WorldWideScience

Sample records for temperature wafer fusion

  1. Temperature Dependent Electrical Properties of PZT Wafer

    Science.gov (United States)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  2. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  3. Fusion bonding of Si wafers investigated by x ray diffraction

    DEFF Research Database (Denmark)

    Weichel, Steen; Grey, Francois; Rasmussen, Kurt

    2000-01-01

    The interface structure of bonded Si(001) wafers with twist angle 6.5 degrees is studied as a function of annealing temperature. An ordered structure is observed in x-ray diffraction by monitoring a satellite reflection due to the periodic modulation near the interface, which results from...

  4. Bond strength tests between silicon wafers and duran tubes (fusion bonded fluidic interconnects)

    NARCIS (Netherlands)

    Fazal, I.; Berenschot, Johan W.; de Boer, J.H.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2005-01-01

    The fusion bond strength of glass tubes with standard silicon wafers is presented. Experiments with plain silicon wafers and those coated with silicon oxide and silicon nitride are presented. Results obtained are discussed in terms of homogeneity and strength of fusion bond. High pressure testing

  5. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers

    Science.gov (United States)

    Tong, Q.-Y.; Gan, Q.; Fountain, G.; Enquist, P.; Scholz, R.; Gösele, U.

    2004-10-01

    The bonding energy of bonded native-oxide-covered silicon wafers treated in the HNO3/H2O/HF or the HNO3/HF solution prior to room-temperature contact is significantly higher than bonded standard RCA1 cleaned wafer pairs after low-temperature annealing. The bonding energy reaches over 2000mJ/m2 after annealing at 100 °C. The very slight etching and fluorine in the chemically grown oxide are believed to be the main contributors to the enhanced bonding energy. Transmission-electron-microscopic images have shown that the chemically formed native oxide at bonding interface is embedded with many flake-like cavities. The cavities can absorb the by-products of the interfacial reactions that result in covalent bond formation at low temperatures allowing the strong bond to be retained.

  6. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor

    International Nuclear Information System (INIS)

    Li Zhi-Ming; Jiang Hai-Ying; Han Yan-Bin; Li Jin-Ping; Yin Jian-Qin; Zhang Jin-Cheng

    2012-01-01

    The effect of coil location on wafer temperature is analyzed in a vertical MOCVD reactor by induction heating. It is observed that the temperature distribution in the wafer with the coils under the graphite susceptor is more uniform than that with the coils around the outside wall of the reactor. For the case of coils under the susceptor, we find that the thickness of the susceptor, the distance from the coils to the susceptor bottom and the coil turns significantly affect the temperature uniformity of the wafer. An optimization process is executed for a 3-inch susceptor with this kind of structure, resulting in a large improvement in the temperature uniformity. A further optimization demonstrates that the new susceptor structure is also suitable for either multiple wafers or large-sized wafers approaching 6 and 8 inches

  7. Correlation study of actual temperature profile and in-line metrology measurements for within-wafer uniformity improvement and wafer edge yield enhancement (Conference Presentation)

    Science.gov (United States)

    Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou

    2018-03-01

    It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up

  8. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  9. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  10. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  11. Low temperature sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1994-01-01

    A new technique, at temperatures of 150°C or 450°C, that provides planarization after a very deep etching step in silicon is presented. Resist spinning and layer patterning as well as realization of bridges or cantilevers across deep holes becomes possible. The sacrificial wafer bonding technique

  12. Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region

    Science.gov (United States)

    Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan

    2018-05-01

    Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.

  13. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  14. Low-temperature magnetotransport in Si/SiGe heterostructures on 300 mm Si wafers

    Science.gov (United States)

    Scappucci, Giordano; Yeoh, L.; Sabbagh, D.; Sammak, A.; Boter, J.; Droulers, G.; Kalhor, N.; Brousse, D.; Veldhorst, M.; Vandersypen, L. M. K.; Thomas, N.; Roberts, J.; Pillarisetty, R.; Amin, P.; George, H. C.; Singh, K. J.; Clarke, J. S.

    Undoped Si/SiGe heterostructures are a promising material stack for the development of spin qubits in silicon. To deploy a qubit into high volume manufacturing in a quantum computer requires stringent control over substrate uniformity and quality. Electron mobility and valley splitting are two key electrical metrics of substrate quality relevant for qubits. Here we present low-temperature magnetotransport measurements of strained Si quantum wells with mobilities in excess of 100000 cm2/Vs fabricated on 300 mm wafers within the framework of advanced semiconductor manufacturing. These results are benchmarked against the results obtained in Si quantum wells deposited on 100 mm Si wafers in an academic research environment. To ensure rapid progress in quantum wells quality we have implemented fast feedback loops from materials growth, to heterostructure FET fabrication, and low temperature characterisation. On this topic we will present recent progress in developing a cryogenic platform for high-throughput magnetotransport measurements.

  15. Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers with Low-Temperature Wafer Direct Bonding

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-12-01

    Full Text Available This paper presents a fabrication method of capacitive micromachined ultrasonic transducers (CMUTs by wafer direct bonding, which utilizes both the wet chemical and O2plasma activation processes to decrease the bonding temperature to 400 °C. Two key surface properties, the contact angle and surface roughness, are studied in relation to the activation processes, respectively. By optimizing the surface activation parameters, a surface roughness of 0.274 nm and a contact angle of 0° are achieved. The infrared images and static deflection of devices are assessed to prove the good bonding effect. CMUTs having silicon membranes with a radius of 60 μm and a thickness of 2 μm are fabricated. Device properties have been characterized by electrical and acoustic measurements to verify their functionality and thus to validate this low-temperature process. A resonant frequency of 2.06 MHz is obtained by the frequency response measurements. The electrical insertion loss and acoustic signal have been evaluated. This study demonstrates that the CMUT devices can be fabricated by low-temperature wafer direct bonding, which makes it possible to integrate them directly on top of integrated circuit (IC substrates.

  16. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  17. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  18. Distillation of combustibles at temperatures below fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1946-09-26

    A process is described for combustion and distillation for dry fuels, such as bituminous shales, below the temperature of fusion of the ash, for the production of heat, in which the temperature in the charge of fuel forming a vertical column is maintained beneath the temperature of fusion of the ash by a withdrawal of the heat from the combustible charge by means of a fluid absorbing this heat. This fluid being constituted, for example, by water in a suitable form, so that it can be circulated through a convenient cooling system, extending through the different parts of the charge. The fluid circulating also through the desired parts of the charge and absorbing the heat, the quantity of fluid or the surface of absorption increasing with the intensity of the combustion in the part of the combustible charge traversed by the fluid.

  19. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  20. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  1. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  2. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  3. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  4. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  5. Investigation of room-temperature wafer bonded GaInP/GaAs/InGaAsP triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wen-xian; Dai, Pan; Ji, Lian; Tan, Ming; Wu, Yuan-yuan [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Uchida, Shiro [Department of Mechanical Science and Engineering Faculty of Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016 (Japan); Lu, Shu-long, E-mail: sllu2008@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2016-12-15

    Highlights: • High quality InGaAsP material with a bandgap of 1.0 eV was grown by MBE. • Room-temperature wafer-bonded GaInP/GaAs/InGaAsP SCs were fabricated. • An efficiency of 30.3% of wafer-bonded triple-junction SCs was obtained. - Abstract: We report on the fabrication of III–V compound semiconductor multi-junction solar cells using the room-temperature wafer bonding technique. GaInP/GaAs dual-junction solar cells on GaAs substrate and InGaAsP single junction solar cell on InP substrate were separately grown by all-solid state molecular beam epitaxy (MBE). The two cells were then bonded to a triple-junction solar cell at room-temperature. A conversion efficiency of 30.3% of GaInP/GaAs/InGaAsP wafer-bonded solar cell was obtained at 1-sun condition under the AM1.5G solar simulator. The result suggests that the room-temperature wafer bonding technique and MBE technique have a great potential to improve the performance of multi-junction solar cell.

  6. Interfaces in Si/Ge atomic layer superlattices on (001)Si: Effect of growth temperature and wafer misorientation

    Science.gov (United States)

    Baribeau, J.-M.; Lockwood, D. J.; Syme, R. W. G.

    1996-08-01

    We have used x-ray diffraction, specular reflectivity, and diffuse scattering, complemented by Raman spectroscopy, to study the interfaces in a series of (0.5 nm Ge/2 nm Si)50 atomic layer superlattices on (001)Si grown by molecular beam epitaxy in the temperature range 150-650 °C. X-ray specular reflectivity revealed that the structures have a well-defined periodicity with interface widths of about 0.2-0.3 nm in the 300-590 °C temperature range. Offset reflectivity scans showed that the diffuse scattering peaks at values of perpendicular wave vector transfer corresponding to the superlattice satellite peaks, indicating that the interfaces are vertically correlated. Transverse rocking scans of satellite peaks showed a diffuse component corresponding to an interface corrugation of typical length scale of ˜0.5 μm. The wavelength of the undulations is a minimum along the miscut direction and is typically 30-40 times larger than the surface average terrace width assuming monolayer steps, independently of the magnitude of the wafer misorientation. The amplitude of the undulation evolves with growth temperature and is minimum for growth at ˜460 °C and peaks at ˜520 °C. Raman scattering showed the chemical abruptness of the interfaces at low growth temperatures and indicated a change in the growth mode near 450 °C.

  7. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  8. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  9. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  10. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  11. Characteristics of ZnO Wafers Implanted with 60 keV Sn+ Ions at Room Temperature and at 110 K

    International Nuclear Information System (INIS)

    Dang, Giang T.; Taniwaki, Masafumi; Kawaharamura, Toshiyuki; Hirao, Takashi; Nitta, Noriko

    2011-01-01

    ZnO wafers implanted with 60 keV Sn + ions at room temperature (RT) and at 110 K are investigated by means of X-ray diffraction (XRD) and photoluminescence (PL) techniques. The effect of implantation temperature is evident in the XRD and PL data. A yellow-orange (YO) band near 600 nm appears in the PL spectra of the ZnO wafers implanted to the doses of 4x10 14 and 8x10 14 ions/cm 2 at RT. The intensity of this band increases and the peak position blue-shifts after illumination of the samples with the 325 nm line of a He-Cd laser. The PL data suggests that the CB (conduction band)→V O + and Zn i + →V Zn - transitions contribute to the photoemission of the YO band.

  12. Influence of the temperature on the composites' fusion bonding quality

    Science.gov (United States)

    Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven

    2017-10-01

    Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.

  13. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    Science.gov (United States)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  14. Fabrication of High Aspect Ratio Through-Wafer Vias in CMOS Wafers for 3-D Packaging Applications

    DEFF Research Database (Denmark)

    Rasmussen, Frank Engel; Frech, J.; Heschel, M.

    2003-01-01

    A process for fabrication of through-wafer vias in CMOS wafers is presented. The process presented offers simple and well controlled fabrication of through-wafer vias using DRIE formation of wafer through-holes, low temperature deposition of through-hole insulation, doubled sided sputtering of Cr...

  15. Secret high-temperature reactor concept for inertial fusion

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1983-01-01

    The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850 0 C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release

  16. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  17. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  18. First wall fusion blanket temperature variation - slab geometry

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)

  19. Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility

    Directory of Open Access Journals (Sweden)

    Xiaoqing Xu

    2016-11-01

    Full Text Available In this work, we investigate the influence of growth temperature, impurity concentration, and metal contact structure on the uniformity and two-dimensional electron gas (2DEG properties of AlGaN/GaN high electron mobility transistor (HEMT structure grown by metal-organic chemical vapor deposition (MOCVD on 4-inch Si substrate. High uniformity of 2DEG mobility (standard deviation down to 0.72% across the radius of the 4-inch wafer has been achieved, and 2DEG mobility up to 1740.3 cm2/V⋅s at room temperature has been realized at low C and O impurity concentrations due to reduced ionized impurity scattering. The 2DEG mobility is further enhanced to 2161.4 cm2/V⋅s which is comparable to the highest value reported to date when the contact structure is switched from a square to a cross pattern due to reduced piezoelectric scattering at lower residual strain. This work provides constructive insights and promising results to the field of wafer-scale fabrication of AlGaN/GaN HEMT on Si.

  20. High-κ Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-03-15

    This work systematically investigated a high-κ Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (∼11.93 J/m{sup 2}) and a lower helium leak rate (∼6.84 × 10{sup −10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  1. Bondability of processed glass wafers

    NARCIS (Netherlands)

    Pandraud, G.; Gui, C.; Lambeck, Paul; Pigeon, F.; Parriaux, O.; Gorecki, Christophe

    1999-01-01

    The mechanism of direct bonding at room temperature has been attributed to the short range inter-molecular and inter-atomic attraction forces, such as Van der Waals forces. Consequently, the wafer surface smoothness becomes one of the most critical parameters in this process. High surface roughness

  2. Single-phase {beta}-FeSi{sub 2} thin films prepared on Si wafer by femtosecond laser ablation and its photoluminescence at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lu Peixiang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: lupeixiang@mail.hust.edu.cn; Zhou Youhua [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China) and Physics and Information School, Jianghan University, Wuhan 430056 (China)]. E-mail: yhzhou@jhun.edu.cn; Zheng Qiguang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2006-02-06

    Single-phase {beta}-FeSi{sub 2} thin films were prepared on Si(100) and Si(111) wafers by using femtosecond laser deposition with a FeSi{sub 2} alloy target for the first time. X-ray diffraction (XRD), field scanning electron microscopy (FSEM), scanning probe microscopy (SPM), electron backscattered diffraction pattern (EBSD), and Fourier-transform Raman infrared spectroscopy (FTRIS) were used to characterize the structure, composition, and properties of the {beta}-FeSi{sub 2}/Si films. The orientation of {beta}-FeSi{sub 2} grains was found to depend on the orientation of the Si substrates, and photoluminescence at wavelength of 1.53 {mu}m was observed from the single-phase {beta}-FeSi{sub 2}/Si thin film at room temperature (20 {sup o}C)

  3. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering

    Science.gov (United States)

    Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan

    2018-03-01

    We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.

  4. Subsequent development of the normal temperature fusion reaction. Joon kakuyugo sonogo no shinten

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1991-04-24

    This paper reports on a NATTOH model made public in May 1989 by T. Matsumoto who took notice of abnormality of the normal temperature fusion reaction. The NATTO model is based on a chain reaction by hydrogen with a hydrogen-catalyzed fusion reaction which is the normal temperature fusion reaction as an elementary process. If a high temperature fusion reaction is a small-size simulation of the fusion reaction rising on the surface of the sparkling star like the sun, the normal temperature fusion reaction can be a small-size simulation of the phenomena in the last years of the star in the far distance of the space. This gives reality to the normal temperature fusion reaction. The reaction mechanism of the normal temperature fusion reaction is almost being clarified by a NATTOH model. There remain problems on a possibility of generation of unknown radioactive rays and identification of radioactive wastes, but it seems that a prospect of commercialization can be talked about now. As for the utilization as energy, sea water may be used as it is. 10 ref., 5 figs.

  5. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  6. Temperature derivatives for fusion reactivity of D-D and D-T

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makaruk, Hanna Ewa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-29

    Deuterium-tritium (D-T) and deuterium-deuterium (D-D) fusion reaction rates are observable using leakage gamma flux. A direct measurement of γ-rays with equipment that exhibits fast temporal response could be used to infer temperature, if the detector signal is amenable for taking the logarithmic time-derivative, alpha. We consider the temperature dependence for fusion cross section reactivity.

  7. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  8. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  9. High temperature gases: progress towards nuclear fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Savic, P.

    1975-11-01

    The basics of producing gaseous plasmas are outlined. The use of shock waves for heating is reviewed along with diagnostic techniques to measure various plasma properties. The use of hot plasmas in the CTR program is mentioned along with some basic fusion-directed studies. (MOW)

  10. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  11. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  12. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  13. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    Science.gov (United States)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  14. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B.

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si 3 N 4 . Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation

  15. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  16. High-temperature fusion of a multielectron leviton

    Science.gov (United States)

    Moskalets, Michael

    2018-04-01

    The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.

  17. Si-to-Si wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Reus, Roger De; Lindahl, M.

    1997-01-01

    Anodic bonding of Si to Si four inch wafers using evaporated glass was performed in air at temperatures ranging from 300°C to 450°C. Although annealing of Si/glass structures around 340°C for 15 minutes eliminates stress, the bonded wafer pairs exhibit compressive stress. Pull testing revealed...

  18. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  19. Making Porous Luminescent Regions In Silicon Wafers

    Science.gov (United States)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  20. Application of D-S Evidence Fusion Method in the Fault Detection of Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Zheng Dou

    2014-01-01

    Full Text Available Due to the complexity and dangerousness of drying process, the fault detection of temperature sensor is very difficult and dangerous in actual working practice and the detection effectiveness is not satisfying. For this problem, in this paper, based on the idea of information fusion and the requirements of D-S evidence method, a D-S evidence fusion structure with two layers was introduced to detect the temperature sensor fault in drying process. The first layer was data layer to establish the basic belief assignment function of evidence which could be realized by BP Neural Network. The second layer was decision layer to detect and locate the sensor fault which could be realized by D-S evidence fusion method. According to the numerical simulation results, the working conditions of sensors could be described effectively and accurately by this method, so that it could be used to detect and locate the sensor fault.

  1. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  2. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  3. Water saving in IC wafer washing process; IC wafer senjo deno sessui taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H. [Mitsubishi Corp., Tokyo (Japan); Araki, M.; Nakazawa, T.

    1997-11-30

    This paper reports features of a wafer washing technology, a new IC wafer washing process, its pure water saving effect, and a `QC washing` which has pure water saving effect in the wafer washing. Wafer washing processes generally include the SC1 process (using ammonia + hydrogen peroxide aqueous solution) purposed for removing contamination due to ultrafine particles, the SC2 process (using hydrochloric acid + hydrogen peroxide aqueous solution) purposed for removing contamination due to heavy metals, the piranha washing process (using hot sulfuric acid + hydrogen peroxide aqueous solution) purposed for removing contamination due to organic matters, and the DHF (using dilute hydrofluoric acid) purposed for removing natural oxide films. Natural oxide films are now remained as surface protection films, by which surface contamination has been reduced remarkably. A high-temperature washing chemical circulating and filtering technology developed in Japan has brought about a reform in wafer washing processes having been used previously. Spin washing is used as a water saving measure, in which washing chemicals or pure water are sprayed onto one each of wafers which is spin-rotated, allowing washing and rinsing to be made with small amount of washing chemicals and pure water. The QC washing is a method to replace tank interior with pure was as quick as possible in order to increase the rinsing effect. 7 refs., 5 figs.

  4. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  5. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  6. Preconceptual design of hyfire. A fusion driven high temperature electrolysis plant

    International Nuclear Information System (INIS)

    Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1983-01-01

    Brookhaven National Laboratory has been engaged in a scoping study to investigate the potential merits of coupling a fusion reactor with a high temperature blanket to a high temperature electrolysis (HTE) process to produce hydrogen and oxygen. Westinghouse is assisting this study in the areas of systems design integration, plasma engineering, balance of plant design and electrolyzer technology. The aim of the work done in the past year has been to focus on a reference design point for the plant, which has been designated HYFIRE. In prior work, the STARFIRE commercial tokamak fusion reactor was directly used as the fusion driver. This report describes a new design obtained by scaling the basic STARFIRE design to permit the achievement of a blanket power of 6000 MWt. The high temperature blanket design employs a thermally insulated refractory oxide region which provides high temperature (>1000 deg. C) steam at moderate pressures to high temperature electrolysis units. The electrolysis process selected is based on the high temperature, solid electrolyte fuel cell technology developed by Westinghouse. An initial process design and plant layout has been completed; component cost and plant economics studies are now underway to develop estimates of hydrogen production costs and to determine the sensitivity of this cost to changes in major design parameters. (author)

  7. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.

    Science.gov (United States)

    Lai, J; Domier, C W; Luhmann, N C

    2014-03-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.

  8. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    International Nuclear Information System (INIS)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-01-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T e and n e fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained

  9. Coal ash fusion temperatures -- New characterization techniques, and associations with phase equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, R.P.; Gupta, S. [Univ. of Newcastle, New South Wales (Australia). Dept. of Chemical Engineering; Creelman, R.A. [R.A. Creelman and Associates, Epping, New South Wales (Australia); Coin, C. [ACIRL Ipswich, Booval, Queensland (Australia); Lowe, A. [Pacific Power, Sydney, New South Wales (Australia)

    1996-12-31

    The well-documented shortcomings of the standard technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined with laboratory ash prepared at about 800 C in crucibles, as well as combustion ash sampled from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of peaks in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash.

  10. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Nickel, H.

    1992-01-01

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  11. Electrical Interconnections Through CMOS Wafers

    DEFF Research Database (Denmark)

    Rasmussen, Frank Engel

    2003-01-01

    Chips with integrated vias are currently the ultimate miniaturizing solution for 3D packaging of microsystems. Previously the application of vias has almost exclusively been demonstrated within MEMS technology, and only a few of these via technologies have been CMOS compatible. This thesis...... describes the development of vias through a silicon wafer containing Complementary Metal-Oxide Semiconductor (CMOS) circuitry. Two via technologies have been developed and fabricated in blank silicon wafers; one based on KOH etching of wafer through-holes and one based on DRIE of wafer through......-holes. The most promising of these technologies --- the DRIE based process --- has been implemented in CMOS wafers containing hearing aid amplifiers. The main challenges in the development of a CMOS compatible via process depend on the chosen process for etching of wafer through-holes. In the case of KOH etching...

  12. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  13. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  14. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  15. Wafer-level vacuum/hermetic packaging technologies for MEMS

    Science.gov (United States)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  16. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    International Nuclear Information System (INIS)

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000 0 C for high efficiency. The design put forth in this study details a system that can accomplish that end

  17. Coal ash fusion temperatures - new characterization techniques and implications for slagging and fouling

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.P.; Gupta, S.K.; Coin, C.; Lowe, A. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-09-01

    The ash fusion test (AFT) is the accepted test for the propensity of coal ash to slag in the furnace. The well-documented shortcomings of this technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined here with laboratory ash prepared at about 800{degree}C in crucibles, as well as combustion ash samples from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of `peaks` in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash. A preliminary evaluation of data from nine power stations indicates that shrinkage measurements can provide an alternative approach to characterizing slagging. 15 refs., 9 figs., 2 tabs.

  18. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  19. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300 0 to approx. 1150 0 C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophy and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology

  20. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  1. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  2. Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding

    Directory of Open Access Journals (Sweden)

    Simon J. Bleiker

    2016-10-01

    Full Text Available Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based on low-temperature adhesive wafer bonding, which ensures full complementary metal-oxide-semiconductor (CMOS compatibility. All necessary fabrication steps for the wafer bonding, such as cavity formation and deposition of the adhesive, are performed on the capping substrate. The polymer adhesive is deposited by spray-coating on the capping wafer containing the cavities. Thus, no lithographic patterning of the polymer adhesive is needed, and material waste is minimized. Furthermore, this process does not require any additional fabrication steps on the device wafer, which lowers the process complexity and fabrication costs. We demonstrate the proposed capping method by packaging two different MEMS devices. The two MEMS devices include a vibration sensor and an acceleration switch, which employ two different electrical interconnection schemes. The experimental results show wafer-level capping with excellent bond quality due to the re-flow behavior of the polymer adhesive. No impediment to the functionality of the MEMS devices was observed, which indicates that the encapsulation does not introduce significant tensile nor compressive stresses. Thus, we present a highly versatile, robust, and cost-efficient capping method for components such as MEMS and imaging sensors.

  3. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  4. Potential for use of high-temperature superconductors in fusion reactors

    International Nuclear Information System (INIS)

    Hull, J.R.

    1991-01-01

    The present rate of development of high-temperature superconductors (HTSs) is sufficiently rapid that there may be opportunities for their use in contemporary fusion devices such as the International Thermonuclear Experimental Reactor (ITER). The most likely 1application is for delivering power to the superconducting magnets, especially in substituting for the current leads between the temperatures of 4 K and 77K. A second possible application of HTSs is as a liquid-nitrogen-cooled power bus, connecting the power supplies to the magnets, thus reducing the ohmic heating losses over these relatively long cables. A third potential application of HTSs is as an inner high-field winding of the toroidal field coils that would operate at ∼20 K. While the use of higher temperature magnets offers significant advantages to the reactor system, it is unlikely that tested conductors of this type will be available within the ITER time frame. 23 refs., 2 figs

  5. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    International Nuclear Information System (INIS)

    Counsell, G F

    2002-01-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV e e >10 19 m -3 ) but weakly ionized (n 0 >10 20 m -3 , n e /n 0 <0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues

  6. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J.; Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.

  7. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  8. High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas

    CERN Document Server

    Spatschek, Karl-Heinz

    2012-01-01

    Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.

  9. IEFIT - An Interactive Approach to High Temperature Fusion Plasma Magnetic Equilibrium Fitting

    International Nuclear Information System (INIS)

    Peng, Q.; Schachter, J.; Schissel, D.P.; Lao, L.L.

    1999-01-01

    An interactive IDL based wrapper, IEFIT, has been created for the magnetic equilibrium reconstruction code EFIT written in FORTRAN. It allows high temperature fusion physicists to rapidly optimize a plasma equilibrium reconstruction by eliminating the unnecessarily repeated initialization in the conventional approach along with the immediate display of the fitting results of each input variation. It uses a new IDL based graphics package, GaPlotObj, developed in cooperation with Fanning Software Consulting, that provides a unified interface with great flexibility in presenting and analyzing scientific data. The overall interactivity reduces the process to minutes from the usual hours

  10. Laser wafering for silicon solar

    International Nuclear Information System (INIS)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-01-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W p (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs (∼20%), embodied energy, and green-house gas GHG emissions (∼50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 (micro)m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  11. Laser wafering for silicon solar.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  12. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  13. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    Science.gov (United States)

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  14. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  15. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  16. Reconstruction and analysis of temperature and density spatial profiles inertial confinement fusion implosion cores

    International Nuclear Information System (INIS)

    Mancini, R. C.

    2007-01-01

    We discuss several methods for the extraction of temperature and density spatial profiles in inertial confinement fusion implosion cores based on the analysis of the x-ray emission from spectroscopic tracers added to the deuterium fuel. The ideas rely on (1) detailed spectral models that take into account collisional-radiative atomic kinetics, Stark broadened line shapes, and radiation transport calculations, (2) the availability of narrow-band, gated pinhole and slit x-ray images, and space-resolved line spectra of the core, and (3) several data analysis and reconstruction methods that include a multi-objective search and optimization technique based on a novel application of Pareto genetic algorithms to plasma spectroscopy. The spectroscopic analysis yields the spatial profiles of temperature and density in the core at the collapse of the implosion, and also the extent of shell material mixing into the core. Results are illustrated with data recorded in implosion experiments driven by the OMEGA and Z facilities

  17. Analytic, empirical and delta method temperature derivatives of D-D and D-T fusion reactivity formulations, as a means of verification

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Booker, Jane M. [Booker Scientific, Fredericksburg, TX (United States)

    2017-07-21

    We examine the derivatives with respect to temperature, for various deuterium-tritium (DT) and deuterium-deuterium (D-D) fusion-reactivity formulations. Langenbrunner and Makaruk [1] had studied this as a means of understanding the time and temperature domain of reaction history measured in dynamic fusion experiments. Presently, we consider the temperature derivative dependence of fusion reactivity as a means of exercising and verifying the consistency of the various reactivity formulations.

  18. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  19. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  20. Multi parametric sensitivity study applied to temperature measurement of metallic plasma facing components in fusion devices

    International Nuclear Information System (INIS)

    Aumeunier, M-H.; Corre, Y.; Firdaouss, M.; Gauthier, E.; Loarer, T.; Travere, J-M.; Gardarein, J-L.; EFDA JET Contributor

    2013-06-01

    In nuclear fusion experiments, the protection system of the Plasma Facing Components (PFCs) is commonly ensured by infrared (IR) thermography. Nevertheless, the surface monitoring of new metallic plasma facing component, as in JET and ITER is being challenging. Indeed, the analysis of infrared signals is made more complicated in such a metallic environment since the signals will be perturbed by the reflected photons coming from high temperature regions. To address and anticipate this new measurement environment, predictive photonic models, based on Monte-Carlo ray tracing (SPEOS R CAA V5 Based), have been performed to assess the contribution of the reflective part in the total flux collected by the camera and the resulting temperature error. This paper deals with the effects of metals features, as the emissivity and reflectivity models, on the accuracy of the surface temperature estimation. The reliability of the features models is discussed by comparing the simulation with experimental data obtained with the wide angle IR thermography system of JET ITER like wall. The impact of the temperature distribution is studied by considering two different typical plasma scenarios, in limiter (ITER start-up scenario) and in X-point configurations (standard divertor scenario). The achievable measurement performances of IR system and risks analysis on its functionalities are discussed. (authors)

  1. Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Szydlowski, A.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Scholz, M.; Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the application of SSNTDs of the PM-355 type to diagnostics of reaction products emitted from high-temperature deuterium plasmas produced in Plasma Focus (PF) facilities. Acceleration processes occurring in plasma lead often to the generation of high-energy ion beams. Such beams induce nuclear reactions and contribute to the emission of fast neutrons, fusion protons and alpha particles from PF discharges with a deuterium gas. Ion measurements are of primary importance for understanding the mechanisms of the physical processes which drive the charged-particle acceleration. The main aim of the present studies was to perform measurements of spatial- and energy-distributions of fusion-reaction protons (about 3 MeV) within a PF facility. Results obtained from energy measurements were compared with the proton-energy spectra computed theoretically. The protons were measured by means of a set of ion pinhole cameras equipped with PM-355 detectors, which were placed at different angles relative to the electrode axis of the PF facility.

  2. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  3. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  4. New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

    Science.gov (United States)

    Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.

    2018-01-01

    The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.

  5. Thermal stress during RTP processes and its possible effect on the light induced degradation in Cz-Si wafers

    Science.gov (United States)

    Kouhlane, Yacine; Bouhafs, Djoudi; Khelifati, Nabil; Guenda, Abdelkader; Demagh, Nacer-Eddine; Demagh, Assia; Pfeiffer, Pierre; Mezghiche, Salah; Hetatache, Warda; Derkaoui, Fahima; Nasraoui, Chahinez; Nwadiaru, Ogechi Vivian

    2018-04-01

    In this study, the carrier lifetime variation of p-type boron-doped Czochralski silicon (Cz-Si) wafers was investigated after a direct rapid thermal processing (RTP). Two wafers were passivated by silicon nitride (SiNx:H) layers, deposited by a PECVD system on both surfaces. Then the wafers were subjected to an RTP cycle at a peak temperature of 620 °C. The first wafer was protected (PW) from the direct radiative heating of the RTP furnace by placing the wafer between two as-cut Cz-Si shield wafers during the heat processing. The second wafer was not protected (NPW) and followed the same RTP cycle procedure. The carrier lifetime τ eff was measured using the QSSPC technique before and after illumination for 5 h duration at 0.5 suns. The immediate results of the measured lifetime (τ RTP ) after the RTP process have shown a regeneration in the lifetime of the two wafers with the PW wafer exhibiting an important enhancement in τ RTP as compared to the NPW wafer. The QSSPC measurements have indicated a good stable lifetime (τ d ) and a weak degradation effect was observed in the case of the PW wafer as compared to their initial lifetime value. Interferometry technique analyses have shown an enhancement in the surface roughness for the NPW wafer as compared to the protected one. Additionally, to improve the correlation between the RTP heat radiation stress and the carrier lifetime behavior, a simulation of the thermal stress and temperature profile using the finite element method on the wafers surface at RTP peak temperature of 620 °C was performed. The results confirm the reduction of the thermal stress with less heat losses for the PW wafer. Finally, the proposed method can lead to improving the lifetime of wafers by an RTP process at minimum energy costs.

  6. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  7. Wafer-level testing and test during burn-in for integrated circuits

    CERN Document Server

    Bahukudumbi, Sudarshan

    2010-01-01

    Wafer-level testing refers to a critical process of subjecting integrated circuits and semiconductor devices to electrical testing while they are still in wafer form. Burn-in is a temperature/bias reliability stress test used in detecting and screening out potential early life device failures. This hands-on resource provides a comprehensive analysis of these methods, showing how wafer-level testing during burn-in (WLTBI) helps lower product cost in semiconductor manufacturing.Engineers learn how to implement the testing of integrated circuits at the wafer-level under various resource constrain

  8. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.

    1999-01-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays 60 Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year

  9. Surface temperature measurements by means of pulsed photothermal effects in fusion devices

    International Nuclear Information System (INIS)

    Loarer, Th.; Brygo, F.; Gauthier, E.; Grisolia, C.; Le Guern, F.; Moreau, F.; Murari, A.; Roche, H.; Semerok, A.

    2007-01-01

    In fusion devices, the surface temperature of plasma facing components is measured using infrared cameras. This method requires a knowledge of the emissivity of the material, the reflected and parasitic fluxes (Bremsstrahlung). For carbon, the emissivity is known and constant over the detection wavelength (∼3-5 μm). For beryllium and tungsten, the reflected flux could contribute significantly to the collected flux. The pulsed photothermal method described in this paper allows temperature measurements independently of both reflected and parasitic fluxes. A local increase of the surface temperature (ΔT ∼ 10-15 K) introduced by a laser pulse (few ns) results in an additional component of the photon flux collected by the detector. Few μs after the pulse, a filtering of the signal allows to extract a temporal flux proportional only to the variation of the emitted flux, the emissivity and ΔT. The ratio of simultaneous measurements at two wavelengths leads to the elimination of ΔT and emissivity. The range of application increases for measurements at short wavelengths (1-1.7 μm) with no limitation due to the Bremsstrahlung emission

  10. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    International Nuclear Information System (INIS)

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca; Wood, Barry

    2014-01-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices. (paper)

  11. Wafer of Intel Pentium 4 Prescott Chips

    CERN Multimedia

    Silicon wafer with hundreds of Penryn cores (microprocessor). There are around four times as many Prescott chips can be made per wafer than with the previous generation of Northwood-core Pentium 4 processors. It is faster and cheaper.

  12. Wafer size effect on material removal rate in copper CMP process

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, Minjong; Jang, Soocheon; Park, Inho; Jeong, Haedo [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The semiconductor industry has employed the Chemical mechanical planarization (CMP) to enable surface topography control. Copper has been used to build interconnects because of its low-resistivity and high-electromigration. In this study, the effect of wafer size on the Material removal rate (MRR) in copper CMP process was investigated. CMP experiments were conducted using copper blanket wafers with diameter of 100, 150, 200 and 300 mm, while temperature and friction force were measured by infrared and piezoelectric sen-sors. The MRR increases with an increase in wafer size under the same process conditions. The wafer size increased the sliding distance of pad, resulting in an increase in the process temperature. This increased the process temperature, accelerating the chemical etching rate and the dynamic etch rate. The sliding distance of the pad was proportional to the square of the wafer radius; it may be used to predict CMP results and design a CMP machine.

  13. Theoretical model of the probability of fusion between deuterons within deformed lattices with microcracks at room temperature

    International Nuclear Information System (INIS)

    Frisone, Fulvio

    2006-01-01

    In this work we wish to demonstrate that a reaction path as the following dislocations, deformations due to thermodynamic stress and, finally, microcrack occurrence, can enhance the process of fusion of the deuterons introduced into the lattice by deuterium loading (F. Frisone, Can variations in temperature influence deuteron interaction within crystalline lattices?, Nuovo Cimento D, 18, 1279 (1996)). In fact, calculating the rate of deuteron-plasmon-deuteron fusion within a microcrack, showed, together with an enhancement of the tunneling effect, an increase of at least 2 - 3 orders of magnitude compared to the probability of fusion on the no deformed lattice. In fact, strong electric fields can take place in the microcrack and the deuterons are accelerated to the energy which is enough for the D-D tunnelling (M. Rabinowitz, High temperature superconductivity and cold fusion, Mod. Phys, Lett. B, 4, 233 (1990); J. Price Hirt and J. Lothe, Theory of Dislocation (McGraw Hill); Z. Phys., 457, 156 (1960)). These phenomena open the way to the theoretical hypothesis that a kind of chain reaction, catalyzed by the microcracks produced in the structure as a result of deuterium loading, can favour tho process of deuteron-plasmon fusion (N. W. Ashcroft and N. D. Mermin (Eds.), Solid State Physics, Chapter 25 (Saunders College, Philadelphia, 1972, pp. 492-509)

  14. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  15. Characterization of silicon-on-insulator wafers

    Science.gov (United States)

    Park, Ki Hoon

    The silicon-on-insulator (SOI) is attracting more interest as it is being used for an advanced complementary-metal-oxide-semiconductor (CMOS) and a base substrate for novel devices to overcome present obstacles in bulk Si scaling. Furthermore, SOI fabrication technology has improved greatly in recent years and industries produce high quality wafers with high yield. This dissertation investigated SOI material properties with simple, yet accurate methods. The electrical properties of as-grown wafers such as electron and hole mobilities, buried oxide (BOX) charges, interface trap densities, and carrier lifetimes were mainly studied. For this, various electrical measurement techniques were utilized such as pseudo-metal-oxide-semiconductor field-effect-transistor (PseudoMOSFET) static current-voltage (I-V) and transient drain current (I-t), Hall effect, and MOS capacitance-voltage/capacitance-time (C-V/C-t). The electrical characterization, however, mainly depends on the pseudo-MOSFET method, which takes advantage of the intrinsic SOI structure. From the static current-voltage and pulsed measurement, carrier mobilities, lifetimes and interface trap densities were extracted. During the course of this study, a pseudo-MOSFET drain current hysteresis regarding different gate voltage sweeping directions was discovered and the cause was revealed through systematic experiments and simulations. In addition to characterization of normal SOI, strain relaxation of strained silicon-on-insulator (sSOI) was also measured. As sSOI takes advantage of wafer bonding in its fabrication process, the tenacity of bonding between the sSOI and the BOX layer was investigated by means of thermal treatment and high dose energetic gamma-ray irradiation. It was found that the strain did not relax with processes more severe than standard CMOS processes, such as anneals at temperature as high as 1350 degree Celsius.

  16. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  17. A systematic study on the influence of nuclear surface tension and temperature upon the parameterization of the fusion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gharaei, R.; Hadikhani, A. [Hakim Sabzevari University, Department of Physics, Sciences Faculty, Sabzevar (Iran, Islamic Republic of)

    2017-07-15

    For the first time the influence of the surface energy coefficient γ and temperature T on the parameterization of the fusion barriers is systematically analyzed within the framework of the proximity formalism, namely proximity 1977, proximity 1988 and proximity 2010 models. A total of 114 fusion reactions with the condition 39 ≤ Z{sub 1}Z{sub 2} ≤ 1520 for the charge product of their participant nuclei have been studied. We present γ-dependent and T -dependent pocket formulas which reproduce the theoretical and empirical data of the fusion barrier height and position for our considered reactions with good accuracy. It is shown that the quality of the γ-dependent formula enhances by increasing the strength of the surface energy coefficient. Moreover, the obtained results confirm that imposing the thermal effects improves the agreement between the parameterized and empirical data of the barrier characteristics. (orig.)

  18. Dust in fusion devices-a multi-faceted problem connecting high- and low-temperature plasma physics

    International Nuclear Information System (INIS)

    Winter, J

    2004-01-01

    Small particles with sizes between a few nanometers and a few 10 μm (dust) are formed in fusion devices by plasma-surface interaction processes. Though it is not a major problem today, dust is considered a problem that could arise in future long pulse fusion devices. This is primarily due to its radioactivity and due to its very high chemical reactivity. Dust formation is particularly pronounced when carbonaceous wall materials are used. Dust particles can be transported in the tokamak over significant distances. Radioactivity leads to electrical charging of dust and to its interaction with plasmas and electric fields. This may cause interference with the discharge but may also result in options for particle removal. This paper discusses some of the multi-faceted problems using information both from fusion research and from low-temperature dusty plasma work

  19. Wafer level packaging of MEMS

    International Nuclear Information System (INIS)

    Esashi, Masayoshi

    2008-01-01

    Wafer level packaging plays many important roles for MEMS (micro electro mechanical systems), including cost, yield and reliability. MEMS structures on silicon chips are encapsulated between bonded wafers or by surface micromachining, and electrical interconnections are made from the cavity. Bonding at the interface, such as glass–Si anodic bonding and metal-to-metal bonding, requires electrical interconnection through the lid vias in many cases. On the other hand, lateral electrical interconnections on the surface of the chip are used for bonding with intermediate melting materials, such as low melting point glass and solder. The cavity formed by surface micromachining is made using sacrificial etching, and the openings needed for the sacrificial etching are plugged using deposition sealing methods. Vacuum packaging methods and the structures for electrical feedthrough for the interconnection are discussed in this review. (topical review)

  20. Industrial Silicon Wafer Solar Cells

    OpenAIRE

    Neuhaus, Dirk-Holger; Münzer, Adolf

    2007-01-01

    In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future e...

  1. Fusion of MODIS and landsat-8 surface temperature images: a new approach.

    Science.gov (United States)

    Hazaymeh, Khaled; Hassan, Quazi K

    2015-01-01

    Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93-0.94, 0.94-0.99; and 2.97-20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084-0.90, 0.061-0.080, and 0.003-0.004, respectively.

  2. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  3. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  4. Comparative TEM study of bonded silicon/silicon interfaces fabricated by hydrophilic, hydrophobic and UHV wafer bonding

    International Nuclear Information System (INIS)

    Reznicek, A.; Scholz, R.; Senz, S.; Goesele, U.

    2003-01-01

    Wafers of Czochralski-grown silicon were bonded hydrophilically, hydrophobically and in ultrahigh vacuum (UHV) at room temperature. Wafers bonded hydrophilically adhere together by hydrogen bonds, those bonded hydrophobically by van der Waals forces and UHV-bonded ones by covalent bonds. Annealing the pre-bonded hydrophilic and hydrophobic wafer pairs in argon for 2 h at different temperatures increases the initially low bonding energy. UHV-bonded wafer pairs were also annealed to compare the results. Transmission electron microscopy (TEM) investigations show nano-voids at the interface. The void density depends on the initial bonding strength. During annealing the shape, coverage and density of the voids change significantly

  5. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  6. Wafer scale oblique angle plasma etching

    Science.gov (United States)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  7. The effects of leaching and floatation on the ash fusion temperatures of three selected lignites

    Energy Technology Data Exchange (ETDEWEB)

    Feng-hai Li; Jie-jie Huang; Yi-tian Fang; Yang Wang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2011-07-15

    Experiments have been conducted with Huolinhe (HLH), Xiaolongtan (XLT), and Ethiopian (ET) lignites to investigate the effects of washing with water, acid-leaching, and floatation on their ash fusion temperatures (AFTs). The results show that the AFTs of XLT and ET are elevated by washing with water and floatation, but the AFT of HLH is decreased. The AFTs of all three lignites are increased markedly by acid leaching. A decrease in the total basic composition in ash increases its AFT, and vice versa. Changes in the mineral contents of the coals after treatment contribute to the variations in their AFTs. After washing with water, the lower AFT of HLH is brought about by the increases in the amounts of cordierite and anhydrite, whereas the higher AFT of XLT is caused by the decreases in the amounts of anhydrite and calcite. For the floatation treatment, the decrease of AFT for HLH is due to the reduction in the amount of kaolinite, but the elevation of AFT for XLT or ET is caused by the decrease in the amount of pyrite and the reductions in the amounts of gypsum and xanthoxenite, respectively. For the acid-leaching treatment, a decrease in the amount of pyrite and an increase in the amount of kaolinite result in increases in AFTs for HLH and XLT. Increases in the amounts of kaolinite and cristobalite in FET (ET after floatation), WET (ET after washing with water), and AET (ET after acid-leaching) lead to corresponding increases in the AFTs. 27 refs., 10 figs., 3 tabs.

  8. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  9. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid(FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  10. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    Science.gov (United States)

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H; Peterson, Tracy C; Shul, Randy J; Ahlers, Catalina; Plut, Thomas A; Patrizi, Gary A

    2013-12-03

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  11. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  12. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  13. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    Sanderson, Allen R.; Johnson, Christopher R.

    2006-01-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  14. Surface etching technologies for monocrystalline silicon wafer solar cells

    Science.gov (United States)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  15. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  16. Physical mechanisms of copper-copper wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.; Hingerl, K.

    2015-01-01

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing

  17. Bonding of Si wafers by surface activation method for the development of high efficiency high counting rate radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Onabe, Hideaki

    2006-01-01

    Si wafers with two different resistivities ranging over two orders of magnitude were bonded by the surface activation method. The resistivities of bonded Si wafers were measured as a function of annealing temperature. Using calculations based on a model, the interface resistivities of bonded Si wafers were estimated as a function of the measured resistivities of bonded Si wafers. With thermal treatment from 500degC to 900degC, all interfaces showed high resistivity, with behavior that was close to that of an insulator. Annealing at 1000degC decreased the interface resistivity and showed close to ideal bonding after thermal treatment at 1100degC. (author)

  18. Silicon-to-silicon wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Lindahl, M.

    1998-01-01

    Anodic bending of silicon to silicon 4-in. wafers using an electron-beam evaporated glass (Schott 8329) was performed successfully in air at temperatures ranging from 200 degrees C to 450 degrees C. The composition of the deposited glass is enriched in sodium as compared to the target material....... The roughness of the as-deposited films was below 5 nm and was found to be unchanged by annealing at 500 degrees C for 1 h in air. No change in the macroscopic edge profiles of the glass film was found as a function of annealing; however, small extrusions appear when annealing above 450 degrees C. Annealing...... of silicon/glass structures in air around 340 degrees C for 15 min leads to stress-free structures. Bonded wafer pairs, however, show no reduction in stress and always exhibit compressive stress. The bond yield is larger than 95% for bonding temperatures around 350 degrees C and is above 80% for bonding...

  19. Methane production using resin-wafer electrodeionization

    Science.gov (United States)

    Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

    2014-03-25

    The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

  20. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Feibush, E.; Fredian, T.W.; Goode, M.M.; Greenwald, M.J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D.C.; Papka, M.E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M.R.; Uram, T.; Wallace, G.

    2006-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  1. Effects of low-temperature fusion neutron irradiation on critical properties of a monofilament niobium-tin superconductor

    International Nuclear Information System (INIS)

    Guinan, M.W.; Van Konynenburg, R.A.; Mitchell, J.B.

    1984-01-01

    The objective of this work was to irradiate a Nb 3 Sn superconductor with 14.8 MeV neutrons at 4 K and measure critical current in transverse fields of up to 12 T, irradiating up to a fluence sufficient to decrease the critical current to below its initial value. Critical temperatures were also to be measured. The samples were to be kept near 4 K between the irradiation and the measurement of critical properties. This work is directed toward establishing an engineering design fluence limit for Nb 3 Sn when used in fusion reactor superconducting magnets

  2. Effects of low-temperature fusion neutron irradiation on critical properties of a monofilament niobium-tin superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Guinan, M.W.; Van Konynenburg, R.A.; Mitchell, J.B.

    1984-03-22

    The objective of this work was to irradiate a Nb/sub 3/Sn superconductor with 14.8 MeV neutrons at 4 K and measure critical current in transverse fields of up to 12 T, irradiating up to a fluence sufficient to decrease the critical current to below its initial value. Critical temperatures were also to be measured. The samples were to be kept near 4 K between the irradiation and the measurement of critical properties. This work is directed toward establishing an engineering design fluence limit for Nb/sub 3/Sn when used in fusion reactor superconducting magnets.

  3. Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nazikian, R. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Berk, H. L. [Univ. of Texas, Austin, TX (United States); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Doyle, E. J. [Univ. of California, Los Angeles, CA (United States); Fonck, R. J. [Univ. of Wisconsin, Madison, WI (United States); Gorelenkov, N. N. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Holcomb, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kramer, G. J. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Jayakumar, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); La Haye, R. J. [General Atomics, San Diego, CA (United States); McKee, G. R. [Univ. of Wisconsin, Madison, WI (United States); Makowski, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peebles, W. A. [Univ. of California, Los Angeles, CA (United States); Rhodes, T. L. [Univ. of California, Los Angeles, CA (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Strait, E. J. [General Atomics, San Diego, CA (United States); VanZeeland, M. A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States); Zeng, L. [Univ. of California, Los Angeles, CA (United States)

    2006-03-01

    Evidence is provided for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments verify wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are like the scale length of electrostatic drift wave turbulence. Theoretical analysis verifies a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.

  4. Fabrication of Ge-on-insulator wafers by Smart-CutTM with thermal management for undamaged donor Ge wafers

    Science.gov (United States)

    Kim, Munho; Cho, Sang June; Jayeshbhai Dave, Yash; Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Yoon, Jung U.; Ma, Zhenqiang

    2018-01-01

    Newly engineered substrates consisting of semiconductor-on-insulator are gaining much attention as starting materials for the subsequent transfer of semiconductor nanomembranes via selective etching of the insulating layer. Germanium-on-insulator (GeOI) substrates are critically important because of the versatile applications of Ge nanomembranes (Ge NMs) toward electronic and optoelectronic devices. Among various fabrication techniques, the Smart-CutTM technique is more attractive than other methods because a high temperature annealing process can be avoided. Another advantage of Smart-CutTM is the reusability of the donor Ge wafer. However, it is very difficult to realize an undamaged Ge wafer because there exists a large mismatch in the coefficient of thermal expansion among the layers. Although an undamaged donor Ge wafer is a prerequisite for its reuse, research related to this issue has not yet been reported. Here we report the fabrication of 4-inch GeOI substrates using the direct wafer bonding and Smart-CutTM process with a low thermal budget. In addition, a thermo-mechanical simulation of GeOI was performed by COMSOL to analyze induced thermal stress in each layer of GeOI. Crack-free donor Ge wafers were obtained by annealing at 250 °C for 10 h. Raman spectroscopy and x-ray diffraction (XRD) indicated similarly favorable crystalline quality of the Ge layer in GeOI compared to that of bulk Ge. In addition, Ge p-n diodes using transferred Ge NM indicate a clear rectifying behavior with an on and off current ratio of 500 at ±1 V. This demonstration offers great promise for high performance transferrable Ge NM-based device applications.

  5. Science and technology of plasma activated direct wafer bonding

    Science.gov (United States)

    Roberds, Brian Edward

    This dissertation studied the kinetics of silicon direct wafer bonding with emphasis on low temperature bonding mechanisms. The project goals were to understand the topological requirements for initial bonding, develop a tensile test to measure the bond strength as a function of time and temperature and, using the kinetic information obtained, develop lower temperature methods of bonding. A reproducible surface metrology metric for bonding was best described by power spectral density derived from atomic force microscopy measurements. From the tensile strength kinetics study it was found that low annealing temperatures could be used to obtain strong bonds, but at the expense of longer annealing times. Three models were developed to describe the kinetics. A diffusion controlled model and a reaction rate controlled model were developed for the higher temperature regimes (T > 600sp°C), and an electric field assisted oxidation model was proposed for the low temperature range. An in situ oxygen plasma treatment was used to further enhance the field-controlled mechanism which resulted in dramatic increases in the low temperature bonding kinetics. Multiple internal transmission Fourier transform infrared spectroscopy (MIT-FTIR) was used to monitor species evolution at the bonded interface and a capacitance-voltage (CV) study was undertaken to investigate charge distribution and surface states resulting from plasma activation. A short, less than a minute, plasma exposure prior to contacting the wafers was found to obtain very strong bonds for hydrophobic silicon wafers at very low temperatures (100sp°C). This novel bonding method may enable new technologies involving heterogeneous material systems or bonding partially fabricated devices to become realities.

  6. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  7. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  8. Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining

    Science.gov (United States)

    2015-03-16

    istribution un lim it ed 13. SUPPLEMENTARY NOTES 14. ABSTRACT Plasm a and pulsed plasma arc w eld ing (PAW and PPAW) processes w ere used to fusion...were analyzed using scanning electron microscopy. 3.4 Microscopy Weldment specimens were cut perpendicular to the welding direction using a manual...Nikon; Epiphot 200; Tokyo, Japan) and scanning electron microscopy (Hitachi; S- 570; Tokyo, Japan). ZrB2 grain sizes in the parent material and heat

  9. Denuded zone in Czochralski silicon wafer with high carbon content

    International Nuclear Information System (INIS)

    Chen Jiahe; Yang Deren; Ma Xiangyang; Que Duanlin

    2006-01-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 deg. C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 deg. C. Also, the DZs above 15 μm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits

  10. Denuded zone in Czochralski silicon wafer with high carbon content

    Science.gov (United States)

    Chen, Jiahe; Yang, Deren; Ma, Xiangyang; Que, Duanlin

    2006-12-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 °C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 °C. Also, the DZs above 15 µm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits.

  11. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  12. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  13. Single wafer rapid thermal multiprocessing

    International Nuclear Information System (INIS)

    Saraswat, K.C.; Moslehi, M.M.; Grossman, D.D.; Wood, S.; Wright, P.; Booth, L.

    1989-01-01

    Future success in microelectronics will demand rapid innovation, rapid product introduction and ability to react to a change in technological and business climate quickly. These technological advances in integrated electronics will require development of flexible manufacturing technology for VLSI systems. However, the current approach of establishing factories for mass manufacturing of chips at a cost of more than 200 million dollars is detrimental to flexible manufacturing. The authors propose concepts of a micro factory which may be characterized by more economical small scale production, higher flexibility to accommodate many products on several processes, and faster turnaround and learning. In-situ multiprocessing equipment where several process steps can be done in sequence may be a key ingredient in this approach. For this environment to be flexible, the equipment must have ability to change processing environment, requiring extensive in-situ measurements and real time control. This paper describes the development of a novel single wafer rapid thermal multiprocessing (RTM) reactor for next generation flexible VLSI manufacturing. This reactor will combine lamp heating, remote microwave plasma and photo processing in a single cold-wall chamber, with applications for multilayer in-situ growth and deposition of dielectrics, semiconductors and metals

  14. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    1993-03-01

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  15. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  16. Modelling deformation and fracture in confectionery wafers

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John [Mechanical Engineering Department, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom and Nestec York Ltd., Nestlé Product Technology Centre, Haxby Road, PO Box 204, York YO91 1XY (United Kingdom)

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  17. Muon catalyzed fusion at very low temperature: A new target system

    International Nuclear Information System (INIS)

    Mulhauser, F.; Beveridge, J.L.; Marshall, G.M.

    1994-10-01

    Muon catalyzed fusion (μCF) processes are usually studied in gases or liquids. A new target system allows experiments on muonic hydrogen isotopes in solid hydrogen layers at 3K, where processes of the μCF cycle can be separated and the energy dependence of reactions can be measured. Muonic tritium atomic beams with energy of the order of 1 eV have been produced via transfer and emission from solid hydrogen target containing small tritium concentrations. The μt energy distribution overlaps the predicted muonic molecular (dμt) formation resonances. Preliminary time of flight results are shown. (author). 9 refs., 5 figs

  18. Materials studies for magnetic fusion energy applications at low temperatures. VIII. Technical reports

    International Nuclear Information System (INIS)

    Reed, R.P.

    1985-05-01

    This report contains results of a research progam to produce material property data that will facilitte design and development of cryogenic structures for the superconducting magnets of magnetic fusion energy power plants and prototypes. Research results for 1984 are summarized in an initial ''Highlights of Results'' section and reported in detail in the technical papers that form the main body of this report. The technical papers are presented under four headings reflecting the main program areas: Welding, Nonmetallics, Structural Alloys, and Technology Transfer. Objectives, approaches, and achievements are summarized in an introduction to each program area

  19. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  20. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Low temperature bonding of silicon wafers was achieved using sol-gel technology. The initial sol-gel chemistry of the coating solution was found to influence the mechanical properties of the resulting bonds. More precisely, the influence of parameters such as the alkoxide concentration, water-to-alkoxide molar ratio, pH, and solution aging on the final bond morphologies and interfacial fracture energy was studied. The thickness and density of the sol-gel coating were characterised using ellipsometry. The corresponding bonded specimens were investigated using attenuated total reflectance Fourier transformed infrared spectroscopy to monitor their chemical composition, infrared imaging to control bond integrity, and cross-sectional transmission electron microscopy to study their microstructure. Their interfacial fracture energy was measured using microindentation. An optimum water-to-alkoxide molar ratio of 10 and hydrolysis water at pH = 2 were found. Such conditions led to relatively dense films (> 90%), resulting in bonds with a fracture energy of 3.5 J/m 2 , significantly higher than those obtained using classical hydrophilic bonding (typically 1.5-2.5 J/m 2 ). Ageing of the coating solution was found to decrease the bond strength

  1. Nonuniformities of electrical resistivity in undoped 6H-SiC wafers

    International Nuclear Information System (INIS)

    Li, Q.; Polyakov, A.Y.; Skowronski, M.; Sanchez, E.K.; Loboda, M.J.; Fanton, M.A.; Bogart, T.; Gamble, R.D.

    2005-01-01

    Chemical elemental analysis, temperature-dependent Hall measurements, deep-level transient spectroscopy, and contactless resistivity mapping were performed on undoped semi-insulating (SI) and lightly nitrogen-doped conducting 6H-SiC crystals grown by physical vapor transport (PVT). Resistivity maps of commercial semi-insulating SiC wafers revealed resistivity variations across the wafers between one and two orders of magnitude. Two major types of variations were identified. First is the U-shape distribution with low resistivity in the center and high in the periphery of the wafer. The second type had an inverted U-shape distribution. Secondary-ion-mass spectrometry measurements of the distribution of nitrogen concentration along the growth axis and across the wafers sliced from different locations of lightly nitrogen-doped 6H-SiC boules were conducted. The measured nitrogen concentration gradually decreased along the growth direction and from the center to the periphery of the wafers. This change gives rise to the U-like distribution of resistivity in wafers of undoped SI-SiC. The concentrations of deep electron traps exhibited similar dependence. Compensation of nitrogen donors by these traps can result in the inverted U-like distribution of resistivity. Possible reasons for the observed nonuniformities include formation of a (0001) facet in PVT growth coupled with orientation-dependent nitrogen incorporation, systematic changes of the gas phase composition, and increase of the deposition temperature during boule growth

  2. Wafer Cakes of Improved Amino Acid Structure

    Directory of Open Access Journals (Sweden)

    Roksolana Boidunyk

    2017-11-01

    Full Text Available The article presents the results of the study of the amino acid composition of newly developed wafer cakes with adipose fillings combined with natural additives. The appropriateness of the using non-traditional raw materials (powder of willow herb, poppy oilcake, carob, as well as skimmed milk powder in order to increase the biological value of wafer cakes and improve their amino acid composition is proven.

  3. Silicon wafers for integrated circuit process

    OpenAIRE

    Leroy , B.

    1986-01-01

    Silicon as a substrate material will continue to dominate the market of integrated circuits for many years. We first review how crystal pulling procedures impact the quality of silicon. We then investigate how thermal treatments affect the behaviour of oxygen and carbon, and how, as a result, the quality of silicon wafers evolves. Gettering techniques are then presented. We conclude by detailing the requirements that wafers must satisfy at the incoming inspection.

  4. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  5. Non-invasive thermal profiling of silicon wafer surface during RTP using acoustic and signal processing techniques

    Science.gov (United States)

    Syed, Ahmed Rashid

    Among the great physical challenges faced by the current front-end semiconductor equipment manufacturers is the accurate and repeatable surface temperature measurement of wafers during various fabrication steps. Close monitoring of temperature is essential in that it ensures desirable device characteristics to be reliably reproduced across various wafer lots. No where is the need to control temperature more pronounced than it is during Rapid Thermal Processing (RTP) which involves temperature ramp rates in excess of 200°C/s. This dissertation presents an elegant and practical approach to solve the wafer surface temperature estimation problem, in context of RTP, by deploying hardware that acquires the necessary data while preserving the integrity and purity of the wafer. In contrast to the widely used wafer-contacting (and hence contaminating) methods, such as bonded thermocouples, or environment sensitive schemes, such as light-pipes and infrared pyrometry, the proposed research explores the concept of utilizing Lamb (acoustic) waves to detect changes in wafer surface temperature, during RTP. Acoustic waves are transmitted to the wafer via an array of quartz rods that normally props the wafer inside an RTP chamber. These waves are generated using piezoelectric transducers affixed to the bases of the quartz rods. The group velocity of Lamb waves traversing the wafer surface undergoes a monotonic decrease with rise in wafer temperature. The correspondence of delay in phase of the received Lamb waves and the ambient temperature, along all direct paths between sending and receiving transducers, yields a psuedo real-time thermal image of the wafer. Although the custom built hardware-setup implements the above "proof-of-concept" scheme by transceiving acoustic signals at a single frequency, the real-world application will seek to enhance the data acquistion. rate (>1000 temperature measurements per seconds) by sending and receiving Lamb waves at multiple frequencies (by

  6. On the design and implementation of a wafer yield editor

    NARCIS (Netherlands)

    Pineda de Gyvez, J.; Jess, J.A.G.

    1989-01-01

    An interactive environment is presented for the analysis of yield information required on modern integrated circuit manufacturing lines. The system estimates wafer yields and wafer-yield variations, quantifies regional yield variations within wafers, identifies clusters in wafers and/or in lots, and

  7. Tunnel probes for measurements of the electron and ion temperature in fusion plasmas

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Schrittwieser, R.; Balan, P.; Ionita, C.; Stöckel, Jan; Adámek, Jiří; Ďuran, Ivan; Hron, Martin; Pánek, Radomír; Bařina, O.; Hrach, R.; Vicher, M.; Van Oost, G.; Van Rompuy, T.; Martines, E.

    2004-01-01

    Roč. 75, č. 10 (2004), s. 4328-4330 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/15th./. San Diego, 19.04.2004-22.04.2004] R&D Projects: GA ČR GA202/03/0786 Institutional research plan: CEZ:AV0Z2043910 Keywords : Tokamak * electron temperature * ion temperature * plasma diagnostics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.226, year: 2004

  8. Temperature and displacement transients in inertial confinement fusion first-walls

    International Nuclear Information System (INIS)

    Hunter, T.O.; Kulcinski, G.L.

    1977-01-01

    A quasi-analytic general model is developed for determination of temperature response and displacement damage in materials exposed to bursts of thermonuclear radiations. Temperature response can be determined for any time or position. Materials are assessed, using the model, which might be employed for dry first walls, collectors, laser mirrors, or other exposed reactor components. The resulting magnitude and temporal distribution of temperature and displacement production show that effects on material micro-structure must be treated in a dynamic fashion

  9. High temperature blankets for non-electrical/electrical applications of fusion reactors: Progress report, July 15, 1983--November 30, 1984

    International Nuclear Information System (INIS)

    Ribe, F.L.; Woodruff, G.L.

    1988-01-01

    We report a continuation of work done in collaboration with the Lawrence Livermore National Laboratory (LLNL) on design studies of the tandem-mirror fusion reactor (TMR) coupled to the General Atomic (GA) sulfur-iodine thermochemical process for producing hydrogen. During this report period the emphasis was on a solid-breeder gas cooled ''cannister'' blanket for TMR-based hydrogen production. This work was integrated with the Department of Energy (DOE), Office of Fusion Energy (OFE) Blanket Comparison and Selection Study, coordinated by the Argonne National Laboratory (ANL). The areas investigated by the two principal investigators and their students were the following: Plasma engineering of the TMR, including the magnets. Neutronics transport support for the synfuel blanket and shield. Completion of studies of the GA sulfur-iodine process. Under subcontract D.S. Rowe of Rowe and Associates worked with both UW and LLNL personnel on Mechanical design and thermal hydraulics of a high temperature, solid breeder blanket. 2 refs., 3 figs

  10. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  11. X-ray analytics for 450-mm wafer; Roentgenanalytik fuer 450-mm-Wafer

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-09-15

    The introduction of the 450-mm technology in the wafer fabrication and the further reduction of critical dimensions requires improved X-ray analysis methods. Therefor the PTB has concipated a metrology chamber for the characterization of 450-mm wafers, the crucial element of which is a multi-axis patent-pending manipulator.

  12. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  13. In situ observation · analytical technologies of high temperature superconductor for fusion reactor at ultra low temperature

    International Nuclear Information System (INIS)

    Kimoto, Takayoshi; Sun, Wei; Fukutomi, Katsuo; Togano, Kazumasa; Saito, Tetsuya; Hiraga, Kenji; Takeda, Toshiyuki

    1998-01-01

    An image installation program of SPARK station 20 was accomplished. It can induce continuously 2.1 MB TEM image at 5 sheet/sec until 160 sheets. An image processing (shift addition) program was developed at first in the world. The program can overlap many sheet of TEM images by shifting them to the correct position. Other image processing programs such as flatfielding and reducing noise processing were developed. High temperature lattice fringe image of superconductive oxide Bi2223 in the drift chamber can be observed at low temperature by using the above image processing programs. New type laser device for filament radiation which consists of argon ion laser was developed as the first step of development of high brightness electron gun. Bi2212 single crystal was determined by the large angle convergent beam electron diffraction. The results showed the crystal structure belonged to Bbmb. (S.Y.)

  14. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming; Zhong, Zhaowei; Diallo, Elhadj; Wang, Zhihong; Yue, Weisheng

    2014-01-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  15. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  16. Simulation of a coupled dynamic system of temperature and density in a fusion plasma

    International Nuclear Information System (INIS)

    Le Roux, M.N.; Weiland, J.; Wilhelmsson, H.

    1992-01-01

    Simulation studies of a coupled system of equations for the evolution of temperature and density have been performed. The results are presented in graphs displaying the evolution in time of the temperature and density profiles, as well as in phase-plane plots, relating the central values of temperature and density. Particular emphasis is devoted to the particle and heat pinch effects, which tend to counter-balance the ordinary diffusion, and to co-operate with the alpha particle heating in sustaining plasma equilibrium. Oscillatory approaches to equilibria are recorded. 28 refs., 20 figs

  17. Temperature distributions in a Tokamak vacuum vessel of fusion reactor after the loss-of-vacuum-events occurred

    International Nuclear Information System (INIS)

    Takase, K.; Kunugi, T.; Shibata, M.; Seki, Y.

    1998-01-01

    If a loss-of-vacuum-event (LOVA) occurred in a fusion reactor, buoyancy-driven exchange flows would occur at breaches of a vacuum vessel (VV) due to the temperature difference between the inside and outside of the VV. The exchange flows may bring mixtures of activated materials and tritium in the VV to the outside through the breaches, and remove decay heat from the plasma-facing components of the VV. Therefore, the LOVA experiments were carried out under the condition that one or two breaches was opened and that the VV was heated to a maximum 200 C, using a small-scaled LOVA experimental apparatus. Air and helium gas were provided as working fluids. Fluid and wall temperature distributions in the VV were measured and the flow patterns in the VV were estimated by using these temperature distributions. It was found that: (1) the exchange mass in the VV depended on the breach positions; (2) the exchange flow at the single breach case became a counter-current flow when the breach was at the roof of the VV and a stratified flow when it was at the side wall; (3) and that at the double breach case, a one-way flow between two breaches was formed. (orig.)

  18. Automotive SOI-BCD Technology Using Bonded Wafers

    International Nuclear Information System (INIS)

    Himi, H.; Fujino, S.

    2008-01-01

    The SOI-BCD device is excelling in high temperature operation and noise immunity because the integrated elements can be electrically separated by dielectric isolation. We have promptly paid attention to this feature and have concentrated to develop SOI-BCD devices seeking to match the automotive requirement. In this paper, the feature technologies specialized for automotive SOI-BCD devices, such as buried N + layer for impurity gettering and noise shielding, LDMOS with improved ESD robustness, crystal defect-less process, and wafer direct bonding through the amorphous layer for intelligent power IC are introduced.

  19. Specific heat measurements on metals up to their melting point; Mesure de la chaleur specifique des metaux jusqu'a leur temperature de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Affortit, Ch [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-15

    We have built an apparatus to measure the specific heat of metal up to the melting point. The method is the pulse-heating method, where the specimen is heated very rapidly (1/10 s) from room temperature to the melting point by a very intense d.c. current (1000 A). The simultaneous measurements of intensity, voltage and temperature in the specimen allows a calculation of the specific heat. We have obtained good results for niobium, tungsten, tantalum and uranium. The accuracy is around 3 to 5 per cent and allows a measurement of the heat of formation of vacancies near the melting temperature. (author) [French] Nous avons construit un appareil permettant la mesure de la chaleur specifique des metaux jusqu'a leur temperature de fusion. La methode utilisee est la methode dite de chauffage instantane, L'echantillon est echauffe tres rapidement (1/10 s) de la temperature ambiante a la temperature de fusion par le passage d'un courant tres intense ({approx} 1000 A). L'enregistrement simultane de l'intensite du courant, de la difference de potentiel aux bornes de l'echantillon et de la temperature, permet de calculer la chaleur specifique. Nous avons obtenu de bons resultats pour le niobium, le tungstene tantale et l'uranium. La precision de la methode est de l'ordre de 3 a 5 pour cent et permet une mesure de la chaleur de formation des lacunes au voisinage de la fusion. (auteur)

  20. Tamper temperature and compression from simultaneous proton and alpha-particle measurements in laser fusion experiments

    International Nuclear Information System (INIS)

    Cover, R.A.; Kubis, J.J.; Mayer, F.J.; Slater, D.C.

    1978-01-01

    The energy loss per unit path length for a charged particle incident on a spatially uniform isothermal Maxwellian plasma is a function of the temperature and density of the medium. Within this model the temperature and compression rhoΔr of the tamper of a laser-driven microshell target can be accurately determined, in the absence of electrostatic acceleration, by the simultaneous measurement of the energy loss from 3.52-MeV α particles from D-T reactions and 3.02-MeV protons from D-D reactions

  1. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  2. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  3. Microemulsion-Based Mucoadhesive Buccal Wafers: Wafer Formation, In Vitro Release, and Ex Vivo Evaluation.

    Science.gov (United States)

    Pham, Minh Nguyet; Van Vo, Toi; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2017-10-01

    Microemulsion has the potentials to enhance dissolution as well as facilitate absorption and permeation of poorly water-soluble drugs through biological membranes. However, its application to govern a controlled release buccal delivery for local treatment has not been discovered. The aim of this study is to develop microemulsion-based mucoadhesive wafers for buccal delivery based on an incorporation of the microemulsion with mucoadhesive agents and mannitol. Ratio of oil to surfactant to water in the microemulsion significantly impacted quality of the wafers. Furthermore, the combination of carbopol and mannitol played a key role in forming the desired buccal wafers. The addition of an extra 50% of water to the formulation was suitable for wafer formation by freeze-drying, which affected the appearance and distribution of carbopol in the wafers. The amount of carbopol was critical for the enhancement of mucoadhesive properties and the sustained drug release patterns. Release study presented a significant improvement of the drug release profile following sustained release for 6 h. Ex vivo mucoadhesive studies provided decisive evidence to the increased retention time of wafers along with the increased carbopol content. The success of this study indicates an encouraging strategy to formulate a controlled drug delivery system by incorporating microemulsions into mucoadhesive wafers.

  4. Irradiation creep at temperatures of 400 degrees C and below for application to near-term fusion devices

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Gibson, L.T.; Mansur, L.K.

    1996-01-01

    To study irradiation creep at 400 degrees C and below, a series of six austenitic stainless steels and two ferritic alloys was irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor; and, after an atomic displacement level of 7.4 dpa, the specimens were moved to the High Flux Isotope Reactor for the remainder of the 19 dpa accumulated. Irradiation temperatures of 60, 200, 330, and 400 degrees C were studied with internally pressurized tubes of type 316 stainless steel, PCA, HT 9, and a series of four laboratory heats of: Fe-13.5Cr-15Ni, Fe-13.5Cr-35Ni, Fe-1 3.5Cr-1 W-0.18Ti, and Fe-16Cr. At 330 degrees C, irradiation creep was shown to be linear in fluence and stress. There was little or no effect of cold-work on creep under these conditions at all temperatures investigated. The HT9 demonstrated a large deviation from linearity at high stress levels, and a minimum in irradiation creep with increasing stress was observed in the Fe-Cr-Ni ternary alloys

  5. High throughput batch wafer handler for 100 to 200 mm wafers

    International Nuclear Information System (INIS)

    Rathmell, R.D.; Raatz, J.E.; Becker, B.L.; Kitchen, R.L.; Luck, T.R.; Decker, J.H.

    1989-01-01

    A new batch processing end station for ion implantation has been developed for wafers of 100 to 200 mm diameter. It usilizes a spinning disk with clampless wafer support. All wafer transport is done with backside handling and is carried out in vacuum. This end station incorporates a new dose control scheme which is able to monitor the incident particle current independently of the charge state of the ions. This technique prevents errors which may be caused by charge exchange between the beam and residual gas. The design and features of this system will be reviewed and the performance to date will be presented. (orig.)

  6. Strength, ductility, and ductile-brittle transition temperature for MFR [magnetic fusion reactor] candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.; Peterson, J.R.

    1987-09-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20% and 38%. The reduction in area ranged from 30% to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 0 C to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0 to 0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. 14 refs., 4 figs., 3 tabs

  7. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  8. Optimal Wafer Cutting in Shuttle Layout Problems

    DEFF Research Database (Denmark)

    Nisted, Lasse; Pisinger, David; Altman, Avri

    2011-01-01

    . The shuttle layout problem is frequently solved in two phases: first, a floorplan of the shuttle is generated. Then, a cutting plan is found which minimizes the overall number of wafers needed to satisfy the demand of each die type. Since some die types require special production technologies, only compatible...

  9. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  10. Low-cost silicon wafer dicing using a craft cutter

    KAUST Repository

    Fan, Yiqiang

    2014-05-20

    This paper reports a low-cost silicon wafer dicing technique using a commercial craft cutter. The 4-inch silicon wafers were scribed using a crafter cutter with a mounted diamond blade. The pre-programmed automated process can reach a minimum die feature of 3 mm by 3 mm. We performed this scribing process on the top polished surface of a silicon wafer; we also created a scribing method for the back-unpolished surface in order to protect the structures on the wafer during scribing. Compared with other wafer dicing methods, our proposed dicing technique is extremely low cost (lower than $1,000), and suitable for silicon wafer dicing in microelectromechanical or microfluidic fields, which usually have a relatively large die dimension. The proposed dicing technique is also usable for dicing multiple project wafers, a process where dies of different dimensions are diced on the same wafer.

  11. Fusion neutron irradiation induced ordering and defect production in Cu3Au at high temperatures

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Kirk, M.A.; Hahn, P.A.

    1987-08-01

    We irradiate three Cu 3 Au alloys different degrees of initial long-range order at temperatures between 300K and 434K. The resistivity of samples is monitored during irradiation and related to the long-term order parameter by the Muto relation. The results show that the ordering rate, which is proportional to the concentration of freely migrating vacancies, increases at the beginning and then decreases later with fluence. The decrease is a result of the continuous production of sinks in the form of dislocation loops. The effect of sinks on vacancy annihilation in some cases causes a reversed temperature dependence of ordering rate. The free vacancy production rate and the rate of sink production are determined using an ordering kinetics theory. The results of the 14 MeV neutron irradiations are compared to those obtained in other neutron spectra and particle irradiations. The estimated free vacancy production rate is also compared to the primary defect production rate measured at 4.2K in disordered samples

  12. The preparation and thermoelectric properties of molten salt electrodeposited boron wafers

    International Nuclear Information System (INIS)

    Kumashiro, Y.; Ozaki, S.; Sato, K.; Kataoka, Y.; Hirata, K.; Yokoyama, T.; Nagatani, S.; Kajiyama, K.

    2004-01-01

    We have prepared electrodeposited boron wafer by molten salts with KBF 4 -KF at 680 deg. C using graphite crucible for anode and silicon wafer and nickel plate for cathodes. Experiments were performed by various molar ratios KBF 4 /KF and current densities. Amorphous p-type boron wafers with purity 87% was deposited on nickel plate for 1 h. Thermal diffusivity by ring-flash method and heat capacity by DSC method produced thermal conductivity showing amorphous behavior in the entire temperature range. The systematical results on thermoelectric properties were obtained for the wafers prepared with KBF 4 -KF (66-34 mol%) under various current densities in the range 1-2 A/cm 2 . The temperature dependencies of electrical conductivity showed thermal activated type with activation energy of 0.5 eV. Thermoelectric power tended to increase with increasing temperature up to high temperatures with high values of (1-10) mV/K. Thermoelectric figure-of-merit was 10 -4 /K at high temperatures. Estimated efficiency of thermoelectric energy conversion would be calculated to be 4-5%

  13. Thermal modelling of the multi-stage heating system with variable boundary conditions in the wafer based precision glass moulding process

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2012-01-01

    pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...

  14. Wafer plane inspection for advanced reticle defects

    Science.gov (United States)

    Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song

    2008-05-01

    Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.

  15. Noncontact sheet resistance measurement technique for wafer inspection

    Science.gov (United States)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  16. Use of the National Low-Temperature Neutron Irradiation Facility (NLTNIF) for fusion materials research

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.

    1986-01-01

    In May 1983 the Division of Materials Sciences, Office of Basic Energy Sciences of the Department of Energy authorized the establishment of a National Low-Temperature Neutron Irradiation Facility (NLTNIF) at ORNL's Bulk Shielding Reactor (BSR). The NLTNIF, which will be available for qualified experiments at no cost to users, will provide a combination of high radiation intensities and special environmental and testing conditions that have not been previously available in the US. Since the DOE authorization, work has proceeded on the design and construction of the new facility without interruption. This report describes the present status of the development of NLTNIF and, for the information of new candidate users, a recounting of the major specifications and capabilities is also given

  17. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Bonal, J.P.; Puma, A. Li; Michel, B.; Sardain, P.; Salavy, J.F.

    2005-01-01

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 o C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m 2 . Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials

  18. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)]. E-mail: luciano.giancarli@cea.fr; Bonal, J.P. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Puma, A. Li [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France); Michel, B. [CEA Cadarache, Direction de l' Energie Nucleaire, F-13108 St. Paul-les-Durances (France); Sardain, P. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Salavy, J.F. [CEA Saclay, Direction de l' Energie Nucleaire, F-91191 Gif-sur-Yvette (France)

    2005-11-15

    This paper presents the conceptual design of a water-cooled divertor target using EUROFER as structural material, water coolant pressure and outlet temperature, respectively, of 15.5 MPa and 325 {sup o}C, and W-alloy monoblocks as armour. Assuming an advanced interface, formed by a thermal barrier in the pipe front part and a compliance layer between W and steel, this concept is able to withstand an incident surface heat flux of 15 MW/m{sup 2}. Both thermal barrier and compliance layer are made of carbon-based materials. The main issues are the manufacturing process of the steel/W interface, and the behaviour under irradiation of graphite materials.

  19. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    Science.gov (United States)

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  20. Neutron time-of-flight ion temperature diagnostic for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Chrien, R.E.; Simmons, D.F.; Holmberg, D.L.

    1992-01-01

    We are constructing a T i diagnostic for low neutron yield (5 x 10 7 to above 10 9 ) d-d and d-t targets in the Nova facility at Livermore. The diagnostic measures the neutron energy spread with 960 scintillator-photomultiplier detectors located 28 m from the target and operates in the single-hit mode. Each detector can measure a single neutron arrival with time resolution of 1 ns or better. The arrival time distribution is constructed from the results of typically 200--500 detector measurements. The ion temperature is determined from the spread in neutron energy ΔE n ∝ T i 1/2 , which is related to the arrival time spread by Δt/t = 1(1/2 ΔE n /E n ). Each neutron arrival is detected by using a photomultiplier tube to observe the recoil proton from elastic scattering in a fast plastic scintillator. The timing electronics for each channel consist of a novel constant fraction-like discriminator and a multiple hit time-to-digital converter (TDC). The overall system design, together with single channel performance data, is presented

  1. Development of precise measurement method of neutron energy for plasma temperature diagnostics in thermonuclear fusion

    International Nuclear Information System (INIS)

    Mori, Chizuo; Gotoh, Junichi; Uritani, Akira; Miyahara, Hiroshi; Ikeda, Yuichiro; Kasugai, Yoshimi; Kaneko, Junichi

    1998-01-01

    There are many types of fast neutron spectrometers for plasma temperature diagnostics, 28 Si(n,α) 25 Mg reaction giving the energy resolution of 2.2% for 14 MeV neutrons, the 12 C(n,α) 9 Be reaction giving the resolution of 2.15%. These detectors, however suffer from radiation damage, which demands to exchange the detector to a new one in every a few month depending on the usage. Recoil proton method has also been developed by using liquid scintillator or plastic scintillator, as a neutron-to-proton converter in front of a Si-detector, which is called counter telescope type, giving a resolution of 4.0%. This type of spectrometer can reduce radiation damage by placing Si-detector at outside Neutron beam. The scintillator can measure the lost energy of protons in the converter (i.e. the scintillator) and the measured energy loss can be used for improving the energy resolution. However, the energy resolution of organic scintillator itself is generally not so good. We proposed to use a proportional counter with CH 4 as counting gas and also as a neutron-proton converter, which has far better energy resolution than plastic scintillators, although the time resolution of counting in proportional counters is generally inferior to that in organic scintillation counters. The characteristics of the new spectrometer were experimentally studied and also were simulated with analytical calculation. (author)

  2. Large-aperture focusing of x rays with micropore optics using dry etching of silicon wafers.

    Science.gov (United States)

    Ezoe, Yuichiro; Moriyama, Teppei; Ogawa, Tomohiro; Kakiuchi, Takuya; Mitsuishi, Ikuyuki; Mitsuda, Kazuhisa; Aoki, Tatsuhiko; Morishita, Kohei; Nakajima, Kazuo

    2012-03-01

    Large-aperture focusing of Al K(α) 1.49 keV x-ray photons using micropore optics made from a dry-etched 4 in. (100 mm) silicon wafer is demonstrated. Sidewalls of the micropores are smoothed with high-temperature annealing to work as x-ray mirrors. The wafer is bent to a spherical shape to collect parallel x rays into a focus. Our result supports that this new type of optics allows for the manufacturing of ultralight-weight and high-performance x-ray imaging optics with large apertures at low cost. © 2012 Optical Society of America

  3. A facility for plastic deformation of germanium single-crystal wafers

    DEFF Research Database (Denmark)

    Lebech, B.; Theodor, K.; Breiting, B.

    1998-01-01

    . All movements and temperature changes are done by a robot via a PLC-control system. Two nine-crystal focusing monochromators (54 x 116 and 70 x 116 mm(2)) made from 100 wafers with average mosaicity similar to 13' have been constructed. Summaries of the test results are presented. (C) 1998 Elsevier...

  4. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    Science.gov (United States)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-12-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  5. Size of silicon strip sensor from 6 inch wafer (right) compared to that from a 4 inch wafer (left).

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Silicon strip sensors made from 6 inch wafers will allow for much larger surface area coverage at a reduced cost per unit surface area. A prototype sensor of size 8cm x 11cm made by Hamamatsu from a 6 inch wafer is shown next to a traditional 6cm x 6cm sensor from a 4 inch wafer.

  6. Methods for characterization of wafer-level encapsulation applied on silicon to LTCC anodic bonding

    International Nuclear Information System (INIS)

    Khan, M F; Ghavanini, F A; Enoksson, P; Haasl, S; Löfgren, L; Persson, K; Rusu, C; Schjølberg-Henriksen, K

    2010-01-01

    This paper presents initial results on generic characterization methods for wafer-level encapsulation. The methods, developed specifically to evaluate anodic bonding of low-temperature cofired ceramics (LTCC) to Si, are generally applicable to wafer-level encapsulation. Different microelectromechanical system (MEMS) structures positioned over the whole wafer provide local information about the bond quality. The structures include (i) resonating cantilevers as pressure sensors for bond hermeticity, (ii) resonating bridges as stress sensors for measuring the stress induced by the bonding and (iii) frames/mesas for pull tests. These MEMS structures have been designed, fabricated and characterized indicating that local information can easily be obtained. Buried electrodes to enable localized bonding have been implemented and their effectiveness is indicated from first results of the novel Si to LTCC anodic bonding.

  7. Uncertainty evaluation of thickness and warp of a silicon wafer measured by a spectrally resolved interferometer

    Science.gov (United States)

    Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik

    2018-06-01

    Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.

  8. Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800 .deg. C for fusion reactor applications

    International Nuclear Information System (INIS)

    Lee, S. K.; Kim, H. S.; Noh, S. J.; Han, J. H.

    2011-01-01

    Tritium permeation is one of the critical issues for the economy and safety of fusion power plants. As an initial step in tritium permeation research for fusion reactor applications, experiments were initiated by using hydrogen as a tritium substitute. An experimental system for hydrogen permeation and related behaviors in solid materials was designed and constructed. A continuous flow method was adopted with a capacity for high temperatures up to ∼1,000 .deg. C under ultra-high vacuums of ∼10 -7 Pa. The hydrogen permeation behavior in SUS 316L stainless steel was investigated in the temperature range from 400 .deg. C to 800 .deg. C. As a result, the permeability, diffusivity and solubility of hydrogen were determined. The results were compared with the previously existing reference data. Changes in the sample's surface morphology after the hydrogen permeation experiment are also addressed.

  9. Mechanics of wafer bonding: Effect of clamping

    Science.gov (United States)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  10. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  11. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  12. Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing

    Science.gov (United States)

    Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.

    1991-04-01

    Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.

  13. 120 mm Single-crystalline perovskite and wafers: towards viable applications

    Institute of Scientific and Technical Information of China (English)

    Yucheng Liu; Bo Wang; Qingbo Wei; Fengwei Xiao; Haibo Fan; Hao Deng; Liangping Deng; Shengzhong (Frank) Liu; Xiaodong Ren; Jing Zhang; Zhou Yang; Dong Yang; Fengyang Yu; Jiankun Sun; Changming Zhao; Zhun Yao

    2017-01-01

    As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells,it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics,optoelectronics,lasers,photodetectors,light emitting diodes (LEDs),etc.Here we report a method to grow large single-crystalline perovskites including single-halide crystals:CH3NH3PbX3 (X=Ⅰ,Br,Cl),and dual-halide ones:CH3NH3Pb(ClxBr1-x)3 and CH3NH3Pb(BrxI1-x)3,with the largest crystal being 120 mm in length.Meanwhile,we have advanced a process to slice the large perovskite crystals into thin wafers.It is found that the wafers exhibit remarkable features:(1) its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films (MPTF);(2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT;(3) its optical absorption is expanded to as high as 910 nm comparing to 797 nm for the MPTF;(4) while MPTF decomposes at 150 ℃,the wafer is stable at high temperature up to 270 ℃;(5) when exposed to high humidity (75% RH),MPTF decomposes in 5 h while the wafer shows no change for overnight;(6) its photocurrent response is 250 times higher than its MPTF counterpart.A few electronic devices have been fabricated using the crystalline wafers.Among them,the Hall test gives low carrier concentration with high mobility.The trap-state density is measured much lower than common semiconductors.Moreover,the large SC-wafer is found particularly useful for mass production of integrated circuits.By adjusting the halide composition,both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm.It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites.With fewer trap states,high mobility,broader absorption,and humidity resistance,it is

  14. Carbon dioxide capture using resin-wafer electrodeionization

    Science.gov (United States)

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  15. Wafer plane inspection with soft resist thresholding

    Science.gov (United States)

    Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song

    2008-10-01

    Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just

  16. Dependence between fusion temperatures and chemical components of a certain type of coal using classical, non-parametric and bootstrap techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Manteiga, W.; Prada-Sanchez, J.M.; Fiestras-Janeiro, M.G.; Garcia-Jurado, I. (Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Estadistica e Investigacion Operativa)

    1990-11-01

    A statistical study of the dependence between various critical fusion temperatures of a certain kind of coal and its chemical components is carried out. As well as using classical dependence techniques (multiple, stepwise and PLS regression, principal components, canonical correlation, etc.) together with the corresponding inference on the parameters of interest, non-parametric regression and bootstrap inference are also performed. 11 refs., 3 figs., 8 tabs.

  17. SiC epitaxial layer growth in a novel multi-wafer VPE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr.; O`Loughlin, M.J. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States); Mani, S.S. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States)

    1998-06-01

    Preliminary results are presented for SiC epitaxial layer growth employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7 x 2-inch) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600 C. Specular epitaxial layers have been grown in the reactor at growth rates from 3-5 {mu}m/hr. The thickest layer grown to data was 42 {mu}m. The layers exhibit minimum unintentional n-type doping of {proportional_to}1 x 10{sup 15} cm{sup -3}, room temperature mobilities of {proportional_to}1000 cm{sup 2}/Vs, and intentional n-type doping from {proportional_to}5 x 10{sup 15} cm{sup -3} to >1 x 10{sup 19} cm{sup -3}. Intrawafer thickness and doping uniformities of 4% and 7% (standard deviation/mean) have been obtained, respectively, on 35 mm diameter substrates. Recently, 3% thickness uniformity has been demonstrated on a 50 mm substrate. Within a run, wafer-to-wafer thickness deviation is {proportional_to}4-14%. Doping variation is currently larger, ranging as much as a factor of two from the highest to the lowest doped wafer. Continuing efforts to improve the susceptor temperature uniformity and reduce unintentional hydrocarbon generation to improve layer uniformity and reproducibility, are presented. (orig.) 18 refs.

  18. Wafer-shape metrics based foundry lithography

    Science.gov (United States)

    Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng

    2017-03-01

    As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.

  19. Wafer-scale micro-optics fabrication

    Science.gov (United States)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  20. Lamb wave propagation in monocrystalline silicon wafers.

    Science.gov (United States)

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  1. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Berzak Hopkins, L. F.; Caggiano, J. A.; Divol, L.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Le Pape, S.; Mackinnon, A. J.; McNaney, J. M.; Meezan, N. B.; Moran, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D({sup 3}He,p){sup 4}He and D(T,n){sup 4}He occur, as the primary fusion products {sup 3}He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (∼5–100 mg/cm{sup 2}), the secondary D-{sup 3}He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions, and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 times and 0.33 times the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.

  2. Improvements to the solar cell efficiency and production yields of low-lifetime wafers with effective phosphorus gettering

    International Nuclear Information System (INIS)

    Lu, Jiunn-Chenn; Chen, Ping-Nan; Chen, Chih-Min; Wu, Chung-Han

    2013-01-01

    Highlights: • Variable-temperature gettering improves efficiencies when the wafer quality is poor. • High-quality wafers need not be used for variable-temperature gettering. • The proposed gettering method is based on an existing diffusion process. • It has a potential interest for hot-spot prevention. -- Abstract: This research focuses on the improvement of solar cell efficiencies in low-lifetime wafers by implementing an appropriate gettering method of the diffusion process. The study also considers a reduction in the value of the reverse current at −12 V, an important electrical parameter related to the hot-spot heating of solar cells and modules, to improve the product's quality during commercial mass production. A practical solar cell production case study is examined to illustrate the use of the proposed method. The results of this case study indicate that variable-temperature gettering significantly improves solar cell efficiencies by 0.14% compared to constant-temperature methods when the wafer quality is poor. Moreover, this study finds that variable-temperature gettering raises production yields of low quality wafers by more than 30% by restraining the measurement value of the reverse current at −12 V during solar cell manufacturing

  3. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  4. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  5. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  6. Propagation of resist heating mask error to wafer level

    Science.gov (United States)

    Babin, S. V.; Karklin, Linard

    2006-10-01

    As technology is approaching 45 nm and below the IC industry is experiencing a severe product yield hit due to rapidly shrinking process windows and unavoidable manufacturing process variations. Current EDA tools are unable by their nature to deliver optimized and process-centered designs that call for 'post design' localized layout optimization DFM tools. To evaluate the impact of different manufacturing process variations on final product it is important to trace and evaluate all errors through design to manufacturing flow. Photo mask is one of the critical parts of this flow, and special attention should be paid to photo mask manufacturing process and especially to mask tight CD control. Electron beam lithography (EBL) is a major technique which is used for fabrication of high-end photo masks. During the writing process, resist heating is one of the sources for mask CD variations. Electron energy is released in the mask body mainly as heat, leading to significant temperature fluctuations in local areas. The temperature fluctuations cause changes in resist sensitivity, which in turn leads to CD variations. These CD variations depend on mask writing speed, order of exposure, pattern density and its distribution. Recent measurements revealed up to 45 nm CD variation on the mask when using ZEP resist. The resist heating problem with CAR resists is significantly smaller compared to other types of resists. This is partially due to higher resist sensitivity and the lower exposure dose required. However, there is no data yet showing CD errors on the wafer induced by CAR resist heating on the mask. This effect can be amplified by high MEEF values and should be carefully evaluated at 45nm and below technology nodes where tight CD control is required. In this paper, we simulated CD variation on the mask due to resist heating; then a mask pattern with the heating error was transferred onto the wafer. So, a CD error on the wafer was evaluated subject to only one term of the

  7. Kerfless epitaxial silicon wafers with 7 ms carrier lifetimes and a wide lift-off process window

    Science.gov (United States)

    Gemmel, Catherin; Hensen, Jan; David, Lasse; Kajari-Schröder, Sarah; Brendel, Rolf

    2018-04-01

    Silicon wafers contribute significantly to the photovoltaic module cost. Kerfless silicon wafers that grow epitaxially on porous silicon (PSI) and are subsequently detached from the growth substrate are a promising lower cost drop-in replacement for standard Czochralski (Cz) wafers. However, a wide technological processing window appears to be a challenge for this process. This holds in particularly for the etching current density of the separation layer that leads to lift-off failures if it is too large or too low. Here we present kerfless PSI wafers of high electronic quality that we fabricate on weakly reorganized porous Si with etch current densities varying in a wide process window from 110 to 150 mA/cm2. We are able to detach all 17 out of 17 epitaxial wafers. All wafers exhibit charge carrier lifetimes in the range of 1.9 to 4.3 ms at an injection level of 1015 cm-3 without additional high-temperature treatment. We find even higher lifetimes in the range of 4.6 to 7.0 ms after applying phosphorous gettering. These results indicate that a weak reorganization of the porous layer can be beneficial for a large lift-off process window while still allowing for high carrier lifetimes.

  8. Wafer-Scale Integration of Systolic Arrays,

    Science.gov (United States)

    1985-10-01

    hus wtha rbaiith hig robabili, e aubrbe orutysta mostck b(e)adstotoefwsi the cenofther cnnel thati are connted to (g.The kery ato the alevel of t...problems considered heretofore in this paper also have an interpretation in a purely graph theoretic model. Suppose we are given a two-dimensional...graphs," Magyar 7Td. Akad. Math . Kut. Int. Kozl, Vol. 5, 1960, pp. 17-61. [6] D. Fussell and P. Varman, "Fault-tolerant wafer-scale architectures for

  9. Wafer-scale pixelated detector system

    Science.gov (United States)

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  10. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    Science.gov (United States)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  11. Candida parapsilosis meningitis associated with Gliadel (BCNU) wafer implants.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2012-02-01

    A 58-year old male presented with meningitis associated with subgaleal and subdural collections 6 weeks following a temporal craniotomy for resection of recurrent glioblastoma multiforme and Gliadel wafer implantation. Candida parapsilosis was cultured from cerebrospinal fluid (CSF) and Gliadel wafers removed during surgical debridement. He was successfully treated with liposomal amphotericin B. To our knowledge, this is the first reported case of Candida parapsilosis meningitis secondary to Gliadel wafer placement.

  12. Candida parapsilosis meningitis associated with Gliadel (BCNU) wafer implants.

    LENUS (Irish Health Repository)

    O'brien, Deirdre

    2010-12-15

    A 58-year old male presented with meningitis associated with subgaleal and subdural collections 6 weeks following a temporal craniotomy for resection of recurrent glioblastoma multiforme and Gliadel wafer implantation. Candida parapsilosis was cultured from cerebrospinal fluid (CSF) and Gliadel wafers removed during surgical debridement. He was successfully treated with liposomal amphotericin B. To our knowledge, this is the first reported case of Candida parapsilosis meningitis secondary to Gliadel wafer placement.

  13. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  14. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  15. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  16. InP-based photonic integrated circuit platform on SiC wafer.

    Science.gov (United States)

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  17. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  18. Wafer edge overlay control solution for N7 and beyond

    Science.gov (United States)

    van Haren, Richard; Calado, Victor; van Dijk, Leon; Hermans, Jan; Kumar, Kaushik; Yamashita, Fumiko

    2018-03-01

    Historically, the on-product overlay performance close to the wafer edge is lagging with respect to the inner part of the wafer. The reason for this is that wafer processing is less controlled close to the wafer edge as opposed to the rest of the wafer. It is generally accepted that Chemical Vapor Deposition (CVD) of stressed layers that cause wafer warp, wafer table contamination, Chemical Mechanical Polishing (CMP), and Reactive Ion Etch (RIE) may deteriorate the overlay performance and/or registration close to the wafer edge. For the N7 technology node and beyond, it is anticipated that the tight on-product overlay specification is required across the full wafer which includes the edge region. In this work, we highlight one contributor that may negatively impact the on-product overlay performance, namely the etch step. The focus will be mainly on the wafer edge region but the remaining part of the wafer is considered as well. Three use-cases are examined: multiple Litho-Etch steps (LEn), contact hole layer etch, and the copper dual damascene etch. We characterize the etch contribution by considering the overlay measurement after resist development inspect (ADI) and after etch inspect (AEI). We show that the Yieldstar diffraction based overlay (μDBO) measurements can be utilized to characterize the etch contribution to the overlay budget. The effects of target asymmetry as well as overlay shifts are considered and compared with SEM measurements. Based on the results above, we propose a control solution aiming to reduce or even eliminate the delta between ADI and AEI. By doing so, target/mark to device offsets due to etch might be avoided.

  19. Direct Electroplating on Highly Doped Patterned Silicon Wafers

    NARCIS (Netherlands)

    Vargas Llona, Laura Dolores; Jansen, Henricus V.; Elwenspoek, Michael Curt

    Nickel thin films have been electrodeposited directly on highly doped silicon wafers after removal of the native oxide layer. These substrates conduct sufficiently well to allow deposition using a periferical electrical contact on the wafer. Films 2 μm thick were deposited using a nickel sulfamate

  20. Low-cost silicon wafer dicing using a craft cutter

    KAUST Repository

    Fan, Yiqiang; Carreno, Armando Arpys Arevalo; Li, Huawei; Foulds, Ian G.

    2014-01-01

    feature of 3 mm by 3 mm. We performed this scribing process on the top polished surface of a silicon wafer; we also created a scribing method for the back-unpolished surface in order to protect the structures on the wafer during scribing. Compared

  1. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  2. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  3. Chemical polishing of epitoxial silicon wafer

    International Nuclear Information System (INIS)

    Osada, Shohei

    1978-01-01

    SSD telescopes are used for the determination of the kind and energy of charged particles produced by nuclear reactions, and are the equipments combining ΔE counters and E counters. The ΔE counter is a thin SSD which is required to be thin and homogeneous enough to get the high resolution of measurement. The SSDs for ΔE counters have so far been obtained by polishing silicon plates mechanically and chemically or by applying electrolytic polishing method on epitaxial silicon wafers, but it was very hard to obtain them. The creative etching equipment and technique developed this time make it possible to obtain thin SSDs for ΔE counters. The outline of the etching equipment and its technique are described in the report. The etching technique applied for the silicon films for ΔE counters with thickness of about 10 μm was able to be experimentally established in this study. (Kobatake, H.)

  4. Reticle variation influence on manufacturing line and wafer device performance

    Science.gov (United States)

    Nistler, John L.; Spurlock, Kyle

    1994-01-01

    Cost effective manufacturing of devices at 0.5, 0.35 and 0.25μm geometries will be highly dependent on a companys' ability to obtain an economic return on investment. The high capital investment in equipment and facilities, not to mention the related chemical and wafer costs, for producing 200mm silicon wafers requires aspects of wafer processing to be tightly controlled. Reduction in errors and enhanced yield management requires early correction or avoidance of reticle problems. It is becoming increasingly important to recognize and track all pertinent factors impacting both the technical and financial viability of a wafer manufacturing fabrication area. Reticle related effects on wafer manufacturing can be costly and affect the total quality perceived by the device customer.

  5. Formation of III–V-on-insulator structures on Si by direct wafer bonding

    International Nuclear Information System (INIS)

    Yokoyama, Masafumi; Iida, Ryo; Ikku, Yuki; Kim, Sanghyeon; Takenaka, Mitsuru; Takagi, Shinichi; Takagi, Hideki; Yasuda, Tetsuji; Yamada, Hisashi; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko

    2013-01-01

    We have studied the formation of III–V-compound-semiconductors-on-insulator (III–V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III–V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O 2 plasma-assisted DWB process with ECR sputtered SiO 2 BOX layers and a DWB process based on atomic-layer-deposition Al 2 O 3 (ALD-Al 2 O 3 ) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO 2 and ALD-Al 2 O 3 BOX layers are desorption of Ar and H 2 O gas, respectively. In order to suppress micro-void generation in the ECR-SiO 2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al 2 O 3 BOX layers to increase the deposition temperature of the ALD-Al 2 O 3 BOX layers. It is also another possible solution to deposit ALD-Al 2 O 3 BOX layers on thermally oxidized SiO 2 layers, which can absorb the desorption gas from ALD-Al 2 O 3 BOX layers. (invited paper)

  6. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    Science.gov (United States)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-11-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  7. Temperature measuring device

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  8. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.L.; Broennimann, Ch.; Eikenberry, E.F.; Ince-Cushman, A.; Lee, S.G.; Rice, J.E.; Scott, S.; Barnsley, R.

    2008-01-01

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of T i and ν φ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER

  9. Influence of Wafer Edge Geometry on Removal Rate Profile in Chemical Mechanical Polishing: Wafer Edge Roll-Off and Notch

    Science.gov (United States)

    Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu

    2012-05-01

    In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.

  10. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  11. Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Riconda, C.

    2015-01-01

    Roč. 3, Feb (2015), e6 ISSN 2095-4719 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : inertial confinement fusion * shock ignition * laser- plasma interaction * parametric instabilities Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing.

    Science.gov (United States)

    Pawar, Harshavardhan V; Boateng, Joshua S; Ayensu, Isaac; Tetteh, John

    2014-06-01

    Wafers combining weight ratios of Polyox with carrageenan (75/25) or sodium alginate (50/50) containing streptomycin and diclofenac were prepared to improve chronic wound healing. Gels were freeze-dried using a lyophilisation cycle incorporating an annealing step. Wafers were characterised for morphology, mechanical and in vitro functional (swelling, adhesion, drug release in the presence of simulated wound fluid) characteristics. Both blank (BLK) and drug-loaded (DL) wafers were soft, flexible, elegant in appearance and non-brittle in nature. Annealing helped to improve porous nature of wafers but was affected by the addition of drugs. Mechanical characterisation demonstrated that the wafers were strong enough to withstand normal stresses but also flexible to prevent damage to newly formed skin tissue. Differences in swelling, adhesion and drug release characteristics could be attributed to differences in pore size and sodium sulphate formed because of the salt forms of the two drugs. BLK wafers showed relatively higher swelling and adhesion than DL wafers with the latter showing controlled release of streptomycin and diclofenac. The optimised dressing has the potential to reduce bacterial infection and can also help to reduce swelling and pain associated with injury due to the anti-inflammatory action of diclofenac and help to achieve more rapid wound healing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Wafer-Level Vacuum Packaging of Smart Sensors

    Directory of Open Access Journals (Sweden)

    Allan Hilton

    2016-10-01

    Full Text Available The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  14. Wafer-Level Vacuum Packaging of Smart Sensors.

    Science.gov (United States)

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  15. Investigation of the heating behavior of carbide-bonded graphene coated silicon wafer used for hot embossing

    Science.gov (United States)

    Yang, Gao; Li, Lihua; Lee, Wing Bun; Ng, Man Cheung; Chan, Chang Yuen

    2018-03-01

    A recently developed carbide-bonded graphene (CBG) coated silicon wafer was found to be an effective micro-patterned mold material for implementing rapid heating in hot embossing processes owing to its superior electrical and thermal conductivity, in addition to excellent mechanical properties. To facilitate the achievement of precision temperature control in the hot embossing, the heating behavior of a CBG coated silicon wafer sample was experimentally investigated. First, two groups of controlled experiments were conducted for quantitatively evaluating the influence of the main factors such as the vacuum pressure and gaseous environment (vacuum versus nitrogen) on its heating performance. The electrical and thermal responses of this sample under a voltage of 60 V were then intensively analyzed, and revealed that it had somewhat semi-conducting properties. Further, we compared its thermal profiles under different settings of the input voltage and current limiting threshold. Moreover, the strong temperature dependence of electrical resistance for this material was observed and determined. Ultimately, the surface temperature of CBG coated silicon wafer could be as high as 1300 ℃, but surprisingly the graphene coating did not detach from the substrate under such an elevated temperature due to its strong thermal coupling with the silicon wafer.

  16. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  17. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  18. Some fusion perspectives

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1977-01-01

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  19. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  20. The uses of Man-Made diamond in wafering applications

    Science.gov (United States)

    Fallon, D. B.

    1982-01-01

    The continuing, rapid growth of the semiconductor industry requires the involvement of several specialized industries in the development of special products geared toward the unique requirements of this new industry. A specialized manufactured diamond to meet various material removal needs was discussed. The area of silicon wafer slicing has presented yet anothr challenge and it is met most effectively. The history, operation, and performance of Man-Made diamond and particularly as applied to silicon wafer slicing is discussed. Product development is underway to come up with a diamond specifically for sawing silicon wafers on an electroplated blade.

  1. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  2. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  3. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  4. development and evaluation of lyophilized thiolated-chitosan wafers

    African Journals Online (AJOL)

    User

    THIOLATED-CHITOSAN WAFERS FOR BUCCAL DELIVERY. OF PROTEIN ... of the thiolated polymer incorporating per polymer weight, 10 % each of glycerol as plasticizer, D-mannitol as ..... delivery systems: in vitro stability, in vivo fate, and ...

  5. Cohesive zone model for direct silicon wafer bonding

    Science.gov (United States)

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  6. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  7. Phase instability and toughness change during high temperature exposure of various steels for the first wall structural materials of a fusion reactor

    International Nuclear Information System (INIS)

    Miyahara, K.; Shimoide, Y.

    1995-01-01

    The objective of the present research is to clarify the phase instability, particularly, the precipitation behavior of carbide and nitride during the long term aging in the non-irradiation state of the materials proposed for the first wall structural component of fusion reactors, such as a type 316 austenitic steel, its modified steels, ferritic heat resisting steels and reduced radio-activation materials. The effect of the precipitation behavior on the toughness is also investigated. It is noticed that the toughness was much deteriorated by the formation of large amounts of coarse carbides within grains and on grain boundaries during 2.88x10 4 ks (8000 h) aging at 873 K and that intergranular fracture occurred by the impact test at room temperature even in the type 316 steel. (orig.)

  8. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  9. Automated reticle inspection data analysis for wafer fabs

    Science.gov (United States)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-04-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity Defect(R) data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  10. Temperature effects on the behavior of liquid hydrogen isotopes inside a spherical-shell directly driven inertial confinement fusion target

    International Nuclear Information System (INIS)

    Kim, K.; Mok, L.S.

    1984-05-01

    The present work studies the temperature effects on the formation of a uniform liquid hydrogen layer inside a spherical glass shell (SGS). The profile of the liquid layer is first investigated for an isothermal case. An equation suitable for describing the profile is derived by including the London-van der Waals attractive forces between the liquid and substrate molecules. Two theoretical models are then established to explain the changes in the liquid layer profile under the influence of a vertically applied temperature gradient. The characteristics of the fluid flows are obtained by solving the fluid equations under the low-Reynolds-number approximations. The effect of the component separation both in the liquid layer and the vapor region, which is induced by the temperature gradient, is studied when the enclosure inside the SGS is a mixture of hydrogen isotopes. A uniform layer can also be formed for the mixture liquid except that the required temperature gradient is now positive in direction, unlike the case of the single-component liquid. The heating effect due to the radioactive decay of tritium is also evaluated. An experimental apparatus capable of generating a desired temperature gradient across the SGS at liquid hydrogen temperatures is described. The profiles of the liquid layer are observed for different temperature gradients and the results are in qualitative agreement with the theoretical predictions

  11. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  12. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  13. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  14. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics; Vliyanie termoradiatsionnykh obrabotok na sintez vysokotempiraturnykh sverkhprovodyaschikh ittrievykh keramik

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Inst. Yadernoj Fiziki Natsionalnogo Yadernogo Tsentra Respubliki Kazakhstan, Almaty (Kazakhstan)

    1999-07-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays {sup 60}Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year.

  15. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  16. Fusion energy for alternate applications: the design of a high temperature falling bed as a long-lived blanket

    International Nuclear Information System (INIS)

    Harkness, S.D.; Stevens, H.C.; Hall, M.M.; Gohar, M.Y.A.; de Paz, J.F.

    1979-01-01

    The high temperature falling bed conceptual design work has consisted of a coordinated effort in neutronics, materials science, thermal hydraulics and mechanical design. The neutronics work has been based on a one-dimensional transport analysis and has been used to scope the implication of blanket dimensions, breeding materials, ceramic pebble material and coolant choice on both tritium breeding capabilities and energy deposition into the high temperature region of the blanket. The materials science effort has concentrated on defining the selection of a particular ceramic material. The thermal hydraulic analysis has been concerned with sizing the heat transfer system and defining the temperature gradients in the high temperature blanket. The mechanical design work has evaluated how such a system might be constructed from the point of view of maintainability and structural support

  17. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  18. Full Wafer Redistribution and Wafer Embedding as Key Technologies for a Multi-Scale Neuromorphic Hardware Cluster

    OpenAIRE

    Zoschke, Kai; Güttler, Maurice; Böttcher, Lars; Grübl, Andreas; Husmann, Dan; Schemmel, Johannes; Meier, Karlheinz; Ehrmann, Oswin

    2018-01-01

    Together with the Kirchhoff-Institute for Physics(KIP) the Fraunhofer IZM has developed a full wafer redistribution and embedding technology as base for a large-scale neuromorphic hardware system. The paper will give an overview of the neuromorphic computing platform at the KIP and the associated hardware requirements which drove the described technological developments. In the first phase of the project standard redistribution technologies from wafer level packaging were adapted to enable a ...

  19. InGaAs-OI Substrate Fabrication on a 300 mm Wafer

    Directory of Open Access Journals (Sweden)

    Sebastien Sollier

    2016-09-01

    Full Text Available In this work, we demonstrate for the first time a 300-mm indium–gallium–arsenic (InGaAs wafer on insulator (InGaAs-OI substrates by splitting in an InP sacrificial layer. A 30-nm-thick InGaAs layer was successfully transferred using low temperature direct wafer bonding (DWB and Smart CutTM technology. Three key process steps of the integration were therefore specifically developed and optimized. The first one was the epitaxial growing process, designed to reduce the surface roughness of the InGaAs film. Second, direct wafer bonding conditions were investigated and optimized to achieve non-defective bonding up to 600 °C. Finally, we adapted the splitting condition to detach the InGaAs layer according to epitaxial stack specifications. The paper presents the overall process flow that achieved InGaAs-OI, the required optimization, and the associated characterizations, namely atomic force microscopy (AFM, scanning acoustic microscopy (SAM, and HR-XRD, to insure the crystalline quality of the post transferred layer.

  20. 50 years of fusion research

    Science.gov (United States)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  1. Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers

    International Nuclear Information System (INIS)

    Hoechbauer, T.; Misra, A.; Nastasi, M.; Henttinen, K.; Suni, T.; Suni, I.; Lau, S.S.; Ensinger, W.

    2004-01-01

    Hydrogen ion-implantation into Si and subsequent heat treatment has been shown to be an effective means of cleaving thin layer of Si from its parent wafer. This process has been called Smart Cut TM or ion-cut. We investigated the cleavage process in H-implanted silicon samples, in which the ion-cut was provoked thermally and mechanically, respectively. A oriented p-type silicon wafer was irradiated at room temperature with 100 keV H 2 + -ions to a dose of 5 x 10 16 H 2 /cm 2 and subsequently joined to a handle wafer. Ion-cutting was achieved by two different methods: (1) thermally by annealing to 350 deg. C and (2) mechanically by insertion of a razor blade sidewise into the bonded wafers near the bond interface. The H-concentration and the crystal damage depth profiles before and after the ion-cut were investigated through the combined use of elastic recoil detection analysis and Rutherford backscattering spectroscopy (RBS). The location at which the ion-cut occurred was determined by RBS in channeling mode and cross-section transmission electron spectroscopy. The ion-cut depth was found to be independent on the cutting method. The gained knowledge was correlated to the depth distribution of the H-platelet density in the as-implanted sample, which contains two separate peaks in the implantation zone. The obtained results suggest that the ion-cut location coincides with the depth of the H-platelet density peak located at a larger depth

  2. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  3. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  4. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  5. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  6. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  7. Study of the Fe-Ti/W system for joining applications in high-temperature fusion reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Prado, J. de, E-mail: javier.deprado@urjc.es [Rey Juan Carlos University, Calle Tulipán s/n 28933 Móstoles, Madrid (Spain); Sánchez, M. [Rey Juan Carlos University, Calle Tulipán s/n 28933 Móstoles, Madrid (Spain); Alvaredo, P.; Gordo, E. [Carlos III de Madrid University, Avenida de la Universidad 30, 28911 Leganés, Madrid (Spain); Ureña, A. [Rey Juan Carlos University, Calle Tulipán s/n 28933 Móstoles, Madrid (Spain)

    2016-10-15

    Highlights: • Simulations show good correlation versus experimental results for Fe-Ti/W system. • The joint is predicted to be stable at the service conditions of the component. • The predictions could help to analyze different scenarios during its service life. - Abstract: The interaction of the Fe-Ti/W system in a brazed divertor component of the future fusion power plant has been studied. The reactivity between the substrates and the filler is an important factor to obtain a high quality joint. Thermodynamic and diffusion simulation software can be valuable tools for studying these effects, particularly in scenarios that are difficult to experimentally analyze. Two different strategies have been performed: 1) simulation processes using the Thermo-Calc and DICTRA software to calculate the phase diagram and simulate the diffusion process, respectively, and 2) experimental tests in a furnace to join W-W substrates using a filler with an 86Fe-Ti composition to analyze the operational brazeability and compare it with the simulation results. The simulation processes predicted two of the three phases that formed at the experimental joint (α-Fe and TiC). The interaction at the W-filler interface predicted by DICTRA correlates with the experimental results, where Fe, Ti and C diffused into the W substrate and moved the interface by 25 μm. Simulations also show the stability of the interface over the lifetime of the component. The combined use of Thermo-Calc and DICTRA software enabled the accurate prediction of different scenarios in the system of Fe-Ti-C/W.

  8. Study of the Fe-Ti/W system for joining applications in high-temperature fusion reactor components

    International Nuclear Information System (INIS)

    Prado, J. de; Sánchez, M.; Alvaredo, P.; Gordo, E.; Ureña, A.

    2016-01-01

    Highlights: • Simulations show good correlation versus experimental results for Fe-Ti/W system. • The joint is predicted to be stable at the service conditions of the component. • The predictions could help to analyze different scenarios during its service life. - Abstract: The interaction of the Fe-Ti/W system in a brazed divertor component of the future fusion power plant has been studied. The reactivity between the substrates and the filler is an important factor to obtain a high quality joint. Thermodynamic and diffusion simulation software can be valuable tools for studying these effects, particularly in scenarios that are difficult to experimentally analyze. Two different strategies have been performed: 1) simulation processes using the Thermo-Calc and DICTRA software to calculate the phase diagram and simulate the diffusion process, respectively, and 2) experimental tests in a furnace to join W-W substrates using a filler with an 86Fe-Ti composition to analyze the operational brazeability and compare it with the simulation results. The simulation processes predicted two of the three phases that formed at the experimental joint (α-Fe and TiC). The interaction at the W-filler interface predicted by DICTRA correlates with the experimental results, where Fe, Ti and C diffused into the W substrate and moved the interface by 25 μm. Simulations also show the stability of the interface over the lifetime of the component. The combined use of Thermo-Calc and DICTRA software enabled the accurate prediction of different scenarios in the system of Fe-Ti-C/W.

  9. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  10. ALKALI FUSION OF ROSETTA ZIRCON

    International Nuclear Information System (INIS)

    DAHER, A.

    2008-01-01

    The decomposition of Rosetta zircon by fusion with different types of alkalis has been investigated. These alkalis include sodium hydroxide, potassium hydroxide and eutectic mixture of both. The influences of the reaction temperature, zircon to alkalis ratio, fusion time and the stirring of the reactant on the fusion reaction have been evaluated. The obtained results favour the decomposition of zircon with the eutectic alkalis mixture by a decomposition efficiency of 96% obtained at 500 0 C after one hour

  11. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  12. Cryosorption pumping of deuterium by MS-5A at temperatures above 4.2 K for fusion reactor applications

    International Nuclear Information System (INIS)

    Fisher, P.W.; Watson, J.S.

    1977-01-01

    An Excalibur CVR-1106 cryosorption pump was fitted with a special cooling system to permit measurement of deuterium pumping speeds at temperatures between 6 and 20 0 K. Pumping speeds were found to be a function of feed rate, loading prior to each run, loading during runs, and thermal treatment between runs. At feed rates -4 Torr-l s -1 cm -2 , speeds were near 1 l s -1 cm -2 initially and declined monotonically with loading. At high feed rates, speeds reached a higher maximum (approx. 3 l s -1 cm -2 ) but also generally declined with loading; however, after 50 to 100 Torr l had accumulated, the pump underwent a spontaneous transition which effected a return to the original (high) pumping speed. This transition was accompanied by pressure spikes in the test chamber and temperature spikes in the sieve panel. Initial speeds for each consecutive run equaled the final speed for the preceding run if the pump was maintained at operating temperature; however, if it was warmed to 77 0 K and recooled, a restoration to the maximum speed was observed at the beginning of the next run

  13. Preparation and characterisation of immobilised humic acid on silicon wafer

    International Nuclear Information System (INIS)

    Szabo, Gy.; Guczi, J.; Telegdi, J.; Pashalidis, I.; Szymczak, W.; Buckau, G.

    2005-01-01

    Full text of publication follows: The chemistry of the interactions of radionuclides with humic acid needs to be understood in details so that humate-mediated migration of radionuclides through the environment can be predicted. To achieve such a data in microscopic scale, several detective techniques, such as atomic force microscopy (AFM), chemical force microscopy (CFM), nuclear microprobe analysis (NMA) and X-ray photoelectron spectroscopy (XPS) can be used to measure intermolecular forces and to visualize the surface morphology. The main aim of this work was to provide humic material with specific properties in order to study with different spectroscopic techniques, the complexation behaviour of surface bound humic acid in microscopic scale. Namely, humic acid has been immobilised on silicon wafers in order to mimic surface bound humic substances in natural aquatic systems. In this communication, we present a simple protocol to immobilize humic acid on silicon wafer surface. A tri-functional silane reagent 3-amino-propyl-tri-methoxy-silane (APTES) was used to modify the surface of silicon wafers and appeared to be able to strongly attached soluble humic acid through their carboxylic groups to solid support. Characterisation of the surfaces, after any preparation steps, was done by ATR-FTIR, AFM and TOF-SIMS. These methods have proved that the humic acid forms a relatively homogeneous layer on the wafers. Immobilisation of humic acid on silicon wafer was further proved by binding isotherm of Am/Nd. (authors)

  14. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  15. Eutectic and solid-state wafer bonding of silicon with gold

    International Nuclear Information System (INIS)

    Abouie, Maryam; Liu, Qi; Ivey, Douglas G.

    2012-01-01

    Highlights: ► Eutectic and solid-state Au-Si bonding are compared for both a-Si and c-Si samples. ► Exchange of a-Si and Au layer was observed in both types of bonded samples. ► Use of c-Si for bonding resulted in formation of craters at the Au/c-Si interface. ► Solid-state Au-Si bonding produces better bonds in terms of microstructure. - Abstract: The simple Au-Si eutectic, which melts at 363 °C, can be used to bond Si wafers. However, faceted craters can form at the Au/Si interface as a result of anisotropic and non-uniform reaction between Au and crystalline silicon (c-Si). These craters may adversely affect active devices on the wafers. Two possible solutions to this problem were investigated in this study. One solution was to use an amorphous silicon layer (a-Si) that was deposited on the c-Si substrate to bond with the Au. The other solution was to use solid-state bonding instead of eutectic bonding, and the wafers were bonded at a temperature (350 °C) below the Au-Si eutectic temperature. The results showed that the a-Si layer prevented the formation of craters and solid-state bonding not only required a lower bonding temperature than eutectic bonding, but also prevented spill out of the solder resulting in strong bonds with high shear strength in comparison with eutectic bonding. Using amorphous silicon, the maximum shear strength for the solid-state Au-Si bond reached 15.2 MPa, whereas for the eutectic Au-Si bond it was 13.2 MPa.

  16. The status of cold fusion

    Science.gov (United States)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  17. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  18. An electret-based energy harvesting device with a wafer-level fabrication process

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Wang, Fei; Hansen, Ole

    2013-01-01

    This paper presents a MEMS energy harvesting device which is able to generate power from two perpendicular ambient vibration directions. A CYTOP polymer is used both as the electret material for electrostatic transduction and as a bonding interface for low-temperature wafer bonding. The device...... is also discussed. With a final chip size of about 1 cm2, a power output of 32.5 nW is successfully harvested with an external load of 17 MΩ, when a harmonic vibration source with an RMS acceleration amplitude of 0.03 g (∼0.3 m s−2) and a resonant frequency of 179 Hz is applied. These results can...

  19. Characterizing SOI Wafers By Use Of AOTF-PHI

    Science.gov (United States)

    Cheng, Li-Jen; Li, Guann-Pyng; Zang, Deyu

    1995-01-01

    Developmental nondestructive method of characterizing layers of silicon-on-insulator (SOI) wafer involves combination of polarimetric hyperspectral imaging by use of acousto-optical tunable filters (AOTF-PHI) and computational resources for extracting pertinent data on SOI wafers from polarimetric hyperspectral images. Offers high spectral resolution and both ease and rapidity of optical-wavelength tuning. Further efforts to implement all of processing of polarimetric spectral image data in special-purpose hardware for sake of procesing speed. Enables characterization of SOI wafers in real time for online monitoring and adjustment of production. Also accelerates application of AOTF-PHI to other applications in which need for high-resolution spectral imaging, both with and without polarimetry.

  20. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    Science.gov (United States)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  1. Wafer-scale fabrication of polymer distributed feedback lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Balslev, Søren

    2006-01-01

    The authors demonstrate wafer-scale, parallel process fabrication of distributed feedback (DFB) polymer dye lasers by two different nanoimprint techniques: By thermal nanoimprint lithography (TNIL) in polymethyl methacrylate and by combined nanoimprint and photolithography (CNP) in SU-8. In both...... techniques, a thin film of polymer, doped with rhodamine-6G laser dye, is spin coated onto a Borofloat glass buffer substrate and shaped into a planar waveguide slab with first order DFB surface corrugations forming the laser resonator. When optically pumped at 532 nm, lasing is obtained in the wavelength...... range between 576 and 607 nm, determined by the grating period. The results, where 13 laser devices are defined across a 10 cm diameter wafer substrate, demonstrate the feasibility of NIL and CNP for parallel wafer-scale fabrication of advanced nanostructured active optical polymer components...

  2. Uniformity across 200 mm silicon wafers printed by nanoimprint lithography

    International Nuclear Information System (INIS)

    Gourgon, C; Perret, C; Tallal, J; Lazzarino, F; Landis, S; Joubert, O; Pelzer, R

    2005-01-01

    Uniformity of the printing process is one of the key parameters of nanoimprint lithography. This technique has to be extended to large size wafers to be useful for several industrial applications, and the uniformity of micro and nanostructures has to be guaranteed on large surfaces. This paper presents results of printing on 200 mm diameter wafers. The residual thickness uniformity after printing is demonstrated at the wafer scale in large patterns (100 μm), in smaller lines of 250 nm and in sub-100 nm features. We show that a mould deformation occurs during the printing process, and that this deformation is needed to guarantee printing uniformity. However, the mould deformation is also responsible for the potential degradation of the patterns

  3. An electrolytic route to fusion?

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A patent has been granted by the Swedish Patent Authority for a new process to initiate and control energy generation through fusion reactions of hydrogen. According to the patent-holder, the Swedish company AB Technology Development, the fusion power process could be available for commercial applications within 4-5 years if laboratory and pilot plant tests prove successful. The new process employs a high voltage discharge in heavy water to create conditions under which, according to the patent holder, a high probability of fusion is achieved without the extraordinary high temperatures required in a conventional fusion reactor. (author)

  4. 450mm wafer patterning with jet and flash imprint lithography

    Science.gov (United States)

    Thompson, Ecron; Hellebrekers, Paul; Hofemann, Paul; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-09-01

    The next step in the evolution of wafer size is 450mm. Any transition in sizing is an enormous task that must account for fabrication space, environmental health and safety concerns, wafer standards, metrology capability, individual process module development and device integration. For 450mm, an aggressive goal of 2018 has been set, with pilot line operation as early as 2016. To address these goals, consortiums have been formed to establish the infrastructure necessary to the transition, with a focus on the development of both process and metrology tools. Central to any process module development, which includes deposition, etch and chemical mechanical polishing is the lithography tool. In order to address the need for early learning and advance process module development, Molecular Imprints Inc. has provided the industry with the first advanced lithography platform, the Imprio® 450, capable of patterning a full 450mm wafer. The Imprio 450 was accepted by Intel at the end of 2012 and is now being used to support the 450mm wafer process development demands as part of a multi-year wafer services contract to facilitate the semiconductor industry's transition to lower cost 450mm wafer production. The Imprio 450 uses a Jet and Flash Imprint Lithography (J-FILTM) process that employs drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for markets including NAND Flash memory, patterned media for hard disk drives and displays. This paper reviews the recent performance of the J-FIL technology (including overlay, throughput and defectivity), mask development improvements provided by Dai Nippon Printing, and the application of the technology to a 450mm lithography platform.

  5. A study on the nuclear fusion reactor - Development of the neutral particle analyzer for the measurement of plasma temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Dong [Kyungpook National University, Taegu (Korea, Republic of); Kim, Do Sung [Taegu University, Taegu (Korea, Republic of)

    1996-09-01

    For measurements of the plasma ion temperature of KT-1 tokamak the charge exchange neutral particle analyzer was made. The NPA was contain stripping cell, cylinderical electrostatic plate type energy analyzer, and detector. The stripping cell has three beam path. The one is empty, the one is covered with Ni-mesh, and the other is covered with Ni-mesh and carbon foil. The mesh no. of the Ni-mesh is 70 lines/inch and the thickness of the carbon foil is 50 A . The radii of the cylinderical plate of the energy analyzer are 112 mm, 95 mm, and the height of the plate is 50 mm. The voltage of the plate is 0 {approx} 1 kV. The ion and neutral particle detector are channeltron (Galileo 4839). 36 refs., 1 tab., 43 figs. (author)

  6. Wafer scale integration of catalyst dots into nonplanar microsystems

    DEFF Research Database (Denmark)

    Gjerde, Kjetil; Kjelstrup-Hansen, Jakob; Gammelgaard, Lauge

    2007-01-01

    In order to successfully integrate bottom-up fabricated nanostructures such as carbon nanotubes or silicon, germanium, or III-V nanowires into microelectromechanical systems on a wafer scale, reliable ways of integrating catalyst dots are needed. Here, four methods for integrating sub-100-nm...... diameter nickel catalyst dots on a wafer scale are presented and compared. Three of the methods are based on a p-Si layer utilized as an in situ mask, an encapsulating layer, and a sacrificial window mask, respectively. All methods enable precise positioning of nickel catalyst dots at the end...

  7. Computational Modeling in Plasma Processing for 300 mm Wafers

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.

  8. Wafer-Level Vacuum Packaging of Smart Sensors

    OpenAIRE

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging...

  9. Impact of SiO2 on Al–Al thermocompression wafer bonding

    International Nuclear Information System (INIS)

    Malik, Nishant; Finstad, Terje G; Schjølberg-Henriksen, Kari; Poppe, Erik U; Taklo, Maaike M V

    2015-01-01

    Al–Al thermocompression bonding suitable for wafer level sealing of MEMS devices has been investigated. This paper presents a comparison of thermocompression bonding of Al films deposited on Si with and without a thermal oxide (SiO 2 film). Laminates of diameter 150 mm containing device sealing frames of width 200 µm were realized. The wafers were bonded by applying a bond force of 36 or 60 kN at bonding temperatures ranging from 300–550 °C for bonding times of 15, 30 or 60 min. The effects of these process variations on the quality of the bonded laminates have been studied. The bond quality was estimated by measurements of dicing yield, tensile strength, amount of cohesive fracture in Si and interfacial characterization. The mean bond strength of the tested structures ranged from 18–61 MPa. The laminates with an SiO 2 film had higher dicing yield and bond strength than the laminates without SiO 2 for a 400 °C bonding temperature. The bond strength increased with increasing bonding temperature and bond force. The laminates bonded for 30 and 60 min at 400 °C and 60 kN had similar bond strength and amount of cohesive fracture in the bulk silicon, while the laminates bonded for 15 min had significantly lower bond strength and amount of cohesive fracture in the bulk silicon. (paper)

  10. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  11. Fusion power and its prospects

    International Nuclear Information System (INIS)

    Kammash, T.

    1981-01-01

    Recent progress in research towards the development of fusion power is reviewed. In the magnetic approach, the impressive advances made in Tokamak research in the past few years have bolstered the confidence that experimental Tokamak devices currently under construction will demonstrate the break-even condition or scientific feasibility of fusion power. Exciting and innovative ideas in mirror magnetic confinement are expected to culminate in high-Q devices which will make open-ended confinement a serious contender for fusion reactors. In the inertial confinement approach, conflicting pellet temperature requirements have placed severe constraints on useful laser intensities and wavelengths for laser-driven fusion. Relativistic electron beam fusion must solve critical focusing and pellet coupling problems, and the newly proposed heavy ion beam fusion, though feasible and attractive in principle, requires very high energy particles for which the accelerator technology may not be available for some time to come

  12. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  13. Friction mechanisms of silicon wafer and silicon wafer coated with diamond-like carbon film and two monolayers

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Yoon, Eui Sung; Han, Hung Gu; Kong, Ho Sung

    2006-01-01

    The friction behaviour of Si-wafer, Diamond-Like Carbon (DLC) and two Self-Assembled Monolayers(SAMs) namely DiMethylDiChlorosilane (DMDC) and DiPhenyl-DiChlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-Newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer. Interestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains

  14. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

    Directory of Open Access Journals (Sweden)

    H. Ushida

    2016-12-01

    Full Text Available Under tritium production method using a high-temperature gas-cooled reactor loaded Li compound, Li compound has to be coated by ceramic materials in order to suppress the spreading of tritium to the whole reactor. Pyrolytic carbon (PyC is a candidate of the coating material because of its high resistance for gas permeation. In this study, hydrogen permeation experiments using a PyC-coated isotropic graphite tube were conducted and hydrogen diffusivity, solubility and permeability were evaluated. Tritium permeation behavior through PyC-coated Li compound particles was simulated by using obtained data. Hydrogen permeation flux through PyC in a steady state is proportional to the hydrogen pressure and is larger than that through Al2O3 which is also candidate coating material. However, total tritium leak within the supposed reactor operation period through the PyC-coated Li compound particles is lower than that through the Al2O3-coated ones because the hydrogen absorption capacity in PyC is considerably larger than that in Al2O3.

  15. Disposable attenuated total reflection-infrared crystals from silicon wafer: a versatile approach to surface infrared spectroscopy.

    Science.gov (United States)

    Karabudak, Engin; Kas, Recep; Ogieglo, Wojciech; Rafieian, Damon; Schlautmann, Stefan; Lammertink, R G H; Gardeniers, Han J G E; Mul, Guido

    2013-01-02

    Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

  16. LiWall Fusion - The New Concept of Magnetic Fusion

    International Nuclear Information System (INIS)

    Zakharov, L.E.

    2011-01-01

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  17. Overview of nonelectrical applications of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1979-01-01

    The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study

  18. Advanced synfuel production with fusion

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.

    1979-01-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  19. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  20. Scatterometry on pelliclized masks: an option for wafer fabs

    Science.gov (United States)

    Gallagher, Emily; Benson, Craig; Higuchi, Masaru; Okumoto, Yasuhiro; Kwon, Michael; Yedur, Sanjay; Li, Shifang; Lee, Sangbong; Tabet, Milad

    2007-03-01

    Optical scatterometry-based metrology is now widely used in wafer fabs for lithography, etch, and CMP applications. This acceptance of a new metrology method occurred despite the abundance of wellestablished CD-SEM and AFM methods. It was driven by the desire to make measurements faster and with a lower cost of ownership. Over the last year, scatterometry has also been introduced in advanced mask shops for mask measurements. Binary and phase shift masks have been successfully measured at all desired points during photomask production before the pellicle is mounted. There is a significant benefit to measuring masks with the pellicle in place. From the wafer fab's perspective, through-pellicle metrology would verify mask effects on the same features that are characterized on wafer. On-site mask verification would enable quality control and trouble-shooting without returning the mask to a mask house. Another potential application is monitoring changes to mask films once the mask has been delivered to the fab (haze, oxide growth, etc.). Similar opportunities apply to the mask metrologist receiving line returns from a wafer fab. The ability to make line-return measurements without risking defect introduction is clearly attractive. This paper will evaluate the feasibility of collecting scatterometry data on pelliclized masks. We explore the effects of several different pellicle types on scatterometry measurements made with broadband light in the range of 320-780 nm. The complexity introduced by the pellicles' optical behavior will be studied.

  1. Prediction of thermo-mechanical reliability of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; van Driel, W.D.; Hoofman, R.J.O.M.; Ernst, L.J.

    2004-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  2. Prediction of thermo-mechanical integrity of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; Hoofman, R.J.O.M.; Ernst, L.J.; Ernst, L.J.

    2003-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  3. Sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, Vincent L.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    A new technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for as well resist spinning and layer patterning as realization of bridges or cantilevers across deep holes or grooves. The sacrificial wafer bonding technique contains a

  4. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  5. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  6. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  7. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  8. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  9. Preliminary reduction of chromium ore using Si sludge generated in silicon wafer manufacturing process

    Directory of Open Access Journals (Sweden)

    Jung W.-G.

    2018-01-01

    Full Text Available In order to promote the recycling of by-product from Si wafer manufacturing process and to develop environment-friend and low cost process for ferrochrome alloy production, a basic study was performed on the preliminary reduction reaction between chromium ore and the Si sludge, comprised of SiC and Si particles, which is recovered from the Si wafer manufacturing process for the semiconductor and solar cell industries. Pellets were first made by mixing chromium ore, Si sludge, and some binders in the designed mixing ratios and were then treated at different temperatures in the 1116°C–1388°C range in an ambient atmosphere. Cordierite and SiO2 were confirmed to be formed in the products after the reduction. Additionally, metal particles were observed in the product with Fe, Cr, and Si components. It is found that temperatures above 1300°C are necessary for the reduction of the chromium ore by the Si sludge. The reduction ratio for Fe was evaluated quantitatively for our experimental conditions, and the proper mixing ratio was suggested for the pre-reduction of the chromium ore by the Si sludge. This study provides basic information for the production of ferrochrome alloys on the pre-reduction of chromium ore using Si sludge.

  10. A study of UO2 wafer fuel for very high-power research reactors

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Jankus, V.Z.; Rest, J.; Billone, M.C.

    1983-01-01

    The Reduced Enrichment Research and Test Reactor Program is aimed at reducing fuel enrichment to 2 caramel fuel is one of the most promising new types of reduced-enrichment fuel for use in research reactors with very high power density. Parametric studies have been carried out to determine the maximum specific power attainable without significant fission-gas release for UO 2 wafers ranging from 0.75 to 1.50 mm in thickness. The results indicate that (1) all the fuel designs considered in this study are predicted not to fail under full power operation up to a burnup, of 1.9x10 21 fis/cm 3 ; (2) for all fuel designs, failure is predicted at approximately the same fuel centerline temperature for a given burnup; (3) the thinner the wafer, the wider the margin for fuel specific power between normal operation and increased-power operation leading to fuel failure; (4) increasing the coolant pressure in the reactor core could improve fuel performance by maintaining the fuel at a higher power level without failure for a given burnup; and (5) for a given power level, fuel failure will occur earlier at a higher cladding surface temperature and/or under power-cycling conditions. (author)

  11. Trace analysis for 300 MM wafers and processes with TXRF

    International Nuclear Information System (INIS)

    Nutsch, A.; Erdmann, V.; Zielonka, G.; Pfitzner, L.; Ryssel, H.

    2000-01-01

    Efficient fabrication of semiconductor devices is combined with an increasing size of silicon wafers. The contamination level of processes, media, and equipment has to decrease continuously. A new test laboratory for 300 mm was installed in view of the above mentioned aspects. Aside of numerous processing tools this platform consist electrical test methods, particle detection, vapor phase decomposition (VPD) preparation, and TXRF. The equipment is installed in a cleanroom. It is common to perform process or equipment control, development, evaluation and qualification with monitor wafers. The evaluation and the qualification of 300 mm equipment require direct TXRF on 300 mm wafers. A new TXRF setup was installed due to the wafer size of 300 mm. The 300 mm TXRF is equipped with tungsten and molybdenum anode. This combination allows a sensitive detection of elements with fluorescence energy below 10 keV for tungsten excitation. The molybdenum excitation enables the detection of a wide variety of elements. The detection sensitivity for the tungsten anode excited samples is ten times higher than for molybdenum anode measured samples. The system is calibrated with 1 ng Ni. This calibration shows a stability within 5 % when monitored to control system stability. Decreasing the amount of Ni linear results in a linear decrease of the measured Ni signal. This result is verified for a range of elements by multielement samples. New designs demand new processes and materials, e.g. ferroelectric layers and copper. The trace analysis of many of these materials is supported by the higher excitation energy of the molybdenum anode. Reclaim and recycling of 300 mm wafers demand for an accurate contamination control of the processes to avoid cross contamination. Polishing or etching result in modified surfaces. TXRF as a non-destructive test method allows the simultaneously detection of a variety of elements on differing surfaces in view of contamination control and process

  12. Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors

    Science.gov (United States)

    de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.

    2018-04-01

    Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface  =  225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of  ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential

  13. US-Japan workshop on field-reversed configurations with steady-state high-temperature fusion plasmas and the 11th US-Japan workshop on compact toroids

    International Nuclear Information System (INIS)

    Barnes, D.C.; Fernandez, J.C.; Rej, D.J.

    1990-05-01

    The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately

  14. US-Japan workshop on field-reversed configurations with steady-state high-temperature fusion plasmas and the 11th US-Japan workshop on compact toroids

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D.C.; Fernandez, J.C.; Rej, D.J. (comps.)

    1990-05-01

    The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.

  15. Chemical strategies for modifications of the solar cell process, from wafering to emitter diffusion; Chemische Ansaetze zur Neuordnung des Solarzellenprozesses ausgehend vom Wafering bis hin zur Emitterdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kuno

    2009-11-06

    The paper describes the classic standard industrial solar cell based on monocrystalline silicon and describes new methods of fabrication. The first is an alternative wafering concept using laser microjet cutting instead of multiwire cutting. This method originally uses pure, deionized water; it was modified so that the liquid jet will not only be a liquid light conductor but also a transport medium for etching fluids supporting thermal abrasion of silicon by the laser jet. Two etching fluids were tested experimentally; it was found that water-free fluids based on perfluorinated solvents with very slight additions of gaseous chlorine are superior to all other options. In the second section, the wet chemical process steps between wafering and emitter diffusion (i.e. the first high-temperature step) was to be modified. Alternatives to 2-propanol were to be found in the experimental part. Purification after texturing was to be rationalized in order to reduce the process cost, either by using less chemical substances or by achieving shorter process times. 1-pentanol and p-toluolsulfonic acid were identified as two potential alternatives to 2-propanol as texture additives. Finally, it could be shown that wire-cut substrates processed with the new texturing agents have higher mechanical stabilities than substrates used with the classic texturing agent 2-propanol. [German] Im ersten Kapitel wird die klassische Standard-Industrie-Solarzelle auf der Basis monokristallinen Siliziums vorgestellt. Der bisherige Herstellungsprozess der Standard-Industrie-Solarzelle, der in wesentlichen Teilen darauf abzielt, diese Verluste zu minimieren, dient als Referenz fuer die Entwicklung neuer Fertigungsverfahren, wie sie in dieser Arbeit vorgestellt werden. Den ersten thematischen Schwerpunkt bildet die Entwicklung eines alternativen Wafering-Konzeptes zum Multi-Drahtsaegen. Die Basis des neuen, hier vorgestellten Wafering-Prozesses bildet das Laser-Micro-Jet-Verfahren. Dieses System

  16. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  17. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  18. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  19. Advanced fusion reactor

    International Nuclear Information System (INIS)

    Tomita, Yukihiro

    2003-01-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p- 6 Li and p- 11 B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D- 3 He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D- 3 He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of 3 He per a year. On the other hand, 1 million tons of 3 He is estimated to be in the moon. The 3 He of about 10 23 kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  20. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  1. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  2. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  3. Can 250+ fusions per muon be achieved?

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Nuclear fusion of hydrogen isotopes can be induced by negative muons (μ) in reactions such as: μ - + d + t → α + n + μ - . This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (α) and a neutron (n), releasing energy. The muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon-catalozed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g., room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the muon

  4. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  5. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  6. Tungsten chemical vapor deposition characteristics using SiH4 in a single wafer system

    International Nuclear Information System (INIS)

    Rosler, R.S.; Mendonca, J.; Rice, M.J. Jr.

    1988-01-01

    Several workers have recently begun using silane as a high-rate, low-temperature alternative to hydrogen for the reduction of WF 6 in the chemical vapor deposition of W. The deposition and film characteristics of both selective and blanket W using this new chemistry are explored in a radiantly heated single wafer system using closed-loop temperature control with a thermocouple in direct contact with the backside of the wafer. Selective W deposition rates of up to 1.5 μm/min were measured over the temperature range 250--550 0 C with blanket W rates typically 2--5 x lower. Resistivity is in the 10--15 μΩcm range at 300 0 C for SiH 4 /WF 6 ratios of 0.2 to 1.0, while above 400 0 C the range is 7.5--8.5 μΩcm. Si content in the W films is quite low at 10 16 to 10 17 atoms/cm 3 . Adhesion to silicon is excellent at temperatures of 350 0 C and above. Selective W using SiH 4 reduction for doped silicon contact fill shows none of the consumption or encroachment problems common to H 2 reduction, although selectivity is more sensitive. Contact resistance for p + and n + silicon contacts are comparable to aluminum controls and to previously published data. Blanket deposition into narrow geometries gives ≥0% step coverage and without keyholes in the 250--450 0 C deposition temperature range. For low-SiH 4 flows, deposition at 500 0 C causes small keyholes, while at 550 0 C even larger keyholes result. At higher SiH 4 flows, keyholes are typically not seen from 250 to 550 0 C

  7. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  8. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    Science.gov (United States)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  9. Effect of PECVD SiNx/SiOy Nx –Si interface property on surface passivation of silicon wafer

    International Nuclear Information System (INIS)

    Jia Xiao-Jie; Zhou Chun-Lan; Zhou Su; Wang Wen-Jing; Zhu Jun-Jie

    2016-01-01

    It is studied in this paper that the electrical characteristics of the interface between SiO y N x /SiN x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiO y N x layer on interface parameters, such as interface state density Di t and fixed charge Q f , and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin SiO y N x layer between the SiN x and the silicon wafer can suppress Q f in the film and D it at the interface. The positive Q f and D it and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiO y N x film increasing. Prepared by deposition at a low temperature and a low ratio of N 2 O/SiH 4 flow rate, the SiO y N x /SiN x stacks result in a low effective surface recombination velocity (S eff ) of 6 cm/s on a p-type 1 Ω·cm–5 Ω·cm FZ silicon wafer. The positive relationship between S eff and D it suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. (paper)

  10. Curvature evolution of 200 mm diameter GaN-on-insulator wafer fabricated through metalorganic chemical vapor deposition and bonding

    Science.gov (United States)

    Zhang, Li; Lee, Kwang Hong; Kadir, Abdul; Wang, Yue; Lee, Kenneth E.; Tan, Chuan Seng; Chua, Soo Jin; Fitzgerald, Eugene A.

    2018-05-01

    Crack-free 200 mm diameter N-polar GaN-on-insulator (GaN-OI) wafers are demonstrated by the transfer of metalorganic chemical vapor deposition (MOCVD)-grown Ga-polar GaN layers from Si(111) wafers onto SiO2/Si(100) wafers. The wafer curvature of the GaN-OI wafers after the removal of the original Si(111) substrate is correlated with the wafer curvature of the starting GaN-on-Si wafers and the voids on the GaN-on-Si surface that evolve into cracks on the GaN-OI wafers. In crack-free GaN-OI wafers, the wafer curvature during the removal of the AlN nucleation layer, AlGaN strain-compensation buffer layers and GaN layers is correlated with the residual stress distribution within individual layers in the GaN-OI wafer.

  11. Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass moulding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2014-01-01

    -placements, internal diameter and thickness of the rings are measured during the tests. Viscoelastic andstructural relaxation behaviour of the glass are implemented into the ABAQUS FEM software through aFORTRAN material subroutine (UMAT) and the FE model is validated with a sandwich seal test. Then, byFE simulation...... of the ring compression test and comparison of the experimental creep with the simulatedone in an iterative procedure, viscoelastic parameters of the glass material are characterized. Finally,interfacial glass/mould friction coefficients at different temperatures are determined through FEM basedfriction...... curves combined with experimental data points. The obtained viscoelastic parameters and inter-facial friction coefficients can later be employed for prediction of the final shape/size as well as the stressdistribution in the glass wafer during a real wafer based precision glass moulding process. © 2014...

  12. Wafer-level packaging with compression-controlled seal ring bonding

    Science.gov (United States)

    Farino, Anthony J

    2013-11-05

    A device may be provided in a sealed package by aligning a seal ring provided on a first surface of a first semiconductor wafer in opposing relationship with a seal ring that is provided on a second surface of a second semiconductor wafer and surrounds a portion of the second wafer that contains the device. Forcible movement of the first and second wafer surfaces toward one another compresses the first and second seal rings against one another. A physical barrier against the movement, other than the first and second seal rings, is provided between the first and second wafer surfaces.

  13. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Adele C., E-mail: Adele.Tamboli@nrel.gov; Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States); Perl, Emmett E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States)

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  14. Fusion energy and nuclear liability considerations

    International Nuclear Information System (INIS)

    Fork, William E.; Peterson, Charles H.

    2014-01-01

    For over 60 years, fusion energy has been recognised as a promising technology for safe, secure and environmentally-sustainable commercial electrical power generation. Over the past decade, research and development programmes across the globe have shown progress in developing critical underlying technologies. Approaches ranging from high-temperature plasma magnetic confinement fusion to inertial confinement fusion are increasingly better understood. As scientific research progresses in its aim to achieve fusion 'ignition', where nuclear fusion becomes self-sustaining, the international legal community should consider how fusion power technologies fit within the current nuclear liability legal framework. An understanding of the history of the civil nuclear liability regimes, along with the different risks associated with fusion power, will enable nations to consider the proper legal conditions needed to deploy and commercialise fusion technologies for civil power generation. This note is divided into three substantive parts. It first provides background regarding fusion power and describes the relatively limited risks of fusion technologies when compared with traditional nuclear fission technologies. It then describes the international nuclear liability regime and analyses how fusion power fits within the text of the three leading conventions. Finally, it examines how fusion power may fall within the international nuclear liability framework in the future, a discussion that includes possible amendments to the relevant international liability conventions. It concludes that the unique nature of the current civil nuclear liability regime points towards the development of a more tailored liability solution because of the reduced risks associated with fusion power. (authors)

  15. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  16. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  17. Peptide and protein loading into porous silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F. [Ian Wark Research Institute, University of South Australia, Mawson Lakes (Australia); Barnett, C. [Medica Ltd, Malvern, Worcestershire, UK WR14 3SZ (United Kingdom)

    2008-02-15

    The influence of peptide/protein size and hydrophobicity on the physical and chemical aspects of loading within porous silicon (pSi) wafer samples has been determined using Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Both Gramicidin A (a small hydrophobic peptide) and Papain (a larger hydrophilic protein) were observed (ToF-SIMS) to penetrate across the entire pSi layer, even at low loading levels. AFM surface imaging of pSi wafers during peptide/protein loading showed that surface roughness increased with Papain loading, but decreased with Gramicidin A loading. For Papain, the loading methodology was also found to influence loading efficiency. These differences indicate more pronounced surface adsorption of Papain. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Contacting graphene in a 200 mm wafer silicon technology environment

    Science.gov (United States)

    Lisker, Marco; Lukosius, Mindaugas; Kitzmann, Julia; Fraschke, Mirko; Wolansky, Dirk; Schulze, Sebastian; Lupina, Grzegorz; Mai, Andreas

    2018-06-01

    Two different approaches for contacting graphene in a 200 mm wafer silicon technology environment were tested. The key is the opportunity to create a thin SiN passivation layer on top of the graphene protecting it from the damage by plasma processes. The first approach uses pure Ni contacts with a thickness of 200 nm. For the second attempt, Ni is used as the contact metal which substitutes the Ti compared to a standard contact hole filling process. Accordingly, the contact hole filling of this "stacked via" approach is Ni/TiN/W. We demonstrate that the second "stacked Via" is beneficial and shows contact resistances of a wafer scale process with values below 200 Ohm μm.

  19. JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES

    International Nuclear Information System (INIS)

    Montoya, Angela C.; Maji, Arup K.

    2010-01-01

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  20. Self-consistent simulation study on magnetized inductively coupled plasma for 450 mm semiconductor wafer processing

    International Nuclear Information System (INIS)

    Lee, Ho-Jun; Kim, Yun-Gi

    2012-01-01

    The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.

  1. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  2. Simplified nonplanar wafer bonding for heterogeneous device integration

    Science.gov (United States)

    Geske, Jon; Bowers, John E.; Riley, Anton

    2004-07-01

    We demonstrate a simplified nonplanar wafer bonding technique for heterogeneous device integration. The improved technique can be used to laterally integrate dissimilar semiconductor device structures on a lattice-mismatched substrate. Using the technique, two different InP-based vertical-cavity surface-emitting laser active regions have been integrated onto GaAs without compromising the quality of the photoluminescence. Experimental and numerical simulation results are presented.

  3. Cost of Czochralski wafers as a function of diameter

    Science.gov (United States)

    Leipold, M. H.; Radics, C.; Kachare, A.

    1980-02-01

    The impact of diameter in the range of 10 to 15 cm on the cost of wafers sliced from Czochralski ingots was analyzed. Increasing silicon waste and decreasing ingot cost with increasing ingot size were estimated along with projected costs. Results indicate a small but continuous decrease in sheet cost with increasing ingot size in this size range. Sheet costs including silicon are projected to be $50 to $60/sq m (1980 $) depending upon technique used.

  4. Wafer-level radiometric performance testing of uncooled microbolometer arrays

    Science.gov (United States)

    Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl

    2014-03-01

    A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.

  5. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  6. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  7. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  8. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  9. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  10. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  11. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  12. Plasma induced material defects and threshold values for thermal loads in high temperature resistant alloys and in refractory metals for first wall application in fusion reactors

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Kny, E.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1986-10-01

    Materials for the application in the first wall of fusion reactors of the tokamak type are subjected to pulsed heat fluxes which range from some 0.5 MW m -2 to 10 MW m -2 during normal plasma operation, and which can exceed 1000 MW m -2 during total plasma disruptions. The structural defects and material fatigue caused by this types of plasma wall interaction are investigated and the results are plotted in threshold loading curves. Additionally, the results are, as far as possible, compared with quantitative, theoretical calculations. These procedures allow a semiquantitative evaluation of the applicability of the mentioned metals in the first wall of fusion reactors. (orig.) [de

  13. Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage

    Science.gov (United States)

    Kulshreshtha, Prashant Kumar

    This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent

  14. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  15. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  16. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  17. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  18. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  19. Magnetron target designs to improve wafer edge trench filling in ionized metal physical vapor deposition

    International Nuclear Information System (INIS)

    Lu Junqing; Yoon, Jae-Hong; Shin, Keesam; Park, Bong-Gyu; Yang Lin

    2006-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed. The model was validated based on the agreement between the model predictions and the reported experimental values for the asymmetric metal deposition at trench sidewalls near the wafer edge for a 200 mm wafer. This model could predict the thickness of the metal deposits across the wafer, the symmetry of the deposits on the trench sidewalls at any wafer location, and the angular distributions of the metal fluxes arriving at any wafer location. The model predictions for the 300 mm wafer indicate that as the target-to-wafer distance is shortened, the deposit thickness increases and the asymmetry decreases, however the overall uniformity decreases. Up to reasonable limits, increasing the target size and the sputtering intensity for the outer target portion significantly improves the uniformity across the wafer and the symmetry on the trench sidewalls near the wafer edge

  20. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  1. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  2. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  3. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  4. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  5. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  6. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  7. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    International Nuclear Information System (INIS)

    2008-01-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  8. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  9. Multiproject wafers: not just for million-dollar mask sets

    Science.gov (United States)

    Morse, Richard D.

    2003-06-01

    With the advent of Reticle Enhancement Technologies (RET) such as Optical Proximity Correction (OPC) and Phase Shift Masks (PSM) required to manufacture semiconductors in the sub-wavelength era, the cost of photomask tooling has skyrocketed. On the leading edge of technology, mask set prices often exceed $1 million. This shifts an enormous burden back to designers and Electronic Design Automation (EDA) software vendors to create perfect designs at a time when the number of transistors per chip is measured in the hundreds of millions, and gigachips are on the drawing boards. Moore's Law has driven technology to incredible feats. The prime beneficiaries of the technology - memory and microprocessor (MPU) manufacturers - can continue to fit the model because wafer volumes (and chip prices in the MPU case) render tooling costs relatively insignificant. However, Application-Specific IC (ASIC) manufacturers and most foundry clients average very small wafer per reticle ratios causing a dramatic and potentially insupportable rise in the cost of manufacturing. Multi-Project wafers (MPWs) are a way to share the cost of tooling and silicon by putting more than one chip on each reticle. Lacking any unexpected breakthroughs in simulation, verification, or mask technology to reduce the cost of prototyping, more efficient use of reticle space becomes a viable and increasingly attractive choice. It is worthwhile therefore, to discuss the economics of prototyping in the sub-wavelength era and the increasing advantages of the MPW, shared-silicon approach. However, putting together a collection of different-sized chips during tapeout can be challenging and time consuming. Design compatibility, reticle field optimization, and frame generation have traditionally been the biggest worries but, with the advent of dummy-fill for planarization and RET for resolution, another layer of complexity has been added. MPW automation software is quite advanced today, but the size of the task

  10. Wafer-level manufacturing technology of glass microlenses

    Science.gov (United States)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  11. Tests of a silicon wafer based neutron collimator

    International Nuclear Information System (INIS)

    Cussen, L.D.; Vale, C.J.; Anderson, I.S.; Hoeghoj, P.

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 μm thick single crystal silicon wafers coated on one surface with 4 μm of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators

  12. Tests of a silicon wafer based neutron collimator

    CERN Document Server

    Cussen, L D; Anderson, I S; Hoeghoj, P

    2001-01-01

    A Soller slit neutron collimator has been prepared by stacking 160 mu m thick single crystal silicon wafers coated on one surface with 4 mu m of gadolinium metal. The collimator has an angular width of 20 min full width at half maximum and an effective length of 2.75 cm. The collimator has beam dimensions of 1 cm wide by 5.3 cm high. Tests at neutron wavelengths 7.5A and 1.8A showed a peak transmission of 88% within 2% of the optimum theoretical possibility. The background suppression in the wings is comparable with that of conventional neutron collimators.

  13. Underling modification in ion beam induced Si wafers

    International Nuclear Information System (INIS)

    Hazra, S.; Chini, T.K.; Sanyal, M.K.; Grenzer, J.; Pietsch, U.

    2005-01-01

    Subsurface (amorphous-crystalline interface) structure of keV ion beam modified Si(001) wafers was studied for the first time using non-destructive technique and compared with that of the top one. Ion-beam modifications of the Si samples were done using state-of-art high-current ion implanter facility at Saha Institute of Nuclear Physics by changing energy, dose and angle of incidence of the Ar + ion beam. To bring out the underlying modification depth-resolved x-ray grazing incidence diffraction has been carried out using synchrotron radiation facility, while the structure of the top surface was studied through atomic force microscopy

  14. Addressable Inverter Matrix Tests Integrated-Circuit Wafer

    Science.gov (United States)

    Buehler, Martin G.

    1988-01-01

    Addressing elements indirectly through shift register reduces number of test probes. With aid of new technique, complex test structure on silicon wafer tested with relatively small number of test probes. Conserves silicon area by reduction of area devoted to pads. Allows thorough evaluation of test structure characteristics and of manufacturing process parameters. Test structure consists of shift register and matrix of inverter/transmission-gate cells connected to two-by-ten array of probe pads. Entire pattern contained in square area having only 1.6-millimeter sides. Shift register is conventional static CMOS device using inverters and transmission gates in master/slave D flip-flop configuration.

  15. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen

    2008-11-01

    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  16. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  17. Internal Friction and Young's Modulus Measurements on SiO2 and Ta2O5 Films Done with an Ultra-High Q Silicon-Wafer Suspension

    Directory of Open Access Journals (Sweden)

    Granata M.

    2015-04-01

    Full Text Available In order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension has been developed. The key features of this system are: i the possibility to use substrates easily available like silicon wafers; ii extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×108 on 3” diameter wafers; iii reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv absence of clamping; v the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO2 and at room temperature only on Ta2O5 films deposited on silicon are presented.

  18. Polymer materials for fusion reactors

    International Nuclear Information System (INIS)

    Yamaoka, H.

    1993-01-01

    The radiation-resistant polymer materials have recently drawn much attention from the viewpoint of components for fusion reactors. These are mainly applied to electrical insulators, thermal insulators and structural supports of superconducting magnets in fusion reactors. The polymer materials used for these purposes are required to withstand the synergetic effects of high mechanical loads, cryogenic temperatures and intense nuclear radiation. The objective of this review is to summarize the anticipated performance of candidate materials including polymer composites for fusion magnets. The cryogenic properties and the radiation effects of polymer materials are separately reviewed, because there is only limited investigation on the above-mentioned synergetic effects. Additional information on advanced polymer materials for fusion reactors is also introduced with emphasis on recent developments. (orig.)

  19. Fusion reactor problems

    International Nuclear Information System (INIS)

    Carruthers, R.

    It is pointed out that plasma parameters for a fusion reactor have been fairly accurately defined for many years, and the real plasma physics objective must be to find the means of achieving and maintaining these specifiable parameters. There is good understanding of the generic technological problems: breading blankets and shields, radiation damage, heat transfer and methods of magnet design. The required plasma parameters for fusion self-heated reactors are established at ntausub(E) approximately 2.10 14 cm -3 sec, plasma radius 1.5 to 3 m, wall loading 5 to 10 MW cm -2 , temperature 15 keV. Within this model plasma control by quasi-steady burn as a key problem is studied. It is emphasized that the future programme must interact more closely with engineering studies and should concentrate upon research which is relevant to reactor plasmas. (V.P.)

  20. Fluorination by fusion

    International Nuclear Information System (INIS)

    Gray, J.H.

    1986-01-01

    LECO crucibles and incinerator ash are two waste categories that cannot be discarded due to the presence of insoluble transuranics. Current chemical processing methods are not too effective, requiring a number of repeated operations in order to dissolve more than half the transuranics. An alternate dissolution approach has been developed involving the use of ammonium bifluoride. Low temperature fusion of the waste with ammonium bifluoride is followed by dissolution of the fused material in boiling nitric acid solutions. Greater than 60% of the transuranics contained in LECO crucibles and greater than 95% of the transuranics mixed with the incinerator ash are dissolved after a single fusion and dissolution step. Fluorination of the transuranics along with other impurities appears to render the waste material soluble in nitric acid

  1. Fusion pumped laser

    Science.gov (United States)

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  2. Synfuels production from fusion reactors

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  3. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  4. Determination of wafer center position during the transfer process by using the beam-breaking method

    International Nuclear Information System (INIS)

    Chen, Yi-Cheng; Wang, Zhi-Gen; Huang, Bo-Kai

    2014-01-01

    A wafer on a robot blade may slip due to inertia sliding during the acceleration or deceleration process. This study presents the implementation and experimental verification of a novel real-time wafer positioning system to be used during the transfer process. A system-integration computer program involving a human–machine interface (HMI) was also developed, exhibiting the following functions: (a) moving direction judgment; (b) notch-passing judgment; (c) indicating the sensor by which the notch passes; and (d) computing the wafer center in real time. The position of the wafer center is calculated based on the time-sequence of the beam-breaking signals from two optical sensors, and the geometric relations among the sensing points of the robot blade and wafer. When using eight-inch wafers, the experimental results indicated the capabilities of the proposed positioning system under various conditions, including distinct parameters regarding the moving direction, wafer displacement and notch-passing sensors. The accuracy and precision (repeatability) of the measurement in various conditions were calculated and discussed. Furthermore, the experimental results demonstrate that, after combining the novel wafer positioning system and HMI program, the proposed method can be used to compute the position of the wafer center in real time in various conditions. (paper)

  5. A new approach to measure the temperature in rapid thermal processing

    Science.gov (United States)

    Yan, Jiang

    This dissertation has presented the research work about a new method to measure the temperatures for the silicon wafer. The new technology is mainly for the rapid thermal processing (RTP) system. RTP is a promising technology in semiconductor manufacturing especially for the devices with minimum feature size less than 0.5 μm. The technique to measure the temperatures of the silicon wafer accurately is the key factor to apply the RTP technology to more critical processes in the manufacturing. Two methods which are mostly used nowadays, thermocouples and pyrometer, all have the limitation to be applied in the RTP. This is the motivation to study the new method using acoustic waves for the temperature measurement. The test system was designed and built up for the study of the acoustic method. The whole system mainly includes the transducer unit, circuit hardware, control software, the computer, and the chamber. The acoustic wave was generated by the PZT-5H transducer. The wave travels through the quartz rod into the silicon wafer. After traveling a certain distances in the wafer, the acoustic waves could be received by other transducers. By measuring the travel time and with the travel distance, the velocity of the acoustic wave traveling in the silicon wafer can be calculated. Because there is a relationship between the velocity and the temperature: the velocities of the acoustic waves traveling in the silicon wafer decrease as the temperatures of the wafer increase, the temperature of the wafer can be finally obtained. The thermocouples were used to check the measurement accuracy of the acoustic method. The temperature mapping across the 8″ silicon wafer was obtained with four transducer sensor unit. The temperatures of the wafer were measured using acoustic method at both static and dynamic status. The main purpose of the tests is to know the measurement accuracy for the new method. The goal of the research work regarding to the accuracy is acoustic method is

  6. Hydrogen Incorporation during Aluminium Anodisation on Silicon Wafer Surfaces

    International Nuclear Information System (INIS)

    Lu, Pei Hsuan Doris; Strutzberg, Hartmuth; Wenham, Stuart; Lennon, Alison

    2014-01-01

    Hydrogen can act to reduce recombination at silicon surfaces for solar cell devices and consequently the ability of dielectric layers to provide a source of hydrogen for this purpose is of interest. However, due to the ubiquitous nature of hydrogen and its mobility, direct measurements of hydrogen incorporation in dielectric layers are challenging. In this paper, we report the use of secondary ion mass spectrometry measurements to show that deuterium from an electrolyte can be incorporated in an anodic aluminium oxide (AAO) layer and be introduced into an underlying amorphous silicon layer during anodisation of aluminium on silicon wafers. After annealing at 400 °C, the concentration of deuterium in the AAO was reduced by a factor of two, as the deuterium was re-distributed to the interface between the amorphous silicon and AAO and to the amorphous silicon. The assumption that hydrogen, from an aqueous electrolyte, could be similarly incorporated in AAO, is supported by the observation that the hydrogen content in the underlying amorphous silicon was increased by a factor of ∼ 3 after anodisation. Evidence for hydrogen being introduced into crystalline silicon after aluminium anodisation was provided by electrochemical capacitance voltage measurements indicating boron electrical deactivation in the underlying crystalline silicon. If introduced hydrogen can electrically deactivate dopant atoms at the surface, then it is reasonable to assume that it could also deactivate recombination-active states at the crystalline silicon interface therefore enabling higher minority carrier lifetimes in the silicon wafer

  7. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  8. Improving scanner wafer alignment performance by target optimization

    Science.gov (United States)

    Leray, Philippe; Jehoul, Christiane; Socha, Robert; Menchtchikov, Boris; Raghunathan, Sudhar; Kent, Eric; Schoonewelle, Hielke; Tinnemans, Patrick; Tuffy, Paul; Belen, Jun; Wise, Rich

    2016-03-01

    In the process nodes of 10nm and below, the patterning complexity along with the processing and materials required has resulted in a need to optimize alignment targets in order to achieve the required precision, accuracy and throughput performance. Recent industry publications on the metrology target optimization process have shown a move from the expensive and time consuming empirical methodologies, towards a faster computational approach. ASML's Design for Control (D4C) application, which is currently used to optimize YieldStar diffraction based overlay (DBO) metrology targets, has been extended to support the optimization of scanner wafer alignment targets. This allows the necessary process information and design methodology, used for DBO target designs, to be leveraged for the optimization of alignment targets. In this paper, we show how we applied this computational approach to wafer alignment target design. We verify the correlation between predictions and measurements for the key alignment performance metrics and finally show the potential alignment and overlay performance improvements that an optimized alignment target could achieve.

  9. Penggunaan Limbah Kopi Sebagai Bahan Penyusun Ransum Itik Peking dalam Bentuk Wafer Ransum Komplit

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2013-04-01

    Full Text Available Effect of coffee waste as component of compiler ration peking duck in the form of wafer complete ration ABSTRACT. Coffee waste is a by-product of coffee processing that potential to be used as feed stuff for peking duck. The weakness of this coffee waste, among others, is perishable, voluminous (bulky and the availability was fluctuated so the processing technology is needed to make this vegetable waste to be durable, easy to stored and to be given to livestock. To solve this problem vegetable waste could be formed as wafer. This research was conducted to study effectiveness of coffee waste as component of compiler ration peking duck in the form of wafer complete ration This experiment was run in completely randomized design which consist of 4 feed treatment and 3 replications.  Ration used was consisted of  P0 = wafer complete ration 0% coffee waste (control, P1 = wafer complete ration 2,5% coffee waste, P2 = wafer complete ration 5% coffee waste, and P3 = Wafer complete ration 7,5% coffee waste. The Variables observed were: physical characteristic (aroma, color, and wafer density and palatability of wafer complete ration. Data collected was analyzed with ANOVA and Duncan Range Test would be used if the result was significantly different. The result showed that the density of wafer complete ration coffee waste was significantly (P< 0.05 differences between of treatment. Mean density wafer complete ration equal to: P0= 0,52±0,03, P1 =0,67±0,04, P2 =0,72±0,03, and P3 = 0,76±0.05 g/cm3. Wafer complete ration coffee waste palatability was significantly (P< 0.05 differences between of treatment. It is concluded that of wafer complete ration composition 5 and 7,5% coffee waste was significantly wafer palatability and gave a highest wafer density. The ration P0 was the most palatable compare to other treatments for the experimental peking duck.

  10. Fusion Machines

    International Nuclear Information System (INIS)

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  11. Wafer-level hermetic thermo-compression bonding using electroplated gold sealing frame planarized by fly-cutting

    Science.gov (United States)

    Farisi, Muhammad Salman Al; Hirano, Hideki; Frömel, Jörg; Tanaka, Shuji

    2017-01-01

    In this paper, a novel wafer-level hermetic packaging technology for heterogeneous device integration is presented. Hermetic sealing is achieved by low-temperature thermo-compression bonding using electroplated Au micro-sealing frame planarized by single-point diamond fly-cutting. The proposed technology has significant advantages compared to other established processes in terms of integration of micro-structured wafer, vacuum encapsulation and electrical interconnection, which can be achieved at the same time. Furthermore, the technology is also achievable for a bonding frame width as narrow as 30 μm, giving it an advantage from a geometry perspective, and bonding temperatures as low as 300 °C, making it advantageous for temperature-sensitive devices. Outgassing in vacuum sealed cavities is studied and a cavity pressure below 500 Pa is achieved by introducing annealing steps prior to bonding. The pressure of the sealed cavity is measured by zero-balance method utilizing diaphragm-structured bonding test devices. The leak rate into the packages is determined by long-term sealed cavity pressure measurement for 1500 h to be less than 2.0× {{10}-14} Pa m3s-1. In addition, the bonding shear strength is also evaluated to be higher than 100 MPa.

  12. Wafer-scale fabrication of uniform Si nanowire arrays using the Si wafer with UV/Ozone pretreatment

    International Nuclear Information System (INIS)

    Bai, Fan; Li, Meicheng; Huang, Rui; Yu, Yue; Gu, Tiansheng; Chen, Zhao; Fan, Huiyang; Jiang, Bing

    2013-01-01

    The electroless etching technique combined with the process of UV/Ozone pretreatment is presented for wafer-scale fabrication of the silicon nanowire (SiNW) arrays. The high-level uniformity of the SiNW arrays is estimated by the value below 0.2 of the relative standard deviation of the reflection spectra on the 4-in. wafer. Influence of the UV/Ozone pretreatment on the formation of SiNW arrays is investigated. It is seen that a very thin SiO 2 produced by the UV/Ozone pretreatment improves the uniform nucleation of Ag nanoparticles (NPs) on the Si surface because of the effective surface passivation. Meanwhile, the SiO 2 located among the adjacent Ag NPs can obstruct the assimilation growth of Ag NPs, facilitating the deposition of the uniform and dense Ag NPs catalysts, which induces the formation of the SiNW arrays with good uniformity and high filling ratio. Furthermore, the remarkable antireflective and hydrophobic properties are observed for the SiNW arrays which display great potential in self-cleaning antireflection applications

  13. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  14. Fusion Canada issue 10

    International Nuclear Information System (INIS)

    1990-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Fusion Materials Research, ITER physics research, fusion performance record at JET, and design options for reactor building. 4 figs

  15. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  16. Inertial confinement fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Wood, L.L.

    1988-01-01

    Edward Teller has been a strong proponent of harnessing nuclear explosions for peaceful purposes. There are two approaches: Plowshare, which utilizes macro- explosions, and inertial confinement fusion, which utilizes microexplosions. The development of practical fusion power plants is a principal goal of the inertial program. It is remarkable that Teller's original thermonuclear problem, how to make super high yield nuclear explosions, and the opposite problem, how to make ultra low yield nuclear explosions, may both be solved by Teller's radiation implosion scheme. This paper reports on the essential physics of these two thermonuclear domains, which are separated by nine orders of magnitude in yield, provided by Teller's similarity theorem and its exceptions. Higher density makes possible thermonuclear burn of smaller masses of fuel. The leverage is high: the scale of the explosion diminishes with the square of the increase in density. The extraordinary compressibility of matter, first noticed by Teller during the Los Alamos atomic bomb program, provides an almost incredible opportunity to harness fusion. The energy density of thermonuclear fuels isentropically compressed to super high-- -densities---even to ten thousand times solid density---is small compared to the energy density at thermonuclear ignition temperatures. In small masses of fuel imploded to these super high matter densities, the energy required to achieve ignition may be greatly reduced by exploiting thermonuclear propagation from a relatively small hot spot

  17. Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mima, K

    2012-09-15

    In 1917, Albert Einstein suggested the theory of stimulated emission of light that led to the development of the laser. The first laser, based on Einstein's theory, was demonstrated by the Maiman experiment in 1960. In association with the invention and developments of the laser, N.G. Basov, A. Prokorov and C.H. Towns received the Nobel prize for physics in 1963. On the other hand, it had been recognized that nuclear fusion energy is the energy source of our universe. It is the origin of the energy in our sun and in the stars. Right after the laser oscillation experiment, it was suggested by J. Nuckolls, E. Teller and S. Colgate in the USA and A. Sakharov in the USSR that nuclear fusion induced by lasers be used to solve the energy problem. Following the suggestion, the pioneering works for heating plasmas to a thermonuclear temperature with a laser were published by N. Basov, O.N. Krohin, J.M. Dawson, C.R. Kastler, H. Hora, F. Flux and S. Eliezer. The new concept of fusion ignition and burn by laser 'implosion' was proposed by J. Nuckolls, which extended the spherically imploding shock concept discovered by G. Guderley to the laser fusion concept. Since then, laser fusion research has started all over the world. For example, many inertial fusion energy (IFE) facilities have been constructed for investigating implosion physics: Lasers: GEKKO I, GEKKO II, GEKKO IV, GEKKO MII and GEKKO xII at ILE, Osaka University, Japan; JANUS, CYCLOPS, ARUGUS, SHIVA and NOVA at Lawrence Livermore National Laboratory (LLNL), USA; OMEGA at the Laboratory for Laser Energetics (LLE), University of Rochester, USA; PHEBUS at Limeil, Paris, France; the ASTERIx iodine laser at the Max-Planck-Institut fuer Plasmaphysik (IPP), Garching, Germany; MPI, GLECO at the Laboratoire d'Utilisation des Lasers Intenses (LULI), ecole Polytecnique, France; HELIOS at Los Alamos National Laboratory, USA; Shengan II at the Shanghai Institute of Optics and Fine Mechanics, China; VULCAN at the Rutherford

  18. Hesitant birth of cold fusion

    International Nuclear Information System (INIS)

    Bockris, J.O.

    1992-01-01

    John O'M. Bockris, a distinguished chemistry professor at Texas A ampersand M University, finds the reaction to the announcement of the discovery of cold fusion curious. Two years earlier, he notes, there had been a comparable announcement concerning the discovery of high-temperature superconductivity; it received favorable press coverage for months. The cold-fusion announcement, on the other hand, was met with dour skepticism. When other researchers failed in efforts to duplicate the findings of Martin Fleischmann and B. Stanley Pons, Bockris says, the two scientists were held up to ridicule. Bockris says he found a deep emotional opposition to cold fusion, even within his own department and university. This opposition is fueled in large part, he believes, by big science and the hot fusion lobby. A key indicator of cold fusion is the presence of tritium, Brockis claims. At Texas A ampersand M, large amounts of tritium have been found in some experiments; this also has occurred in experiments at more than 40 laboratories in nine countries, he says. Excess heat production is more difficult to attain, he acknowledges. The cold-fusion controversy has uncovered some unflattering characteristics of the scientific community, Bockris says. Among them are: scientists are no less driven by emotion that business people or politicians; research funding decisions serve to perpetuate the goals of politically powerful interest groups; and ideas have great inertia once planted in a scientist's mind

  19. Germanium photodetectors fabricated on 300 mm silicon wafers for near-infrared focal plane arrays

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Sood, Ashok K.

    2017-09-01

    SiGe p-i-n photodetectors have been fabricated on 300 mm (12") diameter silicon (Si) wafers utilizing high throughput, large-area complementary metal-oxide semiconductor (CMOS) technologies. These Ge photodetectors are designed to operate in room temperature environments without cooling, and thus have potential size and cost advantages over conventional cooled infrared detectors. The two-step fabrication process for the p-i-n photodetector devices, designed to minimize the formation of defects and threading dislocations, involves low temperature epitaxial growth of a thin p+ (boron) Ge seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated uniform layer compositions with well defined layer interfaces and reduced dislocation density. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) was likewise employed to analyze the doping levels of the p+ and n+ layers. Current-voltage (I-V) measurements demonstrated that these SiGe photodetectors, when exposed to incident visible-NIR radiation, exhibited dark currents down below 1 μA and significant enhancement in photocurrent at -1 V. The zero-bias photocurrent was also relatively high, showing a minimal drop compared to that at -1 V bias.

  20. Confusion about nuclear fusion: a false report is laid bare

    International Nuclear Information System (INIS)

    Hintsches, E.

    1983-01-01

    The author discusses the inaccurate and precipitate news of alleged successful controlled nuclear fusion in the Tokamak Fusion Test Reactor at Princeton University. The later modified published report indicated that in a first test, fractional second operation had produced plasma gas temperature of 100,000 0 C whereas 100 million degrees C is necessary for hydrogen nuclear fusion. Also power generation from nuclear fusion is still a long term goal. Problems of nuclear fusion are very briefly mentioned, and an impression of the Tokamak Fusion Test Reactor is illustrated. (H.V.H.)

  1. A Study of the Charge Trap Transistor (CTT) for Post-Fab Modification of Wafers

    Science.gov (United States)

    2018-04-01

    AFRL-RY-WP-TR-2018-0030 A STUDY OF THE CHARGE TRAP TRANSISTOR (CTT) FOR POST- FAB MODIFICATION OF WAFERS Subramanian S. Iyer University of California...Final 13 June 2016 – 13 December 2017 4. TITLE AND SUBTITLE A STUDY OF THE CHARGE TRAP TRANSISTOR (CTT) FOR POST- FAB MODIFICATION OF WAFERS 5a. CONTRACT

  2. Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab

    NARCIS (Netherlands)

    Tilmans, H.A.C.; Ziad, H.; Jansen, Henricus V.; Di Monaco, O.; Jourdain, A.; De Raedt, W.; Rottenberg, X.; De Backer, E.; Decoussernaeker, A.; Baert, K.

    2001-01-01

    Reports on wafer-level packaged RF-MEMS switches fabricated in a commercial CMOS fab. Switch fabrication is based on a metal surface micromachining process. A novel wafer-level packaging scheme is developed, whereby the switches are housed in on-chip sealed cavities using benzocyclobutene (BCB) as

  3. Synchrotron radiation total reflection x-ray fluorescence analysis; of polymer coated silicon wafers

    International Nuclear Information System (INIS)

    Brehm, L.; Kregsamer, P.; Pianetta, P.

    2000-01-01

    It is well known that total reflection x-ray fluorescence (TXRF) provides an efficient method for analyzing trace metal contamination on silicon wafer surfaces. New polymeric materials used as interlayer dielectrics in microprocessors are applied to the surface of silicon wafers by a spin-coating process. Analysis of these polymer coated wafers present a new challenge for TXRF analysis. Polymer solutions are typically analyzed for bulk metal contamination prior to application on the wafer using inductively coupled plasma mass spectrometry (ICP-MS). Questions have arisen about how to relate results of surface contamination analysis (TXRF) of a polymer coated wafer to bulk trace analysis (ICP-MS) of the polymer solutions. Experiments were done to explore this issue using synchrotron radiation (SR) TXRF. Polymer solutions were spiked with several different concentrations of metals. These solutions were applied to silicon wafers using the normal spin-coating process. The polymer coated wafers were then measured using the SR-TXRF instrument set-up at the Stanford Synchrotron Radiation Laboratory (SSRL). Several methods of quantitation were evaluated. The best results were obtained by developing calibration curves (intensity versus ppb) using the spiked polymer coated wafers as standards. Conversion of SR-TXRF surface analysis results (atoms/cm 2 ) to a volume related concentration was also investigated. (author)

  4. Comparison of silicon strip tracker module size using large sensors from 6 inch wafers

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.

  5. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization

    DEFF Research Database (Denmark)

    Mackenzie, David; Buron, Jonas Christian Due; Whelan, Patrick Rebsdorf

    2015-01-01

    Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 140......-effect mobility, doping level, on–off ratio, and conductance minimum before and after laser ablation fabrication....

  6. Locally-enhanced light scattering by a monocrystalline silicon wafer

    Directory of Open Access Journals (Sweden)

    Li Ma

    2018-03-01

    Full Text Available We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  7. Joint Research on Scatterometry and AFM Wafer Metrology

    Science.gov (United States)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  8. Coherent spin transport through a 350 micron thick silicon wafer.

    Science.gov (United States)

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  9. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  10. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  11. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    Science.gov (United States)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  12. Development of thin film measurement program of wafer for spin etcher

    International Nuclear Information System (INIS)

    Seo, Hak Suk; Kim, No Hyu; Kim, Young Chul; Cho, Jung Keun; Bae, Jung Yong

    2001-01-01

    This paper proposes a thickness measurement method of silicon-oxide and poly-silicon film deposited on 12 inch silicon wafer for spin etcher. Krypton lamp is used as a light source for generating a wide-band spectrum, which is guided and focused on the wafer surface through a optical fiber cable. Interference signal from the film is detected by optical sensor to determine the thickness of the film using spectrum analysis and several signal processing techniques including curve-fitting and filtering. Test wafers with two kinds of priori-known films, silicon-oxide(100nm) and poly-silicon(300nm), are measured under the condition that the wafer is spinning at 20Hz and DI water flowing on the wafer surface. From experiment results the algorithm presented in the paper is proved to be effective with accuracy of maximum 6.5% error.

  13. Development of thin film measurement program of wafer for spin etcher

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hak Suk; Kim, No Hyu; Kim, Young Chul [Korea University of Technology and Education, Cheonan (Korea, Republic of); Cho, Jung Keun; Bae, Jung Yong [Korea DNS, Cheonan (Korea, Republic of)

    2001-11-15

    This paper proposes a thickness measurement method of silicon-oxide and poly-silicon film deposited on 12 inch silicon wafer for spin etcher. Krypton lamp is used as a light source for generating a wide-band spectrum, which is guided and focused on the wafer surface through a optical fiber cable. Interference signal from the film is detected by optical sensor to determine the thickness of the film using spectrum analysis and several signal processing techniques including curve-fitting and filtering. Test wafers with two kinds of priori-known films, silicon-oxide(100nm) and poly-silicon(300nm), are measured under the condition that the wafer is spinning at 20Hz and DI water flowing on the wafer surface. From experiment results the algorithm presented in the paper is proved to be effective with accuracy of maximum 6.5% error.

  14. Crack detection and analyses using resonance ultrasonic vibrations in full-size crystalline silicon wafers

    International Nuclear Information System (INIS)

    Belyaev, A.; Polupan, O.; Dallas, W.; Ostapenko, S.; Hess, D.; Wohlgemuth, J.

    2006-01-01

    An experimental approach for fast crack detection and length determination in full-size solar-grade crystalline silicon wafers using a resonance ultrasonic vibrations (RUV) technique is presented. The RUV method is based on excitation of the longitudinal ultrasonic vibrations in full-size wafers. Using an external piezoelectric transducer combined with a high sensitivity ultrasonic probe and computer controlled data acquisition system, real-time frequency response analysis can be accomplished. On a set of identical crystalline Si wafers with artificially introduced periphery cracks, it was demonstrated that the crack results in a frequency shift in a selected RUV peak to a lower frequency and increases the resonance peak bandwidth. Both characteristics were found to increase with the length of the crack. The frequency shift and bandwidth increase serve as reliable indicators of the crack appearance in silicon wafers and are suitable for mechanical quality control and fast wafer inspection

  15. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    Science.gov (United States)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.

  17. Application of a layout/material handling design method to a furnace area in a 300 mm wafer fab

    NARCIS (Netherlands)

    Hesen, P.M.C.; Renders, P.J.J.; Rooda, J.E.

    2001-01-01

    For many years, material handling within the semiconductor industry has become increasingly important. With the introduction of 300 mm wafer production, ergonomics and product safety become more critical. Therefore, the manufacturers of semiconductor wafer fabs are considering the automation of

  18. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  19. Stress and phase changes in a low-thermal-expansion Al-3at.%Ge alloy film on oxidized silicon wafers

    International Nuclear Information System (INIS)

    Tu, K.N.; Rodbell, K.P.; Herd, S.R.; Mikalsen, D.J.

    1993-01-01

    The alloy of Al-3at.%Ge has been found to have a low thermal expansion and contraction in the temperature range of room temperature to 400 C. The reason for the low thermal contraction (or expansion) is the precipitation (or dissolution) of Ge in the alloy. The Ge precipitates have a diamond structure in which each Ge atom occupies a much larger atomic volume than a Ge atom dissolved substitutionally in Al. The volume difference compensates for the effect of thermal expansion and contraction with changing temperature which in turn reduces the thermal stress due to thermal mismatch. The technique of wafer bending was used to determine the stress of the alloy film on oxidized silicon wafers upon thermal cycling; indeed, it is much lower than that of pure Al on identical wafers. The morphology of precipitation and dissolution of Ge in Al has been studied by transmission and scanning electron microscopy. It is found that the precipitation follows a discontinuous mode and occurs predominantly along grain boundaries. In dissolving the Ge precipitates into Al, voids are left behind because of the volume difference. It is proposed that this may explain the enhancement of nucleation of voids in the alloy film upon thermal cycling. (orig.)

  20. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  1. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel

    2018-01-01

    JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze to the out......JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze...... to the outside for conceptual inspiration and methodological tools lends itself to a journalism studies that is a fusion cuisine of media, communication, and related scholarship. However, what happens when this object becomes as fragmented and multifaceted as the ways we study it? This essay addresses...

  2. Synthesis of thermoresponsive poly(N-isopropylacrylamide) brush on silicon wafer surface via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Eylem; Demirci, Serkan [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey); Caykara, Tuncer, E-mail: caykara@gazi.edu.t [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey)

    2010-08-31

    Thermoresponsive poly(N-isopropylacrylamide) [poly(NIPAM)] brush on silicon wafer surface was prepared by combining the self-assembled monolayer of initiator and atom transfer radical polymerization (ATRP). The resulting polymer brush was characterized by in situ reflectance Fourier transform infrared spectroscopy, atomic force microscopy and ellipsometry techniques. Gel permeation chromatography determination of the number-average molecular weight and polydispersity index of the brush detached from the silicon wafer surface suggested that the surface-initiated ATRP method can provide relatively homogeneous polymer brush. Contact angle measurements exhibited a two-stage increase upon heating over the board temperature range 25-45 {sup o}C, which is in contrast to the fact that free poly(NIPAM) homopolymer in aqueous solution exhibits a phase transition at ca. 34 {sup o}C within a narrow temperature range. The first de-wetting transition takes place at 27 {sup o}C, which can be tentatively attributed to the n-cluster induced collapse of the inner region of poly(NIPAM) brush close to the silicon surface; the second de-wetting transition occurs at 38 {sup o}C, which can be attributed to the outer region of poly(NIPAM) brush, possessing much lower chain density compared to that of the inner part.

  3. Stabilisation of a thin crystalline Si wafer solar cell using glass substrate; Duenne kristalline Silizium Wafer-Solarzelle mit Glastraeger stabilisiert

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Maria

    2009-07-01

    An attempt was made to stabilise ultrathin crystalline silicon wafers (< 100 {mu}m) by a support material (BOROFLOAT33 by Schott Glas). It was found that the total serial resistance results mainly from the specific resistance of the back contact, and that especially the ultrathin solar cells have high recombination in the back. The ultrathin Si wafers also are slightly corrugated, which results in uneven joining of the Si wafer with the glass support. For optimisation, the solar cells of this specific types, with different thicknesses, were modelled in the one-dimensional simulation code PC1D, including all material-specific and electric properties. It was found that a slight reduction of the serial resistance will be enough for a significant improvement of the efficiency of the stabilized solar cell. With this knowledge, selective optimisation of the stabilised solar cells was possible, with the following results: 1. The improved temperature-time profile of the RTP step will improve the solar cell parameters for all Si thicknesses, which is assumed to be the result of better quality of the Al/Si back contact. 2. Thicker aluminium layers improved passivation on the back of solar cells with a thickness of 300 {mu}m and 120 {mu}m. In thinner stabilised solar cells, this measure resulted in enhanced formation of shunts and did not reduce the recombination rate on the back of the solar cell. 3. An additional optimisation step was the introduction of the so-called 'combined method' in which part of the aluminium layer is replaced by silkscreen paste. This combination, with adequate preparation, ensures uniform joining of the ultrathin silicon to the glass carrier. The resulting intermediate layers are highly homogeneous and have good fill factors and current densities for thin solar cells with a si thickness of 60 {mu}m. A decisive argument for the combined method is its near-100% reproducibility. [German] Ziel dieser Arbeit ist es sehr duenne kristalline

  4. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  5. Fast power cycle for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Fillo, J.; Makowitz, H.

    1978-01-01

    The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures [1600 0 F to 3000 0 F (870 to 1650 0 C)], number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000 0 F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency

  6. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    Science.gov (United States)

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  7. Deposition uniformity, particle nucleation and the optimum conditions for CVD in multi-wafer furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.

    1996-06-01

    A second-order perturbation solution describing the radial transport of a reactive species and concurrent deposition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak one-sided maximum; deposition rates fall as pressures are reduced but remain nearly constant at all pressures above the optimum value. The deposition rate is also maximized subject to dual constraints on the uniformity and particle nucleation rate. In this case, the optimum pressure, optimum temperature and optimum reactant fraction are similarly obtained, and the resulting maximum deposition rate is well defined. These results are also applicable to CVI processes used in composites manufacturing.

  8. Design and development of wafer-level near-infrared micro-camera

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2015-08-01

    SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.

  9. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  10. Fusion Canada issue 28

    International Nuclear Information System (INIS)

    1995-06-01

    A short bulletin from the National Fusion Program highlighting in this issue the Canada - US fusion meeting in Montreal, fusion breeder work in Chile, new management at CFFTP, fast electrons in tokamaks: new data from TdeV, a program review of CCFM and Velikhov to address Montreal fusion meeting. 1 fig

  11. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  12. Fusion engineering. Vol. 2

    International Nuclear Information System (INIS)

    Young, N.E.; Pinter, G.R.; Spinos, F.R.

    1983-01-01

    An x-ray crystal spectrometer is scheduled for installation in the Tokamak Fusion Test Reactor in 1984 coinciding with the TFTR deuterium operation phase. This spectrometer is designed to measure the spectra of hydrogen-like and helium-like impurities in the plasma. Ion temperatures electron temperatures, electron density and the distribution of impurity charge states are obtained from the x-ray detector count ratios. The velocity of the toroidal rotation of the plasma is also discerned using this device. The x-ray crystal spectrometer is based on the Bragg diffraction of x-rays from a curved crystal impinging on a multiwire proportional counter. Only those x-rays that satisfy the Bragg relationship (lambda =2d sin theta) will be diffracted and strike the proportional counter. This paper is limited to a discussion of the physical characteristics of the spectrometer and the methods devised to satisfy the operational aspects of such a device

  13. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    Science.gov (United States)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  14. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    Science.gov (United States)

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  15. Tritium in fusion reactor components

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.; Talbot, J.B.

    1980-01-01

    When tritium is used in a fusion energy experiment or reactor, several implications affect and usually restrict the design and operation of the system and involve questions of containment, inventory, and radiation damage. Containment is expected to be particularly important both for high-temperature components and for those components that are prone to require frequent maintenance. Inventory is currently of major significance in cases where safety and environmental considerations limit the experiments to very low levels of tritium. Fewer inventory restrictions are expected as fusion experiments are placed in more-remote locations and as the fusion community gains experience with the use of tritium. However, the advent of power-producing experiments with high-duty cycle will again lead to serious difficulties based principally on tritium availability; cyclic operations with significant regeneration times are the principal problems

  16. Electronic properties of interfaces produced by silicon wafer hydrophilic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, Maxim

    2011-07-15

    The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. A new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle ({proportional_to}0.5 ), but with four different twist misorientation angles Atw (being of < , 3 , 6 and 30 , respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1 and 3 , whereas the prevalent deep levels - in LA-samples with Atw of 6 and 30 . The critical twist

  17. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  18. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  19. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  20. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  1. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  2. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wobrauschek, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Kregsamer, P [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Ladisich, W [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Streli, C [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria); Pahlke, S [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Fabry, L [Wacker Chemitronic GmbH, D-84479 Burghausen (Germany); Garbe, S [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Haller, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Knoechel, A [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany); Radtke, M [Institut fuer Anorg. u. Angew. Chemie, Universitaet Hamburg, Martin-Luther King-Pl.6, D-20146 Hamburg (Germany)

    1995-09-11

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.).

  3. TXRF with synchrotron radiation. Analysis of Ni on Si-wafer surfaces

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.; Ladisich, W.; Streli, C.; Pahlke, S.; Fabry, L.; Garbe, S.; Haller, M.; Knoechel, A.; Radtke, M.

    1995-01-01

    SR-TXRF (Synchrotron Radiation excited Total Reflection X-ray Fluorescence Analysis) with monoenergetic radiation produced by a W/C multilayer monochromator has been applied to the analysis of Ni on a Si-wafer surface. An intentionally contaminated wafer with 100 pg has been used to determine the detection limits. 13 fg have been achieved for Ni at a beam current of 73 mA and extrapolated to 1000 s. This technique simulates the sample preparation technique of Vapour Phase Decomposition (VPD) on a wafer surface. (orig.)

  4. A modified occlusal wafer for managing partially dentate orthognathic patients--a case series.

    Science.gov (United States)

    Soneji, Bhavin Kiritkumar; Esmail, Zaid; Sharma, Pratik

    2015-03-01

    A multidisciplinary approach is essential in orthognathic surgery to achieve stable and successful outcomes. The model surgery planning is an important aspect in achieving the desired aims. An occlusal wafer used at the time of surgery aids the surgeon during correct placement of the jaws. When dealing with partially dentate patients, the design of the occlusal wafer requires modification to appropriately position the jaw. Two cases with partially dentate jaws are presented in which the occlusal wafer has been modified to provide stability at the time of surgery.

  5. Analysis and optimization of silicon wafers wire sawing; Analyse et optimisation du procede de decoupe de plaques de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Rouault de Coligny, P.

    2002-09-15

    This work has been done at the Centre de Mise en Forme des Materiaux and supported by the Agence de l'Environnement et la Maitrise de l'Energie and Photowatt International SA. It concerns one of the stages of the production of photovoltaic solar cells: the cutting of multi-crystalline silicon wafers by wire sawing. A review of the literature combined with the observation of rough wafers shows that wire sawing involves 3-body abrasion and that material removal is achieved in a ductile manner and forms micro-chips. Therefore, the depth of indentation which is necessary for the ductile-fragile transition as shown by the review of the literature is not reached. The resulting abrasion can be described thanks to Archard's Law. The subsurface damage is 2.5 {mu}m deep. A thermal study has shown that the temperature of the cutting is no higher than about 50 deg. C and that it depends on how much heat can be evacuated by the wire. Analyzing the flaws of the wafers has enabled us to identify their origins and to find solutions. The study of the wire's wear has proved that its diameter can be reduced only if the wire is drawn continuously. Energy can be saved at various stages, the surface of the wafers can be improved, these three arguments plead for the suppression of the back and forth. A tribological device has been set up which allows us to study the abrasion of silicon in the same conditions as in the wire sawing. A mechanical model linking the bending of the wire to the parameters collected during the wire sawing process can predict how high the wire web will be in the transitional and permanent regimes, the contact pressure and the wire wear. Material removal by plane strain scratch tests has been numerically simulated. The orders of magnitude of wear coefficients are identical to those deduced from tribological simulations and to those measured on the saws. This approach has opened new prospects which will improve the process by optimizing the

  6. The Role of the JET Project in Global Fusion Research

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1983-01-01

    The aim of nuclear fusion research is to make fusion energy available as a new energy source. Fusion processes occur naturally in the sun, where hydrogen nuclei release energy by combining to form helium. A fusion reactor on earth will require even higher temperatures than in the interior...... of the sun, and it will be based on deuterium and tritium reactions. JET (Joint European Torus) is a major fusion experiment now under construction near Abingdon in the UK It is aimed at producing conditions approximating those necessary in a fusion reactor. The results expected from JET should permit...... a realistic evaluation of the prospects for fusion power and serve as a basis for the design of the next major fusion experiment....

  7. A metallic buried interconnect process for through-wafer interconnection

    International Nuclear Information System (INIS)

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G

    2008-01-01

    In this paper, we present the design, fabrication process and experimental results of electroplated metal interconnects buried at the bottom of deep silicon trenches with vertical sidewalls. A manual spray-coating process along with a unique trench-formation process has been developed for the electroplating of a metal interconnection structure at the bottom surface of the deep trenches. The silicon etch process combines the isotropic dry etch process and conventional Bosch process to fabricate a deep trench with angled top-side edges and vertical sidewalls. The resulting trench structure, in contrast to the trenches fabricated by wet anisotropic etching, enables spray-coated photoresist patterning with good sidewall and top-side edge coverage while maintaining the ability to form a high-density array of deep trenches without excessive widening of the trench opening. A photoresist spray-coating process was developed and optimized for the formation of electroplating mold at the bottom of 300 µm deep trenches having vertical sidewalls. A diluted positive tone photoresist with relatively high solid content and multiple coating with baking between coating steps has been experimentally proven to provide high quality sidewall and edge coverage. To validate the buried interconnect approach, a three-dimensional daisy chain structure having a buried interconnect as the bottom connector and traces on the wafer surface as the top conductor has been designed and fabricated

  8. Analysis of temperature profiles and the mechanism of silicon substrate plastic deformation under epitaxial growth

    International Nuclear Information System (INIS)

    Mirkurbanov, H.A.; Sazhnev, S.V.; Timofeev, V.N.

    2004-01-01

    Full text: Thermal treatment of silicon wafers holds one of the major place in the manufacturing of semi-conductor devices. Thermal treatment includes wafer annealing, thermal oxidation, epitaxial growing etc. Quality of wafers in the high-temperature processes (900-1200 deg C) is estimated by the density of structural defects, including areas of plastic deformation, which are shown as the slip lines appearance. Such areas amount to 50-60 % of total wafer surface. The plastic deformation is caused by the thermal stresses. Experimental and theoretical researches allowed to determine thermal balance and to construct a temperature profiles throughout the plate surface. Thermal stresses are caused by temperature drop along the radius of a wafer and at the basic peripheral ring. The threshold temperature drop between center f a wafer and its peripherals (ΔT) for slip lines appearance, amounts to 15-17 deg. C. At the operating temperature of 900-1200 deg. C and ΔT>20 deg. C, the stresses reach the silicon yield point. According to the results of the researches of structure and stress profiles in a wafer, the mechanism of slip lines formation has been constructed. A source of dislocations is the rear broken layer of thickness 8-10 microns, formed after polishing. The micro-fissures with a density 10 5 -10 6 cm -2 are the sources of dislocations. Dislocations move on a surface of a wafer into a slip plane (111). On a wafer surface with orientation (111) it is possible to allocate zones where the tangential stress vector is most favorably directed with respect to a slip plane leaving on a surface, i.e. the shift stresses are maximal in the slip plane. The way to eliminate plastic deformation is to lower the temperature drop to a level of <15 deg. C and elimination of the broken layer in wafer

  9. 1366 Project Automate: Enabling Automation for <$0.10/W High-Efficiency Kerfless Wafers Manufactured in the US

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2017-05-10

    For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10 billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).

  10. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-03-04

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

  11. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  12. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  13. Magnetic fusion and project ITER

    International Nuclear Information System (INIS)

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ''International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind

  14. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    Current, M.I.; Lukaszek, W.; Dixon, W.; Vella, M.C.; Messick, C.; Shideler, J.; Reno, S.

    1994-02-01

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  15. Fusion technology: The Iter fusion experiment

    International Nuclear Information System (INIS)

    Dietz, K.J.

    1994-01-01

    Plans for the Iter international fusion experiment, in which the European Union, Japan, Canada, Russia, Sweden, Switzerland, and the USA cooperate, were begun in 1985, and construction work started in early 1994. These activities serve for the preparation of the design and construction documents for a research reactor in which a stable fusion plasma is to be generated. This is to be the basis for the construction of a fusion reactor for electricity generation. Preparatory work was performed in the Tokamak experiments with JET and TFTR. The fusion power of 1.5 GW will be attained, thus enabling Iter to keep a deuterium-tritium plasma burning. (orig.) [de

  16. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  17. Clean steels for fusion

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels

  18. Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates.

    Science.gov (United States)

    Deng, Bing; Pang, Zhenqian; Chen, Shulin; Li, Xin; Meng, Caixia; Li, Jiayu; Liu, Mengxi; Wu, Juanxia; Qi, Yue; Dang, Wenhui; Yang, Hao; Zhang, Yanfeng; Zhang, Jin; Kang, Ning; Xu, Hongqi; Fu, Qiang; Qiu, Xiaohui; Gao, Peng; Wei, Yujie; Liu, Zhongfan; Peng, Hailin

    2017-12-26

    Wrinkles are ubiquitous for graphene films grown on various substrates by chemical vapor deposition at high temperature due to the strain induced by thermal mismatch between the graphene and substrates, which greatly degrades the extraordinary properties of graphene. Here we show that the wrinkle formation of graphene grown on Cu substrates is strongly dependent on the crystallographic orientations. Wrinkle-free single-crystal graphene was grown on a wafer-scale twin-boundary-free single-crystal Cu(111) thin film fabricated on sapphire substrate through strain engineering. The wrinkle-free feature of graphene originated from the relatively small thermal expansion of the Cu(111) thin film substrate and the relatively strong interfacial coupling between Cu(111) and graphene, based on the strain analyses as well as molecular dynamics simulations. Moreover, we demonstrated the transfer of an ultraflat graphene film onto target substrates from the reusable single-crystal Cu(111)/sapphire growth substrate. The wrinkle-free graphene shows enhanced electrical mobility compared to graphene with wrinkles.

  19. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  20. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    Science.gov (United States)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  1. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Bo Xie

    2015-09-01

    Full Text Available This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months, a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.

  2. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang

    2010-09-08

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. © 2010 American Chemical Society.

  3. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    Science.gov (United States)

    Lin, YuPo J [Naperville, IL; Henry, Michael P [Batavia, IL; Snyder, Seth W [Lincolnwood, IL

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  4. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  5. In vitro and in vivo evaluation of a sublingual fentanyl wafer formulation

    Science.gov (United States)

    Lim, Stephen CB; Paech, Michael J; Sunderland, Bruce; Liu, Yandi

    2013-01-01

    Background The objective of this study was to prepare a novel fentanyl wafer formulation by a freeze-drying method, and to evaluate its in vitro and in vivo release characteristics, including its bioavailability via the sublingual route. Methods The wafer formulation was prepared by freeze-drying an aqueous dispersion of fentanyl containing sodium carboxymethylcellulose and amylogum as matrix formers. Uniformity of weight, friability, and dissolution testing of the fentanyl wafer was achieved using standard methods, and the residual moisture content was measured. The fentanyl wafer was also examined using scanning electron microscopy and x-ray diffraction. The absolute bioavailability of the fentanyl wafer was evaluated in 11 opioid-naïve adult female patients using a randomized crossover design. Results In vitro release showed that almost 90% of the fentanyl dissolved in one minute. In vivo, the first detectable plasma fentanyl concentration was observed after 3.5 minutes and the peak plasma concentration between 61.5 and 67 minutes. The median absolute bioavailability was 53.0%. Conclusion These results indicate that this wafer has potential as an alternative sublingual fentanyl formulation. PMID:23596347

  6. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  7. Surface modification of silicon wafer by grafting zwitterionic polymers to improve its antifouling property

    Science.gov (United States)

    Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong

    2017-10-01

    Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.

  8. Evaluation of a cyanoacrylate dressing to manage peristomal skin alterations under ostomy skin barrier wafers.

    Science.gov (United States)

    Milne, Catherine T; Saucier, Darlene; Trevellini, Chenel; Smith, Juliet

    2011-01-01

    Peristomal skin alterations under ostomy barrier wafers are a commonly reported problem. While a number of interventions to manage this issue have been reported, the use of a topically applied cyanoacrylate has received little attention. This case series describes the use of a topical cyanoacrylate for the management of peristomal skin alterations in persons living with an ostomy. Using a convenience sample, the topical cyanoacrylate dressing was applied to 11 patients with peristomal skin disruption under ostomy wafers in acute care and outpatient settings. The causes of barrier function interruption were also addressed to enhance outcomes. Patients were assessed for wound discomfort using a Likert Scale, time to healing, and number of appliance changes. Patient satisfaction was also examined. Average reported discomfort levels were 9.5 out of 10 at the initial peristomal irritation assessment visit decreased to 3.5 at the first wafer change and were absent by the second wafer change. Wafers had increasing wear time between changes in both settings with acute care patients responding faster. Epidermal resurfacing occurred within 10.2 days in outpatients and within 7 days in acute care patients. Because of the skin sealant action of this dressing, immediate adherence of the wafer was reported at all pouch changes.

  9. The integration of InGaP LEDs with CMOS on 200 mm silicon wafers

    Science.gov (United States)

    Wang, Bing; Lee, Kwang Hong; Wang, Cong; Wang, Yue; Made, Riko I.; Sasangka, Wardhana Aji; Nguyen, Viet Cuong; Lee, Kenneth Eng Kian; Tan, Chuan Seng; Yoon, Soon Fatt; Fitzgerald, Eugene A.; Michel, Jurgen

    2017-02-01

    The integration of photonics and electronics on a converged silicon CMOS platform is a long pursuit goal for both academe and industry. We have been developing technologies that can integrate III-V compound semiconductors and CMOS circuits on 200 mm silicon wafers. As an example we present our work on the integration of InGaP light-emitting diodes (LEDs) with CMOS. The InGaP LEDs were epitaxially grown on high-quality GaAs and Ge buffers on 200 mm (100) silicon wafers in a MOCVD reactor. Strain engineering was applied to control the wafer bow that is induced by the mismatch of coefficients of thermal expansion between III-V films and silicon substrate. Wafer bonding was used to transfer the foundry-made silicon CMOS wafers to the InGaP LED wafers. Process trenches were opened on the CMOS layer to expose the underneath III-V device layers for LED processing. We show the issues encountered in the 200 mm processing and the methods we have been developing to overcome the problems.

  10. Thinking about the cold fusion fever

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio

    1989-01-01

    The excitement since March 23 on cold fusion seems to be unprecedented evidence that the people of the world are waiting for fusion power with much enthusiasm. Cold fusion is really a surprise because it does not need high temperature and because it seems to be easy to enlarge the test tube into a useful power source if the claim by Professors Pons and Fleischmann at the University of Utah are true. The second announcement of cold fusion came from the Brigham Young University, also in the state of Utah, by Professor Jones, but his report was totally different from that given by Pons and Fleischmann. From the beginning of the 'fever', physicists have been very skeptical about cold fusion. Most of the critics and criticisms are targeted on Pons and Fleischmann rather than Jones, because not only was their paper poor but also their statements have not been scientific. They insisted that the heat came from fusion reaction, but without any scientific proof. They had not carried out the basic control experiment by running the same test with ordinary water instead of heavy water. A meeting on cold fusion was held at JAERI on May 15. At the end of the meeting, the some 260 attendants knew that cold fusion was not conceivable with the current scientific knowledge. (N.K.)

  11. Fusion as a source of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Steinberg, M.

    1981-01-01

    In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000 0 C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions

  12. DynAMITe: a wafer scale sensor for biomedical applications

    International Nuclear Information System (INIS)

    Esposito, M; Wells, K; Anaxagoras, T; Fant, A; Allinson, N M; Konstantinidis, A; Speller, R D; Osmond, J P F; Evans, P M

    2011-01-01

    In many biomedical imaging applications Flat Panel Imagers (FPIs) are currently the most common option. However, FPIs possess several key drawbacks such as large pixels, high noise, low frame rates, and excessive image artefacts. Recently Active Pixel Sensors (APS) have gained popularity overcoming such issues and are now scalable up to wafer size by appropriate reticule stitching. Detectors for biomedical imaging applications require high spatial resolution, low noise and high dynamic range. These figures of merit are related to pixel size and as the pixel size is fixed at the time of the design, spatial resolution, noise and dynamic range cannot be further optimized. The authors report on a new rad-hard monolithic APS, named DynAMITe (Dynamic range Adjustable for Medical Imaging Technology), developed by the UK MI-3 Plus consortium. This large area detector (12.8 cm × 12.8 cm) is based on the use of two different diode geometries within the same pixel array with different size pixels (50 μm and 100 μm). Hence the resulting device can possess two inherently different resolutions each with different noise and saturation performance. The small and the large pixel cameras can be reset at different voltages, resulting in different depletion widths. The larger depletion width for the small pixels allows the initial generated photo-charge to be promptly collected, which ensures an intrinsically lower noise and higher spatial resolution. After these pixels reach near saturation, the larger pixels start collecting so offering a higher dynamic range whereas the higher noise floor is not important as at higher signal levels performance is governed by the Poisson noise of the incident radiation beam. The overall architecture and detailed characterization of DynAMITe will be presented in this paper.

  13. I-line stepper based overlay evaluation method for wafer bonding applications

    Science.gov (United States)

    Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.

    2018-03-01

    In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm [1]. It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems [2]. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Sibased microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated [3-6]. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules additionally require to process the backside of the wafer; thus require an accurate alignment between the front and backside of the wafer. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 µm high performance SiGe:C BiCMOS backside process module has been presented [7]. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding [8-9]. In this work, the non-contact infrared alignment system of the Nikon® i-line Stepper NSR-SF150 for both alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the

  14. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  15. Fusion reaction product diagnostics in ASDEX

    International Nuclear Information System (INIS)

    Bosch, H.S.

    1987-01-01

    A diagnostic method was developed to look for the charged fusion products from the D(D,p)T-reactions in the divertor tokamak ASDEX. With a semi-conductor detector it was possible to evaluate the ion temperature in thermal plasmas from the proton energy spectra as well as from the triton spectra. In lower-hybrid wave heated plasmas non-thermal (fast) ions were observed. These ions create fusion products with a characteristically different energy spectrum. (orig.)

  16. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  17. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  18. Fusion Canada issue 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs.

  19. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    1995-03-01

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  20. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs