .001). The intervention was associated with a 0.58-ounce increase in water intake across all students (P < .001). Without cups, children were observed drinking 2.4 (SE = 0.08) ounces of water from fountains; with cups, 5.2 (SE = 0.2) ounces. The percentage of intervention students observed with sugar-sweetened beverages declined (-3.3%; P < .005). The current default of providing water through drinking fountains in cafeterias results in low water consumption. This study shows that an inexpensive intervention to improve drinking water's convenience by providing cups can increase student water consumption.

  17. Determining behavioral factors for interventions to increase safe water consumption: a cross-sectional field study in rural Ethiopia.

    Science.gov (United States)

    Huber, Alexandra Claudia; Mosler, Hans-Joachim

    2013-01-01

    In developing countries, the lack of safe water options leads to many health risks. In the Ethiopian Rift Valley, most water sources are contaminated with an excess of fluoride. The consumption of fluoride-contaminated water leads to dental and skeletal fluorosis. The article presents an approach to designing community interventions based on evidence from quantitative data. After installing a community filter, a baseline study was conducted in 211 households to survey the acceptance and usage of the filter. To identify important psychological factors that lead to health behavior change, the Risk, Attitude, Norm, Ability, Self-regulation (RANAS) model was taken into account. Descriptive statistics were calculated for behavioral determinants, and their influence on consumption was analyzed with a linear regression. For every behavioral factor, an intervention potential (IP) was calculated. It was found that perceived distance, factual knowledge, commitment, and taste strongly influenced participants' consumption behavior and therefore should be tackled for interventions.

  18. [Calculating method for crop water requirement based on air temperature].

    Science.gov (United States)

    Tao, Guo-Tong; Wang, Jing-Lei; Nan, Ji-Qin; Gao, Yang; Chen, Zhi-Fang; Song, Ni

    2014-07-01

    The importance of accurately estimating crop water requirement for irrigation forecast and agricultural water management has been widely recognized. Although it has been broadly adopted to determine crop evapotranspiration (ETc) via meteorological data and crop coefficient, most of the data in whether forecast are qualitative rather than quantitative except air temperature. Therefore, in this study, how to estimate ETc precisely only using air temperature data in forecast was explored, the accuracy of estimation based on different time scales was also investigated, which was believed to be beneficial to local irrigation forecast as well as optimal management of water and soil resources. Three parameters of Hargreaves equation and two parameters of McClound equation were corrected by using meteorological data of Xinxiang from 1970 to 2010, and Hargreaves equation was selected to calculate reference evapotranspiration (ET0) during the growth period of winter wheat. A model of calculating crop water requirement was developed to predict ETc at time scales of 1, 3, and 7 d intervals through combining Hargreaves equation and crop coefficient model based on air temperature. Results showed that the correlation coefficients between measured and predicted values of ETc reached 0.883 (1 d), 0.933 (3 d), and 0.959 (7 d), respectively. The consistency indexes were 0.94, 0.95 and 0.97, respectively, which showed that forecast error decreased with the increasing time scales. Forecasted accuracy with an error less than 1 mm x d(-1) was more than 80%, and that less than 2 mm x d(-1) was greater than 90%. This study provided sound basis for irrigation forecast and agricultural management in irrigated areas since the forecasted accuracy at each time scale was relatively high.

  19. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  20. Low-temperature MTBE biodegradation in aquifer sediments with a history of low, seasonal ground water temperatures

    Science.gov (United States)

    Bradley, P.M.; Landmeyer, J.E.

    2006-01-01

    Sediments from two shallow, methyl tert-butyl ether (MTBE)-contaminated aquifers, with mean ground water temperatures ???10??C, demonstrated significant mineralization of [U-14C] MTBE to 14CO 2 at incubation temperatures as low as 4??C. These results indicate that microbial degradation can continue to contribute to the attenuation of MTBE in ground water under wintertime, low-temperature conditions. ?? 2006 National Ground Water Association.

  1. The effect of temperature on post-feeding ammonia excretion and oxygen consumption in the southern catfish.

    Science.gov (United States)

    Luo, Yiping; Xie, Xiaojun

    2009-08-01

    The post-prandial rates of ammonia excretion (TAN) and oxygen consumption MO2 in the southern catfish (Silurus meridionalis) were assessed at 2 h intervals post-feeding until the rates returned to those of the fasting rates, at 17.5, 22.5, 27.5, and 32.5 degrees C, respectively. Both fasting TAN and MO2 increased with temperature, and were lower than those previously reported for many fish species. The relationship between fasting TAN (mmol NH(3)-N kg(-1) h(-1)) and temperature (T, degrees C) was described as: fasting TAN = 0.144e (0.0266T) (r = 0.526, n = 27, P feeding decreased as temperature increased. The relationship between AQ during SDA and temperature was described as: AQ(during SDA) = 0.303e (-0.0143T) (r = 0.739, n = 21, P feeding are operating independently of each other. Furthermore, it appears that the importance of protein as a metabolic substrate in postprandial fish decreases with temperature.

  2. A social network-based intervention stimulating peer influence on children's self-reported water consumption: A randomized control trial.

    Science.gov (United States)

    Smit, Crystal R; de Leeuw, Rebecca N H; Bevelander, Kirsten E; Burk, William J; Buijzen, Moniek

    2016-08-01

    The current pilot study examined the effectiveness of a social network-based intervention using peer influence on self-reported water consumption. A total of 210 children (52% girls; M age = 10.75 ± SD = 0.80) were randomly assigned to either the intervention (n = 106; 52% girls) or control condition (n = 104; 52% girls). In the intervention condition, the most influential children in each classroom were trained to promote water consumption among their peers for eight weeks. The schools in the control condition did not receive any intervention. Water consumption, sugar-sweetened beverage (SSB) consumption, and intentions to drink more water in the near future were assessed by self-report measures before and immediately after the intervention. A repeated measure MANCOVA showed a significant multivariate interaction effect between condition and time (V = 0.07, F(3, 204) = 5.18, p = 0.002, pη(2) = 0.07) on the dependent variables. Further examination revealed significant univariate interaction effects between condition and time on water (p = 0.021) and SSB consumption (p = 0.015) as well as water drinking intentions (p = 0.049). Posthoc analyses showed that children in the intervention condition reported a significant increase in their water consumption (p = 0.018) and a decrease in their SSB consumption (p  0.05). The children who were exposed to the intervention did not report a change in their water drinking intentions over time (p = 0.576) whereas the nonexposed children decreased their intentions (p = 0.026). These findings show promise for a social network-based intervention using peer influence to positively alter consumption behaviors. This RCT was registered in the Australian New Zealand Clinical Trials Registry (ACTRN12614001179628). Study procedures were approved by the Ethics Committee of the Faculty of Social Sciences at Radboud University (ECSW2014-1003-203). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Estimation of the consumption of cold tap water for microbiological risk assessment: An overview of studies and statistical analysis of data

    NARCIS (Netherlands)

    Mons, M.N.; Wielen, J.M.L. van der; Blokker, E.J.M.; Sinclair, M.I.; Hulshof, K.F.A.M.; Dangendorf, F.; Hunter, P.R.; Medema, G.J.

    2007-01-01

    The volume of cold tap water consumed is an essential element in quantitative microbial risk assessment. This paper presents a review of tap water consumption studies. Study designs were evaluated and statistical distributions were fitted to water consumption data from The Netherlands, Great

  4. Energy-effective method for low-temperature deaeration of make-up water on the heating supply system of heat power plants

    Science.gov (United States)

    Sharapov, V. I.; Pazushkina, O. V.; Kudryavtseva, E. V.

    2016-01-01

    The technology for low-temperature deaeration of make-up water of heating supply systems is developed that makes it possible to substantially enhance the energy efficiency of heat power plants (HPPs). As a desorbing agent for deaeration of make-up water of heating supply systems, it is proposed to use not steam or superheated water but a gas supplied to boiler burners. Natural gas supplied to steam boilers of HPPs has very low or often negative temperature after reducing devices. At the same time, it is virtually corrosive gas-free (oxygen and carbon dioxide) and, therefore, can be successfully used as the desorbing agent for water deaeration. These factors make it possible to perform deaeration of make-up water of heating supply systems at relatively low temperatures (10-30°C). Mixing of the cold deaerated make-up water with the return delivery water results in a significant decrease in the temperature the return delivery water before a lower delivery heater of a dual-purpose turbine plant, increase in the power output with the heat consumption, and, consequently, enhancement in the operation efficiency of the HPP. The article presents the calculation of the consumption of gas theoretically required for deaeration and reveals the evaluation of the energy efficiency of the technology for a typical energy unit of thermal power station. The mass transfer efficiency of the deaeration of the make-up water of heating supply systems is estimated for the case of using natural gas as the desorbing agent for which the specific gas consumption required theoretically for deaeration is calculated. It is shown that the consumption of natural gas used as fuel in boilers of HPPs is sufficient for the deaeration of any volumes of the make-up water of heating supply systems. The energy efficiency of the developed technology is evaluated for a typical heat power-generating unit of the HPP with a T-100-12.8 turbine. The calculation showed that the application of the new technology

  5. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress

    Directory of Open Access Journals (Sweden)

    Anne eHennig

    2015-05-01

    Full Text Available Woody crops such as poplars (Populus can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested nine-month-old plants of four tetraploid Populus tremula (L. x P. tremuloides (Michx. lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  6. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    Science.gov (United States)

    Hennig, Anne; Kleinschmit, Jörg R G; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  7. Optimisation and modelling of water consumption in the sugar cane industry; Optimizacion y modelo del consumo del agua en la industria de azucar de cana

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, R.; Paz, D.; Aso, G.; Cardenas, G.; Abreu Rodriguez, L.; Espuna, A.; Puigjaner, L.

    2001-07-01

    A model has been developed for water minimization and wastewater discharge in the sugarcane industry. As starting point, it is considered that in water consuming process each production unit has a specified consumption of water that must be supplied from the fresh water sources or from one of the source of regenerated water. Depending on the concentration of contaminants either the process water stream can be reused without treatment, or the best treatment alternative can be selected (taking into consideration its cost and contaminant removal efficiency). The stream assigned to a treatment system and the the details of the quantities of water to be reused are presented. The industrial case study described in this work has seventeen water and wastewater streams from production units, and four wastewater treatment units. In each stream are identified the following parameters: Chemical Oxygen Demand (COD). Temperature (T) and pH. The treatment processes has been selected according to the organic nature of wastewater, aerobic treatment (activated sludge), anaerobic treatment (UASB), membranes and ponds or constructed wetlands. (Author) 10 refs.

  8. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  9. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  10. 75 FR 66824 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-10-29

    ....; Consumptive Use of up to 7.500 mgd; Approval Date: September 3, 2010. 10. Cabot Oil & Gas Corporation, Pad ID....; Consumptive Use of up to 3.000 mgd; Approval Date: September 10, 2010. 49. Cabot Oil & Gas Corporation, Pad ID... County, Pa.; Consumptive Use of up to 4.000 mgd; Approval Date: September 10, 2010. 54. Cabot Oil & Gas...

  11. The influence of multifamily apartment building occupants on energy and water consumption - the preliminary results of monitoring and survey campaign

    Science.gov (United States)

    Bandurski, Karol; Hamerla, Miłosz; Szulc, Jowita; Koczyk, Halina

    2017-11-01

    Occupants' attitudes and behavior have a significant influence on energy and water consumption in buildings. To provide more robust solutions, energy efficient applications should consider occupant-building interaction. However, there is a question to be answered: which aspects of lodging and occupant behavior cause the most substantial increase in consumption of these mediums. Thus, the aim of this study is to investigate the influence of household characteristics and occupants' behavior on level and variability in utilities consumption. The study uses the results of a measuring campaign and the questionnaire. The measuring campaign was carried out to monitor the consumption of energy used for space heating and domestic hot water, as well as electricity, gas and water. The questionnaire specifically focused on household characteristics and occupants' behavior. The research was carried out in four apartment buildings, all consisting of more than 100 apartments. Data from approximately 100 households was gathered and analyzed; the survey's respond rate was almost 50%. A quantitative analysis of the results confirms the assumption that both household characteristics and occupants' behavior (e.g. the use of heating control) are important factors for utilities consumption. Further work with the obtained data is planned in terms of including of greater number of apartments, assessment of ventilation effectiveness, as well as analysis of heat transfer between the apartments.

  12. Dynamics of Domestic Water Consumption in the Urban Area of the Kathmandu Valley: Situation Analysis Pre and Post 2015 Gorkha Earthquake

    Directory of Open Access Journals (Sweden)

    Sadhana Shrestha

    2017-03-01

    Full Text Available Information regarding domestic water consumption is vital, as the Kathmandu Valley will soon be implementing the Melamchi Water Supply Project; however, updated information on the current situation after the 2015 Gorkha Earthquake (GEQ is still lacking. We investigated the dynamics of domestic water consumption pre- and post-GEQ. The piped water supply was short, and consumption varied widely across the Kathmandu Upatyaka Khanepani Limited (KUKL branches and altitude. The reduction in piped, ground, and jar water consumption and the increase in tanker water consumption post-GEQ appeared to be due to the impact of the GEQ. However, the impact did not appear to be prominent on per capita water consumption, although it was reduced from 117 to 99 L post-GEQ. Piped, ground, and tanker water use were associated with an increase and jar water use was associated with a decrease in water consumption. Despite improvements in quantity, inequality in water consumption and inequity in affordability across wealth status was well established. This study suggests to KUKL the areas of priority where improvements to supply are required, and recommends an emphasis on resuming performance. Policy planners should consider the existing inequity in affordability, which is a major issue in the United Nations Sustainable Development Goals.

  13. Effect of water stress on growth, water consumption and yield of silage maize under flood irrigation in a semi-arid climate of Tadla (Morocco)

    OpenAIRE

    BOUAZZAMA, Bassou

    2012-01-01

    The field study of crop response to water stress is important to maximize yield and improve agricultural water use efficiency in areas where water resources are limited. This study was carried out during two growing periods in 2009 and 2010 in order to study the effect of water stress on crop growth, water consumption and dry matter yield of silage maize (Zea mays L.) supplied with flood irrigation under the semi-arid climate of Tadla in Morocco. Four to five irrigation treatments were applie...

  14. The Effects of Five Forms of Capital on Thought Processes Underlying Water Consumption Behavior in Suburban Vientiane

    Directory of Open Access Journals (Sweden)

    Tatsuya Makino

    2016-06-01

    Full Text Available A community’s water supply is one of its most important infrastructures, as sufficient quality and quantity of water are as much prerequisites for human life as economic development. The rapid urbanization predicted for developing countries will cause serious water shortages in densely populated areas. The Lao People’s Democratic Republic (PDR is taking precautions by planning and developing their water supply infrastructure to ensure reliable supply of water. We used the five capitals model of sustainable livelihoods to capture how a household makes a living and analyzed the effects of five forms of capital (natural, physical, human, financial, and social on water consumption behaviors from the perspective of the residents’ livelihood. We conducted a survey to gain an understanding of the thought processes behind water consumption behavior in two villages in suburban Vientiane. The results indicated that natural and physical capital delayed connections to the water supply. Financial capital stimulated the purchase of high-quality water in preference to a connection to the water supply. This lack of connection is not necessarily sustainable in the near future, considering ongoing urbanization. Furthermore, this possibility presents a difficult problem, as residents do not usually acknowledge it. To accomplish sustainable development goals, this gap should be overcome.

  15. Is the fresh water fish consumption a significant determinant of the internal exposure to perfluoroalkylated substances (PFAS)?

    Science.gov (United States)

    Denys, Sébastien; Fraize-Frontier, Sandrine; Moussa, Oumar; Le Bizec, Bruno; Veyrand, Bruno; Volatier, Jean-Luc

    2014-12-01

    PFAS are man-made compounds that are highly spread in the environment. Human dietary exposure to such contaminants is of high concern as they may accumulate in the food chain. Different studies already demonstrated the importance of the fish consumption in the dietary exposure of these molecules and the potential increase of internal doses of PFAS following the consumption of PFAS. However, so far few study aimed to study the link between the consumption of fresh water fishes and the internal exposure to PFAS. Objectives of this study were (i) to estimate the internal exposure of populations that are potentially high consumers of fresh water fishes and (ii) to determine whether the consumption of fish caught from fresh water is a significant determinant of the internal exposure of PFAS. In this work, a large sample of adult freshwater anglers from the French metropolitan population (478 individuals) was constituted randomly from participants lists of anglers associations. Questionnaires provided social and demographic information and diet information for each subject. In addition, analyses of blood serum samples provided the internal concentration of 14 PFAS. The survey design allowed to extrapolate the data obtained on the 478 individuals to the freshwater angler population. Descriptive data regarding internal levels of PFAS were discussed at the population level, whereas identification of the determinants were done at the 478 individuals level as sufficient contrast was required in terms of fresh water fish consumption. Only molecules for which the detection frequency were above 80% in blood were considered, i.e., PFOS, PFOA, PFHxS, PFNA, PFHpS, and PFDA. Distribution profiles showed log-normal distribution and PFOS and PFOA were the main contributors of the PFAS sum. For PFOS, the results obtained on the 478 individuals showed that upper percentiles were higher as compared to upper percentiles obtained on occidental general population. This confirmed an over

  16. Air-water partitioning of 222Rn and its dependence on water temperature and salinity.

    Science.gov (United States)

    Schubert, Michael; Paschke, Albrecht; Lieberman, Eric; Burnett, William C

    2012-04-03

    Radon is useful as a tracer of certain geophysical processes in marine and aquatic environments. Recent applications include detection of groundwater discharges into surface waters and assessment of air/sea gas piston velocities. Much of the research performed in the past decade has relied on continuous measurements made in the field using a radon stripping unit connected to a radon-in-air detection system. This approach assumes that chemical equilibrium is attained between the water and gas phases and that the resulting air activity can be multiplied by a partition coefficient to obtain the corresponding radon-in-water activity. We report here the results of a series of laboratory experiments that describes the dependence of the partition coefficient upon both water temperature and salinity. Our results show that the temperature dependence for freshwater closely matches results that were previously available. The salinity effect, however, has largely been ignored and our results show that this can result in an overestimation of radon concentrations, especially in cooler, more saline waters. Related overestimates in typical situations range between 10 (warmer less saline waters) and 20% (cooler, more saline waters).

  17. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  18. Proxy comparisons for Paleogene sea water temperature reconstructions

    Science.gov (United States)

    de Bar, Marijke; de Nooijer, Lennart; Schouten, Stefan; Ziegler, Martin; Sluijs, Appy; Reichart, Gert-Jan

    2017-04-01

    Several studies have reconstructed Paleogene seawater temperatures, using single- or multi-proxy approaches (e.g. Hollis et al., 2012 and references therein), particularly comparing TEX86 with foraminiferal δ18O and Mg/Ca. Whereas trends often agree relatively well, absolute temperatures can differ significantly between proxies, possibly because they are often applied to (extreme) climate events/transitions (e.g. Sluijs et al., 2011), where certain assumptions underlying the temperature proxies may not hold true. A more general long-term multi-proxy temperature reconstruction, is therefore necessary to validate the different proxies and underlying presumed boundary conditions. Here we apply a multi-proxy approach using foraminiferal calcite and organic proxies to generate a low-resolution, long term (80 Myr) paleotemperature record for the Bass River core (New Jersey, North Atlantic). Oxygen (δ18O), clumped isotopes (Δ47) and Mg/Ca of benthic foraminifera, as well as the organic proxies MBT'-CBT, TEX86H, U37K' index and the LDI were determined on the same sediments. The youngest samples of Miocene age are characterized by a high BIT index (>0.8) and fractional abundance of the C32 1,15-diol (>0.6; de Bar et al., 2016) and the absence of foraminifera, all suggesting high continental input and shallow depths. The older sediment layers (˜30 to 90 Ma) display BIT values and C32 1,15-diol fractional abundances global transition from the Cretaceous to Eocene greenhouse world into the icehouse climate. The TEX86H sea surface temperature (SST) record shows a gradual cooling over time of ˜35 to 20 ˚ C, whereas the δ18O-derived bottom water temperatures (BWTs) decrease from ˜20 to 10 ˚ C, and the Mg/Ca and Δ47-derived BWTs decrease from ˜25 to 15 ˚ C. The absolute temperature difference between the δ18O and Δ47, might be explained by local variations in seawater δ18O composition. Similarly, the difference in Mg/Ca- and δ18O-derived BWTs is likely caused by

  19. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis

    NARCIS (Netherlands)

    Zhao, R.; Porada, S.; Biesheuvel, P.M.; Wal, van der A.

    2013-01-01

    Membrane capacitive deionization (MCDI) is a non-faradaic, capacitive technique for desalinating brackish water by adsorbing ions in charged porous electrodes. To compete with reverse osmosis, the specific energy consumption of MCDI needs to be reduced to less than 1 kWh per m3 of freshwater

  20. Water and Beverage Consumption: Analysis of the Australian 2011–2012 National Nutrition and Physical Activity Survey

    Science.gov (United States)

    Sui, Zhixian; Zheng, Miaobing; Zhang, Man; Rangan, Anna

    2016-01-01

    Background: Water consumption as a vital component of the human diet is under-researched in dietary surveys and nutrition studies. Aim: To assess total water and fluid intakes and examine demographic, anthropometric, and dietary factors associated with water consumption in the Australian population. Methods: Dietary intake data from the 2011 to 2012 National Nutrition and Physical Activity Survey were used. Usual water, fluid and food and nutrient intakes were estimated from two days of dietary recalls. Total water includes plain drinking water and moisture from all food and beverage sources; total fluids include plain drinking water and other beverages, but not food moisture. Results: The mean (SD) daily total water intakes for children and adolescents aged 2–18 years were 1.7 (0.6) L for males and 1.5 (0.4) L for females, and for adults aged 19 years and over were 2.6 (0.9) L for males and 2.3 (0.7) L for females. The majority of the population failed to meet the Adequate Intake (AI) values for total water intake (82%) and total fluids intake (78%) with the elderly at highest risk (90%–95%). The contributions of plain drinking water, other beverages and food moisture to total water intake were 44%, 27%, and 29%, respectively, among children and adolescents, and 37%, 37% and 25% among adults. The main sources of other beverages were full-fat plain milk and regular soft drinks for children and adolescents, and tea, coffee, and alcoholic drinks for adults. For adults, higher total water intake was associated with lower percent energy from fat, saturated fat, and free sugars, lower sodium and energy-dense nutrient poor food intakes but higher dietary fibre, fruit, vegetable, caffeine, and alcohol intakes. No associations were found between total water consumption and body mass index (BMI) for adults and BMI z-score for children and adolescents. Conclusion: Reported water consumption was below recommendations. Higher water intakes were suggestive of better diet

  1. Water and Beverage Consumption: Analysis of the Australian 2011–2012 National Nutrition and Physical Activity Survey

    Directory of Open Access Journals (Sweden)

    Zhixian Sui

    2016-10-01

    Full Text Available Background: Water consumption as a vital component of the human diet is under-researched in dietary surveys and nutrition studies. Aim: To assess total water and fluid intakes and examine demographic, anthropometric, and dietary factors associated with water consumption in the Australian population. Methods: Dietary intake data from the 2011 to 2012 National Nutrition and Physical Activity Survey were used. Usual water, fluid and food and nutrient intakes were estimated from two days of dietary recalls. Total water includes plain drinking water and moisture from all food and beverage sources; total fluids include plain drinking water and other beverages, but not food moisture. Results: The mean (SD daily total water intakes for children and adolescents aged 2–18 years were 1.7 (0.6 L for males and 1.5 (0.4 L for females, and for adults aged 19 years and over were 2.6 (0.9 L for males and 2.3 (0.7 L for females. The majority of the population failed to meet the Adequate Intake (AI values for total water intake (82% and total fluids intake (78% with the elderly at highest risk (90%–95%. The contributions of plain drinking water, other beverages and food moisture to total water intake were 44%, 27%, and 29%, respectively, among children and adolescents, and 37%, 37% and 25% among adults. The main sources of other beverages were full-fat plain milk and regular soft drinks for children and adolescents, and tea, coffee, and alcoholic drinks for adults. For adults, higher total water intake was associated with lower percent energy from fat, saturated fat, and free sugars, lower sodium and energy-dense nutrient poor food intakes but higher dietary fibre, fruit, vegetable, caffeine, and alcohol intakes. No associations were found between total water consumption and body mass index (BMI for adults and BMI z-score for children and adolescents. Conclusion: Reported water consumption was below recommendations. Higher water intakes were suggestive of

  2. Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India.

    Science.gov (United States)

    Bhattacharya, Piyal; Samal, Alok Chandra; Banerjee, Suman; Pyne, Jagadish; Santra, Subhas Chandra

    2017-09-01

    A study was conducted in fluoride-affected Bankura and Purulia districts of West Bengal to assess the potential health risk from fluoride exposure among children, teenagers, and adults due to consumption of rice, pulses, and vegetables in addition to drinking water and incidental ingestion of soil by children. Higher mean fluoride contents (13-63 mg/kg dry weight) were observed in radish, carrot, onion bulb, brinjal, potato tuber, cauliflower, cabbage, coriander, and pigeon pea. The combined influence of rice, pulses, and vegetables to cumulative estimated daily intake (EDI) of fluoride for the studied population was found to be 9.5-16%. Results also showed that intake of ivy gourd, broad beans, rice, turnip, fenugreek leaves, mustard, spinach, and amaranth grown in the study area is safe at least for time being. The cumulative EDI values of fluoride (0.06-0.19 mg/kg-day) among different age group of people of the study area were evaluated to be ~104 times higher than those living in the control area; the values for children (0.19 and 0.52 mg/kg-day for CTE and RME scenarios, respectively) were also greater than the "Tolerable Upper Intake Level" value of fluoride. The estimated hazard index (HI) for children (3.2 and 8.7 for CTE and RME scenarios, respectively) living in the two affected districts reveals that they are at high risk of developing dental fluorosis due to the consumption of fluoride-contaminated rice, pulses, and vegetables grown in the study area in addition to the consumption of contaminated drinking water.

  3. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  4. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    Science.gov (United States)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available

  5. The Spatial and Temporal Consumptive Water Use Impacts of Rapid Shale Gas Development and Use in Texas

    Science.gov (United States)

    Pacsi, A. P.; Allen, D.

    2013-12-01

    Over the past several years, the development of shale gas resources has proceeded rapidly in many areas of the United States, and this shale gas development requires the use of millions of gallons of water, per well, for hydraulic fracturing. Recent life cycle assessments of natural gas from shale formations have calculated the potential for water use reduction when water use is integrated along the entire natural gas supply chain, if the shale gas is used in natural-gas power plants to displace coal-fired electricity generation. Actual grid operation, however, is more complicated and would require both that sufficient unused natural gas generation capacity exists for the displacement of coal-fired power generation and that the natural gas price is low enough that the switching is financially feasible. In addition, water savings, which would occur mainly from a reduction in the cooling water demand at coal-fired power plants, may occur in different regions and at different times than water used in natural gas production. Thus, consumptive water impacts may be spatial and temporally disparate, which is not a consideration in current life-cycle literature. The development of shale gas resources in Texas in August 2008 through December 2009 was chosen as a case study for characterizing this phenomenon since Texas accounted for two-thirds of the shale gas produced in the United States during this period and since the price of natural gas for electricity generation dropped significantly over the episode. Changes to the Texas self-contained electric grid (ERCOT) for a scenario with actual natural gas production and prices was estimated using a constrained grid model, rather than assuming that natural gas generation would displace coal-fired power plant usage. The actual development scenario was compared to an alternative development scenario in which natural gas prices remained elevated throughout the episode. Upstream changes in water consumption from lignite (coal

  6. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  7. Effects of contingent and noncontingent nicotine on lever pressing for liquids and consumption in water-deprived rats.

    Science.gov (United States)

    Frenk, Hanan; Martin, Jeffrey; Vitouchanskaia, Cristina; Dar, Reuven; Shalev, Uri

    2017-01-05

    Nicotine has been proposed to be a primary reinforcer and a reinforcement enhancer. To date, no studies have examined whether nicotine enhances consummatory behaviors or only operant responding (appetitive behaviors). Experiments were designed to test whether contingent and noncontingent nicotine enhance lever pressing for and consumption of fluids in water-deprived rats. Animals were water-deprived throughout all experiments. They were trained to press two levers under a variable interval (VI-20, 1-35s). Their lever pressing and water consumption were measured after noncontingent subcutaneous (s.c.) injection of nicotine (1mg/kg), and in 3 choice conditions (water and quinine solution (18µg/ml); water and nicotine (32µg/ml) solution; quinine (18µg/ml) and nicotine (32µg/ml) solutions) where nicotine was thus delivered contingently upon lever pressing. The effects of nicotine (1mg/kg; s.c.) on the consumption of water in a time-limited free access (1h) paradigm were assessed. Nicotine significantly increased lever pressing and the number of earned reinforcements on both levers in the two choice conditions and when administered s.c. compared to all groups that did not receive nicotine. However, under no condition did animals consume more fluids than baseline. Under the time-limited free access condition nicotine reduced water consumption. Although our findings do not support a reinforcing effect for nicotine, they are consistent with the incentive-amplification hypothesis. Its relevance for human smoking is yet unclear. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Long Island Sound Water Temperatures During the Last Two Thousand Years

    Science.gov (United States)

    Warren, C. E.; Varekamp, J. C.; Thomas, E.

    2010-12-01

    The Long Island Sound (LIS), sometimes called the “urban sea”, is a large estuary in the heavily populated coastal zone between New York City and the Connecticut - Rhode Island border. LIS has seen dramatic environmental shifts since colonial times, including major changes in aquatic food extraction, land use, contaminant and nutrient inputs, and climate change. Annual seasonal hypoxic/anoxic events, especially common in westernmost LIS, have been identified as potentially severe stressors for LIS biota including valuable fisheries species such as lobsters and shellfish. These conditions develop when the Sound becomes stratified in midsummer and oxygen consumption from the oxidation of organic matter exceeds oxygen resupply from the atmosphere or photosynthesis. Severity, lateral extent and frequency of hypoxia/anoxia is influenced by the amount of organic matter available for oxidation, both marine organic matter (produced by algal blooms in response to influx of N-rich effluents from waste water treatment plants) and terrestrial organic matter. These events are also influenced by the severity of stratification, determined by differences in density from temperature and salinity gradients of surface and bottom waters. Studies of cores in western and central LIS, dated using Hg-pollution profiles, 210Pb - 137Cs, and 14C, indicate that eutrophication and hypoxia have occurred in LIS only over the last ~150 years, with the possible exception of the Narrows (closest to NY) where it may have occurred before colonial times. Salinity decreased as well over the last 150 years, possibly due to changes in land use or deflection of fresh water from the Hudson River. Temperature variability in LIS over the last few thousand years has not been clearly documented, as several paleotemperature proxies are difficult to use in estuarine settings. Oxygen isotope values of carbonate microfossils are influenced by salinity fluctuations, and Mg/Ca values in these shells may be

  9. Coupled daily streamflow and water temperature modelling in large river basins

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Yearsley, J.R.; Franssen, W.H.P.; Ludwig, F.; Haddeland, I.; Kabat, P.

    2012-01-01

    Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully

  10. Applying Multi-Theory Model (MTM) of Health Behavior Change to Predict Water Consumption Instead of Sugar-Sweetened Beverages.

    Science.gov (United States)

    Sharma, Manoj; Catalano, Hannah Priest; Nahar, Vinayak K; Lingam, Vimala C; Johnson, Paul; Ford, M Allison

    2017-02-25

    A substantial proportion of college students to not drink enough water and consume sugar-sweetened beverages (SSBs). Consumption of SSBs is associated with weight gain, obesity, type 2 diabetes mellitus, dental carries, and increased risk for cardiovascular disease. Hence, the purpose of this study was to use the multi-theory model (MTM) in predicting initiation and sustenance of plain water consumption instead of sugar-sweetened beverages among college students. A cross-sectional study. In this cross-sectional study, a 37-item valid and reliable MTM-based survey was administered to college students in 2016 via Qualtrics at a large public university in the Southeastern United States. Overall, 410 students responded to the survey; of those, 174 were eligible for the study and completed it. Stepwise multiple regression analysis revealed that 61.8% of the variance in the initiation of drinking plain water instead of SSBs was explained by behavioral confidence (P<0.001) and changes in the physical environment (P<0.001). Further, 58.3% of the variance in the sustenance of drinking plain water instead of SSBs was explained by emotional transformation (P<0.001) and practice for change (P=0.001). Multi-theory model of health behavior change is a robust theory for predicting plain water consumption instead of SSBs in college students. Interventions should be developed based on this theory for this target population.

  11. Estimation of agricultural water consumption from meteorological and yield data: a case study of Hebei, North China.

    Directory of Open Access Journals (Sweden)

    Zaijian Yuan

    Full Text Available Over-exploitation of groundwater resources for irrigated grain production in Hebei province threatens national grain food security. The objective of this study was to quantify agricultural water consumption (AWC and irrigation water consumption in this region. A methodology to estimate AWC was developed based on Penman-Monteith method using meteorological station data (1984-2008 and existing actual ET (2002-2008 data which estimated from MODIS satellite data through a remote sensing ET model. The validation of the model using the experimental plots (50 m(2 data observed from the Luancheng Agro-ecosystem Experimental Station, Chinese Academy of Sciences, showed the average deviation of the model was -3.7% for non-rainfed plots. The total AWC and irrigation water (mainly groundwater consumption for Hebei province from 1984-2008 were then estimated as 864 km(3 and 139 km(3, respectively. In addition, we found the AWC has significantly increased during the past 25 years except for a few counties located in mountainous regions. Estimations of net groundwater consumption for grain food production within the plain area of Hebei province in the past 25 years accounted for 113 km(3 which could cause average groundwater decrease of 7.4 m over the plain. The integration of meteorological and satellite data allows us to extend estimation of actual ET beyond the record available from satellite data, and the approach could be applicable in other regions globally where similar data are available.

  12. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    Science.gov (United States)

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions.

  13. Hot water epilepsy: seizure type, water temperature, EEG findings and treatment.

    Science.gov (United States)

    Zeki, Gokcil; Gokcil, Zeki; Ilker, Ipekdal Huseyin; Ipekdal, Huseyin Ilker; Hidir, Ulas Umit; Ulas, Umit Hidir; Zeki, Odabasi; Odabasi, Zeki

    2010-03-01

    Hot water epilepsy (HWE) or bathing epilepsy is one of the reflex epilepsies induced by hot water pouring over the head, face, neck, or trunk during bathing. The aim of this study was to demonstrate the clinical and electroencephalographic features and the management alternatives of the patients with HWE. The age of seizure onset, duration of seizure, family history, interictal and postictal electroencephalography findings, triggering temperature of water, type of seizure, medication, and follow-up results were evaluated for each patient. The mean age at seizure onset was 10.5 years. The mean duration of seizures was 10 years. Interictal EEG recordings showed focal abnormalities in 4 patients and generalized abnormalities in 3 patients. Only one patient had normal interictal EEG findings. Among the 8 patients with HWE, 6 had seizures only during hot bathing, whereas 2 had additional seizures. Seven patients had generalized tonic-clonic seizures and 1 patient had complex partial seizure during their hot bathings. The mean triggering temperature of water was calculated as 41.4 degrees C. The mean duration of follow-up period was 23 months. Five patients became seizure-free during the follow-up period and seizures persisted in 3 patients. Antiepileptic drugs were given (800 mg/d carbamazepine for 2 patients and 600 mg/d phenytoin for 1 patient) to these 3 patients and they also became seizure-free during the follow-up period. Hot water epilepsy is a benign reflex epilepsy. Lowering water temperature must be the first step for the treatment. If needed, antiepileptic drugs should be considered as an additive treatment.

  14. Record-high specific conductance and water temperature in San Francisco Bay during water year 2015

    Science.gov (United States)

    Work, Paul; Downing-Kunz, Maureen; Livsey, Daniel

    2017-02-22

    The San Francisco estuary is commonly defined to include San Francisco Bay (bay) and the adjacent Sacramento–San Joaquin River Delta (delta). The U.S. Geological Survey (USGS) has operated a high-frequency (15-minute sampling interval) water-quality monitoring network in San Francisco Bay since the late 1980s (Buchanan and others, 2014). This network includes 19 stations at which sustained measurements have been made in the bay; currently, 8 stations are in operation (fig. 1). All eight stations are equipped with specific conductance (which can be related to salinity) and water-temperature sensors. Water quality in the bay constantly changes as ocean tides force seawater in and out of the bay, and river inflows—the most significant coming from the delta—vary on time scales ranging from those associated with storms to multiyear droughts. This monitoring network was designed to observe and characterize some of these changes in the bay across space and over time. The data demonstrate a high degree of variability in both specific conductance and temperature at time scales from tidal to annual and also reveal longer-term changes that are likely to influence overall environmental health in the bay.In water year (WY) 2015 (October 1, 2014, through September 30, 2015), as in the preceding water year (Downing-Kunz and others, 2015), the high-frequency measurements revealed record-high values of specific conductance and water temperature at several stations during a period of reduced freshwater inflow from the delta and other tributaries because of persistent, severe drought conditions in California. This report briefly summarizes observations for WY 2015 and compares them to previous years that had different levels of freshwater inflow.

  15. ANALYSIS OF CHANGES IN WATER CONSUMPTION IN SELECTED CITIES OF LOWER SILESIAN VOIVODSHIP IN 2005-2010

    Directory of Open Access Journals (Sweden)

    Beata Malczewska

    2016-12-01

    Full Text Available The subject of the work is the analysis of changes in water consumption for the years 2005-2010. Analysis have been subjected to the town of Oborniki Śląskie, Bystrzyca Kłodzka and Klodzko. All towns are located at the lower Silesian Voivodeship. They differ by its populations and the development of various economy branches. In this paper we are presenting the changes in the water uptake by user group and the total amount of water pumped into the network. The information about the quantity of water sold by water plants and the size of the losses resulting from leaks and accidents on the water-supply networks are also included.

  16. Nebulized water cooling of the canopy affects leaf temperature, berry composition and wine quality of Sauvignon blanc.

    Science.gov (United States)

    Paciello, Pericle; Mencarelli, Fabio; Palliotti, Alberto; Ceccantoni, Brunella; Thibon, Cécile; Darriet, Philippe; Pasquini, Massimiliano; Bellincontro, Andrea

    2017-03-01

    The present paper details a new technique based on spraying nebulized water on vine canopy to counteract the negative impact of the current wave of hot summers with temperatures above 30 °C, which usually determine negative effects on vine yield, grape composition and wine quality. The automatized spraying system was able to maintain air temperature at below 30 °C (the threshold temperature to start spraying) for all of August 2013, when in the canopy of uncooled vines the temperature was as high as 36 °C. The maintenance of temperature below 30 °C reduced leaf stress linked to high temperature and irradiance regimes as highlighted by the decrease of H2 O2 content and catalase activity in the leaves. A higher amount of total polyphenols and organic acids and lower sugars characterized the grapes of cooled vines. Wine from these grapes had a higher content of some volatile thiols like 3-sulfanylhexanol (3SH) and 3-sulfanylhexylacetate (3SHA), and lower content of 4-methyl-4-sulfanylpentan-2-one (4MSP). Under conditions of high temperature and irradiance regimes, water nebulization on the vine canopy can represent a valid solution to reduce and/or avoid oxidative stress and associated effects in the leaves, ensure a regular berry ripening and maintain high wine quality. The consumption of water during nebulization was acceptable, being 180 L ha(-1) min(-1) , which lasted an average of about 1 min to reduce the temperature below the threshold value of 30 °C. A total of 85-90 hL (from 0.8 to 0.9 mm) of water per hectare per day was required. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Development and consumption capacity of Chrysoperla externa (Hagen (Neuroptera, Chrysopidae fed with Cinara spp. (Hemiptera, Aphididae under three temperatures

    Directory of Open Access Journals (Sweden)

    Josiane T. Cardoso

    2003-12-01

    Full Text Available The giant conifer aphids Cinara pinivora (Wilson, 1919 and Cinara atlantica (Wilson, 1919 (Hemiptera: Aphididae are pests on Pinus spp. (Pinaceae in the South and Southeast regions of Brazil. Larvae of Chrysoperla externa (Hagen, 1861 (Neuroptera, Chrysopidae were observed feeding voraciously on these aphid colonies. In order to evaluate their potential as biological control agents, some biological parameters and their consumption capacity were studied in laboratory. Ten larvae were isolated in plastic vials and fed with aphids of small size (nymphs of 1st and 2nd instars and 10 with aphids of medium size (nymphs of 3rd and 4th instars, maintained at 15ºC, 20ºC and 25ºC, under 12:12 h photoperiod and 70 ± 10% RH, and observed daily. The egg incubation period was nine days at 20ºC and four days at 25ºC. The mean larval development period for C. externa was 59.5 days; 22.3 days and 10.9 days, respectively at 15ºC, 20ºC and 25ºC. The pupal stage last 23.2 at 20ºC and 11.1 days at 25ºC. Unfortunately, data of egg and pupal development at 15ºC are not available because the rearing chamber overheated. The mortality rate from egg to adult was 46.2% 46.6% and 20.2% at 15ºC, 20ºC and 25ºC, respectively. The average aphid consumption of each C. externa larva to complete its development was 499.1; 341.7 and 215.1 small aphids, and 126.4; 105.6 and 67.0 medium aphids, at 15ºC, 20ºC and 25ºC, respectively. About 80% of the total food consumption was by the 3rd instar larvae. Although the development was faster and viability higher at 25ºC than at the other two temperatures, the consumption was the highest at 15ºC because the larval period was much longer. Therefore, the larvae of C. externa can be regarded as potential biological control agents of Cinara spp. throughout the year and even in cool areas of Southern Brazil during some periods o the year.

  18. Electrochemical noise measurements of stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Arganis-Juarez, C.R. [Instituto Nacional de Investigaciones Nucleares Km. 36.5, Carretera Federal Mexico-Toluca, Municipio de Ocoyoacac, C.P. 52045, Estado de Mexico (Mexico); Malo, J.M. [Instituto de Investigaciones Electricas Av. Reforma 113, Col. Palmira, C.P. 62490, Cuernavaca, Morelos (Mexico)], E-mail: jmmalo@iie.org.mx; Uruchurtu, J. [Centro de Investigaciones en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos (Mexico)

    2007-12-15

    Corrosion in a high purity aqueous environment simulating a boiling water reactor (BWR) is addressed in this work. This condition necessitates autoclave experiments under high pressure and temperature. Long-term electrochemical noise measurements were explored as a mean to detect and monitor stress corrosion cracking phenomenon. An experimental set up, designed to insulate the working electrode from external interference, made possible to detect and monitor stress corrosion cracking in slow strain rate tests for sensitized and solution annealed 304 stainless steel at 288 {sup o}C. Time-series analysis showed variations in the signature of the current density series due to transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC)

  19. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    2010-01-01

    Different types of corrosion resistant stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as a possible metallic bipolar plate and construction material with respect to corrosion resistance under simulated conditions corresponding to the conditions in high temperature...... proton exchange membrane (PEM) water electrolysers (HTPEMWE). All samples were exposed to anodic polarisation in 85% phosphoric acid electrolyte solution. Platinum and gold plates were tested for the valid comparison. Steady-state voltammetry was used in combination with scanning electron microscopy...... and energy-dispersive X-ray spectroscopy. Results show that stainless steels are the most inclined to corrosion under high anodic polarization. Among alloys, Ni-based showed the highest corrosion resistance under conditions, simulating HTPEMWE. In particular, Inconel625 is the most promising alloy...

  20. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    Science.gov (United States)

    Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter

    2018-01-01

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

  1. 75 FR 51155 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-08-18

    ....; Consumptive Use of up to 7.500 mgd; Approval Date: June 2, 2010. 3. Cabot Oil and Gas Corporation, Pad ID.... Cabot Oil & Gas Corporation, Pad ID: Post P1, ABR-20100605, Brooklyn Township, Susquehanna County, Pa..., Tioga County, Pa.; Consumptive Use of up to 4.000 mgd; Approval Date: June 2, 2010. 8. Cabot Oil & Gas...

  2. 75 FR 4901 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-01-29

    ... County, Pa.; Consumptive Use total of up to 4.000 mgd; Approval Date: December 18, 2009. 53. Cabot Oil....; Consumptive Use of up to 3.575 mgd; Approval Date: December 21, 2009. 54. Cabot Oil & Gas Corporation, Pad ID...

  3. 76 FR 21092 - Notice of Projects Approved or Rescinded for Consumptive Uses of Water

    Science.gov (United States)

    2011-04-14

    .... 46. Anadarko E&P Company LP, Pad ID: Harry W Stryker Pad A, ABR- 201011044, Cogan House Township..., ABR-201012008, Hector Township, Potter County, Pa.; Consumptive Use of up to 7.000 mgd; Approval Date...- 20100346, Harrison Township, Potter County, Pa.; Consumptive Use of up 4.000 mgd; Rescinded Date: December...

  4. Hydrogen generation from low-temperature water-rock reactions

    Science.gov (United States)

    Mayhew, L. E.; Ellison, E. T.; McCollom, T. M.; Trainor, T. P.; Templeton, A. S.

    2013-06-01

    Hydrogen is commonly produced during the high-temperature hydration of mafic and ultramafic rocks, owing to the oxidation of reduced iron present in the minerals. Hydrothermal hydrogen is known to sustain microbial communities in submarine vent and terrestrial hot-spring systems. However, the rates and mechanisms of hydrogen generation below temperatures of 150°C are poorly constrained. As such, the existence and extent of hydrogen-fuelled ecosystems in subsurface terrestrial and oceanic aquifers has remained uncertain. Here, we report results from laboratory experiments in which we reacted ground ultramafic and mafic rocks and minerals--specifically peridotite, pyroxene, olivine and magnetite--with anoxic fluids at 55 and 100°C, and monitored hydrogen gas production. We used synchrotron-based micro-X-ray fluorescence and X-ray absorption near-edge structure spectroscopy to identify changes in the speciation of iron in the materials. We report a strong correlation between molecular hydrogen generation and the presence of spinel phases--oxide minerals with the general formula [M2+M23+]O4 and a cubic crystal structure--in the reactants. We also identify Fe(III)-(hydr)oxide reaction products localized on the surface of the spinel phases, indicative of iron oxidation. We propose that the transfer of electrons between Fe(II) and water adsorbed to the spinel surfaces promotes molecular hydrogen generation at low temperatures. We suggest that these localized sites of hydrogen generation in ultramafic aquifers in the oceanic and terrestrial crust could support hydrogen-based microbial life.

  5. A survey on knowledge, attitude and practice of high consumption households towards proper use of water in Yazd

    Directory of Open Access Journals (Sweden)

    H torabi

    2017-01-01

    Full Text Available Background: Population growth, urban development due to the migration to the cities and the increasing demand are of the component that influences on volume of water available. therefore water conservation in cities, espically in yazd is very important. Methods: This research as a cross-sectional study was conducted on high consumption households. Sampling was carried out to cluster method and in two stages, finally 188 questionnaires by SPSS statistical software (T-test, Mann-Whitney were analyzed. Results: Average and SD of knowledge scores 60.04 ± 15.5, the attitude 22.28 ± 3.97 and the practice was 11.6 ± 3.63. This study showed that there is a statistically significant association between total knowledge with job and sex. The results of factor analysis indicated that the category of "other parts of the house(cooler, washing automobiles,devices of reducer water consumption, etc," the highest and category of "causes of water loss at house (washing yard, water leak from pipes, non-closure water faucet when brushing your teeth, etc." had the lowest contribution in the states of total knowledge. There isn’t any statistically significant association between the attitudes and practice of households in all the variables. Conclusion: The results showed that studied households have relatively good level of practice than the water conservation behaviors. However, intervention efforts to promote these behaviors to a higher level, is important and necessary.

  6. [Knowledge about consumption of plain water in adults of low socioeconomic status of the city of Cuernavaca, México].

    Science.gov (United States)

    Espinosa-Montero, Juan; Aguilar-Tamayo, Manuel Francisco; Monterrubio-Flores, Eric Alejandro; Barquera-Cervera, Simón

    2013-01-01

    To describe and compare the everyday knowledge about plain water consumption among "small" and "big drinkers". A qualitative study was conducted between April and August 2010 in Mexico. Eight focus groups with low socioeconomic status adults as key informants were conformed; half of the groups were conducted with men and half with women. Data analysis was conducted with: a) coding and categorization according to hydration literature review b) conceptual mapping, recognizing propositions and affirmations made by the participants. Small and big drinkers have similar everyday knowledge about plain water intake. Both groups use the same epistemological axes to explain its intake: "what the body needs". Both groups have the notion that plain water and other beverages such as soda "may be harmful" if you drink them in excess. Everyday knowledge about water is related to soda and drinks used to substitute water intake. The characteristics of water and soda intake are constructed based on personal experience and insights on their effect on the body and mind. These representations can be used to assess fluid intake and may constitute barriers to the consumption of plain water.

  7. Variations in Withdrawal, Return Flow, and Consumptive Use of Water in Ohio and Indiana, with Selected Data from Wisconsin, 1999-2004

    Science.gov (United States)

    Shaffer, Kimberly H.

    2009-01-01

    This report contains an analysis of water withdrawal and return-flow data for Ohio and withdrawal data for Indiana and Wisconsin to compute consumptive-use coefficients and to describe monthly variability of withdrawals and consumptive use. Concurrent data were available for most water-use categories from 1999 through 2004. Average monthly water withdrawals are discussed for a variety of water-use categories, and average water use per month is depicted graphically for Ohio, Indiana, and Wisconsin (public supply only). For most water-use categories, the summer months were those of highest withdrawal and highest consumptive use. For public supply, average monthly withdrawals ranged from 1,380 million gallons per day (Mgal/d) (November) to 1,620 Mgal/d (July) in Ohio, 621 Mgal/d (December) to 816 Mgal/d (July) in Indiana, and 515 Mgal/d (December) to 694 Mgal/d (July) in Wisconsin. Ohio and Indiana thermoelectric facilities had large increases in average monthly withdrawals in the summer months (5,520 Mgal/d in March to 7,510 Mgal/d in August for Indiana; 7,380 Mgal/d in February to 10,040 Mgal/d in July for Ohio), possibly because of increased electricity production in the summer, a need for additional cooling-water withdrawals when intake-water temperature is high, or use of different types of cooling methods during different times of the year. Average industrial withdrawals ranged from 2,220 Mgal/d (December) to 2,620 Mgal/d (August) in Indiana and from 707 Mgal/d (January) to 787 Mgal/d (August) in Ohio. The Ohio and Indiana irrigation data showed that most withdrawals were in May through October for golf courses, nurseries, and crop irrigation. Commercial water withdrawals ranged from 30.4 Mgal/d (January) to 65.0 Mgal/d (September) in Indiana and from 23.2 Mgal/d (November) to 49.5 Mgal/d (August) in Ohio; commercial facilities that have high water demand in Ohio and Indiana are medical facilities, schools, amusement facilities, wildlife facilities, large stores

  8. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  9. [The global and national context regarding the challenges involved in ensuring adequate access to water for human consumption].

    Science.gov (United States)

    Augusto, Lia Giraldo da Silva; Gurgel, Idê Gomes Dantas; Câmara Neto, Henrique Fernandes; de Melo, Carlos Henrique; Costa, André Monteiro

    2012-06-01

    The scope of this article is to analyze the challenges involved in ensuring access to water for human consumption taking the international and national context into consideration. Based on the UN declaration that access to safe and clean drinking water is a fundamental human right, vulnerabilities are identified that can consist in restrictions to access to adequate supplies. The distribution of water and the population across the planet, pollution, inadequate policies and management lead to environmental injustice. The iniquity of access to water constitutes the contemporary water crisis. From the 1980s onwards, the transnational water market emerged for private control that occurs at three main levels: surface and underground water sources; bottled water; and public water supply services. The conflicts of the multiple uses of water resources, the market and environmental problems have contributed to rendering the health of the population and ecosystems vulnerable. Adequate public policies are essential to ensure the basic human right to access to safe and clean drinking water.

  10. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table

    Directory of Open Access Journals (Sweden)

    Yuya Ono

    2017-08-01

    Full Text Available Interest in the impacts of water use in the life cycle of products and services are increasing among various stakeholders. The water footprint is a tool to identify critical and effective points for reducing the impact of water use through the entire life cycle of products, services, and organizations. The purpose of this study was to develop a water consumption inventory database that focused on identifying of Asian water consumption using an input-output (IO framework. An Asia International Input-Output table (AIIO was applied in this study. The amount of water consumption required for agricultural products was estimated by modeling; for other sectors it was estimated from statistical reports. The intensities of direct water consumption in each sector were calculated by dividing the amount of water consumption by the domestic production. Based on the IO analysis using Leontief’s inverse matrix, the intensities of water consumption from cradle to gate were estimated for all goods and services. There was high intensity of water consumption in the primary industry sectors, together with a high dependency on rainwater as an input water source. The water consumption intensities generally showed a larger reduction in secondary sectors, in comparison with the tertiary sectors, due to the use of recycled water. There were differences between this study and previous studies due to the use of site-specific production data and the temporal resolution of crop production. By considering site-specific conditions, it is expected that the dataset developed here can be used for estimating the water footprint of products, services, and organizations in nine countries (Japan, South Korea, China, Taiwan, Thailand, the Philippines, Malaysia, Singapore, Indonesia, and USA.

  11. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is

  12. Measurement of water transfer and swelling stress in the buffer material due to temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Chijimatsu, M.; Fujita, A.

    1999-03-01

    Coefficients concerning the water transfer in the buffer material was obtained by empirically giving a temperature gradient, and the swelling stress was measured when water was soaked in the sample under the uniform temperature and temperature gradient conditions. The distributions of temperature and water in the buffer material empirically given a temperature gradient were measured to deduce water diffusion constant due to the temperature gradient. The diffusion constant was the order of 10{sup -8} cm{sup 2}/s/degC. As a result of a equitemperature soaking test, it was found that the swelling stress of the part where soaktion was slow was greater than that of the part with fast soaking at a stage of non-uniform water distribution. The water soaking quantity to the sample and swelling stress reached a stationary state after 7000 hours and the water distribution in the whole sample was found saturated. (H. Baba)

  13. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  14. Germination of Winter Annual Grass Weeds under a Range of Temperatures and Water Potentials

    DEFF Research Database (Denmark)

    Scherner, Ananda; Melander, Bo; Jensen, Peter Kryger

    2017-01-01

    , and rattail fescue in multiple water potentials and temperature regimes. Temperature and water potential effects were similar between silky windgrass and rattail fescue, but differed from annual bluegrass. The three grass weeds were able to germinate under low water potential (−1.0 MPa), although water...... potentials ≤−0.25 MPa strongly delayed their germination. Silky windgrass and rattail fescue seeds were able to germinate at 1 C, while the minimum temperature for annual bluegrass germination was 5 C. Germination of silky windgrass and rattail fescue was very similar across temperature and water potentials...

  15. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan

    Directory of Open Access Journals (Sweden)

    Mohammad Abdul Kader

    2017-12-01

    Full Text Available Soybean (Glycine max is a high water-demand crop and grown under moderate temperature in Japan. To protect the crop from hot summer and to utilize rainfall for its cultivation, selection of appropriate mulching material(s is crucial. For optimum production of the crop, soil moisture and temperature regimes as well as water use efficiency (WUE of the crop were investigated under straw, grass, paper, plastic and bare soil (control mulching under rain-fed condition at Gifu university farm in Japan. The mulching treatments, compared to the control, lowered soil temperature by 2 °C at 5 cm depth and 0.5 °C at 15 and 25 cm depths. The plastic and straw mulching stored the highest quantity of soil moisture at 5 and 15 cm depths; the bare soil stored the lowest quantity. At 25 cm depth, soil-moisture content was the highest under paper mulch but invariable under the other mulches. Plastic mulching reduced evaporation rate from the soil surface and, consequently, the reduced soil-water consumption (SWC from the root zone augmented WUE of soybean. The paper mulching, by conserving soil-moisture and reducing soil temperature, provided better crop growth attributes, while the plastic mulching improved WUE of green soybean. Therefore, the plastic mulch performed best in reducing soil-water consumption and increasing WUE, while the paper mulch was good for soil-moisture conservation and temperature modification that increased soybean yield. Keywords: Mulching, Soil-water consumption, Soil temperature, Water use efficiency

  16. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic...... hot water and space heating. Space heating may be provided at low temperature in modern low energy buildings. Domestic hot water, however, needs to reach sufficient temperatures to avoid growth of legionella bacteria. If the network temperature is below the temperature demand, supplementary heating...... is required by the consumer. In the present paper we study conventional district heating at different temperature levels and compare the energy efficiency, the exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature...

  17. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Science.gov (United States)

    2010-01-01

    ..., total number of draws during the first-hour rating test Q total fossil fuel and/or electric energy... equal to the nominal value of 77 °F (42.8 °C) Q r energy consumption of fossil fuel or heat pump water... fossil fueled and/or electric energy consumed from the beginning of the first draw to the thermostat (or...

  18. An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Ouémé catchment in Benin

    Directory of Open Access Journals (Sweden)

    S. Giertz

    2006-01-01

    Full Text Available This paper presents an interdisciplinary scenario analysis to assess the influence of global and regional change on future water availability and water consumption in the Upper Ouémé catchment in central Benin. For the region three development scenarios were evolved. These scenarios are combined with climate change scenarios based on the IPCC (Intergovernmental Panel on Climate Change. In the mo-delling approach the quantification of the land use/land cover change is performed by the cellular automata model CLUE-S. The future climate scenarios are computed with the regional climate model REMO driven by the global ECHAM model. Using this data different land use and climate change scenarios can be calculated with the conceptual hydrological model UHP-HRU to assess the effects of global changes on the future water availability in Benin. To analyse the future water availability also the water consumption has to be taken into account. Due to high population growth an increase in water need in the future is expected for the region. To calculate the future household water consumption data from a regional survey and demographic projections are used. Development of the water need for animal husbandry is also considered. The first test run of the modelling approach was performed for the development scenario 'business as usual' combined with the IPCC scenario B2 for the year 2025. This test demonstrates the applicability of the approach for an interdisciplinary scenario analysis. A continuous run from 2000–2025 will be simulated for different scenarios as soon as the input data concerning land use/land cover and climate are available.

  19. Predominance of Fungus in Water for Human Consumption in Elderly People Homes and Kindergartens in Maringá Pr, Brazil

    OpenAIRE

    Nunzio, Belise; Centro Universitário de Maringá – CESUMAR; Yamaguchi, Mirian Ueda; Centro Universitário de Maringá – CESUMAR

    2010-01-01

    The worldwide use of water, an essential element for human survival, is estimated to be approximately four thousand cubic kilometers per year. Albeit highly important, water may harbor many pathogens such as bacteria, viruses, protozoa, helminths and fungi. Fungi are ubiquitous microorganisms and survive in extreme pH and temperature ranges, besides putting in danger whole populations, especially those with low immunodeficiency. The predominance of fungi in drinking water in elderly people ho...

  20. The water footprint of Indonesian provinces related to the consumption of crop products

    NARCIS (Netherlands)

    Bulsink, F.; Hoekstra, Arjen Ysbert; Booij, Martijn J.

    2010-01-01

    National water use accounts are generally limited to statistics on water withdrawals in the different sectors of economy. They are restricted to "blue water accounts" related to production, thus excluding (a) "green" and "grey water accounts", (b) accounts of internal and international virtual water

  1. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  2. Implications of end-user behaviour in response to deficiencies in water supply for electricity consumption - A case study of Delhi

    Science.gov (United States)

    Ghosh, Ruchira; Kansal, Arun; Aghi, Sakshi

    2016-05-01

    Over the past two decades, urban lifestyles have changed phenomenally. One aspect of this change is the increasing use of household appliances, which, in turn, influences water and electricity consumption in urban households. It is therefore necessary to revisit water supply norms in view of these behavioural changes. Increasing use of water-related appliances by the surveyed households in Delhi, India has lowered their water consumption but increased their electricity consumption (10-16 kW h a month). Also, longer working hours away from homes have shifted water demand from homes to commercial establishments and institutions. The per-capita water requirement to meet the basic needs for health and hygiene is approximately 76-78 L a day, of which bathing claims the largest share (32%). Nearly 70% of electricity consumption of a household is spent in coping with deficiencies in water supply. Strategies adopted by end users to save water were negatively correlated with those to save electricity. Household incomes have no influence on water consumption except in the case of those living in slums, who are forced to curtail their use of water even at the cost of health and hygiene; for the rest, coping with poor water supply amounts to spending nearly 50% more on electricity, defeating the purpose of subsidised water supply.

  3. Assessing actual evapotranspiration via surface energy balance aiming to optimize water and energy consumption in large scale pressurized irrigation systems

    Science.gov (United States)

    Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.

    2017-10-01

    Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.

  4. Orientational dynamics of room temperature ionic liquid/water mixtures: water-induced structure.

    Science.gov (United States)

    Sturlaugson, Adam L; Fruchey, Kendall S; Fayer, Michael D

    2012-02-16

    Optical heterodyne detected optical Kerr effect (OHD-OKE) measurements on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) as a function of chain length and water concentration are presented. The pure RTIL reorientational dynamics are identical in form to those of other molecular liquids studied previously by OHD-OKE (two power laws followed by a single exponential decay at long times), but are much slower at room temperature. In contrast, the addition of water to the longer alkyl chain RTILs causes the emergence of a long time biexponential orientational anisotropy decay. Such distinctly biexponential decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The slow component for the longer chain RTILs does not obey the Debye-Stokes-Einstein (DSE) equation across the range of solutions, and thus we attribute it to slow cation reorientational diffusion caused by a stiffening of cation alkyl tail-tail associations. The fast component of the decay is assigned to the motions (wobbling) of the tethered imidazolium head groups. The wobbling-in-a-cone analysis provides estimates of the range of angles sampled by the imidazolium head group prior to the long time scale complete orientational randomization. The heterogeneous dynamics and non-DSE behavior observed here should have a significant effect on reaction rates in RTIL/water cosolvent mixtures.

  5. Chlorinated and ultraviolet radiation -treated reclaimed irrigation water is the source of Aeromonas found in vegetables used for human consumption.

    Science.gov (United States)

    Latif-Eugenín, Fadua; Beaz-Hidalgo, Roxana; Silvera-Simón, Carolina; Fernandez-Cassi, Xavi; Figueras, María J

    2017-04-01

    Wastewater is increasingly being recognized as a key water resource, and reclaimed water (or treated wastewater) is used for irrigating vegetables destined for human consumption. The aim of the present study was to determine the diversity and prevalence of Aeromonas spp. both in reclaimed water used for irrigation and in the three types of vegetables irrigated with that water. Seven of the 11 (63.6%) samples of reclaimed water and all samples of vegetables were positive for the presence of Aeromonas. A total of 216 Aeromonas isolates were genotyped and corresponded to 132 different strains that after identification by sequencing the rpoD gene belonged to 10 different species. The prevalence of the species varied depending on the type of sample. In the secondary treated reclaimed water A. caviae and A. media dominated (91.4%) while A. salmonicida, A. media, A. allosaccharophila and A. popoffii represented 74.0% of the strains in the irrigation water. In vegetables, A. caviae (75.0%) was the most common species, among which a strain isolated from lettuce had the same genotype (ERIC pattern) as a strain recovered from the irrigation water. Furthermore, the same genotype of the species A. sanarellii was recovered from parsley and tomatoes demonstrating that irrigation water was the source of contamination and confirming the risk for public health. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain)

    DEFF Research Database (Denmark)

    Epping, E.H.G.; Kühl, Michael

    2000-01-01

    at high irradiances, probably as a consequence of increased rates of photosynthate exudation, stimulating respiratory processes in the mat. The compensation irradiance (Ec) marking the change of the mat from a heterotrophic to an autotrophic community, increased exponentially......We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat......, did not change with temperature, whereas, JZphot, the flux of oxygen across the lower boundary of the euphotic zone increased linearly with temperature. The rate of oxygen consumption per volume of aphotic mat increased with temperature. This increase occurred in darkness, but was strongly enhanced...

  7. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    OpenAIRE

    Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and tem...

  8. MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km - NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The level-2 MODIS Temperature and Water Vapor Profile Product MYD07_L2 consists of 30 gridded parameters related to atmospheric stability, atmospheric temperature...

  9. Physiological Effects of Ergot Alkaloid and Indole-Diterpene Consumption on Sheep under Hot and Thermoneutral Ambient Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Michelle L. E. Henry

    2016-06-01

    Full Text Available A controlled feeding study was undertaken to determine the physiological and production effects of consuming perennial ryegrass alkaloids (fed via seed under extreme heat in sheep. Twenty-four Merino ewe weaners (6 months; initial BW 30.8 ± 1.0 kg were selected and the treatment period lasted 21 days following a 14 day acclimatisation period. Two levels of two factors were used. The first factor was alkaloid, fed at a nil (NilAlk or moderate level (Alk; 80 μg/kg LW ergovaline and 20.5 μg/kg·LW lolitrem B. The second factor was ambient temperature applied at two levels; thermoneutral (TN; constant 21–22 °C or heat (Heat; 9:00 AM–5:00 PM at 38 °C; 5:00 PM–9:00 AM at 21–22 °C, resulting in four treatments, NilAlk TN, NilAlk Heat, Alk TN and Alk Heat. Alkaloid consumption reduced dry matter intake ( p = 0.008, and tended to reduce liveweight ( p = 0.07. Rectal temperature and respiration rate were increased by both alkaloid and heat ( p < 0.05 for all. Respiration rate increased to severe levels when alkaloid and heat were combined, indicating the short term effects which may be occurring in perennial ryegrass toxicosis (PRGT areas during severe weather conditions, a novel finding. When alkaloid ingestion and heat were administered separately, similar physiological responses occurred, indicating alkaloid ingestion causes a similar heat stress response to 38 °C heat.

  10. [The origin and quality of water for human consumption: the health of the population residing in the Matanza-Riachuelo river basin area in Greater Buenos Aires].

    Science.gov (United States)

    Monteverde, Malena; Cipponeri, Marcos; Angelaccio, Carlos; Gianuzzi, Leda

    2013-04-01

    The aim of this study is to analyze the origin and quality of water used for consumption in a sample of households in Matanza-Riachuelo river basin area in Greater Buenos Aires, Argentina. The results of drinking water by source indicated that 9% of water samples from the public water system, 45% of bottled water samples and 80% of well water samples were not safe for drinking due to excess content of coliforms, Escherichia coli or nitrates. Individuals living in households where well water is the main source of drinking water have a 55% higher chance of suffering a water-borne disease; in the cases of diarrheas, the probability is 87% higher and in the case of dermatitis, 160% higher. The water for human consumption in this region should be provided by centralized sources that assure control over the quality of the water.

  11. Thermal analysis for energy consumption reduction in cooling water systems; Analisis termico para la reduccion del consumo de energia en sistemas de agua de enfriamiento

    Energy Technology Data Exchange (ETDEWEB)

    Picon Nunez, Martin [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, Guanajuato (Mexico); Quillares Vargas, Luis [Tecnopinch, S. A. de C. V., (Mexico)

    1998-12-31

    This paper presents the fundamental principles for the thermal analysis of cooling water systems in processing plants. In existing heat dissipating networks this methodology application allows the identification of opportunities for reducing the energy consumption used for cooling water pumping. The methodology is based on the determination of the minimum cooling water flow as a function of the installed heat exchange capacity, subjected to the restrictions of the maximum allowed temperature elevation. The methodology application to real systems, has resulted in saving 20% of the total energy consumed in cooling water pumping. [Espanol] En este trabajo se presentan los principios fundamentales para el analisis termico de sistemas de enfriamiento en plantas de proceso. En redes de eliminacion de calor existentes, la aplicacion de esta metodologia permite identificar oportunidades para reducir el consumo de energia utilizada para el bombeo del fluido enfriante. La metodologia se basa en la determinacion del flujo minimo de agua de enfriamiento en funcion de la capacidad de transferencia de calor instalada, sujeta a las restricciones de maximo incremento de temperatura permitido. La aplicacion de la metodologia a sistemas reales, ha resultado en ahorros del 20% del total de la energia que se consume en el bombeo del agua de enfriamiento.

  12. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  13. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  14. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Science.gov (United States)

    Bal, Guillaume; Rivot, Etienne; Baglinière, Jean-Luc; White, Jonathan; Prévost, Etienne

    2014-01-01

    Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i) an emotive simulated example, ii) application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  15. Towards quantification of the water fooptprint of paper: a first estimate of its consumptive component

    NARCIS (Netherlands)

    van Oel, P.R.; Hoekstra, Arjen Ysbert

    2012-01-01

    For a hardcopy of this article, printed in the Netherlands, an estimated 100 l of water have been used. Most of the water is required in the forestry stage, due to evapotranspiration (green and blue water). In addition, the water footprint during the industrial stage, as accounted for in this study,

  16. Recreational Water Contact and Fish Consumption Assessment to Inform Risk Estimates and Evaluate Ecosystem Services

    Science.gov (United States)

    Background: Surface waters provide invaluable ecosystem services, including drinking water, food, waste water disposal, and recreation. The nature and frequency of recreational contact with surface waters is a critical consideration in evaluating benefits to human well-being (e.g...

  17. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton: e0140449

    National Research Council Canada - National Science Library

    Serena Rasconi; Andrea Gall; Katharina Winter; Martin J Kainz

    2015-01-01

    ...") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning...

  18. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features

    National Research Council Canada - National Science Library

    Luoto, Tomi P; Nevalainen, Liisa

    2013-01-01

    .... We reconstruct summer water temperatures from three climatically sensitive mountain lakes in Austria using paleolimnological methods aiming to examine long-term thermal dynamics and lakes' responses...

  19. A randomized trial to evaluate the risk of gastrointestinal disease due to consumption of drinking water meeting current microbiological standards.

    Science.gov (United States)

    Payment, P; Richardson, L; Siemiatycki, J; Dewar, R; Edwardes, M; Franco, E

    1991-01-01

    BACKGROUND: This project directly and empirically measured the level of gastrointestinal (GI) illness related to the consumption of tapwater prepared from sewage-contaminated surface waters and meeting current water quality criteria. METHODS: A randomized intervention trial was carried out; 299 eligible households were supplied with domestic water filters (reverse-osmosis) that eliminate microbial and chemical contaminants from their water, and 307 households were left with their usual tapwater without a filter. The GI symptomatology was evaluated by means of a family health diary maintained prospectively by all study families over a 15-month period. RESULTS: The estimated annual incidence of GI illness was 0.76 among tapwater drinkers compared with 0.50 among filtered water drinkers (p less than 0.01). These findings were consistently observed in all population subgroups. CONCLUSION: It is estimated that 35% of the reported GI illnesses among the tapwater drinkers were water-related and preventable. Our results raise questions about the adequacy of current standards of drinking water quality to prevent water-borne endemic gastrointestinal illness. PMID:2029037

  20. A trend of development in the consumption of drinking water in hauseholds

    Directory of Open Access Journals (Sweden)

    Katarína Ižová

    2006-06-01

    Full Text Available The supply of drinking water for a human population in a sufficient quality and quantity and the waste water discharge belong among cardinal indicators of living standards and are also the main task of water supplying companies. This article reveals a decreasing trend of the demand for drinking water in households in the Slovak republic and a growing price of the supply of drinking water and waste water discharge. The present trend of the economical water usage leads to the increase of its price.

  1. Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect.

    Science.gov (United States)

    Cervantes-Rodríguez, M; Martínez-Gómez, M; Cuevas, E; Nicolás, L; Castelán, F; Nathanielsz, P W; Zambrano, E; Rodríguez-Antolín, J

    2014-02-01

    Poor maternal nutrition predisposes offspring to metabolic disease. This predisposition is modified by various postnatal factors. We hypothesised that coupled to the initial effects of developmental programming due to a maternal low-protein diet, a second hit resulting from increased offspring postnatal sugar consumption would lead to additional changes in metabolism and adipose tissue function. The objective of the present study was to determine the effects of sugared water consumption (5% sucrose in the drinking-water) on adult offspring adiposity as a 'second hit' following exposure to maternal protein restriction during pregnancy. We studied four offspring groups: (1) offspring of mothers fed the control diet (C); (2) offspring of mothers fed the restricted protein diet (R); (3) offspring of control mothers that drank sugared water (C-S); (4) offspring of restricted mothers that drank sugared water (R-S). Maternal diet in pregnancy was considered the first factor and sugared water consumption as the second factor - the second hit. Body weight and total energy consumption, before and after sugared water consumption, were similar in all the groups. Sugared water consumption increased TAG, insulin and cholesterol concentrations in both the sexes of the C-S and R-S offspring. Sugared water consumption increased leptin concentrations in the R-S females and males but not in the R offspring. There was also an interaction between sugared water and maternal diet in males. Sugared water consumption increased adipocyte size and adiposity index in both females and males, but the interaction with maternal diet was observed only in females. Adiposity index and plasma leptin concentrations were positively correlated in both the sexes. The present study shows that a second hit during adulthood can amplify the effects of higher adiposity arising due to poor maternal pregnancy diet in an offspring sex dependent fashion.

  2. [The morphofunctional cellular evaluation of liver and kidney in rats in dynamics of 6-month consumption of water produced with the use of noncontact activation after electrochemical treatment].

    Science.gov (United States)

    Beliaeva, N N; Rakhmanin, Iu A; Mikhailova, R I; Savostikova, O N; Gasimova, Z M; Kamenetskaia, D B; Alekseeva, A V; Vasina, D A; Ryzhova, I N

    2015-01-01

    There were investigated morphofunctional indices of liver and kidney in male outbred rats in the dynamics of the 6-months consumption of water after its noncontact activation. There were studied 4 experimental groups of animals consumed waters named as "Anolyte" and in dependence on the activation time, 3 types of catholyte water ("Catholyte--5", "Catholyte--25", "Catholyte--40"). Moscow tap water settled for a week served as control. "Anolyte" water was found to increase in the kidney the number of hypertrophied gromeruli only in 6 months, while the consumption of "Catholyte--25" water and especially, "Catholyte--40" in 1 and 6 months caused the damage of liver and kidney, and for the index of alteration of renal glomeruli after 6 months of water consumption there was revealed the dependence on the activation time of "Catalytes".

  3. [Assessment of human health exposure connected with consumption of water characterized with elevated concentration level of silver released from jug water filter systems].

    Science.gov (United States)

    Swiecicka, Dorota; Garboś, Sławomir

    2010-01-01

    Silver usually exists in tap water at concentrations which are not connected with human health risk and therefore maximum admissible concentration level of this element was not established in Directive 98/83/EC concerning quality of water intended for human consumption. Disinfection of water based on generation of silver or silver compounds by electrochemical process could led to the increase of concentration of this metal in disinfected water up to level of 0.050 mg/l or higher although it should be underlined that this type of technology is not used in Poland. However in the case of application of bacteriostatic agents based on silver salts, e.g., in jug water filter systems consist of cartridges with activated carbon modified by silver compounds, this element may migrate into purified and further consumed water (applied also for preparation of coffee, tea, soup and dilution of concentrated juices) in amounts which provide essential part of daily dose of silver taken orally by human. In this work the results showing the concentration levels of silver released into purified water in the case of application of jug water filter systems with cartridges consist of activated carbon modified with silver compounds and ion exchanger were presented. Study was performed according to British Standard BS 8427:2004 which describes requirements in respect to the performance of jug water filter systems used for the domestic treatment of drinking water The concentrations of silver in challenge water purified by jug water filter systems were determined using validated method of determination of silver by inductively coupled plasma optical emission spectrometry technique (ICP-OES). In accordance to type of jug water filter systems applied grand mean of silver concentrations achieved during whole cycle of exploitations of product (including possibility of filtrations of 100 l of water) were in the range 0.0022 mg/l-0.0175 mg/l, which is not provided essential human health risk.

  4. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  5. 75 FR 62176 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-10-07

    ...; Approval Date: August 3, 2010. 8. Cabot Oil & Gas Corporation, Pad ID: PlonskiJ P1, ABR-201008009, Brooklyn....; Consumptive Use of up to 3.000 mgd; Approval Date: August 2, 2010. 13. Cabot Oil & Gas Corporation, Pad ID...; Approval Date: August 16, 2010. ] 107. Cabot Oil & Gas Corporation, Pad ID: Ramey P1, ABR-201008108, Dimock...

  6. 75 FR 52049 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-08-24

    ... County, Pa.; Consumptive Use of up to 4.000 mgd; Approval Date: July 28, 2010. 120. Cabot Oil & Gas... to 3.575 mgd; Approval Date: July 28, 2010. 121. Cabot Oil & Gas Corporation, Pad ID: AdamsJ P1, ABR...

  7. 75 FR 22172 - Notice of Projects Approved for Consumptive Uses of Water

    Science.gov (United States)

    2010-04-27

    .... 37. Cabot Oil & Gas Corporation, Pad ID: ChudleighW P2, ABR- 20100137, Dimock Township, Susquehanna County, Pa.; Consumptive Use of up to 3.575 mgd; Approval Date: January 9, 2010. 38. Cabot Oil & Gas...; Approval Date: January 10, 2010. 45. Cabot Oil & Gas Corporation, Pad ID: CarlsonW P1, ABR-20100145, Dimock...

  8. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Science.gov (United States)

    2010-01-01

    ... accordance with section 4 of appendix P to this subpart. (q) Fluorescent Lamp Ballasts. (1) The Estimated Annual Energy Consumption (EAEC) for fluorescent lamp ballasts, expressed in kilowatt-hours per year... Estimated Annual Operating Cost (EAOC) for fluorescent lamp ballasts, expressed in dollars per year, shall...

  9. Revealing Water Stress by the Thermal Power Industry in China Based on a High Spatial Resolution Water Withdrawal and Consumption Inventory.

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Wang, Jiao; Wu, Zhixuan

    2016-02-16

    This study reveals the spatial distribution of water withdrawal and consumption by thermal power generation and the associated water stress at catchment level in China based on a high-resolution geodatabase of electric generating units and power plants. We identified three groups of regions where the baseline water stress exerted by thermal power generation is comparatively significant: (1) the Hai River Basin/East Yellow River Basin in the north; (2) some arid catchments in Xinjiang Autonomous Region in the northwest; and (3) the coastal city clusters in the Yangtze River Delta, Pearly River Delta, and Zhejiang Province. Groundwater stress is also detected singularly in a few aquifers mainly in the Hai River Basin and the lower reaches of the Yellow River Basin. As China accelerates its pace of coal mining and coal-fired power generation in the arid northwest regions, the energy/water priorities in catchments under high water stress are noteworthy. We conclude that promotion of advanced water-efficient technologies in the energy industry and more systematic analysis of the water stress of thermal power capacity expansion in water scarce regions in inland China are needed. More comprehensive and transparent data monitoring and reporting are essential to facilitate such water stress assessment.

  10. The minimization of the fresh water consumption for the paper chemicals; Tuoreveden kaeytoen minimointi paperikemikaalien kaeytoessae - MPKT 06

    Energy Technology Data Exchange (ETDEWEB)

    Ryoesoe, K. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    When reducing the consumption of fresh water in the paper making process there are two different things concerning the use of the paper chemicals. First, a lot of fresh water is needed for dilution and feed of the paper chemicals. Secondly, the decreased use of fresh water is often detrimental to the efficiency of the paper chemicals, which leads to an extended need of these chemicals and therefore also to an increased use of fresh water. The aim of this study is to find out the possibilities concerning the choice of chemicals, the internal purification of the circulation water and the feeding procedure of chemicals to decrease the amount of fresh water needed for the dilution and feed of paper chemicals without harmful effects to the efficiency of chemicals. It will be investigated, how the sensitiveness of paper chemicals for impurities of the dilution or feed water depends on their different properties. Also the feasibility to reduce the dosage or increase the concentration of the chemical solution, which is dosed to the process, will be examined. (orig.)

  11. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  12. [A new method for the detection of coliforms and Escherichia coli in water intended for human consumption.].

    Science.gov (United States)

    Bonadonna, Lucia; Cataldo, Claudia; Chiaretti, Gianluca; Coccia, Annamaria; Semproni, Maurizio

    2005-01-01

    The ISO reference method, defined by the European Drinking Water Directive for the enumeration of total coliforms and Escherichia coli in water intended for human consumption, has various limitations, especially related to discrepancies observed with the new taxonomic classification of the coliform group. A study was therefore performed to compare the above reference method with another rapid method, the DST/Colilert, and to evaluate the phenotypical characteristics of isolated microrganisms. The ISO reference method failed to detect a significant proportion of coliforms and E. coli in water and furthermore, it enumerated microrganisms belonging to other groups. The DST/Colilert method was found instead to be a suitable alternative method for the detection of bacterial indicators.

  13. Impact of Implementation Factors on Children's Water Consumption in the Out-of-School Nutrition and Physical Activity Group-Randomized Trial

    Science.gov (United States)

    Lee, Rebekka M.; Okechukwu, Cassandra; Emmons, Karen M.; Gortmaker, Steven L.

    2014-01-01

    National data suggest that children are not consuming enough water. Experimental evidence has linked increased water consumption to obesity prevention, and the National AfterSchool Association has named serving water as ones of its standards for healthy eating and physical activity in out-of-school time settings. From fall 2010 to spring 2011,…

  14. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.

    Science.gov (United States)

    Liu, Jing; Sun, Shikun; Wu, Pute; Wang, Yubao; Zhao, Xining

    2015-02-01

    The integration of water footprints and virtual water flows allows the mapping of the links between production, trade, and consumption and could potentially help to alleviate water scarcity and improve water management. We evaluated the water footprints and virtual water flows of crop production, consumption, and trade and their influencing factors in the Hetao irrigation district in China for 1960-2010. The water footprint of crop production and the export of virtual water fluctuated but tended to increase during this period and were influenced mainly by agricultural factors such as crop yield, irrigation efficiency, and area sown. The water footprint of crop consumption and the import of virtual water increased during 1960-1979 and decreased during 1980-2010 and were influenced by socio-economic factors such as total population, the retail-price index, and the proportion of the population in urban areas. Most of the water footprint of production was exported to other areas, which added to the pressure on local water systems. The import of virtual water led to a saving of water for the Hetao irrigation district, while its share of the water footprint of consumption has decreased significantly since 1977. An increase in irrigation efficiency can alleviate water scarcity, and its application should be coupled with measures that constrain the continued expansion of agriculture. Full-cost pricing of irrigation water was an effective policy tool for its management. Re-shaping regional water-production and water-trade nexuses by changing crop structures could provide alternative opportunities for addressing the problems of local water scarcity, but the trade-offs involved should first be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    It is likely that the production and distribution of domestic hot water (DHW) in buildings will constitute a dominant share of both the present and in particular future energy design requirements. The goal of this project has been to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. The possibilities include new types of circulation pipes, which have the potential of a 40 per cent reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. The results of this project could influence not only future buildings but also existing buildings in case of renovation of the installations. In this project measurements of water and energy consumptions have been carried out in a number of buildings, and heat losses from the production of domestic hot water and the distribution lines have been measured. In addition to the measurements, analyses and simulations have been carried out. Two models have been developed: One of an apartment room with vertical pipes passing through the room, and one of a room above a basement with horizontal heating pipes. The models make it possible to assess how much of the heat loss from the heating pipes is utilised for space heating. The following recommendations are pointed out: 1) In large buildings e.g. apartment buildings and office buildings the technical installations should be provided with meters so that it is possible to separate the energy consumption for DHW, space heating and ventilation, respectively. 2) In new buildings and in case of retrofitting existing buildings, careful planning of the placement and disposition of hot water taps compared with the location of the hot water tank or heat exchanger is recommended. Also, the necessity of a

  16. An exploration of factors that influence the regular consumption of water by Irish primary school children.

    LENUS (Irish Health Repository)

    Molloy, C Johnston

    2008-10-01

    Inadequate hydration has been linked to many factors that may impact on children\\'s education and health. Teachers play an important role in the education and behaviour of children. Previous research has demonstrated low water intake amongst children and negative teachers\\' attitudes to water in the classroom. The present study aimed to explore teachers\\' knowledge about water and the perceived barriers to allowing children access to water during lesson time.

  17. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating......District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  18. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.

    Science.gov (United States)

    Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija

    2017-01-18

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  19. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations.

    Science.gov (United States)

    Risch, Eva; Loubet, Philippe; Núñez, Montserrat; Roux, Philippe

    2014-06-15

    Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas. Copyright © 2014 Elsevier Ltd. All rights

  20. Consequences of long-term consumption of water from Nworie River ...

    African Journals Online (AJOL)

    The test rats were placed on water from Nworie River while those of the control were placed on Eva water (purified Coca-cola bottled water). The rats were sacrificed in two sets: first set was on thirty-second day while the second set was on the sixty-fourth day. Six rats each from each group were sacrificed at each set.

  1. The water footprint of Indonesian provinces related to the consumption of crop products

    NARCIS (Netherlands)

    Bulsink, F.; Hoekstra, Arjen Ysbert; Booij, Martijn J.

    2009-01-01

    Community welfare and food security in Indonesia partly depend on developments in the agricultural sector. This sector increasingly faces the problem of water scarcity caused by declining water resources and increasing competition over water with households and industries. To overcome these problems

  2. Beverage consumption habits “24/7” among British adults: association with total water intake and energy intake

    Science.gov (United States)

    2013-01-01

    Background Various recommendations exist for total water intake (TWI), yet it is seldom reported in dietary surveys. Few studies have examined how real-life consumption patterns, including beverage type, variety and timing relate to TWI and energy intake (EI). Methods We analysed weighed dietary records from the National Diet and Nutrition Survey of 1724 British adults aged 19–64 years (2000/2001) to investigate beverage consumption patterns over 24 hrs and 7 days and associations with TWI and EI. TWI was calculated from the nutrient composition of each item of food and drink and compared with reference values. Results Mean TWI was 2.53 L (SD 0.86) for men and 2.03 L (SD 0.71) for women, close to the European Food Safety Authority “adequate Intake” (AI) of 2.5 L and 2 L, respectively. However, for 33% of men and 23% of women TWI was below AI and TWI:EI ratio was Beverages accounted for 75% of TWI. Beverage variety was correlated with TWI (r 0.34) and more weakly with EI (r 0.16). Beverage consumption peaked at 0800 hrs (mainly hot beverages/ milk) and 2100 hrs (mainly alcohol). Total beverage consumption was higher at weekends, especially among men. Overall, beverages supplied 16% of EI (men 17%, women 14%), alcoholic drinks contributed 9% (men) and 5% (women), milk 5-6%, caloric soft drinks 2%, and fruit juice 1%. In multi-variable regression (adjusted for sex, age, body weight, smoking, dieting, activity level and mis-reporting), replacing 100 g of caloric beverages (milk, fruit juice, caloric soft drinks and alcohol) with 100 g non-caloric drinks (diet soft drinks, hot beverages and water) was associated with a reduction in EI of 15 kcal, or 34 kcal if food energy were unchanged. Using within-person data (deviations from 7-day mean) each 100 g change in caloric beverages was associated with 29 kcal change in EI or 35 kcal if food energy were constant. By comparison the calculated energy content of caloric drinks consumed was

  3. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    Science.gov (United States)

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  4. Evidence-based tailoring of behavior-change campaigns: increasing fluoride-free water consumption in rural Ethiopia with persuasion.

    Science.gov (United States)

    Huber, Alexandra C; Tobias, Robert; Mosler, Hans-Joachim

    2014-03-01

    Two hundred million people worldwide are at risk of developing dental and skeletal fluorosis due to excessive fluoride uptake from their water. Since medical treatment of the disease is difficult and mostly ineffective, preventing fluoride uptake is crucial. In the Ethiopian Rift Valley, a fluoride-removal community filter was installed. Despite having access to a fluoride filter, the community used the filter sparingly. During a baseline assessment, 173 face-to-face interviews were conducted to identify psychological factors that influence fluoride-free water consumption. Based on the results, two behavior-change campaigns were implemented: a traditional information intervention targeting perceived vulnerability, and an evidence-based persuasion intervention regarding perceived costs. The interventions were tailored to household characteristics. The campaigns were evaluated with a survey and analyzed in terms of their effectiveness in changing behavior and targeted psychological factors. While the intervention targeting perceived vulnerability showed no desirable effects, cost persuasion decreased the perceived costs and increased the consumption of fluoride-free water. This showed that altering subjective perceptions can change behavior even without changing objective circumstances. Moreover, interventions are more effective if they are based on evidence and tailored to specific households. © 2013 The International Association of Applied Psychology.

  5. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  6. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    Directory of Open Access Journals (Sweden)

    Mauricio Castro-Sepulveda

    2016-06-01

    Full Text Available Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W, beer (AB or non-alcoholic beer (NAB. Body mass, plasma Na+ and K+ concentrations and urine specific gravity (USG were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05 in W (−1.1%, AB (−1.0% and NAB (−1.0%. In the last minutes of exercise, plasma Na+ was reduced (p < 0.05 in W (−3.9% and AB (−3.7%, plasma K+ was increased (p < 0.05 in AB (8.5%, and USG was reduced in W (−0.9% and NAB (−1.0%. Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na+ and increased plasma K+ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na+ in plasma during exercise.

  7. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    Science.gov (United States)

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  8. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Pacific Remote Island Areas from 2011 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  9. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  10. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  11. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  12. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  13. Estimated food consumption of minke whales Balaenoptera acutorostrata in Northeast Atlantic waters in 1992-1995

    Directory of Open Access Journals (Sweden)

    Lars P Folkow

    2000-05-01

    Uncertainties in stock estimates suggest a 95% confidence range of 1.4 - 2.1 million tonnes. The point estimate was composed of 602,000 tonnes of krill Thysanoessa spp., 633,000 tonnes of herring Clupea harengus, 142,000 tonnes of capelin Mallotus villosus, 256,000 tonnes of cod Gadus morhua, 128,000 tonnes of haddock Melanogrammus aeglefinus and 54,500 tonnes of other fish species, including saithe Pollaehius virens and sand eel Ammodytes sp. Consumption of various prey items by minke whales may represent an important mortality factor for some of the species. For example, the estimated annual consumption of herring corresponds to about 70% of the herring fisheries in the Northeast Atlantic in 1995. Minke whale diets are subject to year-to-year variations due to changes in the resource base in different feeding areas. Thus, the regional distribution of consumption of different prey items is highly dynamic.

  14. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  15. Longterm performance of polyolefins in different environments including chlorinated water: antioxidant consumption and migration and polymer degradation

    OpenAIRE

    Lundbäck, Marie

    2005-01-01

    The long-term performance of stabilized polyolefins in different environments was studied with focus on antioxidant consumption and migration. Plaques of linear polyethylene (LPE) and branched polyethylene (BPE) were stabilized with Santonox® R (4,4'-Thiobis(6-tert-butyl-3-methylphenol)), Irganox® 1081 (2,2’-Thiobis(4-methyl-6-tertbutylphenol)), or Lowinox® 22M46 (2,2’-Methylenebis(6-tert-butyl-4-methylphenol)). The samples were aged in water and nitrogen at 75, 90 and 95°C. Antioxidant conce...

  16. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    Science.gov (United States)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  17. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features.

    Science.gov (United States)

    Luoto, Tomi P; Nevalainen, Liisa

    2013-01-01

    Long-term water temperature records are necessary for better understanding climate change impacts on freshwaters. We reconstruct summer water temperatures from three climatically sensitive mountain lakes in Austria using paleolimnological methods aiming to examine long-term thermal dynamics and lakes' responses to regional climate variability since the Little Ice Age. Our results indicate divergent trends for the lakes. In two of the lakes, which are located at the sunny southern slope of mountains, water temperature has increased several degrees concurrent with the observed air temperature increase. In contrast, no change is observed in the reconstructed water temperatures of a shaded lake, located at the northern slope, where also the ecological and thermal changes are most subtle. The results indicate the importance of cold water inputs, such as snowmelt and groundwater, on lakes' thermal conditions and suggest that watershed characteristics and lake stratification play a major role in defining the lake-specific thermal regime.

  18. Yield, Quality and Water Consumption of Stevia rebaudiana Bertoni Grown under Different Irrigation Regimes in Southern Italy

    Directory of Open Access Journals (Sweden)

    Riccardo d’Andria

    2008-06-01

    Full Text Available Stevia rebaudiana Bertoni is a herbaceous perennial plant originating in the north-east of Paraguay. Its leaves contain low-calorie sweetening agents that can be used as a natural alternative to artificial sweeteners. The leaves are consumed in special human diets and for the treatment of various diseases. The aim of the present work is to study water consumption, yield potential and quality characteristics of this species under different irrigation levels in southern Italy. The field work was carried out in 2006-2007. Irrigation treatments consisted of a control (T100, irrigated with 100% restitution of water consumption and two treatments that received a water depth of 33% (T33 and 66% (T66 of treatment T100. Watering volume was estimated to replenish the soil profile to field capacity for a depth of 0.40 m. The crop was harvested twice a year, and agronomic performance as well as the major cation and glycoside contents (stevioside and rebaudioside A were evaluated. Overall, the crop coefficients were similar between the two years, although in each year the second growing period showed higher values due to the higher evaporative demand of this period. Interactions of years with irrigation treatments and harvest time were not significant either for yield or yield components. In both cuts the T100 treatments achieved 40% higher leaf dry yield than T33, while T66 showed intermediate values. The harvest index and water use efficiency showed no differences between the two cuts for the same treatments, while the values of both indices decreased with the increase in irrigation regime. Stevioside, rebaudioside A and cation content in the leaves were unaffected by irrigation regime. In order to develop the field cultivation of this species, field experiments are required to prepare a cultivation protocol as well as a genetic improvement program to develop varieties that better respond to the local environment.

  19. Yield, Quality and Water Consumption of Stevia rebaudiana Bertoni Grown under Different Irrigation Regimes in Southern Italy

    Directory of Open Access Journals (Sweden)

    Riccardo d’Andria

    2011-02-01

    Full Text Available Stevia rebaudiana Bertoni is a herbaceous perennial plant originating in the north-east of Paraguay. Its leaves contain low-calorie sweetening agents that can be used as a natural alternative to artificial sweeteners. The leaves are consumed in special human diets and for the treatment of various diseases. The aim of the present work is to study water consumption, yield potential and quality characteristics of this species under different irrigation levels in southern Italy. The field work was carried out in 2006-2007. Irrigation treatments consisted of a control (T100, irrigated with 100% restitution of water consumption and two treatments that received a water depth of 33% (T33 and 66% (T66 of treatment T100. Watering volume was estimated to replenish the soil profile to field capacity for a depth of 0.40 m. The crop was harvested twice a year, and agronomic performance as well as the major cation and glycoside contents (stevioside and rebaudioside A were evaluated. Overall, the crop coefficients were similar between the two years, although in each year the second growing period showed higher values due to the higher evaporative demand of this period. Interactions of years with irrigation treatments and harvest time were not significant either for yield or yield components. In both cuts the T100 treatments achieved 40% higher leaf dry yield than T33, while T66 showed intermediate values. The harvest index and water use efficiency showed no differences between the two cuts for the same treatments, while the values of both indices decreased with the increase in irrigation regime. Stevioside, rebaudioside A and cation content in the leaves were unaffected by irrigation regime. In order to develop the field cultivation of this species, field experiments are required to prepare a cultivation protocol as well as a genetic improvement program to develop varieties that better respond to the local environment.

  20. Effects of Land Use Change on Soil Carbon Storage and Water Consumption in an Oasis-Desert Ecotone

    Science.gov (United States)

    Lü, Yihe; Ma, Zhimin; Zhao, Zhijiang; Sun, Feixiang; Fu, Bojie

    2014-06-01

    Land use and ecosystem services need to be assessed simultaneously to better understand the relevant factors in sustainable land management. This paper analyzed land use changes in the middle reach of the arid Heihe River Basin in northwest China over the last two decades and their impacts on water resources and soil organic carbon (SOC) storage. The results indicated that from 1986 to 2007: (1) cropland and human settlements expanded by 45.0 and 17.6 %, respectively, at the expense of 70.1, 35.7, and 4.1 % shrinkage on woodland, grassland, and semi-shrubby desert; (2) irrigation water use was dominant and increased (with fluctuations) at an average rate of 8.2 %, while basic human water consumption increased monotonically over a longer period from 1981 to 2011 at a rate of 58 %; and (3) cropland expansion or continuous cultivation led to a significant reduction of SOC, while the land use transition from grassland to semi-shrubby desert and the progressive succession of natural ecosystems such as semi-shrubby desert and grassland, in contrast, can bring about significant carbon sequestration benefits. The increased water consumption and decreased SOC pool associated with some observed land use changes may induce and aggravate potential ecological risks for both local and downstream ecosystems, including water resource shortages, soil quality declines, and degeneration of natural vegetation. Therefore, it is necessary to balance socioeconomic wellbeing and ecosystem services in land use planning and management for the sustainability of socio-ecological systems across spatiotemporal scales, especially in resource-poor arid environments.

  1. Characteristics of Beverage Consumption Habits among a Large Sample of French Adults: Associations with Total Water and Energy Intakes

    Directory of Open Access Journals (Sweden)

    Fabien Szabo de Edelenyi

    2016-10-01

    Full Text Available Background: Adequate hydration is a key factor for correct functioning of both cognitive and physical processes. In France, public health recommendations about adequate total water intake (TWI only state that fluid intake should be sufficient, with particular attention paid to hydration for seniors, especially during heatwave periods. The objective of this study was to calculate the total amount of water coming from food and beverages and to analyse characteristics of consumption in participants from a large French national cohort. Methods: TWI, as well as contribution of food and beverages to TWI was assessed among 94,939 adult participants in the Nutrinet-Santé cohort (78% women, mean age 42.9 (SE 0.04 using three 24-h dietary records at baseline. Statistical differences in water intakes across age groups, seasons and day of the week were assessed. Results: The mean TWI was 2.3 L (Standard Error SE 4.7 for men and 2.1 L (SE 2.4 for women. A majority of the sample did comply with the European Food Safety Authority (EFSA adequate intake recommendation, especially women. Mean total energy intake (EI was 1884 kcal/day (SE 1.5 (2250 kcal/day (SE 3.6 for men and 1783 kcal/day (SE 1.5 for women. The contribution to the total EI from beverages was 8.3%. Water was the most consumed beverage, followed by hot beverages. The variety score, defined as the number of different categories of beverages consumed during the three 24-h records out of a maximum of 8, was positively correlated with TWI (r = 0.4; and with EI (r = 0.2, suggesting that beverage variety is an indicator of higher consumption of food and drinks. We found differences in beverage consumptions and water intakes according to age and seasonality. Conclusions: The present study gives an overview of the water intake characteristics in a large population of French adults. TWI was found to be globally in line with public health recommendations.

  2. Characteristics of Beverage Consumption Habits among a Large Sample of French Adults: Associations with Total Water and Energy Intakes.

    Science.gov (United States)

    Szabo de Edelenyi, Fabien; Druesne-Pecollo, Nathalie; Arnault, Nathalie; González, Rebeca; Buscail, Camille; Galan, Pilar

    2016-10-11

    Adequate hydration is a key factor for correct functioning of both cognitive and physical processes. In France, public health recommendations about adequate total water intake (TWI) only state that fluid intake should be sufficient, with particular attention paid to hydration for seniors, especially during heatwave periods. The objective of this study was to calculate the total amount of water coming from food and beverages and to analyse characteristics of consumption in participants from a large French national cohort. TWI, as well as contribution of food and beverages to TWI was assessed among 94,939 adult participants in the Nutrinet-Santé cohort (78% women, mean age 42.9 (SE 0.04)) using three 24-h dietary records at baseline. Statistical differences in water intakes across age groups, seasons and day of the week were assessed. The mean TWI was 2.3 L (Standard Error SE 4.7) for men and 2.1 L (SE 2.4) for women. A majority of the sample did comply with the European Food Safety Authority (EFSA) adequate intake recommendation, especially women. Mean total energy intake (EI) was 1884 kcal/day (SE 1.5) (2250 kcal/day (SE 3.6) for men and 1783 kcal/day (SE 1.5) for women). The contribution to the total EI from beverages was 8.3%. Water was the most consumed beverage, followed by hot beverages. The variety score, defined as the number of different categories of beverages consumed during the three 24-h records out of a maximum of 8, was positively correlated with TWI (r = 0.4); and with EI (r = 0.2), suggesting that beverage variety is an indicator of higher consumption of food and drinks. We found differences in beverage consumptions and water intakes according to age and seasonality. The present study gives an overview of the water intake characteristics in a large population of French adults. TWI was found to be globally in line with public health recommendations.

  3. The estimated impact of California’s urban water conservation mandate on electricity consumption and greenhouse gas emissions

    Science.gov (United States)

    Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.

    2018-01-01

    In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.

  4. The quality of water for human consumption in the Tolima department, Colombia

    Directory of Open Access Journals (Sweden)

    Karol J. Briñez A

    2012-10-01

    Full Text Available Objective: to describe the quality of drinking water in urban areas of the Tolima department and its relationship to the reported incidence of hepatitis A, acute diarrheal disease and social indicators. Methodology: descriptive observational study using cross-sectional ecological databases (sivicap and (sivigila 2010. It was mean, median, standard deviation, proportion of reported incidence of municipalities of Tolima (n = 47, we used one-way anova and correlation analysis. Results:63.83% of the municipalities of Tolima had potable water. In the category of sanitary non-viable municipalities were classified: Ataco, Cajamarca, Planadas, Rovira, Valle de San Juan, and Villarrica. 27.7% of the municipalities showed coliform results. No association was found between the incidence of the diseases and water quality, statistically significant relationship was found between the coverage of water supply, sewerage, education and water quality. Discussion: it is necessary to improve water quality, expanding service coverage, epidemiological reporting and promotion of good hygienic practices.

  5. The effects of lead, water hardness and pH on oxygen consumption ...

    African Journals Online (AJOL)

    Closed system respirometry was performed on captive juvenile Tilapia sparrmanii exposed for 96 hours to a range of Pb-acetate concentrations in hard and soft water to determine the effect of Pb in relation to water hardness and pH. For hard and soft water with a pH above 7.51 no change in the resting specific oxygen ...

  6. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  7. What Determines Water Temperature Dynamics in the San Francisco Bay-Delta System?

    Science.gov (United States)

    Vroom, J.; van der Wegen, M.; Martyr-Koller, R. C.; Lucas, L. V.

    2017-11-01

    Water temperature is an important factor determining estuarine species habitat conditions. Water temperature is mainly governed by advection (e.g., from rivers) and atmospheric exchange processes varying strongly over time (day-night, seasonally) and the spatial domain. On a long time scale, climate change will impact water temperature in estuarine systems due to changes in river flow regimes, air temperature, and sea level rise. To determine which factors govern estuarine water temperature and its sensitivity to changes in its forcing, we developed a process-based numerical model (Delft3D Flexible Mesh) and applied it to a well-monitored estuarine system (the San Francisco Estuary) for validation. The process-based approach allows for detailed process description and a physics-based analysis of governing processes. The model was calibrated for water year 2011 and incorporated 3-D hydrodynamics, salinity intrusion, water temperature dynamics, and atmospheric coupling. Results show significant skill in reproducing temperature observations on daily, seasonal, and yearly time scales. In North San Francisco Bay, thermal stratification is present, enhanced by salinity stratification. The temperature of the upstream, fresh water Delta area is captured well in 2-D mode, although locally—on a small scale—vertical processes (e.g., stratification) may be important. The impact of upstream river temperature and discharge and atmospheric forcing on water temperatures differs throughout the Delta, possibly depending on dispersion and residence times. Our modeling effort provides a sound basis for future modeling studies including climate change impact on water temperature and associated ecological modeling, e.g., clam and fish habitat and phytoplankton dynamics.

  8. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N [State University of New York at Buffalo, Buffalo, NY (United States); Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  9. Urban consumption of meat and milk and its green and blue water footprints-Patterns in the 1980s and 2000s for Nairobi, Kenya.

    Science.gov (United States)

    Bosire, Caroline K; Lannerstad, Mats; de Leeuw, Jan; Krol, Maarten S; Ogutu, Joseph O; Ochungo, Pamela A; Hoekstra, Arjen Y

    2017-02-01

    Various studies show that the developing world experiences and will continue to experience a rise in consumption of animal proteins, particularly in cities, as a result of continued urbanization and income growth. Given the relatively large water footprint (WF) of animal products, this trend is likely to increase the pressure on already scarce water resources. We estimate, analyse and interpret the changes in consumption of meat and milk between the 1980s and 2000s for three income classes in Nairobi, the ratio of domestic production to imports, and the WF (the volume of freshwater consumed) to produce these commodities in Kenya and abroad. Nairobi's middle-income class grew much faster than the overall population. In addition, milk consumption per capita by the middle-income group grew faster than for the city's population as a whole. Contrary to expectation, average meat consumption per capita across all income groups in Nairobi declined by 11%. Nevertheless, total meat consumption increased by a factor 2.2 as a result of population growth, while total milk consumption grew by a factor 5. As a result, the total WF of meat consumption increased by a factor 2.3 and the total WF of milk consumption by a factor 4.2. The increase in milk consumption was met by increased domestic production, whereas the growth in meat consumption was partly met through imports and an enlargement of the footprint in the countries neighbouring Kenya. A likely future rise in the consumption of meat and milk in Nairobi will further enlarge the city's WF. Given Kenya's looming blue water scarcity, it is anticipated that this WF will increasingly spill over the borders of the country. Accordingly, policies aimed at meeting the rise in demand for meat and milk should consider the associated environmental constraints and the economic implications both nationally and internationally. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    Science.gov (United States)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic