WorldWideScience

Sample records for temperature vibrational spectroscopy

  1. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  2. Effects of temperature and other experimental variables on single molecule vibrational spectroscopy with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Lauhon, L. J.; Ho, W.

    2001-01-01

    Inelastic electron tunneling spectroscopy (IETS) was performed on single molecules with a variable temperature scanning tunneling microscope. The peak intensity, width, position, and line shape of single molecule vibrational spectra were studied as a function of temperature, modulation bias, bias polarity, and tip position for the (C--H,C--D) stretching vibration of acetylene (C 2 H 2 ,C 2 D 2 ) on Cu(001). The temperature broadening of vibrational peaks was found to be a consequence of Fermi smearing as in macroscopic IETS. The modulation broadening of vibrational peaks assumed the expected form for IETS. Extrapolation of the peak width to zero temperature and modulation suggested an intrinsic width of ∼4 meV due primarily to instrumental broadening. The inelastic tunneling cross section at negative bias was reduced by a factor of 1.7 for the C--H stretch mode. Low energy modes of other molecules did not show such a reduction. There was no evidence of a tip-induced Stark shift in the peak positions. The spatial variation of the inelastic signal was measured to determine the junction stability necessary for the acquisition of single molecule vibrational spectra

  3. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  4. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  5. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  6. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  7. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  8. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  9. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  10. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Science.gov (United States)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  11. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  12. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  13. Coadsorption and reaction of H2 and CO on Raney nickel: Neutron vibrational spectroscopy

    International Nuclear Information System (INIS)

    Kelley, R.D.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    Neutron vibration spectroscopy is used to study the adsorption and reaction of H 2 and Co on a catalytic nickel surface. The sample was first exposed to H 2 and than to CO. At low temperatures there is no change of vibrational modes of H in the three-fold site; at a higher temperature changes occur. Some conclusions are drawn on the reaction product. (G.Q.)

  14. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  15. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Directory of Open Access Journals (Sweden)

    Rohan Isaac

    2018-02-01

    Full Text Available Charge-transfer (CT complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  16. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  17. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  18. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  19. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  20. Vibrational spectroscopy: a clinical tool for cancer diagnostics.

    Science.gov (United States)

    Kendall, Catherine; Isabelle, Martin; Bazant-Hegemark, Florian; Hutchings, Joanne; Orr, Linda; Babrah, Jaspreet; Baker, Rebecca; Stone, Nicholas

    2009-06-01

    Vibrational spectroscopy techniques have demonstrated potential to provide non-destructive, rapid, clinically relevant diagnostic information. Early detection is the most important factor in the prevention of cancer. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analysed. In conjunction with advanced chemometrics such measurements can contribute to the diagnostic assessment of biological material. This paper also illustrates the complementary advantage of using Raman and FTIR spectroscopy technologies together. Clinical requirements are increasingly met by technological developments which show promise to become a clinical reality. This review summarises recent advances in vibrational spectroscopy and their impact on the diagnosis of cancer.

  1. General principles of vibrational spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with

  2. Determination of excitation temperature and vibrational temperature of the N2(C 3Πu, ν') state in Ne-N2 RF discharges

    International Nuclear Information System (INIS)

    Rehman, N U; Naveed, M A; Zakaullah, M; Khan, F U

    2008-01-01

    Optical emission spectroscopy is used to investigate the effect of neon mixing on the excitation and vibrational temperatures of the second positive system in nitrogen plasma generated by a 13.56 MHz RF generator. The excitation temperature is determined from Ne I line intensities, using Boltzmann's plot. The overpopulation of the levels of the N 2 (C 3 Π u , ν') states with neon mixing are monitored by measuring the emission intensities of the second positive system of nitrogen molecules. The vibrational temperature is calculated for the sequence Δν = -2, with the assumption that it follows Boltzmann's distribution. But due to overpopulation of levels, e.g. 1, 4, a linearization process was employed for such distributions allowing us to calculate the vibrational temperature of the N 2 (C 3 Π u , ν') state. It is found that the excitation temperature as well as the vibrational temperature of the second positive system can be raised significantly by mixing neon with nitrogen plasma. It is also found that the vibrational temperature increases with power and pressure up to 0.5 mbar.

  3. Two-dimensional infrared spectroscopy of vibrational polaritons.

    Science.gov (United States)

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei

    2018-04-19

    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  4. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  5. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  6. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  7. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    Science.gov (United States)

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  8. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  9. Vibrational Characterizations of Zn0.72Li0.28O/Si Thin Films Studied by Fourier Transform Raman Spectroscopy

    International Nuclear Information System (INIS)

    Myo Myat Thet; Win Kyaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2008-03-01

    The Zn0.72Li0.28O/Si (x = 0.28mol%) thin layers were fabricated on p-Si(100) substrate with five different process temperature. Vibrational characterizations of those thin films were investigated by FT- Raman spectroscopy. The resulted spectral line characters have been compared with that of Zn0.72Li0.28O/Glass thin films. Some vibrational motions of starting materials and final(candidate) thin films molecules were found in two substrates of glass and Si and vibrational frequencies were assigned by using molecular spectroscopy. Most of the frequencies of starting and final materials were found to be shifted in each of the films of two different substrates.

  10. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  11. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    Science.gov (United States)

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  12. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    Science.gov (United States)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  13. Determination of excitation temperature and vibrational temperature of the N{sub 2}(C {sup 3}{pi}{sub u}, {nu}') state in Ne-N{sub 2} RF discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, N U; Naveed, M A; Zakaullah, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Khan, F U [Department of Physics, Gomal University D.I. Khan (Pakistan)

    2008-05-01

    Optical emission spectroscopy is used to investigate the effect of neon mixing on the excitation and vibrational temperatures of the second positive system in nitrogen plasma generated by a 13.56 MHz RF generator. The excitation temperature is determined from Ne I line intensities, using Boltzmann's plot. The overpopulation of the levels of the N{sub 2} (C {sup 3}{pi}{sub u}, {nu}') states with neon mixing are monitored by measuring the emission intensities of the second positive system of nitrogen molecules. The vibrational temperature is calculated for the sequence {delta}{nu} = -2, with the assumption that it follows Boltzmann's distribution. But due to overpopulation of levels, e.g. 1, 4, a linearization process was employed for such distributions allowing us to calculate the vibrational temperature of the N{sub 2} (C {sup 3}{pi}{sub u}, {nu}') state. It is found that the excitation temperature as well as the vibrational temperature of the second positive system can be raised significantly by mixing neon with nitrogen plasma. It is also found that the vibrational temperature increases with power and pressure up to 0.5 mbar.

  14. Vibrational spectroscopy and structural analysis of complex uranium compounds (review)

    International Nuclear Information System (INIS)

    Umreiko, D.S.; Nikanovich, M.V.

    1985-01-01

    The paper reports on the combined application of experimental and theoretical methods of vibrational spectroscopy together with low-temperature luminescence data to determine the characteristic features of the formation and structure of complex systems, not only containing ligands directly coordinated to the CA uranium, but also associated with the extraspherical polyatomic electrically charged particles: organic cations. These include uranyl complexes and heterocyclical amines. Studied here were compounds of tetra-halouranylates with pyridine and its derivates, as well as dipyridyl, quinoline and phenanthroline. Structural schemes are also proposed for other uranyl complexes with protonated heterocyclical amines with a more complicated composition, which correctly reflect their spectroscopic properties

  15. Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures

    Science.gov (United States)

    Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald

    2007-03-01

    Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.

  16. Toward yrast spectroscopy in soft vibrational nuclei

    International Nuclear Information System (INIS)

    Marumori, Toshio; Kuriyama, Atsushi; Sakata, Fumihiko.

    1979-10-01

    In a formally parallel way with that exciting progress has been recently achieved in understanding the yrast spectra of the rotational nuclei in terms of the quasi-particle motion in the rotating frame, an attempt to understand the yrast spectra of the vibrational nuclei in terms of the quasi-particle motion is proposed. The essential idea is to introduce the quasi-particle motion in a generalized vibrating frame, which can be regarded as a rotating frame in the gauge space of ''physical'' phonons where the number of the physical phonons plays the role of the angular momentum. On the basis of a simple fundamental principle called as the ''invariance principle of the Schroedinger equation'', which leads us to the ''maximal decoupling'' between the physical phonon and the intrinsic modes, it is shown that the vibrational frame as well as the physical-phonon-number operator represented by the quasi-particles can be self-consistently determined. A new scope toward the yrast spectroscopy of the vibrational nuclei in terms of the quasi-particle motion is discussed. (author)

  17. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    Science.gov (United States)

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  18. Proceedings of the national conference on exploring the frontiers of vibrational spectroscopy: abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    Spectroscopy has played and is playing a very important role as it is one of the most efficient methods of molecular structure studies with the help of which direct information about the chemical compounds can be obtained. Spectroscopy has its contribution in a number of branches in areas such as medicine, industry, environment, agriculture, power, construction, forensic analysis (both criminal and civil cases), etc., where it has revolutionized the very face of these sectors. Vibrational spectroscopic (Infrared and Raman) techniques have demonstrated potential to provide non-destructive, rapid clinically relevant diagnostic information. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analyzed there by advancing the treatment of cancer. Advancement in instrumentation has allowed the development of numerous infrared and Raman spectroscopic methods. Infrared spectroscopy is tremendously used in the fields of pharmaceuticals. medical diagnostics food and agrochemical quality control, and combustion research. Raman spectroscopy is used in condensed matter physics, biomedicinal fields for tissue analysis and chemistry to study vibrational, rotational, and other low-frequency modes in a system. Keeping in mind the fast development: in the Spectroscopy, we have planned to organize a national level conference for 2 days on 'Exploring the Frontiers of Vibrational Spectroscopy' to bring out the tremendous potential of various Spectroscopic techniques available at the global level. Papers relevant to INIS are indexed separately

  19. Theory for Nonlinear Spectroscopy of Vibrational Polaritons

    OpenAIRE

    Ribeiro, RF; Dunkelberger, AD; Xiang, B; Xiong, W; Simpkins, BS; Owrutsky, JC; Yuen-Zhou, J

    2017-01-01

    Molecular polaritons have gained considerable attention due to their potential to control nanoscale molecular processes by harnessing electromagnetic coherence. Although recent experiments with liquid-phase vibrational polaritons have shown great promise for exploiting these effects, significant challenges remain in interpreting their spectroscopic signatures. In this letter, we develop a quantum-mechanical theory of pump-probe spectroscopy for this class of polaritons based on the quantum La...

  20. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  1. Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    International Nuclear Information System (INIS)

    Schröter, M.; Ivanov, S.D.; Schulze, J.; Polyutov, S.P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-01-01

    The influence of exciton–vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein–pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton–vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton–vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton–vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton–vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system–bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM

  2. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  3. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2000-01-01

    Spectroscopy in Catalysis describes the most important modern analytical techniques used to investigate catalytic surfaces. These include electron spectroscopy (XPS, UPS, AES, EELS), ion spectroscopy (SIMS, SNMS, RBS, LEIS), vibrational spectroscopy (infrared, Raman, EELS), temperature-programmed

  4. Vibrational spectroscopy in diagnosis and screening

    CERN Document Server

    Severcan, F

    2012-01-01

    In recent years there has been a tremendous growth in the use of vibrational spectroscopic methods for diagnosis and screening. These applications range from diagnosis of disease states in humans, such as cancer, to rapid identification and screening of microorganisms. The growth in such types of studies has been possible thanks to advances in instrumentation and associated computational and mathematical tools for data processing and analysis. This volume of Advances in Biomedical Spectroscopy contains chapters from leading experts who discuss the latest advances in the application of Fourier

  5. On selection rules in vibrational and rotational molecular spectroscopy

    International Nuclear Information System (INIS)

    Guichardet, A.

    1986-01-01

    The aim of this work is a rigorous proof of the Selection Rules in Molecular Spectroscopy (Vibration and Rotation). To get this we give mathematically rigorous definitions of the (tensor) transition operators, in this case the electric dipole moment; this is done, firstly by considering the molecule as a set of point atomic kernels performing arbitrary motions, secondly by limiting ourselves either to infinitesimal vibration motions, or to arbitrary rotation motions. Then the selection rules follow from an abstract formulation of the Wigner-Eckart theorem. In a last paragraph we discuss the problem of separating vibration and rotation motions; very simple ideas from Differential Geometry, linked with the ''slice theorem'', allow us to define the relative speeds, the solid motions speeds, the Coriolis energies and the moving Eckart frames [fr

  6. Spectroscopie de vibration infrarouge du silicium amorphe ...

    African Journals Online (AJOL)

    ... évaporé (a-Si:H) préparées dans un bâti ultra-vide (UHV). L'hydrogène atomique est obtenu à l'aide d'un plasma dans un tube à décharge dirigé vers le porte-substrat. Les fréquences de vibrations et la nature des liaisons Si-H ont été analysées à partir des mesures de spectroscopie infrarouge à transformée de Fourier.

  7. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  8. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  9. Vibrational spectroscopy on intermolecular interactions in solutions and at interfaces

    NARCIS (Netherlands)

    Nissink, Johannes Wilhelmus Maria

    1999-01-01

    In recent years, considerable progress has been made in the areas of molecular recognition and surface analysis. These fields meet in the field of sensor development, where the interaction between molecules and a suitably modified surface is of utmost importance. Vibrational spectroscopy is quite

  10. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The Composition of Intermediate Products of the Thermal Decomposition of (NH4)2ZrF6 to ZrO2 from Vibrational-Spectroscopy Data

    Science.gov (United States)

    Voit, E. I.; Didenko, N. A.; Gaivoronskaya, K. A.

    2018-03-01

    Thermal decomposition of (NH4)2ZrF6 resulting in ZrO2 formation within the temperature range of 20°-750°C has been investigated by means of thermal and X-ray diffraction analysis and IR and Raman spectroscopy. It has been established that thermolysis proceeds in six stages. The vibrational-spectroscopy data for the intermediate products of thermal decomposition have been obtained, systematized, and summarized.

  12. A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy

    International Nuclear Information System (INIS)

    Stipe, B.C.; Rezaei, M.A.; Ho, W.

    1999-01-01

    The design and performance of a variable-temperature scanning tunneling microscope (STM) is presented. The microscope operates from 8 to 350 K in ultrahigh vacuum. The thermally compensated STM is suspended by springs from the cold tip of a continuous flow cryostat and is completely surrounded by two radiation shields. The design allows for in situ dosing and irradiation of the sample as well as for the exchange of samples and STM tips. With the STM feedback loop off, the drift of the tip-sample spacing is approximately 0.001 Angstrom/min at 8 K. It is demonstrated that the STM is well-suited for the study of atomic-scale chemistry over a wide temperature range, for atomic-scale manipulation, and for single-molecule inelastic electron tunneling spectroscopy (IETS). copyright 1999 American Institute of Physics

  13. Internal Temperature Control For Vibration Testers

    Science.gov (United States)

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  14. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy.

    Directory of Open Access Journals (Sweden)

    Yiwen Sun

    Full Text Available The GP2 peptide is derived from the Human Epidermal growth factor Receptor 2 (HER2/nue, a marker protein for breast cancer present in saliva. In this paper we study the temperature dependent behavior of hydrated GP2 at terahertz frequencies and find that the peptide undergoes a dynamic transition between 200 and 220 K. By fitting suitable molecular models to the frequency response we determine the molecular processes involved above and below the transition temperature (T(D. In particular, we show that below T(D the dynamic transition is dominated by a simple harmonic vibration with a slow and temperature dependent relaxation time constant and that above T(D, the dynamic behavior is governed by two oscillators, one of which has a fast and temperature independent relaxation time constant and the other of which is a heavily damped oscillator with a slow and temperature dependent time constant. Furthermore a red shifting of the characteristic frequency of the damped oscillator was observed, confirming the presence of a non-harmonic vibration potential. Our measurements and modeling of GP2 highlight the unique capabilities of THz spectroscopy for protein characterization.

  15. Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz

    Science.gov (United States)

    Yesudas, Freeda; Mero, Mark; Kneipp, Janina; Heiner, Zsuzsanna

    2018-03-01

    Broadband vibrational sum-frequency generation (BB-VSFG) spectroscopy has become a well-established surface analytical tool capable of identifying the orientation and structure of molecular layers. A straightforward way to boost the sensitivity of the technique could be to increase the laser repetition rate beyond that of standard BB-VSFG spectrometers, which rely on Ti:sapphire lasers operating at repetition rates of 1-5 kHz. Nevertheless, possible thermally induced artifacts in the vibrational spectra due to higher laser average powers are unexplored. Here, we discuss laser power induced temperature accumulation effects that distort the BB-VSFG spectra of 1,2-diacyl-sn-glycero-3-phosphocholine at an interface between two transparent phases at repetition rates of 5, 10, 50, and 100 kHz at constant pulse energy. No heat-induced distortions were found in the spectra, suggesting that the increase in the laser repetition rate provides a feasible route to an improved signal-to-noise ratio or shorter data acquisition times in BB-VSFG spectroscopy for thin films on transparent substrates. The results have implications for future BB-VSFG spectrometers pushing the detection limit for molecular layers with low surface coverage.

  16. [Structure analysis of disease-related proteins using vibrational spectroscopy].

    Science.gov (United States)

    Hiramatsu, Hirotsugu

    2014-01-01

    Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.

  17. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  18. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  19. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  20. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  1. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.

    Science.gov (United States)

    Abraham, Baxter; Fan, Hao; Galoppini, Elena; Gundlach, Lars

    2018-03-01

    Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO 2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.

  2. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  3. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  4. Temperature dependence of the phonon structure in the high-temperature superconductor Bi2Sr2CaCu2O8 studied by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Kamaras, K.; Herr, S.L.; Porter, C.D.; Tanner, D.B.; Etemad, S.; Tarascon, J.

    1991-01-01

    We have investigated a ceramic sample of the high-temperature superconductor Bi 2 Sr 2 CaCu 2 O 8 (T c =85 K) by infrared and visible reflectance spectroscopy at several temperatures both below and above the superconducting transition. We find that the temperature variation in the vibrational region is associated with minima or antiresonance features of the optical conductivity, instead of maxima, indicating strong Fano-type electron-phonon interaction and implying that the phonon structure in the infrared is strongly affected by the ab-plane response

  5. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  6. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?

    Science.gov (United States)

    Edler, J.; Hamm, P.

    2003-08-01

    Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.

  7. A Summary Review of Correlations between Temperatures and Vibration Properties of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2014-01-01

    Full Text Available The shift of modal parameters induced by temperature fluctuation may mask the changes of vibration properties caused by structural damage and result in false structural condition identification. Thoroughly understanding the temperature effects on vibration properties of long-span bridges becomes an especially important issue before vibration-based damage detection methodologies are applied in real bridges. This paper presents an overview of current research activities and developments in the field of correlations between temperatures and vibration properties of long-span bridges. The theoretical derivation methods using classical structural dynamics and closed-form formulations are first briefly introduced. Then the trend analysis methods that are intended to extract the degree of variability in vibration property under temperature variation for different bridges by numerical analysis, laboratory test, or field monitoring are reviewed in detail. Following that, the development of quantitative models to quantify the temperature influence on vibration properties is discussed including the linear model, nonlinear model, and learning model. Finally, some promising research efforts for promoting the study of correlations between temperatures and vibration properties of long-span bridges are suggested.

  8. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    Science.gov (United States)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  9. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong

    2017-01-01

    , 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring......Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source...... and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0...

  10. Studies on the substrate mediated vibrational excitation of CO/Si(100) by means of SFG spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Lass, Kristian; Balgar, Thorsten; Hasselbrink, Eckart [Universitaet Duisburg-Essen, Fachbereich Chemie, 45117 Essen (Germany)

    2009-07-01

    Vibrational excitations of adsorbates play an important role in chemical reaction dynamics. In the past decade CO on solid surfaces was chosen as adequate model system for studying vibrational relaxation dynamics. Our work is focused on the energy dissipation of vibrationally excited CO adsorbed on a silicon surface by means of IR/Vis sum frequency generation (SFG) spectroscopy. Here we present studies on substrate mediated excitation of vibrational modes of CO on Si(100) induced by UV radiation. We suppose the observation of highly excited internal stretch vibrations of CO caused by hot electrons generated within the silicon substrate.

  11. Vibrational Spectroscopies and Chemometry for Nondestructive Identification and Differentiation of Painting Binders

    Directory of Open Access Journals (Sweden)

    Serena Carlesi

    2017-01-01

    Full Text Available A comprehensive dataset of vibrational spectra of different natural organic binding media is presented and discussed. The binding media were applied on a glass substrate and analyzed after three months of natural ageing. The combination of Raman and FT-NIR spectroscopies allows for an improved identification of these materials as Raman technique is more informative about the skeletal vibrations, while FT-NIR spectroscopy is more sensitive to the substituents and polar groups. The experimental results are initially discussed in the framework of current spectral assignment. Then, multivariate analysis (PCA is applied leading to differentiation among the samples. The two major principal components allow for a complete separation of the different classes of organic materials. Further differentiation within the same class is possible thanks to the secondary components. The loadings obtained from PCA are discussed on the basis of the spectral assignment leading to clear understanding of the physical basis of this differentiation process.

  12. Vibrational spectroscopy of shock-compressed fluid N2 and O2

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse multiplex coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N 2 shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O 2 shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N 2 , the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities, and Raman line widths. The question of excited state populations in the shock-compressed state is addressed

  13. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  14. On the potential of CARS spectroscopy in low-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    Ambrazyavichyus, A.B.; Gladkov, S.M.; Grigajtis, Yu.P.; Koroteev, N.I.

    1989-01-01

    The principles of coherent anti-Stokes Raman spectroscopy (CARS) and its application to the diagnostics of technological plasmas are briefly discussed. THe CARS spectrometer is described, developed in IPTPE, Caunas for investigations of a nitrogen plasma stream generated by an industrial plasmatron, and several CARS spectra of nitrogen molecules are presented. As the CARS signal from vibrational-rotational energy levels decreases substantially at plasma temperatures above 2000 K, an alternative scheme using electronlevels of atoms or ions has to be used. To test the method, CARS signals from the lines of the first nitrogen ion were studied in a low-voltage spark discharge. (J.U.)

  15. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  16. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  17. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    Science.gov (United States)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  18. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    Science.gov (United States)

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.

  19. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  20. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vieira, M.M.F.

    1985-01-01

    Vibrational-rotational overtones absorption solid hydrogens (H 2 , D 2 , HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H 2 and D 2 , showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H 2 and D 2 , which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*10 5 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author) [pt

  1. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  2. Low temperature vibrational spectroscopy. I. Hexachlorotellurates

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Poulsen, Finn Willy; Bjerrum, Niels

    1977-01-01

    Far infrared and Raman spectra of six hexachlorotellurate (IV) salts have been obtained at ~100 K for the first time. In the rubidium, cesium, ammonium, and tetramethylammonium salts the Raman active T2g cation lattice translatory mode was found. In the monoclinic K2[TeCl6] a number of low...... frequency lattice modes were observed and interpreted in terms of a phase transition near 165 K, similar to transitions in other K2[MX6] salts. The cubic tetramethylammonium hexachlorotellurate salt undergoes a phase transition of supposed first order at a temperature near 110 K, corresponding...

  3. Mathematical formulation of temperature fluctuation and control rod vibration in PARR

    International Nuclear Information System (INIS)

    Ansari, S.A.; Ayazuddin, S.K.

    This report describes the mathematical interpretation of experimental neutron noise spectra obtained for PARR core. A one dimensional thermal-hydraulic model of PARR core was developed to calculate the magnitude of neutron noise as a result of fluctuation in the core inlet coolant temperature. The sink structure of the neutron power spectral density as well as the dependence of observed neutron spectra on coolant velocity is also explained by the thermal hydraulic model. An attempt is made to explain the phenomena of control rod vibration by a simple eigen frequency vibration model. The calculated neutron power spectral density due to vibration and temperature noise were added and compared with the experimental power spectra obtained for PARR. (orig./A.B.)

  4. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  5. Vibrational dynamics of ice in reverse micelles

    NARCIS (Netherlands)

    Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.

    2008-01-01

    he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is

  6. Developing and understanding biofluid vibrational spectroscopy: a critical review.

    Science.gov (United States)

    Baker, Matthew J; Hussain, Shawn R; Lovergne, Lila; Untereiner, Valérie; Hughes, Caryn; Lukaszewski, Roman A; Thiéfin, Gérard; Sockalingum, Ganesh D

    2016-04-07

    Vibrational spectroscopy can provide rapid, label-free, and objective analysis for the clinical domain. Spectroscopic analysis of biofluids such as blood components (e.g. serum and plasma) and others in the proximity of the diseased tissue or cell (e.g. bile, urine, and sputum) offers non-invasive diagnostic/monitoring possibilities for future healthcare that are capable of rapid diagnosis of diseases via specific spectral markers or signatures. Biofluids offer an ideal diagnostic medium due to their ease and low cost of collection and daily use in clinical biology. Due to the low risk and invasiveness of their collection they are widely welcomed by patients as a diagnostic medium. This review underscores recent research within the field of biofluid spectroscopy and its use in myriad pathologies such as cancer and infectious diseases. It highlights current progresses, advents, and pitfalls within the field and discusses future spectroscopic clinical potentials for diagnostics. The requirements and issues surrounding clinical translation are also considered.

  7. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  8. The Fourteenth International Meeting on Time-Resolved Vibrational Spectroscopy (TRVS XIV)

    Science.gov (United States)

    2010-02-03

    conferences covering the use of advanced vibrational spectroscopy for the use of studying time-dependent molecular processes in chemistry, physics ...Netherlands a.huertaviga@uva.nl Neil Hunt Dept of  Physics , University of Strathclyde United Kingdom nhunt@phys.strath.ac Koichi Iwata Gakushuin University...Dasgupta Mark Creelman Sangdeok Shim Biochemical Reaction Dynamics, , , UC B k ler e ey 11:50 AM C W. Zinth, W. J. Schreier, J. Kubon, N. Regner, K

  9. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.; Michalak, William D.; Baker, L. Robert; An, Kwangjin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2012-01-01

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous

  10. Vibrational and electronic spectroscopy of ion-implantation-induced defects in fused silica and crystalline quartz

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1978-01-01

    Defects produced by implantation of various atomic species in fused and crystalline SiO 2 were studied using infrared reflection spectroscopy (IRS) with UV-visible spectroscopy. We observe a new vibrational band at 830 cm -1 which is tentatively associated with the creation of two nonbridging O atoms in SiO 4 units. Numerous chemical effects were also observed, including evidence for chemical incorporation of Li and anomalously large O-vacancy production for Al + , B + and Si + implantation

  11. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  12. Vibrational Spectroscopy as a Promising Toolbox for Analyzing Functionalized Ceramic Membranes.

    Science.gov (United States)

    Kiefer, Johannes; Bartels, Julia; Kroll, Stephen; Rezwan, Kurosch

    2018-01-01

    Ceramic materials find use in many fields including the life sciences and environmental engineering. For example, ceramic membranes have shown to be promising filters for water treatment and virus retention. The analysis of such materials, however, remains challenging. In the present study, the potential of three vibrational spectroscopic methods for characterizing functionalized ceramic membranes for water treatment is evaluated. For this purpose, Raman scattering, infrared (IR) absorption, and solvent infrared spectroscopy (SIRS) were employed. The data were analyzed with respect to spectral changes as well as using principal component analysis (PCA). The Raman spectra allow an unambiguous discrimination of the sample types. The IR spectra do not change systematically with functionalization state of the material. Solvent infrared spectroscopy allows a systematic distinction and enables studying the molecular interactions between the membrane surface and the solvent.

  13. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  14. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  15. Using vibrational molecular spectroscopy to reveal association of steam-flaking induced carbohydrates molecular structural changes with grain fractionation, biodigestion and biodegradation

    Science.gov (United States)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-04-01

    Advanced vibrational molecular spectroscopy has been developed as a rapid and non-destructive tool to reveal intrinsic molecular structure conformation of biological tissues. However, this technique has not been used to systematically study flaking induced structure changes at a molecular level. The objective of this study was to use vibrational molecular spectroscopy to reveal association between steam flaking induced CHO molecular structural changes in relation to grain CHO fractionation, predicted CHO biodegradation and biodigestion in ruminant system. The Attenuate Total Reflectance Fourier-transform Vibrational Molecular Spectroscopy (ATR-Ft/VMS) at SRP Key Lab of Molecular Structure and Molecular Nutrition, Ministry of Agriculture Strategic Research Chair Program (SRP, University of Saskatchewan) was applied in this study. The fractionation, predicted biodegradation and biodigestion were evaluated using the Cornell Net Carbohydrate Protein System. The results show that: (1) The steam flaking induced significant changes in CHO subfractions, CHO biodegradation and biodigestion in ruminant system. There were significant differences between non-processed (raw) and steam flaked grain corn (P R2 = 0.87, RSD = 0.74, P R2 = 0.87, RSD = 0.24, P < .01). In summary, the processing induced molecular CHO structure changes in grain corn could be revealed by the ATR-Ft/VMS vibrational molecular spectroscopy. These molecular structure changes in grain were potentially associated with CHO biodegradation and biodigestion.

  16. A low-temperature scanning tunneling microscope capable of microscopy and spectroscopy in a Bitter magnet at up to 34 T.

    Science.gov (United States)

    Tao, W; Singh, S; Rossi, L; Gerritsen, J W; Hendriksen, B L M; Khajetoorians, A A; Christianen, P C M; Maan, J C; Zeitler, U; Bryant, B

    2017-09-01

    We present the design and performance of a cryogenic scanning tunneling microscope (STM) which operates inside a water-cooled Bitter magnet, which can attain a magnetic field of up to 38 T. Due to the high vibration environment generated by the magnet cooling water, a uniquely designed STM and a vibration damping system are required. The STM scan head is designed to be as compact and rigid as possible, to minimize the effect of vibrational noise as well as fit the size constraints of the Bitter magnet. The STM uses a differential screw mechanism for coarse tip-sample approach, and operates in helium exchange gas at cryogenic temperatures. The reliability and performance of the STM are demonstrated through topographic imaging and scanning tunneling spectroscopy on highly oriented pyrolytic graphite at T = 4.2 K and in magnetic fields up to 34 T.

  17. Detection of generator bearing inner race creep by means of vibration and temperature analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Hilmisson, Reynir

    2015-01-01

    Vibration and temperature analysis are the two dominating condition monitoring techniques applied to fault detection of bearing failures in wind turbine generators. Relative movement between the bearing inner ring and generator axle is one of the most severe failure modes in terms of secondary...... damages and development. Detection of bearing creep can be achieved reliably based on continuous trending of the amplitude of vibration running speed harmonic and temperature absolute values. In order to decrease the number of condition indicators which need to be assessed, it is proposed to exploit...... a weighted average descriptor calculated based on the 3rd up to 6th harmonic orders. Two cases of different bearing creep severity are presented, showing the consistency of the combined vibration and temperature data utilization. In general, vibration monitoring reveals early signs of abnormality several...

  18. Combined effects of noise, vibration, and low temperature on the physiological parameters of labor employees

    Directory of Open Access Journals (Sweden)

    Pao-Chiang Chao

    2013-10-01

    Full Text Available Noise, vibration, and low temperature render specific occupational hazards to labor employees. The purpose of this research was to investigate the combined effects of these three physical hazards on employees' physiological parameters. The Taguchi experimental method was used to simulate different exposure conditions caused by noise, vibration, and low temperature, and their effects on the physiological parameters of the test takers were measured. The data were then analyzed using statistical methods to evaluate the combined effects of these three factors on human health. Results showed that the factor that influenced the finger skin temperature, manual dexterity, and mean artery pressure (MAP most was air temperature, and exposure time was the second most influential factor. Noise was found to be the major factor responsible for hearing loss; in this case, hand–arm vibration and temperature had no effect at all. During the study, the temperature was confined in the 5–25°C range (which was not sufficient to study the effects at extremely high- and low-temperature working conditions because the combined effects of even two factors were very complicated. For example, the combined effects of hand–arm vibration and low temperature might lead to occupational hazards such as vibration-induced white finger syndrome in working labors. Further studies concerning the occupational damage caused by the combined effects of hazardous factors need to be conducted in the future.

  19. Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibrational Spectroscopy

    Directory of Open Access Journals (Sweden)

    Johannes Kiefer

    2015-04-01

    Full Text Available Most commercial gaseous and liquid fuels are mixtures of multiple chemical compounds. In recent years, these mixtures became even more complicated when the suppliers started to admix biofuels into the petrochemical basic fuels. As the properties of such mixtures can vary with composition, there is a need for reliable analytical technologies in order to ensure stable operation of devices such as internal combustion engines and gas turbines. Vibrational spectroscopic methods have proved their suitability for fuel characterization. Moreover, they have the potential to overcome existing limitations of established technologies, because they are fast and accurate, and they do not require sampling; hence they can be deployed as inline sensors. This article reviews the recent advances of vibrational spectroscopy in terms of infrared absorption (IR and Raman spectroscopy in the context of fuel characterization. The focus of the paper lies on gaseous and liquid fuels, which are dominant in the transportation sector and in the distributed generation of power. On top of an introduction to the physical principles and review of the literature, the techniques are critically discussed and compared with each other.

  20. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale

    2013-06-01

    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  1. Resolving fine spectral features in lattice vibrational modes using femtosecond coherent spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Card

    2016-02-01

    Full Text Available We show resolution of fine spectral features within several Raman active vibrational modes in potassium titanyl phosphate (KTP crystal. Measurements are performed using a femtosecond time-domain coherent anti-Stokes Raman scattering spectroscopy technique that is capable of delivering equivalent spectral resolution of 0.1 cm−1. The Raman spectra retrieved from our measurements show several spectral components corresponding to vibrations of different symmetry with distinctly different damping rates. In particular, linewidths for unassigned optical phonon mode triplet centered at around 820 cm−1 are found to be 7.5 ± 0.2 cm−1, 9.1 ± 0.3 cm−1, and 11.2 ± 0.3 cm−1. Results of our experiments will ultimately help to design an all-solid-state source for sub-optical-wavelength waveform generation that is based on stimulated Raman scattering.

  2. Coherent vibrational dynamics

    CERN Document Server

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  3. Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy

    Science.gov (United States)

    Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim

    2015-01-01

    Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.

  4. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  5. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  6. Structure-dependent vibrational dynamics of Mg(BH 4 ) 2 polymorphs probed with neutron vibrational spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana; White, James L.; Zhou, Wei; Stavila, Vitalie; Klebanoff, Leonard E.; Udovic, Terrence J.

    2016-01-01

    The structure-dependent vibrational properties of different Mg(BH4)2 polymorphs (..alpha.., ..beta.., ..gamma.., and ..delta.. phases) were investigated with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH4- anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20-80 meV) are associated with the BH4- librational modes. The features in the intermediate energy region (80-120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features in the high-energy region (120-200 meV) correspond to the BH4- symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. This is explained by the differences in the spatial distribution of BH4- anions within various structures. An example of the possible identification of products after the hydrogenation of MgB2, using NVS measurements, is presented. These results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.

  7. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  8. Structural characterization, vibrational spectroscopy accomplished with DFT calculation, thermal and dielectric behaviors in a new organic-inorganic tertrapropylammonium aquapentachlorostannate dihydrate compound

    Energy Technology Data Exchange (ETDEWEB)

    Hajlaoui, Sondes, E-mail: hajlaouisondes@yahoo.fr [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Chaabane, Iskandar [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Lhoste, Jérôme; Bulou, Alain [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085, Le Mans, Cedex 9 (France); Guidara, Kamel [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia)

    2016-09-15

    In this work a novel compound tertrapropylammonium aquapentachlorostannate dihydrate was synthesized and characterized by; single crystal X-ray diffraction, vibrational spectroscopy, differential scanning calorimetric and dielectric measurement. The crystal structure refinement at room temperature reveled that this later belongs to the monoclinic compound with P121/c1 space group with the following unit cell parameters a = 8.2699(3) Å, b = 12.4665(4) Å, c = 22.3341(7) Å and β = 92.94(0)°. The crystal arrangement can be described by stacked organic-inorganic layers in the c direction with two independent water molecules placed between each two layers. The detailed interpretations of the vibrational properties of the studied compound were performed using density functional theory (DFT) with the B3LYP/LanL2DZ basis set, and has enabled us to make the detailed assignments by comparative study of the experimental and calculated Raman and IR spectra. The differential scanning calorimetry (DSC) measurement disclosed two anomalies in the temperature range 356–376 (T{sub 1}) K and at 393 K (T{sub 2}) characterized by the dehydration of the sample and probably a reconstruction of a new structure after T{sub 2} transition. The temperature dependences of dielectric permittivity show a relaxation process around T{sub 2} anomaly indicating the occurrence of the disorder at high temperature. The dependence of the exponent m(T) on temperature, extracted from the straight lines of log(ε″) with log (ω), suggests that the correlated barrier hopping is the appropriate model for the conduction mechanism. - Highlights: • The single-crystal X-ray diffraction has been performed. • The assignments of the vibration modes based on DFT were reported and discussed. • Differential scanning calorimetric reveals the presence of two endothermic peaks. • The electric permittivity was studied using the impedance measurements. • The CBH is the appropriate model for the conduction

  9. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  10. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  11. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    Science.gov (United States)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  12. The effect of synthesis temperature on the formation of hydrotalcites in Bayer liquor: a vibrational spectroscopic analysis.

    Science.gov (United States)

    Palmer, Sara J; Frost, Ray L

    2009-07-01

    The seawater neutralization process is currently used in the alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralization method is very similar to the co-precipitation method used to synthesize hydrotalcite (Mg6Al2(OH)16CO3.4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralization process of Bayer liquor. The Bayer precipitates have been characterized by a variety of techniques, including X-ray diffraction (XRD), Raman spectroscopy, and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. Analysis with XRD determined that Bayer hydrotalcites that are synthesized at 55 degrees C have a larger interlayer distance, indicating that more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 degrees C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.

  13. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  14. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    International Nuclear Information System (INIS)

    Qing, Xinlin P; Beard, Shawn J; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-01-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H 2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment

  15. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar

    2011-04-28

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm average size, synthesized by colloidal methods and cleaned by ultraviolet light and ozone treatment. Reactions carried out at atmospheric pressure in the temperature range of 20-120 °C produced dihydro and tetrahydro species, as well as ring-opening products (alcohols) and ring-cracking products, showing high selectivity toward ring opening throughout the entire temperature range. The aromatic rings (MF and DMF) adsorbed parallel to the nanoparticle surface. Results yield insight into various surface reaction intermediates and the reason for the significantly lower selectivity for ring cracking in DMF hydrogenation compared to MF hydrogenation. © 2011 American Chemical Society.

  16. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  17. Towards vibrational spectroscopy on surface-attached colloids performed with a quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Diethelm Johannsmann

    2016-12-01

    Full Text Available Colloidal spheres attached to a quartz crystal microbalance (QCM produce the so-called “coupled resonances”. They are resonators of their own, characterized by a particle resonance frequency, a resonance bandwidth, and a modal mass. When the frequency of the main resonator comes close to the frequency of the coupled resonance, the bandwidth goes through a maximum. A coupled resonance can be viewed as an absorption line in acoustic shear-wave spectroscopy. The known concepts from spectroscopy apply. This includes the mode assignment problem, selection rules, and the oscillator strength. In this work, the mode assignment problem was addressed with Finite Element calculations. These reveal that a rigid sphere in contact with a QCM displays two modes of vibration, termed “slipping” and “rocking”. In the slipping mode, the sphere rotates about its center; it exerts a tangential force onto the resonator surface at the point of contact. In the rocking mode, the sphere rotates about the point of contact; it exerts a torque onto the substrate. In liquids, both axes of rotation are slightly displaced from their ideal positions. Characteristic for spectroscopy, the two modes do not couple to the mechanical excitation equally well. The degree of coupling is quantified by an oscillator strength. Because the rocking mode mostly exerts a torque (rather than a tangential force, its coupling to the resonator's tangential motion is weak; the oscillator strength consequently is small. Recent experiments on surface-adsorbed colloidal spheres can be explained by the mode of vibration being of the rocking type. Keywords: Quartz crystal microbalance, Coupled resonance, Biocolloids, Adsorption

  18. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  19. Non-invasive vibrational SFG spectroscopy reveals that bacterial adhesion can alter the conformation of grafted "brush" chains on SAM.

    Science.gov (United States)

    Bulard, Emilie; Guo, Ziang; Zheng, Wanquan; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Bellon-Fontaine, Marie-Noëlle; Herry, Jean-Marie; Briandet, Romain; Bourguignon, Bernard

    2011-04-19

    Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials. © 2011 American Chemical Society

  20. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  1. Absolute Configuration of 3-METHYLCYCLOHEXANONE by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism

    Science.gov (United States)

    Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks

    2017-06-01

    The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.

  2. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: A case study

    OpenAIRE

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-01-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal andbest functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitor...

  3. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects

    Science.gov (United States)

    Zhao, Yaobing; Huang, Chaohui; Chen, Lincong; Peng, Jian

    2018-03-01

    The aim of this paper is to investigate temperature effects on the nonlinear vibration behaviors of suspended cables under two-frequency excitation. For this purpose, two combination and simultaneous resonances are chosen and studied in detail. First of all, based on the assumptions of the temperature effects, the partial differential equations of the in-plane and out-of-plane motions with thermal effects under multi-frequency excitations are obtained. The Galerkin method is adopted to discretize the nonlinear dynamic equations, and the single-mode planar discretization is considered. Then, in the absence of the primary and internal resonances, the frequency response equations are obtained by using the multiple scales method. The stability analyses are conducted via investigating the nature of the singular points of equations. After that, temperature effects on nonlinear vibration characteristics of the first symmetric mode are studied. Parametric investigations of temperature effects on corresponding non-dimensional factors and coefficients of linear and nonlinear terms are performed. Numerical results are presented to show the temperature effects via the frequency-response curves and detuning-phase curves of four different sag-to-span ratios. It is found out that effects of temperature variations would lead to significant quantitative and/or qualitative changes of the nonlinear vibration properties, and these effects are closely related to the sag-to-span ratio and the degree of the temperature variation. Specifically, the softening/hardening-type spring behaviors, the response amplitude, the range of the resonance, the intersection and number of branches, the number and phase of the steady-state solutions are all affected by the temperature changes.

  4. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    International Nuclear Information System (INIS)

    Zheng, Ren-Hui; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang; Wei, Wen-Mei

    2014-01-01

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed

  5. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Wei, Wen-Mei [Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032 (China)

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  6. Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quench resonance Raman spectroscopy.

    Science.gov (United States)

    Matsumura, Hirotoshi; Moënne-Loccoz, Pierre

    2014-01-01

    The combination of rapid freeze quenching (RFQ) with resonance Raman (RR) spectroscopy represents a unique tool with which to investigate the nature of short-lived intermediates formed during the enzymatic reactions of metalloproteins. Commercially available equipment allows trapping of intermediates within a millisecond to second time scale for low-temperature RR analysis resulting in the direct detection of metal-ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses RFQ-RR studies carried out previously in our laboratory and presents, as a practical example, protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) under anaerobic conditions. Also described are important controls and practical procedures for the analysis of these samples by low-temperature RR spectroscopy.

  7. Probing electronic and vibrational properties at the electrochemical interface using SFG spectroscopy: Methanol electro-oxidation on Pt(1 1 0)

    Science.gov (United States)

    Vidal, F.; Busson, B.; Tadjeddine, A.

    2005-02-01

    We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.

  8. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  9. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  10. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (N2, O2, H2O, CO2, CO, H2, DME) and major combustion intermediates (CH4, CH2O, C2H2, C2H4 and C2H6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.

  11. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  12. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Science.gov (United States)

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  13. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  14. Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow

    Science.gov (United States)

    Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.

    2003-01-01

    Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.

  15. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  16. Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons

    Science.gov (United States)

    Liu, Yue-Yang; Li, Bo-Lin; Chen, Shi-Zhang; Jiang, Xiangwei; Chen, Ke-Qiu

    2017-09-01

    We observe directly the lattice vibration and its multifold effect on electron transport in zigzag graphene nanoribbons in simulation by utilizing an efficient combined method. The results show that the electron transport fluctuates greatly due to the incessant lattice vibration of the nanoribbons. More interestingly, the lattice vibration behaves like a double-edged sword that it boosts the conductance of symmetric zigzag nanoribbons (containing an even number of zigzag chains along the width direction) while weakens the conductance of asymmetric nanoribbons. As a result, the reported large disparity between the conductances of the two kinds of nanoribbons at 0 K is in fact much smaller at room temperature (300 K). We also find that the spin filter effect that exists in perfect two-dimensional symmetric zigzag graphene nanoribbons is destroyed to some extent by lattice vibrations. Since lattice vibrations or phonons are usually inevitable in experiments, the research is very meaningful for revealing the important role of lattice vibrations play in the electron transport properties of two-dimensional materials and guiding the application of ZGNRs in reality.

  17. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  18. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Huang, Di [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, Shiwei, E-mail: swwu@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2016-06-15

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  19. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-01

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  20. Improvement of performance of vibration pump for molten salt at high temperature

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Hashimoto, Hiroyuki; Katagiri, Kazunari; Tang Bomin.

    1996-01-01

    An experimental study was conducted to improve the performance of a vibration pump using a vibrating pipe for conveying the molten salt at 784 K. A new system to measure the pump performance safely at such a high temperature was developed, which was characterized by simplicity in construction and ease of operation. All parts of the system, including a pump, valves and a volume tank to measure the volumetric flow rate, were placed in a cylindrical tank. The pump was driven by an air actuator. Experimental results indicated that the measuring system fulfilled the intended function: the pump worked effectively and its performance was safely evaluated at a high temperature. A few possible improvements related to the construction of the pump were suggested based on the results. (author)

  1. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  2. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  3. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  4. Laser Raman spectroscopy in heat and flow technology

    International Nuclear Information System (INIS)

    Leipertz, A.

    1981-01-01

    The laser Raman spectroscopy based on the inelastic scattering of incident laser photons on the molecules of the fluid to be investigated, has advantages which partly reach beyond the usual scattered light methods: The signales are molecule-specific, the vibration line of various gases can be spectrally well recognized, the field of application is wide, the energy state of the molecules is hardly influenced. By measuring the line intensity, one obtains the concentration of the observed gas components via the molecule number, the temperature and total pressure; from the uptake of the partial density of the single components one can obtain the density of the gas mixture; vibration temperature and rotation temperature can be measured independently. Measuring methods and construction of a Raman probe are given. (WB) [de

  5. Infrared and Raman Vibrational Spectroscopies Reveal the Palette of Frescos Found in the Medieval Monastery of Karaach Teke

    International Nuclear Information System (INIS)

    Zorba, T.; Paraskevopoulos, K.M.; Pavlidou, E.; Andrikopoulos, K.S.; Daniilia, S.; Popkonstantinov, K.; Kostova, R.; Platnyov, V.

    2007-01-01

    Vibrational spectroscopy is applied on samples obtained from the excavation area of the medieval Monastery (10 th century) of Karaach-Teke in Bulgaria. The results of the corresponding study, reveal the type of materials used for the creation of the wall-paintings and give evidence of Byzantine influence, a fact that further supports the well known impact of Byzantium on the technology and thematic-aesthetic features of iconography in Bulgaria during this era. In addition, the complementarity of FTIR and -Raman spectroscopies in the identification of pigments is indicated

  6. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  7. High temperature impedance spectroscopy of barium stannate

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  8. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.

    Science.gov (United States)

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman

    2017-11-01

    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    Science.gov (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-03-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  10. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Velarde, Luis; Wang, Hong-fei

    2013-08-01

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  11. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  12. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  13. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  14. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  15. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    Science.gov (United States)

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  16. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  17. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  18. Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy

    Science.gov (United States)

    Roy, Sandra; Beutier, Clémentine; Hore, Dennis K.

    2018-06-01

    Vibrational sum-frequency generation spectroscopy is a valuable probe of surface structure, particularly when the same molecules are present in one of the adjacent bulk solid or solution phases. As a result of the non-centrosymmetric requirement of SFG, the signal generated is a marker of the extent to which the molecules are ordered in an arrangement that breaks the up-down symmetry at the surface. In cases where the accompanying changes in the bulk are of interest in understanding and interpreting the surface structure, simultaneous analysis of the bulk IR absorption or bulk Raman scattering is helpful, and may be used in heterospectral surface-bulk two-dimensional correlation. We demonstrate that, in such cases, generating a new type of bulk spectrum that combines the IR and Raman amplitudes is a better candidate than the individual IR and Raman spectra for the purpose of correlation with the SFG signal.

  19. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods.

    Science.gov (United States)

    Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T

    2016-05-30

    Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Molecular and vibrational structure of diphenylether and its 4,4' -dibromo derivative. Infrared linear dichroism spectroscopy and density functional theory calculations

    DEFF Research Database (Denmark)

    Eriksen, Troels K; Karlsen, Eva; Spanget-Larsen, Jens

    2015-01-01

    The title compounds were investigated by means of Linear Dichroism (LD) IR spectroscopy on samples partially aligned in uniaxially stretched low-density polyethylene and by density functional theory calculations. Satisfactory overall agreement between observed and calculated vibrational wavenumbers...

  1. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  2. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  3. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    International Nuclear Information System (INIS)

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-01-01

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A 1 symmetry on the 9a 1 momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing

  4. Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal

    International Nuclear Information System (INIS)

    Sizov, Igor; Rahman, Masudur; Gelmont, Boris; Norton, Michael L.; Globus, Tatiana

    2013-01-01

    Highlights: • Sub-THz spectroscopy is used to characterize artificially designed DNA monocrystal. • Results are obtained using a novel near field, RT, frequency domain spectrometer. • Narrow resonances of 0.1 cm −1 width in absorption spectra of crystal are observed. • Signature measured between 310 and 490 GHz is reproducible and well resolved. • Absorption pattern is explained in part by simulation results from dsDNA fragment. - Abstract: Sub-terahertz (sub-THz) vibrational spectroscopy is a new spectroscopic branch for characterizing biological macromolecules. In this work, highly resolved sub-THz resonance spectroscopy is used for characterizing engineered molecular structures, an artificially designed DNA monocrystal, built from a short DNA sequence. Using a recently developed frequency domain spectroscopic instrument operating at room temperature with high spectral and spatial resolution, we demonstrated very intense and specific spectral lines from a DNA crystal in general agreement with a computational molecular dynamics (MD) simulation of a short double stranded DNA fragment. The spectroscopic signature measured in the frequency range between 310 and 490 GHz is rich in well resolved and reproducible spectral features thus demonstrating the capability of THz resonance spectroscopy to be used for characterizing custom macromolecules and structures designed and implemented via nanotechnology for a wide variety of application domains. Analysis of MD simulation indicates that intense and narrow vibrational modes with atomic movements perpendicular (transverse) and parallel (longitudinal) to the long DNA axis coexist in dsDNA, with much higher contribution from longitudinal vibrations

  5. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    Science.gov (United States)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  6. Toward yrast spectroscopy in soft vibrational nuclei. A microscopic theory of the large amplitude collective motion of soft nuclei

    International Nuclear Information System (INIS)

    Marumori, Toshio; Kuriyama, Atsushi; Sakata, Fumihiko

    1980-01-01

    In a formally parallel way with that exciting progress has been recently achieved in understanding the yrast spectra of the rotational nuclei in terms of the quasi-particle motion in the rotating frame, an attempt to understand the yrast spectra of the vibrational nuclei in terms of the quasi-particle motion is proposed. The essential idea is to introduce the quasi-particle motion in a generalized vibrating frame, which can be regarded as a rotating frame in the gauge space of 'physical' phonons where the number of the physical phonons plays the role of the angular momentum. On the basis of a simple fundamental principle called as the 'invariance principle of the Schroedinger equation', which leads us to the 'maximal decoupling' between the physical phonon and the intrinsic modes, it is shown that the vibrational frame as well as the physical-phonon-number operator represented by the quasi-particles can be self-consistently determined. A new scope toward the yrast spectroscopy of the vibrational nuclei in terms of the quasi-particle motion is discussed

  7. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar; Tsung, Chia-Kuang; Alayoglu, Selim; Komvopoulos, Kyriakos; Yang, Peidong; Somorjai, Gabor A.

    2011-01-01

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm

  8. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  9. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bravo, Ángel; Delgado, Tomás; Lucena, Patricia; Laserna, J. Javier, E-mail: laserna@uma.es

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) of organic materials is based on the analysis of atomic and ionic emission lines and on a few molecular bands, the most important being the CN violet system and the C{sub 2} Swan system. This paper is focused in molecular emission of LIBS plasmas based on the CN (B{sup 2}Σ–X{sup 2}Σ) band, one of the strongest emissions appearing in all carbon materials when analyzed in air atmosphere. An analysis of this band with sufficient spectral resolution provides a great deal of information on the molecule, which has revealed that valuable information can be obtained from the plume chemistry and dynamics affecting the excitation mechanisms of the molecules. The vibrational emission of this molecular band has been investigated to establish the dependence of this emission on the molecular structure of the materials. The paper shows that excitation/emission phenomena of molecular species observed in the plume depend strongly on the time interval selected and on the irradiance deposited on the sample surface. Precise time resolved LIBS measurements are needed for the observation of distinctive CN emission. For the organic compounds studied, larger differences in the behavior of the vibrational emission occur at early stages after plasma ignition. Since molecular emission is generally more complex than that involving atomic emission, local plasma conditions as well as plume chemistry may induce changes in vibrational emission of molecules. As a consequence, alterations in the distribution of the emissions occur in terms of relative intensities, being sensitive to the molecular structure of every single material. - Highlights: • Vibrational emission of CN species in laser-induced plasmas has been investigated. • Distribution of vibrational emission of CN has been found to be time dependent. • Laser irradiance affects the vibrational distribution of the CN molecules. • Plume chemistry controls the excitation mechanisms of CN

  10. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  11. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or

  12. Spectroscopy of vibrationally hot molecules: Hydrogen cyanide and acetylene

    International Nuclear Information System (INIS)

    Jonas, D.M.

    1992-01-01

    An efficient formula for calculating nuclear spin statistical weights is presented. New experimental methods to distinguish electric and magnetic multipole transitions are proposed and used to prove that the formaldehyde A - X 0-0 transition is a magnetic dipole transition. HIgh resolution vacuum ultraviolet studies of the A → X fluorescence excitation spectrum of hydrogen cyanide (HCN) have: (i) determined that only the (0,1,0) vibrational level of the HCN A-state has a sufficiently long fluorescence lifetime to be suitable for Stimulated Emission Pumping (SEP) studies; and (ii) measured the electric dipole moment of the A-state. Several transitions in the hydrogen cyanide A → X SEP spectrum are shown to be due to the axis-switching mechanism. From a Franck-Condon plot of the intensities and a comparison between sums of predicted rotational constants and sums of observed rotational constants, all of the remaining transitions in the SEP spectrum can be securly assigned. Two weak resonances; a 2:3 CH:CN stretch Fermi resonance and a 6:2 bend:CN stretch resonance appear in the SEP spectrum. Excitation of the CH stretching vibration is predicted and shown to be entirely absent, apart from resonances, in the HCN SEP spectrum. A → X SEP spectra of acetylene (HCCH) near E VIB = 7,000 cm -1 display a wealth of strong and fully assignable anharmonic resonances and forbidden rotational transitions. It is proved that Darling-Dennison resonance between the cis and trans bending vibrations is the crucial first step in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the initial CC stretch/trans-bend excitation at high vibrational energy. Secondary steps in the vibrational energy flow are vibrational-l-resonance and the '2345' Fermi resonance. For short times, the vibrational energy redistribution obeys very restrictive rules

  13. Infrared-emission spectroscopy of CO on Ni

    International Nuclear Information System (INIS)

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  14. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  15. Dissimilar Dynamics of Coupled Water Vibrations

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.

    2009-01-01

    Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian

  16. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  17. Facet-specific interaction between methanol and TiO2 probed by sum-frequency vibrational spectroscopy.

    Science.gov (United States)

    Yang, Deheng; Li, Yadong; Liu, Xinyi; Cao, Yue; Gao, Yi; Shen, Y Ron; Liu, Wei-Tao

    2018-04-24

    The facet-specific interaction between molecules and crystalline catalysts, such as titanium dioxides (TiO 2 ), has attracted much attention due to possible facet-dependent reactivity. Using surface-sensitive sum-frequency vibrational spectroscopy, we have studied how methanol interacts with different common facets of crystalline TiO 2 , including rutile(110), (001), (100), and anatase(101), under ambient temperature and pressure. We found that methanol adsorbs predominantly in the molecular form on all of the four surfaces, while spontaneous dissociation into methoxy occurs preferentially when these surfaces become defective. Extraction of Fermi resonance coupling between stretch and bending modes of the methyl group in analyzing adsorbed methanol spectra allows determination of the methanol adsorption isotherm. The isotherms obtained for the four surfaces are nearly the same, yielding two adsorbed Gibbs free energies associated with two different adsorption configurations singled out by ab initio calculations. They are ( i ) ∼-20 kJ/mol for methanol with its oxygen attached to a low-coordinated surface titanium, and ( ii ) ∼-5 kJ/mol for methanol hydrogen-bonded to a surface oxygen and a neighboring methanol molecule. Despite similar adsorption energetics, the Fermi resonance coupling strength for adsorbed methanol appears to depend sensitively on the surface facet and coverage.

  18. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  19. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  20. Vibrational Spectroscopy and Gas-Phase Thermochemistry of the Model Dipeptide N-Acetyl Glycine Methyl Amide

    Science.gov (United States)

    Leavitt, Christopher; Raston, Paul; Moody, Grant; Shirley, Caitlyne; Douberly, Gary

    2014-06-01

    The structure-function relationship in proteins is widely recognized, motivating numerous investigations of isolated neutral and ionic polypeptides that generally employ conformation specific, multidimensional UV and IR spectroscopies. This data taken in conjunction with computed harmonic frequencies has provided a snapshot of the underlying molecular physics at play in many polypeptides, but few experiments have been able to probe the energetics of these systems. In this study, we use vibrational spectroscopy to measure the gas-phase enthalpy change for isomerization between two conformations of the dipeptide N-acetyl glycine methyl amide (NAGMA). A two-stage oven source is implemented producing a gas-phase equilibrium distribution of NAGMA molecules that is flash frozen upon pickup by He nanodroplets. Using polarization spectroscopy, the IR spectrum is assigned to a mixture of two conformers having intramolecular hydrogen bonds made up of either five- or seven-membered rings, C5 and C7, respectively. The interconversion enthalpy, obtained from the van't Hoff relation, is 4.52{±}0.12 kJ/mol for isomerization from the C7 to the C5-conformer. This experimental measurement is compared to computations employing a broad range of theoretical methods.

  1. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  3. Communication: Vibrational relaxation of CO(1Σ) in collision with Ar(1S) at temperatures relevant to the hypersonic flight regime.

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Bemish, Raymond J; Meuwly, Markus

    2017-03-21

    Vibrational energy relaxation (VER) of diatomics following collisions with the surrounding medium is an important elementary process for modeling high-temperature gas flow. VER is characterized by two parameters: the vibrational relaxation time τ vib and the state relaxation rates. Here the vibrational relaxation of CO(ν=0←ν=1) in Ar is considered for validating a computational approach to determine the vibrational relaxation time parameter (pτ vib ) using an accurate, fully dimensional potential energy surface. For lower temperatures, comparison with experimental data shows very good agreement whereas at higher temperatures (up to 25 000 K), comparisons with an empirically modified model due to Park confirm its validity for CO in Ar. Additionally, the calculations provide insight into the importance of Δν>1 transitions that are ignored in typical applications of the Landau-Teller framework.

  4. Surface vibrational spectroscopy (EELS)

    International Nuclear Information System (INIS)

    Okuyama, Hiroshi

    2006-01-01

    Adsorbed states of hydrogen on metal surfaces have been studied by means of electron energy loss spectroscopy (EELS). In this article, typical spectra and analysis as well as recent development are introduced. (author)

  5. Interpenetrating polymer network membranes for fuel cells: infrared vibrational spectroscopy; Membranes baseadas dm redes polimericas interpenetrantes para celulas a combustivel: estudo por espectroscopia vibracional no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, proton conductive membranes based on IPN matrices doped with H{sub 3}PO{sub 4} were developed. The characterization by infrared vibrational spectroscopy evidenced the polymerization of DGEBA and the immobilization of PEI chains, originating a structure containing basic sites suitable for proton coordination and conduction. The FTIR characterization evidenced the polymerization of DGEBA in the presence of PEI thus forming Semi-IPN membranes which, after doped with H{sub 3}PO{sub 4}, exhibited conductivity values of 10{sup -4} W{sup -1}cm{sup -1} at room temperature and 10{sup -3} {omega}{sup -1}cm{sup -1} at 80 degree C, as well as a dependency of conductivity with temperature following the Arrhenius model. The activation energy values (14,33 and 12,96 kJ.mol{sup -1}) indicated a proton conduction mechanism predominantly vehicular in the matrices studied under 100% relative humidity. (author)

  6. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  7. Temperature monitoring of vehicle engine exhaust gases under vibration condition using optical fibre temperature sensor systems

    International Nuclear Information System (INIS)

    Zhao, W Z; Suna, T; Grattana, K T V; Shen, Y H; Wei, C L; Al-Shamma'a, A I

    2006-01-01

    Two optical approaches, comprising and contracting both the fluorescence decay lifetime and the fibre Bragg grating (FBG) methods, were developed and evaluated for temperature monitoring of exhaust gases for use on a vehicle engine. The FBGs used in the system were written into specially designed Bi-Ge co-doped photosensitive fibres, to enable them to sustain high temperatures to over 800 0 C, which is far beyond that of FBGs written into most commercial photosensitive fibres. The sensors were subjected to a range of vibration tests, as a part of an optical exhaust monitoring network under development, and results from the test carried out are reported

  8. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  9. Quantum vibrational polarons: Crystalline acetanilide revisited

    Science.gov (United States)

    Hamm, Peter; Edler, Julian

    2006-03-01

    We discuss a refined theoretical description of the peculiar spectroscopy of crystalline acetanilide (ACN). Acetanilide is a molecular crystal with quasi-one-dimensional chains of hydrogen-bonded units, which is often regarded as a model system for the vibrational spectroscopy of proteins. In linear spectroscopy, the CO stretching (amide I) band of ACN features a double-peak structure, the lower of which shows a pronounced temperature dependence which has been discussed in the context of polaron theory. In nonlinear spectroscopy, both of these peaks respond distinctly differently. The lower-frequency band exhibits the anharmonicity expected from polaron theory, while the higher-frequency band responds as if it were quasiharmonic. We have recently related the response of the higher-frequency band to that of a free exciton [J. Edler and P. Hamm, J. Chem. Phys. 117, 2415 (2002)]. However, as discussed in the present paper, the free exciton is not an eigenstate of the full quantum version of the Holstein polaron Hamiltonian, which is commonly used to describe these phenomena. In order to resolve this issue, we present a numerically exact solution of the Holstein polaron Hamiltonian in one dimension (1D) and 3D. In 1D, we find that the commonly used displaced oscillator picture remains qualitatively correct, even for relatively large exciton coupling. However, the result is not in agreement with the experiment, as it fails to explain the free-exciton band. In contrast, when taking into account the 3D nature of crystalline acetanilide, certain parameter regimes exist where the displaced oscillator picture breaks down and states appear in the spectrum that indeed exhibit the characteristics of a free exciton. The appearance of these states is a speciality of vibrational polarons, whose source of exciton coupling is transition dipole coupling which is expected to have opposite signs of interchain and intrachain coupling.

  10. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    Science.gov (United States)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  11. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Jürgensen, Vibeke Würtz; Claussen, Anetta

    2006-01-01

    and experimental approach. The systems we have studied systematically are the amino acids (L-alanine, L-tryptophan, and L-histidine), peptides (N-acetyl L-alanine N'-methyl amide, N-acetyl L-tryptophan N'-methyl amide, N-acetyl L-histidine N'-methyl amide, L-alanyl L-alanine, tri-L-serine, N-acetyl L-alanine L......+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties......We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical...

  12. Bubble formation occurs in insulin pumps in response to changes in ambient temperature and atmospheric pressure but not as a result of vibration.

    Science.gov (United States)

    Lopez, Prudence E; King, Bruce R; Goss, Peter W; Chockalingam, Ganesh

    2014-01-01

    Bubble formation in insulin pump giving sets is a common problem. We studied change in temperature, change in atmospheric pressure, and vibration as potential mechanisms of bubble formation. 5 Animas 2020 pumps with 2 mL cartridges and Inset II infusion systems, 5 Medtronic Paradigm pumps with 1.8 mL cartridge and Quickset and 3 Roche Accu-chek pumps with 3.15 mL cartridges were used. Temperature study: insulin pumps were exposed to a temperature change from 4°C to 37°C. Pressure study: insulin pumps were taken to an altitude of 300 m. Vibration study: insulin pumps were vigorously shaken. All were observed for bubble formation. Bubble formation was observed with changes in temperature and atmospheric pressure. Bubble formation did not occur with vibration. Changes in insulin temperature and atmospheric pressure are common and may result in bubble formation. Vibration may distribute bubbles but does not cause bubble formation.

  13. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations

    International Nuclear Information System (INIS)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Hong, Jie; Scarpa, Fabrizio; Liu, Baolong

    2014-01-01

    The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations. (paper)

  14. FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.

    Science.gov (United States)

    Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano

    2007-09-28

    The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.

  15. Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy.

    Science.gov (United States)

    Öztürk, Zafer; Filez, Matthias; Weckhuysen, Bert M

    2017-08-10

    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  17. TERAHERTZ SPECTROSCOPY AND GLOBAL ANALYSIS OF THE BENDING VIBRATIONS OF ACETYLENE 12C2D2

    International Nuclear Information System (INIS)

    Yu Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-01-01

    Two hundred and fifty-one 12 C 2 D 2 transitions have been measured in the 0.2-1.6 THz region of its ν 5 -ν 4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12 C 2 D 2 molecules were generated under room temperature by passing 120-150 mTorr D 2 O vapor through calcium carbide (CaC 2 ) powder. A multistate analysis was carried out for the bending vibrational modes ν 4 and ν 5 of 12 C 2 D 2 , which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12 C 2 D 2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  18. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  19. Vibrational spectroscopy and principal component analysis for conformational study of virus nucleic acids

    Science.gov (United States)

    Dovbeshko, G. I.; Repnytska, O. P.; Pererva, T.; Miruta, A.; Kosenkov, D.

    2004-07-01

    Conformation analysis of mutated DNA-bacteriophages (PLys-23, P23-2, P47- the numbers have been assigned by T. Pererva) induced by MS2 virus incorporated in Ecoli AB 259 Hfr 3000 has been done. Surface enhanced infrared absorption (SEIRA) spectroscopy and principal component analysis has been applied for solving this problem. The nucleic acids isolated from the mutated phages had a form of double stranded DNA with different modifications. The nucleic acid from phage P47 was undergone the structural rearrangement in the most degree. The shape and position ofthe fine structure of the Phosphate asymmetrical band at 1071cm-1 as well as the stretching OH vibration at 3370-3390 cm-1 has indicated to the appearance ofadditional OH-groups. The Z-form feature has been found in the base vibration region (1694 cm-1) and the sugar region (932 cm-1). A supposition about modification of structure of DNA by Z-fragments for P47 phage has been proposed. The P23-2 and PLys-23 phages have showed the numerous minor structural changes also. On the basis of SEIRA spectra we have determined the characteristic parameters of the marker bands of nucleic acid used for construction of principal components. Contribution of different spectral parameters of nucleic acids to principal components has been estimated.

  20. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.

    Science.gov (United States)

    Saariaho, Anna-Maija; Jääskeläinen, Anna-Stiina; Nuopponen, Mari; Vuorinen, Tapani

    2003-01-01

    Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.

  1. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    Science.gov (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  2. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  3. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  4. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  5. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  6. Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Pelmenschikov, Vladimir; Birrell, James A; Pham, Cindy C; Mishra, Nakul; Wang, Hongxin; Sommer, Constanze; Reijerse, Edward; Richers, Casseday P; Tamasaku, Kenji; Yoda, Yoshitaka; Rauchfuss, Thomas B; Lubitz, Wolfgang; Cramer, Stephen P

    2017-11-22

    [FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H hyd ) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57 Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H hyd is the catalytic state one step prior to H 2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H 2 bond formation by [FeFe]-hydrogenases.

  7. Theory of sum-frequency generation spectroscopy of adsorbed molecules using the density matrix method-broadband vibrational sum-frequency generation and applications

    International Nuclear Information System (INIS)

    Bonn, M; Ueba, H; Wolf, M

    2005-01-01

    A generalized theory of frequency- and time-resolved vibrational sum-frequency generation (SFG) spectroscopy of adsorbates at surfaces is presented using the density matrix formalism. Our theoretical treatment is specifically aimed at addressing issues that accompany the relatively novel SFG approach using broadband infrared pulses. The ultrashort duration of these pulses makes them ideally suited for time-resolved investigations, for which we present a complete theoretical treatment. A second key characteristic of these pulses is their large bandwidth and high intensity, which allow for highly non-linear effects, including vibrational ladder climbing of surface vibrations. We derive general expressions relating the density matrix to SFG spectra, and apply these expressions to specific experimental results by solving the coupled optical Bloch equations of the density matrix elements. Thus, we can theoretically reproduce recent experimentally demonstrated hot band SFG spectra using femtosecond broadband infrared excitation of carbon monoxide (CO) on a Ru(001) surface

  8. Influence of bearing pre-load coefficient on shaft vibration and pad temperature in a hydroturbine generator unit. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Feng Fuzhou; Chu Fulei; Guo Dan; Lu Wenxiu [Tsinghua Univ., Beijing, BJ (China). Dept. of Precision Instruments

    2001-07-01

    From data collected by an online condition monitoring and fault diagnosis system, a higher pad temperature at the upper guide bearing in a pumped storage power generator unit installed in Guangdong province(GPSPS), China, was found. And also a relatively intensive shaft vibration occurred at the lower guide bearing. By calculating the Reynolds equation and viscosity-temperature equation of the lubricant, a curve between the pre-load coefficient and the increment of pad temperature is obtained, which shows that the larger, the pre-load coefficient, the bigger, the increment of pad temperature. For a practical unit in GPSPS, by employing Transfer matrix method and Wilson-{theta} method to analyze shaft vibration at different pre-load coefficients of the whole bearing or ''pad pair'' bearings, the results show that the larger the pre-load coefficient is, the smaller the vibration amplitude is, the shorter the time for vibration to become steady is. And an uneven pre-load coefficient of the ''pad pair'' bearings will cause shaft orbit from a circle to an ellipse whose long axes is at the direction of the ''pad pair'' with the lowest pre-load coefficient. Finally, reasons of higher pad temperature of the upper guide bearing and larger shaft vibration at the lower guide bearing are due to the inconsistent relation of bearing assembling clearance or pre-load coefficient of the upper and lower guide bearing, and also due to the too small, uneven pre-load coefficient of ''pad pair'' bearings. After a scheme for adjusting the bearing clearance is given, data measured show that the analysis and simulation methods are correct and the adjustment scheme to the assembling clearance of the upper and lower guide bearings is feasible and can be used to guide the field maintenance conveniently. (orig.)

  9. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy

    Science.gov (United States)

    Johnson, Mark

    2010-06-01

    We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.

  11. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  12. Vibrational Spectroscopy of Chromatographic Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  13. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  14. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  15. Differentiation of illicit drugs with THz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Liu Guifeng; Ma Shihua; Ji Te; Zhao Hongwei; Wang Wenfeng

    2010-01-01

    The tera hertz time-domain spectroscopy (THz-TDS) was used for sensing and identifying illicit drugs. The absorption spectra of seven illicit drug samples(morphine and its hydrochloride, cocaine hydrochloride, codeine phosphate, papaverine hydrochloride, pethidine hydrochloride, and thebaine) were studied by THz-TDS at 0.3-2.0 THz at room temperature. The geometric structure and vibration frequencies of morphine were calculated by density functional theory. The four absorption features were dominated by intra-/inter-molecular collective or lattice vibration modes. Each illicit drug has a distinct signature in its THz spectra. The results indicate that the THz-TDS can be used to identify and discriminate illicit drugs by their characteristic fingerprints. (authors)

  16. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Nilsson, Zach N; Mandella, Brian L; Sen, Kakali; Kekilli, Demet; Hough, Michael A; Moënne-Loccoz, Pierre; Strange, Richard W; Andrew, Colin R

    2017-11-06

    Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c' (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (K d ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe-NO 2 ), δ(ONO), and ν s (NO 2 ) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO} 6 and {FeNO} 7 states, enabling FTIR measurements to distinguish ν s (NO 2 ) and ν as (NO 2 ) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H 2 O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of heme-nitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.

  17. Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy

    Science.gov (United States)

    Hinde, Robert

    2008-03-01

    In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.

  18. Clinical studies of the vibration syndrome using a cold stress test measuring finger temperature.

    Science.gov (United States)

    Gautherie, M

    1995-01-01

    Since nine years multicentre, transversal and longitudinal clinical studies on hand-arm, vibration-exposed patients are being performed in cooperation with French occupational medicine centers and social security institutions. These studies are based upon current clinical assessment and standardized, temperature-measuring cooling tests. Data acquisition uses a portable, 10-channel, micro-processor-based temperature recorder and miniature thermal sensors. Temperature is monitored at the ten finger tips continuously, before, during and after a cold stress performed in strictly controlled conditions. Data from examinations performed at outlying sites are transferred through the telephonic network to a central processing unit. Data analysis uses a specific, expert-type software procedure based upon previous clinical studies on (i) 238 "normal" subjects, and (ii) 3,046 patients with vascular disturbances of the upper extremities of various etiologies. This procedure includes a staging process which assigns each finger a class representing the degree of severity of the abnormalities of response to cold ("dysthermia") related to vascular disorders. All data processing is fully automatic and results in a printed examination report. To date, over 1,623 vibration-exposed forestry, building and mechanical workers were examined. Sixty-three per cent of patients had received high dose of vibration (daily use of chain saws, air hammers, ballast tampers over many years). Typical white finger attacks or only neurological symptoms were found in 36% and 23% of patients respectively. The rate of sever dysthermia was much higher in patients with white finger attacks (83%) than in patients without (32%). In 90% of the vibration-exposed patients, the severity of dysthermia has differed greatly from one finger to another and between hands, while in non-exposed patients with primary Raynaud syndrome the dysthermia are generally similar for all fingers but the thumbs. Of 208 forestry

  19. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    Science.gov (United States)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  20. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  1. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  2. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.

    Science.gov (United States)

    Ohto, Tatsuhiko; Hunger, Johannes; Backus, Ellen H G; Mizukami, Wataru; Bonn, Mischa; Nagata, Yuki

    2017-03-08

    The osmolyte molecule trimethylamine-N-oxide (TMAO) stabilizes the structure of proteins. As functional proteins are generally found in aqueous solutions, an important aspect of this stabilization is the interaction of TMAO with water. Here, we review, using vibrational spectroscopy and molecular dynamics simulations, recent studies on the structure and dynamics of TMAO with its surrounding water molecules. This article ends with an outlook on the open questions on TMAO-protein and TMAO-urea interactions in aqueous environments.

  3. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  4. Small-amplitude vibrations at a finite temperature in the liquid drop model

    International Nuclear Information System (INIS)

    Providencia, J. da Jr.

    1991-01-01

    The ground state of a hot nucleus is studied in the classical limit. The equations of motion and boundary conditions of the liquid drop model are derived from the variational principle. The effect of the surface tension is taken into account. The temperature dependence of small-amplitude vibrations in the liquid drop model is investigated. It is shown that the breathing mode suffers a 6.3% decrease in energy when the temperature increases from 0 to 5 MeV. The present model allows for a description of surface modes with an A -1/2 dependence of the energy. It is also found that the surface modes will show an appreciable temperature dependence if a reasonable temperature dependence of the surface tension is postulated. It is shown that the model satisfies the energy-weighted sum rule and the inverse energy-weighted sum rule. (orig.)D

  5. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  6. Structural determination of some uranyl compounds by vibrational spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1990-07-01

    The vibrational spectra of different uranyl compounds has been studied and of it spectral information has been used the fundamental asymmetric vibrational frequency, to determine the length and constant bond force U=O by means of the combination of the concept of absorbed energy and the mathematical expression of Badger modified by Jones. It is intended a factor that simplifies the mathematical treatment and the results are compared with the values obtained for other methods. (Author)

  7. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  8. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  9. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  10. High-temperature spectroscopy for nuclear waste applications

    International Nuclear Information System (INIS)

    Grant, P.M.; Robouch, P.; Torres, R.A.; Silva, R.J.

    1991-10-01

    Instrumentation has been developed to perform uv-vis-nir absorbance measurements remotely and at elevated temperatures and pressures. Fiber-optic spectroscopy permits the interrogation of radioactive species within a glovebox enclosure at temperatures ranging from ambient to >100 degree C. Spectral shifts as a function of metal- ligand coordination are used to compute thermodynamic free energies of reaction by matrix regression analysis. Pr 3+ serves as a convenient analog for trivalent actinides without attendant radioactivity hazards, and recent results obtained from 20 degree--95 degree C with the Pr-acetate complexation system are presented. Preliminary experimentation on Am(3) hydrolysis is also described. 16 refs., 1 tab

  11. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  12. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States); Aoki, Toshihiro [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704 (United States); Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106 (United States)

    2016-10-15

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. - Highlights: • High spatial resolution spectroscopic detection of water related species in nanoparticles. • Detection of OH stretch modes with vibrational EELS. • Differentiation between hydrate and hydroxide species on or on nanoparticles. • Detection of hydrate on a single 60 nm oxide nanoparticle of MgO. • Use of aloof beam EELS to minimize radiation damage.

  13. Structure determination of butylone as a new psychoactive substance using chiroptical and vibrational spectroscopies.

    Science.gov (United States)

    Spálovská, Dita; Králík, František; Kohout, Michal; Jurásek, Bronislav; Habartová, Lucie; Kuchař, Martin; Setnička, Vladimír

    2018-05-01

    Recently, there has been a worldwide substantial increase in the consumption of new psychoactive substances (NPS), compounds that mimic the structure of illicit drugs, such as amphetamines or ecstasy. The producers try to avoid the law by a slight modification of illicit structures, thereby developing dozens of temporarily legal NPS every year. The current trends in the detection and monitoring of such substances demand a fast and reliable analysis. Molecular spectroscopy represents a highly effective tool for the identification of NPS and chiroptical methods can provide further information on their 3D structure, which is the key for the determination of their biological activity. We present the first systematic study of NPS, specifically butylone, combining chiroptical and vibrational spectroscopies with ab initio calculations. According to density functional theory calculations, 6 stable lowest energy conformers of butylone were found and their molecular structure was described. For each conformer, the relative abundance based on the Boltzmann distribution was estimated, their population weighted spectra predicted and compared to the experimental results. Very good agreement between the experimental and the simulated spectra was achieved, which allowed not only the assignment of the absolute configuration, but also a precise description of the molecular structure. © 2018 Wiley Periodicals, Inc.

  14. Translationally and vibrationally activated reaction of CO2 on Si(111)7x7. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Lorraine, P.W.; Thoms, D.B.; Machonkin, R.A.; Ho, W.

    1992-02-15

    The interaction of CO2 molecules with the Si (111) 7 X 7 surface for translational energies between 0.2 and 1.6 eV and varying vibrational energies has been studied with time-resolved electron-energy-loss spectroscopy (TREELS), temperature-programed desorption, and Auger electron spectroscopy. Energy from the normal component of translational motion has been found to strongly increase the dissociation probability of CO2 on the surface. TREELS has been used to tentatively identify the resulting surface complex as O on a Si adatom with CO bonded in a bridging site to a next-layer Si rest atom. This complex decomposes at 400 K to a surface oxide and gas-phase CO. In addition, vibrational excitation has been found to increase the initial sticking coefficient for normal translational energies less than 0.5 eV.

  15. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  16. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    Science.gov (United States)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  17. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  18. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  19. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  20. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    Science.gov (United States)

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  1. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  2. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kneebone, Jared L. [Univ. of Rochester, Rochester, NY (United States); Daifuku, Stephanie L. [Univ. of Rochester, Rochester, NY (United States); Kehl, Jeffrey A. [Univ. of Rochester, Rochester, NY (United States); Wu, Gang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chung, Hoon T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Michael Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alp, E. Ercan [Argonne National Lab. (ANL), Argonne, IL (United States); More, Karren L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zelenay, Piotr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neidig, Michael L. [Univ. of Rochester, Rochester, NY (United States)

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O2 or O2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe active sites in complex ORR catalysts that combines an effective probe molecule (NO(g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO(g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO(g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO(g) probe molecules. Moreover, such sites are likely also reactive to O2, possibly serving as the ORR active sites in the synthesized materials.

  3. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  4. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, Maxim F.; Domcke, Wolfgang [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Rao, B. Jayachander [Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  5. Full conformational landscape of 3-Methoxyphenol revealed by room temperature mm-wave rotational spectroscopy supported by quantum chemical calculations.

    Science.gov (United States)

    Roucou, Anthony; Fontanari, Daniele; Dhont, Guillaume; Jabri, Atef; Bray, Cédric; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2018-03-30

    Room temperature millimeter-wave rotational spectroscopy supported by high level of theory calculations have been employed to fully characterise the conformational landscape of 3-Methoxyphenol, a semi-volatile polar oxygenated aromatic compound precursor of secondary organic aerosols in the atmosphere arising from biomass combustion. While previous rotationally-resolved spectroscopic studies in the microwave and in the UV domains failed to observe the complete conformational landscape, the 70 - 330 GHz rotational spectrum measured in this study reveals the ground state rotational signatures of the four stable conformations theoretically predicted. Moreover, rotational transitions in the lowest energy vibrationally excited states were assigned for two conformers. While the inertial defect of methoxyphenol does not signicantly change between conformers and isomers, the excitation of the methoxy out-of-plane bending is the main contribution to the non-planarity of the molecule. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CARS measurement of vibrational and rotational temperature with high power laser and high speed visualization of total radiation behind hypervelocity shock waves of 5-7km/s

    Science.gov (United States)

    Sakurai, Kotaro; Bindu, Venigalla Hima; Niinomi, Shota; Ota, Masanori; Maeno, Kazuo

    2010-09-01

    Coherent Anti-Stokes Raman Spectroscopy (CARS) method is commonly used for measuring molecular structure or condition. In the aerospace technology, this method is applies to measure the temperature in thermic fluid with relatively long time duration of millisecond or sub millisecond. On the other hand, vibrational/rotational temperatures behind hypervelocity shock wave are important for heat-shield design in phase of reentry flight. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. In this paper CARS method is applied to measure the vibrational/rotational temperature of N2 behind hypervelocity shock wave. The strong shock wave in front of the reentering space vehicles can be experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas. However CARS measurement is difficult for our experiment. Our measurement needs very short pulse which order of nanosecond and high power laser for CARS method. It is due to our measurement object is the momentary phenomena which velocity is 7km/s. In addition the observation section is low density test gas, and there is the strong background light behind the shock wave. So we employ the CARS method with high power, order of 1J/pulse, and very short pulse (10ns) laser. By using this laser the CARS signal can be acquired even in the strong radiation area. Also we simultaneously try to use the CCD camera to obtain total radiation with CARS method.

  7. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.; Michalak, William D.; Cai, Xiaojun; Carl, Lindsay; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2015-01-01

    NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective

  8. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  9. Interrogating the vibrational relaxation of highly excited polyatomics with time-resolved diode laser spectroscopy: C6H6, C6D6, and C6F6+CO2

    International Nuclear Information System (INIS)

    Sedlacek, A.J.; Weston, R.E. Jr.; Flynn, G.W.

    1991-01-01

    The vibrational relaxation of highly excited ground state benzene, benzene d 6 , and hexafluorobenzene by CO 2 has been investigated with high resolution diode laser spectroscopy. The vibrationally hot polyatomics are formed by single photon 248 nm excitation to the S 1 state followed by rapid radiationless transitions. It has been found that in all cases less than 1% of the energy initially present in the polyatomics is deposited into the high frequency mode of CO 2 (ν 3 ). An investigation of the CO 2 (00 0 1) nascent rotational distribution under single collision conditions reveals that very little rotational excitation accompanies vibrational energy transfer to the ν 3 mode. The CO 2 (ν 3 ) rotational states can be described by temperatures, T rot , as follows: C 6 H 6 , T rot =360±30 K; C 6 D 6 , T rot =350±35 K and C 6 F 6 , T rot =340±23 K. An estimate of left-angle ΔE right-angle ν3 , the mean energy transferred to the CO 2 ν 3 mode per collision, suggests that as the availability of low frequency modes in the excited molecule increases, less energy is deposited into the high frequency mode of CO 2 . Finally, evidence is presented suggesting that even at moderate laser fluences, the two-photon ionization of benzene can lead to substantial CO 2 ν 3 excitation via electron+CO 2 inelastic collisions

  10. Contact spectroscopy of high-temperature superconductors. Review

    International Nuclear Information System (INIS)

    Yanson, I.K.

    1991-01-01

    We have attempted to systematize the research of high temperature superconductors by means of tunneling and point-contact spectroscopy. The theoretical grounds of the methods are briefly described. The deviations of current-voltage characteristics from ordinary superconductors are considered. The properties of point contacts with direct energy gap measurfements and the fine structure of derivatives of i(v) curves at the overlap energies are reviewed for the high-T c La 2-x Sr x CuO 4 materials

  11. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    Science.gov (United States)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  12. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  13. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    Science.gov (United States)

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  14. Emission spectra of the species ablated from a solid target submerged in liquid: vibrational temperature of C2 molecules in water-confined geometry

    International Nuclear Information System (INIS)

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2002-01-01

    Emission spectra of C 2 molecules produced at the water-graphite interface by pulsed laser irradiation were obtained at various delay times from the irradiation. Vibrational temperature was determined by the Boltzmann plot based on the vibrational bands in Δν=-1 branch of the Swan system. The results show that it was ca. 5000 K and did not change significantly with the delay time. With increasing the delay time up to ca. 500 ns the signal from the Swan band disappeared before the decrease of the vibrational temperature. The results were explained by the formation of a gas cavity and its collapse at several hundreds of nanoseconds from the laser pulse

  15. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  16. Nuclear resonance vibrational spectroscopy applied to [Fe(OEP)(NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure.

    Science.gov (United States)

    Lehnert, Nicolai; Galinato, Mary Grace I; Paulat, Florian; Richter-Addo, George B; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-05-03

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N

  17. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

    Science.gov (United States)

    Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther

    2018-04-01

    A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.

  18. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  19. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  20. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  1. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  2. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  3. Description of pnicogen bonding with the help of vibrational spectroscopy-The missing link between theory and experiment

    Science.gov (United States)

    Setiawan, D.; Kraka, E.; Cremer, D.

    2014-10-01

    The nature of the E⋯E‧ pnicogen bond (E = N, P, As) in dimers such as H2FP⋯PH2F (1) and H3N⋯PHNO2 (2) can be described using vibrational spectroscopy in form of the calculated infrared and depolarized Raman scattering spectra. Utilizing the six calculated intermonomer frequencies, the corresponding local mode E⋯E‧ stretching frequency and force constant are obtained, where the latter provides a unique measure of the E⋯E‧ bond strength. Pnicogen bonding in 1 is relative strong (bond strength order n = 0.151) and covalent whereas pnicogen bonding in 2 is electrostatic (n = 0.047) because of a different bonding mechanism.

  4. LABORATORY CHARACTERIZATION AND ASTROPHYSICAL DETECTION OF VIBRATIONALLY EXCITED STATES OF ETHYL CYANIDE

    Energy Technology Data Exchange (ETDEWEB)

    Daly, A. M.; Bermudez, C.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Area de Quimica-Fisica, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada del CSIC, Universidad de Valladolid, E-47005 Valladolid (Spain); Lopez, A.; Tercero, B.; Cernicharo, J. [Department of Astrophysics, CAB, INTA-CSIC, Crta Torrejon, E-28850 Torrejon de Ardoz, Madrid (Spain); Pearson, J. C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Padadena, CA 91109 (United States); Marcelino, N., E-mail: adammichael.daly@uva.es, E-mail: cbermu@qf.uva.es, E-mail: jlalonso@qf.uva.es, E-mail: lopezja@cab.inta-csic.es, E-mail: terceromb@cab.inta-csic.es, E-mail: jcernicharo@cab.inta-csic.es, E-mail: John.C.Pearson@jpl.nasa.gov, E-mail: nmarceli@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2013-05-01

    Ethyl cyanide, CH{sub 3}CH{sub 2}CN, is an important interstellar molecule with a very dense rotational-vibrational spectrum. On the basis of new laboratory data in the range of 17-605 GHz and ab initio calculations, two new vibrational states, {nu}{sub 12} and {nu}{sub 20}, have been detected in molecular clouds of Orion. Laboratory data consist of Stark spectroscopy (17-110 GHz) and frequency-modulated spectrometers (GEM laboratory in Valladolid: 17-170, 270-360 GHz; Toyama: 26-200 GHz; Emory: 200-240 GHz; Ohio State: 258-368 GHz; and JPL: 270-318, 395-605 GHz). More than 700 distinct lines of each species were measured in J up to 71 and in K{sub a} up to 25. The states were fitted with Watson's S-reduction Hamiltonian. The two new states have been identified in the interstellar medium toward the Orion Nebula (Orion KL). The ground state, the isotopologues of CH{sub 3}CH{sub 2}CN, and the vibrationally excited states have been fitted to obtain column densities and to derive vibrational temperatures. All together, ethyl cyanide is responsible for more than 2000 lines in the observed frequency range of 80-280 GHz.

  5. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  6. Vibrational and thermal study of l-methionine nitrate polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Victor, F.M.S.; Ribeiro, L.H.L.; Facanha Filho, P.F.; Santos, C.A.S.; Soares, R.A.; Abreu, D.C.; Sousa, J.C.F.; Carvalho, J.O.; Santos, A.O. dos [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Intensified in studies of nonlinear optical materials has been observed over the past two decades for its wide application in telecommunications, optical modulation and optical signal processing. The goal of this work is the thermal and vibrational study of L-methionine nitrate polycrystalline. The polycrystals were obtained by the method of slow evaporation of solvent at ambient temperature of 25 ° C. The X-ray diffraction was performed to confirm the structure of the material, which has monoclinic structure (space group P21) with four molecules per unit cell structure. Refinement by Rietveld method has been optimized and good quality parameters Rwp = 7.97% , Rp = 5.74 and S = 1.92%. The thermal stability of the material was verified from Thermogravimetric analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The measures showed a possible phase transition event at about 107°C before the melting point of the material, which took place at about 127°C. Thermogravimetric analysis showed two mass loss events of 61.5% and 30.4%. The vibrational modes of the L-methionine nitrate molecule were identified by Raman spectroscopy in the spectral range between 35cm-1 and 3500 cm-1, the scattering measurements were made from room temperature up to the melting temperature of the material (140 ° C ) in which the disappearance of bands was found in the region of normal modes at 130 ° C, thus demonstrating a irreversible structural phase transition, because the spectrum obtained after returning the sample to ambient temperature is typical of amorphous material. (author)

  7. Relationships for electron-vibrational coupling in conjugated π organic systems

    Science.gov (United States)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  8. Study of calcification formation and disease diagnostics utilising advanced vibrational spectroscopy

    Science.gov (United States)

    Kerssens, Marleen Maartje

    The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band

  9. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  10. Spin transitions in La{sub 0.7} Ba{sub 0.3}CoO{sub 3} thin films revealed by combining Raman spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Othmen, Zied; Oueslati, Meherzi [Unité Nanomatériaux et Photonique, Faculty of Sciences of Tunis, Tunis El-Manar University, 2092 Tunis (Tunisia); Copie, Olivier; Gemeiner, Pascale; Dkhil, Brahim [Laboratoire Structures, Propriétés et Modélisation des Solides, Centrale Supélec, CNRS-UMR 8580, Université Paris-Saclay (France); Daoudi, Kais [Unité Nanomatériaux et Photonique, Faculty of Sciences of Tunis, Tunis El-Manar University, 2092 Tunis (Tunisia); Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates); Boudard, Michel [Univ. Grenoble Alpes, LMGP, F-38000 Grenoble (France)

    2016-07-07

    In cobaltite, the spin states transitions of Co{sup 3+/4+} ions govern the magnetic and electronic conduction properties. These transitions are strain-sensitive and can be varied using external parameters, including temperature, hydrostatic pressure, or chemical stresses through ionic substitutions. In this work, using temperature dependent Raman spectroscopy and X-ray diffraction, the epitaxial strain effects on both structural and vibrational properties of La{sub 0.7} Ba{sub 0.3} CoO{sub 3} (LBCO) cobaltite thin films are investigated. All Raman active phonon modes as well as the structure are found to be strongly affected. Both Raman modes and lattice parameter evolutions show temperature changes correlated with magnetic and electronic transitions properties. Combining Raman spectroscopy and X-ray diffraction appears as a powerful approach to probe the spin transition in thin film cobaltite. Our results provide insight into strong spin-charge-phonon coupling in LBCO thin film. This coupling manifests as vibrational transition with temperature in the Raman spectra near the ferromagnetic spin ordered transition at 220 K.

  11. Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids:Invited Review

    OpenAIRE

    Berg, Rolf W.

    2007-01-01

    A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([...

  12. Structural and room temperature ferromagnetic properties of Ni doped ZnO nanoparticles via low-temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kun; Liu, Changzhen, E-mail: liuchangzhen94@163.com; Chen, Rui; Fang, Xiaoxiang; Wu, Xiuling; Liu, Jie

    2016-12-01

    A series of Zn{sub 1−x}Ni{sub x}O (x=0, 1%, 3%, 5%) nanoparticles have been synthesized via a low-temperature hydrothermal method. Influence of Ni doping concentration on the structure, morphology, optical properties and magnetism of the samples was investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometer and vibrating sample magnetometer instruments. The results show that the undoped and doped ZnO nanoparticles are both hexagonal wurtzite structures. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The images of SEM reveal that the structure of pure ZnO and Ni doped samples are nanoparticles which intended to form flakes with thickness of few nanometers, being overlain with each one to develop the network with some pores and voids. Based on the ultraviolet–visible (UV–vis) spectroscopy analysis, it indicates that the band gap energy decreases with the increasing concentration of Ni. Furthermore, The Ni doped ZnO samples didn't exhibit higher ultraviolet-light-driven photocatalytic activity compared to the undoped ZnO sample. Vibrating sample magnetometer was used for the magnetic property investigations, and the result indicates that room temperature ferromagnetism property of 3% Ni doped sample is attributed to oxygen vacancy and interaction between doped ions.

  13. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  14. Fundamental Vibration of Molecular Hydrogen

    Science.gov (United States)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  15. Dynamical interactions between solute and solvent studied by nonlinear infrared spectroscopy

    International Nuclear Information System (INIS)

    Ohta, K.; Tominaga, K.

    2006-01-01

    Interactions between solute and solvent play an important role in chemical reaction dynamics and in many relaxation processes in condensed phases. Recently third-order nonlinear infrared (IR) spectroscopy has shown to be useful to investigate solute-solvent interaction and dynamics of the vibrational transition. These studies provide detailed information on the energy relaxation of the vibrationally excited state, and the time scale and the magnitude of the time correlation functions of the vibrational frequency fluctuations. In this work we have studied vibrational energy relaxation (VER) of solutions and molecular complexes by nonlinear IR spectroscopy, especially IR pump-probe method, to understand the microscopic interactions in liquids. (authors)

  16. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  17. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  18. Torsional, Vibrational and Vibration-Torsional Levels in the S_{1} and Ground Cationic D_{0}^{+} States of Para-Fluorotoluene

    Science.gov (United States)

    Gardner, Adrian M.; Tuttle, William Duncan; Whalley, Laura E.; Claydon, Andrew; Carter, Joseph H.; Wright, Timothy G.

    2017-06-01

    The S_{1} electronic state and ground state of the cation of para-fluorotoluene (pFT) have been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy. Here we focus on the low wavenumber region where a number of "pure" torsional, fundamental vibrational and vibration-torsional levels are expected; assignments of observed transitions are discussed, which are compared to results of published work on toluene (methylbenzene) from the Lawrance group. The similarity in the activity observed in the excitation spectrum of the two molecules is striking. A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). J. R. Gascooke, E. A. Virgo, and W. D. Lawrance J. Chem. Phys., 143, 044313 (2015).

  19. Superconducting electron tunneling as detection method for low frequency resonant vibration modes of interstitials in fcc lead

    International Nuclear Information System (INIS)

    Adrian, H.

    1981-01-01

    The influence of crystal defects on the phonon spectra was studied for fcc lead using superconducting tunneling spectroscopy. The theory predicts low frequency modes for the vibrational states of interstitials in (100) dumbbell configuration. Low temperature irradiation of superconducting point contacts with fast ions (point contact thickness small compared to the average ion range) showed radiation-induced structures in the low-energy part of the Eliashberg function for lead. These resonant modes are reduced by annealing at 18.5 K; they are attributed to small interstitial clusters. The radiation-induced structures are completely removed by room temperature annealing. (orig.)

  20. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  1. Time, Temperature, and Cationic Dependence of Alkali Activation of Slag: Insights from Fourier Transform Infrared Spectroscopy and Spectral Deconvolution.

    Science.gov (United States)

    Dakhane, Akash; Madavarapu, Sateesh Babu; Marzke, Robert; Neithalath, Narayanan

    2017-08-01

    The use of waste/by-product materials, such as slag or fly ash, activated using alkaline agents to create binding materials for construction applications (in lieu of portland cement) is on the rise. The influence of activation parameters (SiO 2 to Na 2 O ratio or M s of the activator, Na 2 O to slag ratio or n, cation type K + or Na + ) on the process and extent of alkali activation of slag under ambient and elevated temperature curing, evaluated through spectroscopic techniques, is reported in this paper. Fourier transform infrared spectroscopy along with a Fourier self-deconvolution method is used. The major spectral band of interest lies in the wavenumber range of ∼950 cm -1 , corresponding to the antisymmetric stretching vibration of Si-O-T (T = Si or Al) bonds. The variation in the spectra with time from 6 h to 28 days is attributed to the incorporation of Al in the gel structure and the enhancement in degree of polymerization of the gel. 29 Si nuclear magnetic resonance spectroscopy is used to quantify the Al incorporation with time, which is found to be higher when Na silicate is used as the activator. The Si-O-T bond wavenumbers are also generally lower for the Na silicate activated systems.

  2. Vibrations of a molecule in an external force field.

    Science.gov (United States)

    Okabayashi, Norio; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J

    2018-05-01

    The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.

  3. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Hendrik [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

  4. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations.

    Science.gov (United States)

    Sakurai, Atsunori; Tanimura, Yoshitaka

    2011-04-28

    To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the

  5. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    OpenAIRE

    Berg, Rolf W.

    2009-01-01

    A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ...

  6. Measurement of H and H2 populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

    1988-12-01

    A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H 2 within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H 2 as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H 2 state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs

  7. Multielement CdZnTe detectors for high-efficiency, ambient-temperature gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Moss, C.E.; Sweet, M.R.; Ianakiev, K.; Reedy, R.C.; Li, J.; Valentine, J.D.

    1998-01-01

    CdZnTe is an attractive alternative to scintillator-based technology for ambient-temperature, gamma-ray spectroscopy. Large, single-element devices up to 3500 mm 3 have been developed for gamma-ray spectroscopy and are now available commercially. Because CdZnTe is a wide band-gap semiconductor, it can operate over a wide range of ambient temperatures with minimal power consumption. Over this range, CdZnTe detectors routinely yield better overall performance for gamma-ray spectroscopy than scintillator detectors. Manufacturing issues and material electronic properties limit the maximum size of single-element CdZnTe detectors. The authors are investigating methods to combine CdZnTe detectors together to improve detection efficiency and overall performance of gamma-ray spectroscopy. The applications include the assay and identification of radioisotopes for nuclear material safeguards and nonproliferation (over the energy range 50 keV to 1 MeV), and the analysis of elemental composition for planetary science (over the energy range 1 MeV to 10 MeV). Design issues for the two energy ranges are summarized

  8. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  9. Millimeterwave spectroscopy of active laser plasmas; the excited vibrational states of HCN

    International Nuclear Information System (INIS)

    De Lucia, F.C.; Helminger, P.A.

    1977-01-01

    Millimeter and submillimeter microwave techniques have been used for the spectroscopic study of an HCN laser plasma. Forty-seven rotational transitions in 12 excited vibrational states have been observed. Numerous rotational, vibrational, and perturbation parameters have been calculated from these data. A discussion of experimental techniques is included

  10. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  11. Infrared micro-spectroscopy of human tissue: principles and future promises.

    Science.gov (United States)

    Diem, Max; Ergin, Ayşegül; Remiszewski, Stan; Mu, Xinying; Akalin, Ali; Raz, Dan

    2016-06-23

    This article summarizes the methods employed, and the progress achieved over the past two decades in applying vibrational (Raman and IR) micro-spectroscopy to problems of medical diagnostics and cellular biology. During this time, several research groups have verified the enormous information contained in vibrational spectra; in fact, information on protein, lipid and metabolic composition of cells and tissues can be deduced by decoding the observed vibrational spectra. This decoding process is aided by the availability of computer workstations and advanced algorithms for data analysis. Furthermore, commercial instrumentation for the fast collection of both Raman and infrared micro-spectral data has enabled the collection of images of cells and tissues based solely on vibrational spectroscopic data. The progress in the field has been manifested by a steady increase in the number and quality of publications submitted by established and new research groups in vibrational spectroscopy in the biological and biomedical arenas.

  12. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  13. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  14. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    Science.gov (United States)

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  15. Spectral response of crystalline acetanilide and N -methylacetamide: Vibrational self-trapping in hydrogen-bonded crystals

    Science.gov (United States)

    Edler, Julian; Hamm, Peter

    2004-06-01

    Femtosecond pump-probe and Fourier transform infrared spectroscopy is applied to compare the spectral response of the amide I band and the NH-stretching band of acetanilide (ACN) and N -methylacetamide (NMA), as well as their deuterated derivatives. Both molecules form hydrogen-bonded molecular crystals that are regarded to be model systems for polypeptides and proteins. The amide I bands of both ACN and NMA show a temperature-dependent sideband, while the NH bands are accompanied by a sequence of equidistantly spaced satellite peaks. These spectral anomalies are interpreted as a signature of vibrational self-trapping. Two different types of states can be identified in both crystals in the pump-probe signal: a delocalized free-exciton state and a set of localized self-trapped states. The phonons that mediate self-trapping in ACN and deuterated ACN are identified by their temperature dependence, confirming our previous results. The study shows that the substructure of the NH band in NMA (amide A and amide B bands) originates, at least partly, from vibrational self-trapping and not, as often assumed, from a Fermi resonance.

  16. Wavelength Modulation Spectroscopy for Temperature and Species Concentration in the Plume of a Supersonic Nozzle (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-07-12

    Paper with Briefing Charts 22 May 2017 - 30 July 2017 Wavelength Modulation Spectroscopy for Temperature and Species Concentration in the Plume of a...environments. Wavelength modulation spectroscopy (WMS) is a laser absorption spectroscopy technique that allows for quantitative, time-resolved...American Institute of Aeronautics and Astronautics 1 Wavelength Modulation Spectroscopy for Temperature and Species Concentration in the

  17. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Science.gov (United States)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  18. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV

    International Nuclear Information System (INIS)

    West, Brantley A.; Molesky, Brian P.; Giokas, Paul G.; Moran, Andrew M.

    2013-01-01

    Highlights: • We discuss the outlook for multidimensional spectroscopies in the deep UV. • Photophysics are examined in small DNA components at cryogenic temperatures. • Wavepacket motions are detected in ring-opening systems with 2DUV spectroscopy. • Measurements of electronic wavepacket motions in molecules are proposed. - Abstract: Nonlinear laser spectroscopies in the deep UV spectral range are motivated by studies of biological systems and elementary processes in small molecules. This perspective article discusses recent technical advances in this area with a particular emphasis on diffractive optic based approaches to four-wave mixing spectroscopies. Applications to two classes of systems illustrate present experimental capabilities. First, experiments on DNA components at cryogenic temperatures are used to uncover features of excited state potential energy surfaces and vibrational cooling mechanisms. Second, sub-200 fs internal conversion processes and coherent wavepacket motions are investigated in cyclohexadiene and α-terpinene. Finally, we propose new experimental directions that combine methods for producing few-cycle UV laser pulses in noble gases with incoherent detection methods (e.g., photoionization) in experiments with time resolution near a singlefemtosecond. These measurements are motivated by knowledge of extremely fast non-adiabatic dynamics and the resolution of electronic wavepacket motions in molecules

  19. Moessbauer spectroscopy of He irradiated austenitic stainless steel SUS304 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Horii, Kiyomasa; Ishibashi, Tetsu; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Kawasaki, Katsunori; Hayashi, Nobuyuki; Sakamoto, Isao

    1996-04-01

    SUS 304 austenitic stainless steel causes the magnetic transition at 60 K, and the Young`s modulus lowers. In addition, its composition elements have the large (n,{alpha}) reaction cross section to high energy neutrons, and helium is apt to be generated, and this is a factor that lowers the material strength. In the He-irradiated parts in austenitic stainless steel, the precursory state of martensite transformation should exist, and its effect is considered to be observable by carrying out low temperature Moessbauer spectroscopy. As to the preparation of He-irradiation samples, the SUS 304 foils used and the irradiation conditions are described. The measurement of low temperature Moessbauer spectra for the samples without irradiation and with irradiation is reported. In order to determine the magnetic transition point, the thermal scanning measurement was carried out for the samples without or with irradiation. The martensite transformation was measured by X-ray diffraction and transmission type Moessbauer spectroscopy. In order to observe the state of the sample surfaces, the measurement by internal conversion electron Moessbauer spectroscopy was performed. These results and the temperature dependence of the Moessbauer spectra for the irradiated parts are reported. (K.I.)

  20. Moessbauer spectroscopy of He irradiated austenitic stainless steel SUS304 at low temperature

    International Nuclear Information System (INIS)

    Horii, Kiyomasa; Ishibashi, Tetsu; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi; Kawasaki, Katsunori; Hayashi, Nobuyuki; Sakamoto, Isao.

    1996-01-01

    SUS 304 austenitic stainless steel causes the magnetic transition at 60 K, and the Young's modulus lowers. In addition, its composition elements have the large (n,α) reaction cross section to high energy neutrons, and helium is apt to be generated, and this is a factor that lowers the material strength. In the He-irradiated parts in austenitic stainless steel, the precursory state of martensite transformation should exist, and its effect is considered to be observable by carrying out low temperature Moessbauer spectroscopy. As to the preparation of He-irradiation samples, the SUS 304 foils used and the irradiation conditions are described. The measurement of low temperature Moessbauer spectra for the samples without irradiation and with irradiation is reported. In order to determine the magnetic transition point, the thermal scanning measurement was carried out for the samples without or with irradiation. The martensite transformation was measured by X-ray diffraction and transmission type Moessbauer spectroscopy. In order to observe the state of the sample surfaces, the measurement by internal conversion electron Moessbauer spectroscopy was performed. These results and the temperature dependence of the Moessbauer spectra for the irradiated parts are reported. (K.I.)

  1. Hole-vibrational coupling in Pentacene thin films detected by UPS

    International Nuclear Information System (INIS)

    Yamame, H.; Fukagawa, H.; Honda, H.; Ono, M.; Okudaira, K.K.; Ueno, N.; Kera, S.; Ishii, H.

    2004-01-01

    Full text:The hole/electron-vibrational coupling plays a crucial rule in the hole/electron transport in organic devices. In this work, fine structure of the highest occupied molecular orbital (HOMO) band in oriented thin films of pentacene on graphite (HOPG) was studied by using high-resolution ultraviolet photoelectron spectroscopy (UPS). Figure 1 shows the comparison of UPS spectra between pentacene thin films (circles) and gas-phase pentacene (dashed line). We observed a very sharp HOMO band, which consists of at least three components, as observed for Cu-phthalocyanine monolayer on HOPG. It is of note that the relative intensities of fine structures are different between the condensed phase and gas phase, while their energy separations are the same for the two phases (∼ 0.17 eV / 1400 cm -1 ). Furthermore, the relative intensity of fine structures showed remarkable dependence on photoelectron-take-off angle. Judging from these results, the observed fine structures in UPS originate from the hole-vibrational (molecular C-C stretching) coupling in pentacene thin films. At the conference, temperature and thickness dependences of UPS will be discussed

  2. Feedback damping of a microcantilever at room temperature to the minimum vibration amplitude limited by the noise level.

    Science.gov (United States)

    Kawamura, Y; Kanegae, R

    2016-06-17

    Cooling the vibration amplitude of a microcantilever as low as possible is important to improve the sensitivity and resolutions of various types of scanning type microscopes and sensors making use of it. When the vibration amplitude is controlled to be smaller using a feed back control system, it is known that the obtainable minimum amplitude of the vibration is limited by the floor noise level of the detection system. In this study, we demonstrated that the amplitude of the thermal vibration of a microcantilever was suppressed to be about 0.15 pmHz(-1/2), which is the same value with the floor noise level, without the assistance of external cryogenic cooling. We think that one of the reason why we could reach the smaller amplitude at room temperature is due to stiffer spring constant of the lever, which leads to higher natural frequency and consequently lower floor noise level. The other reason is considered to be due to the increase in the laser power for the diagnostics, which lead to the decrease in the signal to noise ratio determined by the optical shot noise.

  3. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  4. Structural transformations of 3-fluoro and 3-fluoro-4-methoxy benzaldehydes under cryogenic conditions: A computational and low temperature infrared spectroscopy investigation

    Science.gov (United States)

    Ogruc Ildiz, G.; Konarska, J.; Fausto, R.

    2018-05-01

    Structural transformations of 3-fluorobenzaldehyde (C7H5FO; 3FBA) and 3-fluoro-4-methoxybenzaldehyde (C8H7FO2; 3F4MBA), taking place in different solid phase environments and at low temperature, were investigated by infrared spectroscopy, complemented by quantum chemistry calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of approximation. The studied compounds were isolated from gas phase into cryogenic inert matrices (Ar, Xe), allowing to characterize their equilibrium conformational composition in gas-phase at room temperature. In both cases, two conformers differing by the orientation of the aldehyde moiety (with the carbonyl aldehyde bond cis or trans in relation to the aromatic ring fluorine substituent) were found to coexist, with the cis conformer being slightly more populated than the trans form. In situ narrowband UV irradiation of the as-deposited matrices led either to preferential isomerization of the cis conformer into the trans form or decarbonylation of both conformers, depending on the used excitation wavelength. Deposition of the vapours of 3F4MBA only, onto the cold (15 K) substrate, produced an amorphous solid containing also both the cis and trans conformers of the compound. Subsequent heating of the amorphous phase up to 268 K led to crystallization of the compound, which is accompanied by conformational selection, the cis form being the single species present in the crystal. The experimentally observed transformations of the studied compounds, together with the structural and vibrational results obtained from the performed quantum chemical calculations, allowed a detailed structural and vibrational characterization of the individual conformers.

  5. Vibrational spectroscopy of H{sub 3}{sup +} - advancing into the visible spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Max; Bing, Dennis; Petrignani, Annemieke; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2010-07-01

    The triatomic hydrogen ion H{sub 3}{sup +} is a highly reactive key component in many astrophysical and technological plasmas. Being the simplest polyatomic molecule, it is also an important benchmark system against which various quantum mechanical calculations are tested. While the rovibrational levels near the triangular equilibrium structure are well understood, the rovibrational spectrum of this elementary system at strongly deformed geometry, above the barrier to linearity near 10000 cm{sup -1}, represents a formidable task for theory. Its experimental exploration so far ended slightly above 13900 cm{sup -1} from the ground state E{sub 0}({lambda}{proportional_to}720 nm). We report new measurements in a cryogenic 22 pole trap in the range of very high vibrational overtones, reaching levels up to {proportional_to}16500 cm{sup -1} ({lambda}{proportional_to}600 nm) from E{sub 0}. Chemical probing spectroscopy revealed its use for ultra-sensitive detection of transitions six to seven orders of magnitude weaker than the fundamental. Aside from the transition frequencies ({+-}0.005 cm{sup -1}), we present results from a new method to derive precise transition intensities, helping theoretical assignment of the lines.

  6. Vibrational analysis of Fourier transform spectrum of the B u )–X g ...

    Indian Academy of Sciences (India)

    improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and r-centroid values. Keywords. Fourier transform spectroscopy; electronic spectrum of selenium dimer; vibrational analysis; Franck–Condon factor; r-centroid values.

  7. Sub-terahertz resonance spectroscopy of biological macromolecules and cells

    Science.gov (United States)

    Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

    2013-05-01

    Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

  8. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  9. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    Science.gov (United States)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo; Pedersen, Ib H.; Capaccioli, Simone; Adrjanowicz, Karolina; Paluch, Marian; Gonthier, Julien; Frick, Bernhard; Lelièvre-Berna, Eddy; Peters, Judith; Niss, Kristine

    2018-02-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data on dipropylene glycol, using both backscattering and time-of-flight instruments. We have carried out the experiments at different combinations of temperature and pressure in both the supercooled liquid and glassy state.

  10. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-04-01

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Water Orientation at Ceramide/Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation

    KAUST Repository

    Adhikari, Aniruddha

    2016-10-10

    Lipid/water interaction is essential for many biological processes. The water structure at the nonionic lipid interface remains little known, and there is no scope of a priori prediction of water orientation at nonionic interfaces, either. Here, we report our study combining advanced nonlinear spectroscopy and molecular dynamics simulation on the water orientation at the ceramide/water interface. We measured χ spectrum in the OH stretch region of ceramide/isotopically diluted water interface using heterodyne-detected vibrational sum-frequency generation spectroscopy and found that the interfacial water prefers an overall hydrogen-up orientation. Molecular dynamics simulation indicates that this preferred hydrogen-up orientation of water is determined by a delicate balance between hydrogen-up and hydrogen-down orientation induced by lipid-water and intralipid hydrogen bonds. This mechanism also suggests that water orientation at neutral lipid interfaces depends highly on the chemical structure of the lipid headgroup, in contrast to the charged lipid interfaces where the net water orientation is determined solely by the charge of the lipid headgroup.

  12. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  13. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  14. SFG spectroscopy from 10 -8 to 1000 mbar: less-ordered CO structures and coadsorption on Pd (1 1 1)

    Science.gov (United States)

    Morkel, Matthias; Unterhalt, Holger; Salmeron, Miquel; Rupprechter, Günther; Freund, Hans-Joachim

    2003-06-01

    Vibrational sum frequency generation spectroscopy was employed to study "less-ordered" phases resulting from low-temperature CO exposure on Pd(1 1 1). Such imperfect structures may also occur under catalytic reaction conditions up to 1000 mbar and originate from the superposition of ordered structures when the CO mobility and flux were insufficient. The effect of coadsorbed hydrogen and water was also examined.

  15. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  16. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  17. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  18. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  19. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  20. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  1. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  2. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  3. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Fleming, Graham R. [Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  6. A comparison of whole body vibration and moist heat on lower extremity skin temperature and skin blood flow in healthy older individuals.

    Science.gov (United States)

    Lohman, Everett B; Sackiriyas, Kanikkai Steni Balan; Bains, Gurinder S; Calandra, Giovanni; Lobo, Crystal; Nakhro, Daniel; Malthankar, Gauri; Paul, Sherwine

    2012-07-01

    Tissue healing is an intricate process that is regulated by circulation. Heat modalities have been shown to improve skin circulation. Recent research supports that passive vibration increases circulation without risk of burns. Study purpose is to compare and determine effects of short duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST) in elderly, non-diabetic individuals following short-term exposure. Ten subjects, 3 female and 7 male (55-73 years of age), received two interventions over three days: 1--Active vibration, 2--passive vibration, 3--moist heat, 4--moist heat combined with passive vibration (MHPV), 5--a commercial massaging heating pad, and 6--no intervention. SBF and ST were measured using a MOOR Laser Doppler before and after the intervention and the third measurement were taken 10 minutes following. Mean SBF following a ten-minute intervention were significantly different in the combination of moist heat and passive vibration from the control, active vibration, and the commercial massaging heating pad. Compared to baseline measurements, this resulted in mean SBF elevation to 450% (at conclusion of 10 minutes of intervention) and 379% (10 minutes post). MHPV (p=0.02) showed significant changes in ST from the commercial massaging heating pad, passive vibration, and active vibration interventions. SBF in the lower legs showed greatest increase with MHPV. Interventions should be selected that are low risk while increasing lower extremity skin blood flow.

  7. Overtone spectroscopy of the hydroxyl stretch vibration in hydroxylamine (NH2OH)

    International Nuclear Information System (INIS)

    Scott, J.L.; Luckhaus, D.; Brown, S.S.; Crim, F.F.

    1995-01-01

    We present photoacoustic spectra of the second (3ν OH ), third (4ν OH ), and fourth (5ν OH ) overtone bands of the hydroxyl stretch vibration in hydroxylamine. Asymmetric rotor simulations of the rovibrational contours provide rotational constants and an estimate of the homogeneous linewidth. The fourth overtone band appears anomalously broad relative to the two lower bands, reflecting a sharp increase in the rate of intramolecular vibrational energy redistribution (IVR). By contrast, the calculated density of states increases smoothly with energy. The homogeneous linewidth of the fourth overtone transition is similar to that measured by Luo et al. [J. Chem. Phys. 93, 9194 (1990)] for the predissociative sixth overtone band, supporting the conclusion that the broadening arises from increased (ro)vibrational coupling at an energy between the third and fourth overtone states

  8. Vibrational properties of the Au-(√{3 }×√{3 } )/Si(111) surface reconstruction

    Science.gov (United States)

    Halbig, B.; Liebhaber, M.; Bass, U.; Geurts, J.; Speiser, E.; Räthel, J.; Chandola, S.; Esser, N.; Krenz, M.; Neufeld, S.; Schmidt, W. G.; Sanna, S.

    2018-01-01

    The vibrational properties of the Au-induced (√{3 }×√{3 })R 30∘ reconstruction of the Si(111) surface are investigated by polarized surface Raman spectroscopy and density-functional theory. The Raman measurements are performed in situ at room temperature as well as 20 K, and they reveal the presence of vibrational eigenmodes in the spectral range from 20 to 450 cm-1. In particular, two peaks of E symmetry at 75 and 183 cm-1 dominate the spectra. No substantial difference between room- and low-temperature spectra is observed, suggesting that the system does not undergo a phase transition down to 20 K. First-principles calculations are performed based on the structural models discussed in the literature. The thermodynamically stable conjugate honeycomb-chained-trimer model (CHCT) [Surf. Sci. 275, L691 (1992), 10.1016/0039-6028(92)90785-5] leads to phonon eigenvalues compatible with the experimental observations in the investigated spectral range. On the basis of the phonon eigenfrequencies, symmetries, and Raman intensities, we assign the measured spectral features to the calculated phonon modes. The good agreement between measured and calculated modes provides a strong argument in favor of the CHCT model.

  9. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  11. Production of high temperature superconductors and characteristics by infrared and Raman spectroscopy

    International Nuclear Information System (INIS)

    Thomsen, C.

    1991-01-01

    This final report, which is partly kept short, is concerned with electron/phonon interaction and the determination of the band gap in high temperature superconductors (YBa 2 Cu 3 O 7 ). The final report is divided into four parts, which reflect the individual working groups: 1. Raman spectroscopy, 2. IR spectroscopy (reflection measurements, isotope effect, superconducting energy gap, behaviour of infrared active phonons), 3. Magnetic field measurements, and 4. Theory (initial calculation of the metal/isolator transfer in BaBiO 3 ). (MM) [de

  12. Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Kim, Young Ki; Choi, Jung Woon

    2008-01-01

    The purpose of system analysis using fluid induced vibration is to identify the problems of the system in advance by analyzing the vibration behavior of the system excited by fluid flow. Fluid-induced vibration analysis methods, developed so far, generally use the numerical analysis method to analyze the fluid flowing inside the pipe and the infinitesimal elements at normal temperature on the basis of the governing equation obtained by applying Newton's Second Law and the momentum equation. However, as the fluid temperature changes greatly at low temperature, fluid-induced vibration analysis methods for normal temperature cannot be applied. This study investigated methods of analyzing fluid-induced vibration in consideration of the cooling effect. In consideration of the changes in the properties of the fluid and system relative to temperature, vibration behavior was analyzed numerically by means of the equation of motion. As a result, the natural frequency of the system tends to change because of the changes of the properties of materials even when the flux is constant inside the pipe, and the vibration behavior of the system was compared to that in case of normal temperature to analyze how much influence the cooling effect has on the vibration behavior of the system

  13. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... process taking place to a significant extent in the temperature range of the investigation and for determining its enthalpy to be Delta H degrees = 64.9 +/- 2.9 kJ mol(-1). The importance of these findings for the understanding of the performance of the industrially important sulfuric acid catalyst. under...

  14. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  15. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective.

    Science.gov (United States)

    Wand, Amir; Kallush, Shimshon; Shoshanim, Ofir; Bismuth, Oshrat; Kosloff, Ronnie; Ruhman, Sanford

    2010-03-07

    The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  17. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  18. Fuel-element vibration and bearing pad to pressure tube fretting

    International Nuclear Information System (INIS)

    Fisher, N.J.; Taylor, C.E.; Pettigrew, M.J.

    1990-08-01

    Fuel channel operation under boiling condition results in increased flow velocities, which may lead to unacceptable fuel-element vibration and bearing pad to pressure tube fretting. The existing endurance test database does not fully cover the range of future channel operating conditions. In particular, after refuelling, some channels for future designs may operate with two-phase flow conditions outside the range of endurance test conditions. Full-scale endurance testing at realistic steam-water conditions involves substantial energy costs. Therefore, fundamental laboratory investigations were conducted to define and endurance test matrix which adequately envelops the future range of operating conditions while minimizing both the number of tests and the energy requirement of individual tests. The main focus of the laboratory investigations was to establish the relationships between: fuel channel flow conditions and fuel-element vibration; and fuel-element vibration and bearing pad to pressure tube fretting. The vibration response of a single fuel element was measured over a wide range of operating conditions covering realistic fuel channel conditions and simulated endurance testing conditions. For higher void fractions, the vibration amplitudes measured in air/water were much higher than in steam/water, while for low void fractions, the amplitudes were similar. The measured amplitudes in steam/water varied very little over the range of temperature and pressure investigated. The effects of temperature, pressure tube oxide thickness, vibration amplitude and bearing pad manufacturer on pressure tube fretting were investigated. The fretting rate is extremely temperature dependent. For vibration amplitudes about three or four times greater than expected in-reactor conditions, peak fretting rates were observed in the 225 to 286 degrees C temperature range. Fretting rates were seven times less at the higher temperatures of 300 and 315 degrees C, and the lower temperatures

  19. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  20. High-resolution electron-energy-loss spectroscopy studies of clean and hydrogen-covered tungsten (100) surfaces

    International Nuclear Information System (INIS)

    Woods, J.P.

    1986-01-01

    High-resolution (10-meV FWHM) low-energy (≤ 100eV) electrons are scattered from the tungsten (100) surface. Electron-energy-loss spectroscopy (EELS) selection rules are utilized to identify vibrational modes of the surface tungsten atoms. A 36-meV mode is measured on the c(2 X 2) thermally reconstructed surface and is modeled as an overtone of the 18-meV mode at M in the surface Brillouin zone. The superstructure of the reconstructed surface allows this mode to be observed in specular scattering. The surface tungsten atoms return to their bulk lateral positions with saturated hydrogen (β 1 phase) adsorption; and a 26-meV mode identified is due to the perpendicular vibration of the surface tungsten layers. The clean-room temperature surface does not display either low-energy vibrations and the surface is modeled as disordered. The three β 1 phase hydrogen vibrations are observed and a new vibration at 118 meV is identified. The 118-meV cross section displays characteristics of a parallel mode, but calculations show this assignment to be erroneous. There are two hydrogen atoms for each surface tungsten atom in the β 1 phase, and lattice-dynamical calculations show that the 118-meV mode is due to a hydrogen-zone edge vibration. The predicted breakdown of the parallel hydrogen vibration selection rule was not observed

  1. Magnetostrictive device for high-temperature sound and vibration measurement in nuclear power stations

    International Nuclear Information System (INIS)

    Hans, R.; Podgorski, J.

    1977-01-01

    The demands on the monitoring systems in nuclear power stations are increasing continuously, not only because of more stringent safety requirements but also for reasons of plant availability and thus economic efficiency. The noise and vibration measurements which therefore have to be taken make it necessary to provide measuring devices with a high degree of efficiency, adequate sensitivity and resistance to high temperatures, radiation and corrosion. Probes using the magnetostrictive effect, whereby a ferromagnetic core changes its length in a magnetic field - a phenomenon which has been known for approximately fifty years - fulfill all the conditions for application in nuclear power stations. (orig.) [de

  2. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  3. Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiutao Lou

    2013-01-01

    Full Text Available Temperature-corrected oxygen measurements were performed by using multi-mode diode laser correlation spectroscopy at temperatures ranging between 300 and 473 K. The experiments simulate in situ monitoring of oxygen in coal-combustion exhaust gases at the tail of the flue. A linear relationship with a correlation coefficient of −0.999 was found between the evaluated concentration and the gas temperature. Temperature effects were either auto-corrected by keeping the reference gas at the same conditions as the sample gas, or rectified by using a predetermined effective temperature-correction coefficient calibrated for a range of absorption wavelengths. Relative standard deviations of the temperature-corrected oxygen concentrations obtained by different schemes and at various temperatures were estimated, yielding a measurement precision of 0.6%.

  4. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  5. The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB{sub 9}H{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hui, E-mail: hui.wu@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Tang, Wan Si [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Zhou, Wei [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Tarver, Jacob D. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); National Renewable Energy Laboratory, Golden, CO 80401 (United States); Stavila, Vitalie [Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94551 (United States); Brown, Craig M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Udovic, Terrence J., E-mail: udovic@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States)

    2016-11-15

    Two ordered phases of the novel solid superionic conductor sodium 1-carba-closo-decaborate (NaCB{sub 9}H{sub 10}) were identified via synchrotron x-ray powder diffraction in combination with first-principles calculations and neutron vibrational spectroscopy. A monoclinic packing of the large ellipsoidal CB{sub 9}H{sub 10}{sup −} anions prevails at the lowest temperatures, but a first-order transformation to a slightly modified orthorhombic packing is largely complete by 240 K. The CB{sub 9}H{sub 10}{sup −} anion orientational alignments and Na{sup +} cation interstitial sitings in both phases are arranged so as to minimize the cation proximities to the uniquely more positive C-bonded H atoms of the anions. These results provide valuable structural information pertinent to understanding the relatively low-temperature, entropy-driven, order-disorder phase transition for this compound. - Graphical abstract: Ordered monoclinic and orthorhombic NaCB{sub 9}H{sub 10} phases were determined by XRD and DFT computations and corroborated by neutron vibrational spectroscopy. - Highlights: • Two T-dependent ordered structures of Na(1-CB{sub 9}H{sub 10}) were determined by XRD. • The lower-T monoclinic to higher-T orthorhombic transition occurs from 210 to 240 K. • The main structural differences involve changes in the canting of the CB{sub 9}H{sub 10}{sup −} anions. • DFT and neutron vibrational spectroscopy corroborate the lower-T monoclinic structure. • The results are important for understanding the nature of this superionic conductor.

  6. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Song, Yuxin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se; Gong, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Lu, Pengfei [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  7. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  8. Self-Aggregation in Pyrrole:  Matrix Isolation, Solid State Infrared Spectroscopy, and DFT Study

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, Rui

    2004-01-01

    Pyrrole (C4H5N) was embedded in low-temperature solid inert matrixes (argon, xenon; T = 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFT(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of dilut...

  9. Investigations of Deep-Level Fe-centres in Si by Mössbauer Spectroscopy

    CERN Multimedia

    Dietrich, M

    2002-01-01

    %IS359\\\\ \\\\Electronic, vibrational and diffusional properties of interstitial and substitutional Fe impurities in silicon are studied by $ ^{57} $Fe Mössbauer emission spectroscopy utilizing implanted radioactive $ ^{57}$Mn$^{+} $ parent ions from ISOLDE as probe atoms. Thus the electronic charge density and the impurity mean-square vibrational amplitude shall be determined for substitutional Fe$_{s} $ and for interstitial Fe$_{i}^{0/+} $ in its two different charge states. These quantities are complementary to previously determined hyperfine interaction parameters and are expected to shed light on the nature of the deviations between calculated and measured parameters. The supposedly different diffusivities of interstitial Fe$_{i}^{0} $ and Fe$_{i}^{+} $ shall be measured by the broadening of the Mössbauer lines, i.e. at a temperature where diffusion jumps occur on an atomic scale within the lifetime of the Mössbauer state.

  10. Non-equilibrium vibrational and chemical kinetics in shock heated carbon dioxide

    Science.gov (United States)

    Kosareva, A. A.

    2018-05-01

    The flows of CO2/CO/O2/O/C and CO2/CO/O mixtures behind shock waves are studied in the three-temperature, two-temperature and one-temperature approximations. The influence of the vibrational relaxation and chemical reactions on the flow composition, temperature and velocity is investigated. It is shown that the vibrational non-equilibrium has a significant effect on the macroscopic parameters of the flow near the front of the shock wave. It was found that the composition of the mixture has the greatest effect on the numerical density of CO molecules and O atoms. Also, significant differences between the values of the vibrational temperature of the asymmetric regime have been revealed.

  11. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-07-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  12. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    International Nuclear Information System (INIS)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-01-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  13. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.

    Science.gov (United States)

    Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan

    2003-10-01

    A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.

  14. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  15. The vibrational Jahn–Teller effect in E⊗e systems

    Energy Technology Data Exchange (ETDEWEB)

    Thapaliya, Bishnu P.; Dawadi, Mahesh B.; Ziegler, Christopher; Perry, David S., E-mail: dperry@uakron.edu

    2015-10-16

    Highlights: • The vibrational Jahn–Teller effect is documented for three E⊗e molecular systems. • The spontaneous vibrational Jahn–Teller distortion is very small. • Vibrational Jahn–Teller splittings are substantial (1–60 cm{sup −1}). • Vibrational conical intersections in CH{sub 3}OH are accessible at low energies. - Abstract: The Jahn–Teller theorem is applied in the vibrational context where degenerate high-frequency vibrational states (E) are considered as adiabatic functions of low-frequency vibrational coordinates (e). For CH{sub 3}CN and Cr(C{sub 6}H{sub 6})(CO){sub 3}, the global minimum of the non-degenerate electronic potential energy surface occurs at the C{sub 3v} geometry, but in CH{sub 3}OH, the equilibrium geometry is far from the C{sub 3v} reference geometry. In the former cases, the computed spontaneous Jahn–Teller distortion is exceptionally small. In methanol, the vibrational Jahn–Teller interaction results in the splitting of the degenerate E-type CH stretch into what have been traditionally assigned as the distinct ν{sub 2} and ν{sub 9} vibrational bands. The ab initio vibrational frequencies are fit precisely by a two-state high-order Jahn–Teller Hamiltonian (Viel and Eisfeld, 2004). The presence of vibrational conical intersections, including 7 for CH{sub 3}OH, has implications for spectroscopy, for geometric phase, and for ultrafast localized non-adiabatic energy transfer.

  16. Purification and low temperature spectroscopy of gecko visual pigments green and blue.

    Science.gov (United States)

    Kojima, D; Imai, H; Okano, T; Fukada, Y; Crescitelli, F; Yoshizawa, T; Shichida, Y

    1995-01-24

    We purified two kinds of visual pigments, gecko green and gecko blue, from retinas of Tokay geckos (Gekko gekko) by two steps of column chromatography, and investigated their photobleaching processes by means of low temperature spectroscopy. Absorption maxima of gecko green and blue solubilized in a mixture of 3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate (CHAPS) and phosphatidylcholine were 522 and 465 nm, respectively, which are close to those observed in the photoreceptor cells. Low temperature spectroscopy identified six intermediates in the photobleaching process of gecko green; batho (lambda max = 569 nm), BL (lambda max = 519 nm), lumi (507 nm), meta I (approximately 486 nm), meta II (approximately 384 nm), and meta III intermediates (approximately 500 nm). In contrast to the high similarity in amino acid sequence between gecko green and iodopsin [Kojima, D., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 6841-6845], the batho-green did not revert thermally to original gecko green but converts to the next intermediate. The photobleaching process of gecko blue was investigated by low temperature spectroscopy, and three intermediates, meta I (lambda max = approximately 470 nm), meta II (lambda max = approximately 370 nm) and meta III (lambda max = approximately 475 nm), were identified. A comparative study on the thermal behavior of meta intermediates revealed that the thermal stability of meta II intermediate of both of the gecko visual pigments is lower than that of metarhodopsin II. The result supports the idea that both the gecko visual pigments are cone-type ones.

  17. Crystal structure, thermal behaviour, vibrational spectroscopy and ...

    Indian Academy of Sciences (India)

    2018-05-23

    May 23, 2018 ... modes corresponding to the kröhnkite is identified by the IR and Raman spectroscopies in the frequency ranges ..... The two weak bands near 1227 and 1202 cm ... ciated with the hydroxyl groups are taken into consideration.

  18. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  19. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  20. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    OBJECTIVES: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active...... pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...... multivariate approaches where even overlapping spectral bands can be analysed. SUMMARY: This review discusses the applications of different vibrational spectroscopic techniques to detect and monitor solid-state transformations possible for crystalline polymorphs, hydrates and amorphous forms of pharmaceutical...

  1. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-01

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

  2. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  3. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  4. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    Science.gov (United States)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  5. Synchrotron radiation in the Far-Infrared: Adsorbate-substrate vibrations and resonant interactions

    International Nuclear Information System (INIS)

    Hoffmann, F.M.; Williams, G.P.; Hirschmugl, C.J.; Chabal, Y.J.

    1991-01-01

    Synchrotron radiation in the Far Infrared offers the potential for a broadband source of high brightness and intensity. Recent development of a Far-Infrared Beamline at the NSLS in Brookhaven provides an unique high intensity source in the FIR spectral range (800-10 cm -1 ). This talk reviews its application to surface vibrational spectroscopy of low frequency adsorbate-substrate vibrations and resonant interactions on metal surfaces

  6. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    Science.gov (United States)

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Experimentally validated structural vibration frequencies’ prediction from frictional temperature signatures using numerical simulation: A case of laced cantilever beam-like structures

    Directory of Open Access Journals (Sweden)

    Stephen M Talai

    2016-12-01

    Full Text Available This article pertains to the prediction of structural vibration frequencies from frictional temperature evolution through numerical simulation. To achieve this, a finite element analysis was carried on AISI 304 steel cantilever beam-like structures coupled with a lacing wire using the commercial software ABAQUS/CAE. The coupled temperature–displacement transient analysis simulated the frictional thermal generation. Furthermore, an experimental analysis was carried out with infrared cameras capturing the interfacial thermal images while the beams were subjected to forced excitation, thus validating the finite element analysis results. The analysed vibration frequencies using a MATLAB fast Fourier transform algorithm confirmed the validity of its prediction from the frictional temperature time domain waveform. This finding has a great significance to the mechanical and aerospace engineering communities for the effective structural health monitoring of dynamic structures online using infrared thermography, thus reducing the downtime and maintenance cost, leading to increased efficiency.

  8. Ultrafast Spectroscopy of Energetic Materials: Toward a Molecular Understanding of Impact Sensitivity

    National Research Council Canada - National Science Library

    Dlott, Dana D

    2005-01-01

    ... with 1.5 Angstrom resolution. With 3D spectroscopy we have studied vibrational energy transfer in water and for the first time we have been able to watch vibrational energy flow across the interface between a molecular nanostructure and its surroundings.

  9. Sub-Doppler spectroscopy of thioformaldehyde: Excited state perturbations and evidence for rotation-induced vibrational mixing in the ground state

    International Nuclear Information System (INIS)

    Clouthier, D.J.; Huang, G.; Adam, A.G.; Merer, A.J.

    1994-01-01

    High-resolution intracavity dye laser spectroscopy has been used to obtain sub-Doppler spectra of transitions to 350 rotational levels in the 4 1 0 band of the A 1 A 2 --X 1 A 1 electronic transition of thioformaldehyde. Ground state combination differences from the sub-Doppler spectra, combined with microwave and infrared data, have been used to improve the ground state rotational and centrifugal distortion constants of H 2 CS. The upper state shows a remarkable number of perturbations. The largest of these are caused by nearby triplet levels, with matrix elements of 0.05--0.15 cm -1 . A particularly clear singlet--triplet avoided crossing in K a ' = 7 has been shown to be caused by interaction with the F 1 component of the 3 1 6 2 vibrational level of the a 3 A 2 state. At least 53% of the S 1 levels show evidence of very small perturbations by high rovibronic levels of the ground state. The number of such perturbations is small at low J, but increases rapidly beyond J=5 such that 40%--80% of the observed S 1 levels of any given J are perturbed by ground state levels. Model calculations show that the density and J dependence of the number of perturbed levels can be explained if there is extensive rotation-induced mixing of the vibrational levels in the ground state

  10. Morse oscillator propagator in the high temperature limit II: Quantum dynamics and spectroscopy

    Science.gov (United States)

    Toutounji, Mohamad

    2018-04-01

    This paper is a continuation of Paper I (Toutounji, 2017) of which motivation was testing the applicability of Morse oscillator propagator whose analytical form was derived by Duru (1983). This is because the Morse oscillator propagator was reported (Duru, 1983) in a triple-integral form of a functional of modified Bessel function of the first kind, which considerably limits its applicability. For this reason, I was prompted to find a regime under which Morse oscillator propagator may be simplified and hence be expressed in a closed-form. This was well accomplished in Paper I. Because Morse oscillator is of central importance and widely used in modelling vibrations, its propagator applicability will be extended to applications in quantum dynamics and spectroscopy as will be reported in this paper using the off-diagonal propagator of Morse oscillator whose analytical form is derived.

  11. Vibrational collapse of boroxol rings in compacted B2O3 glasses: a study of Raman scattering and low temperature specific heat

    Science.gov (United States)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino

    2018-05-01

    Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.

  12. Temperature dependence of the photodissociation of CO2 from high vibrational levels: 205-230 nm imaging studies of CO(X1Σ+) and O(3P, 1D) products

    Science.gov (United States)

    Sutradhar, S.; Samanta, B. R.; Samanta, A. K.; Reisler, H.

    2017-07-01

    The 205-230 nm photodissociation of vibrationally excited CO2 at temperatures up to 1800 K was studied using Resonance Enhanced Multiphoton Ionization (REMPI) and time-sliced Velocity Map Imaging (VMI). CO2 molecules seeded in He were heated in an SiC tube attached to a pulsed valve and supersonically expanded to create a molecular beam of rotationally cooled but vibrationally hot CO2. Photodissociation was observed from vibrationally excited CO2 with internal energies up to about 20 000 cm-1, and CO(X1Σ+), O(3P), and O(1D) products were detected by REMPI. The large enhancement in the absorption cross section with increasing CO2 vibrational excitation made this investigation feasible. The internal energies of heated CO2 molecules that absorbed 230 nm radiation were estimated from the kinetic energy release (KER) distributions of CO(X1Σ+) products in v″ = 0. At 230 nm, CO2 needs to have at least 4000 cm-1 of rovibrational energy to absorb the UV radiation and produce CO(X1Σ+) + O(3P). CO2 internal energies in excess of 16 000 cm-1 were confirmed by observing O(1D) products. It is likely that initial absorption from levels with high bending excitation accesses both the A1B2 and B1A2 states, explaining the nearly isotropic angular distributions of the products. CO(X1Σ+) product internal energies were estimated from REMPI spectroscopy, and the KER distributions of the CO(X1Σ+), O(3P), and O(1D) products were obtained by VMI. The CO product internal energy distributions change with increasing CO2 temperature, suggesting that more than one dynamical pathway is involved when the internal energy of CO2 (and the corresponding available energy) increases. The KER distributions of O(1D) and O(3P) show broad internal energy distributions in the CO(X1Σ+) cofragment, extending up to the maximum allowed by energy but peaking at low KER values. Although not all the observations can be explained at this time, with the aid of available theoretical studies of CO2 VUV

  13. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  14. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin.

    Science.gov (United States)

    Ali, Hassan Refat H; Alhalaweh, Amjad; Velaga, Sitaram P

    2013-05-01

    Identification of optimal solid form of an active pharmaceutical ingredient and form control are very important in drug development. Thus, the structural information of these forms and in-depth insight on the modes of molecular interactions are necessary, and vibrational spectroscopic methods are well suited for this purpose. In-depth structural analysis of different solid forms of indomethacin (IND) using Raman and infrared (IR) spectroscopy is the objective. We have investigated the modes of molecular interactions in polymorphs (α and γ), amorphous and discovered cocrystals of IND with nicotinamide (NIC) and trans-cinnamic acid (CIN) coformers. The solid forms of IND have been prepared; their purity has been verified by differential scanning calorimetry and powder X-ray diffractometry and then studied in the solid-state by Raman and IR spectroscopy. The modes of the interactions were closely investigated from the vibrational data. The key vibrational features of IND solid forms have been specified. The IR (C=O) band at 1713 cm(-1) attributed to cyclic acid dimer of γ IND has disappeared in IND-NIC/CIN whilst retained in IND-SAC cocrystal. IND cocrystallizes in different conformations and crystal lattices with different coformers. The cyclic acid dimer of IND has been kept on its cocrystallization with saccharin and it could have been broken with NIC and CIN. The complementary nature of Raman and IR spectroscopy allowed unambiguous investigation of the chemical composition of pharmaceutical materials which is of particular importance in the absence of detailed structural information, as in the case of IND-NIC and IND-CIN.

  15. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO42 during Heating by High Temperature Raman and 27Al NMR Spectroscopies

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-03-01

    Full Text Available Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family MIMIII(MVIO42 (MI = alkali metal, MIII = Al, In, Sc, Fe, Bi, lanthanide; MVI = Mo, W. The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO42 have been investigated by in-situ high temperature Raman scattering and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO6] octahedra in both KAl(MoO42 glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K+, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples.

  16. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  17. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kajen, Rasanayagam Sivasayan; Chandrasekhar, Natarajan [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Feng Xinliang; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-55021 Mainz (Germany); Su Haibin, E-mail: n-chandra@imre.a-star.edu.sg, E-mail: muellen@mpip-mainz.mpg.de, E-mail: hbsu@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-28

    We demonstrate the information on molecular vibrational modes via the second derivative (d{sup 2}I{sub B}/dV{sup 2}) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d{sup 2}I{sub B}/dV{sup 2} spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  18. Correlation of operating parameters on turbine shaft vibrations

    Science.gov (United States)

    Dixit, Harsh Kumar; Rajora, Rajeev

    2016-05-01

    The new generation of condition monitoring and diagnostics system plays an important role in efficient functioning of power plants. In most of the rotating machine, defects can be detected by such a system much before dangerous situation occurs. It allows the efficient use of stationary on-line continuous monitoring system for condition monitoring and diagnostics as well. Condition monitoring of turbine shaft can not only reduce expenses of maintenance of turbo generator of power plants but also prevents likely shutdown of plant, thereby increases plant load factor. Turbo visionary parameters are essential part of health diagnosis system of turbo generator. Particularly steam pressure, steam temperature and lube oil temperature are important parameters to monitor because they are having much influence on turbine shaft vibration and also governing systems are available for change values of those parameters. This paper includes influence of turbo visionary parameters i.e., steam temperature, steam pressure, lube oil temperature, turbine speed and load on turbine shaft vibration at turbo generator at 195 MW unit-6,Kota Super Thermal Power Station by measuring vibration amplitude and analyze them in MATLAB.

  19. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    Science.gov (United States)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  20. Vibrational-rotational temperature measurement of N2 in the lower thermosphere by the rocket experiment

    Science.gov (United States)

    Kurihara, J.; Oyama, K.; Suzuki, K.; Iwagami, N.

    The vibrational temperature (Tv), the rotational temperature (Tr) and the density of atmospheric N2 between 100 - 150 km were measured in situ by a sounding rocket S310-30, over Kagoshima, Japan at 10:30 UT on February 6, 2002. The main purpose of this rocket experiment is to study the dynamics and the thermal energy budget in the lower thermosphere. N2 was ionized using an electron gun and the emission of the 1st negative bands of N2+ was measured by a sensitive spectrometer. Tv and Tr were determined by fitting the observed spectrum for the simulated spectrum, and the number density was deduced from the intensities of the spectrum. We will report preliminary results of our measurement and discuss the observed thermal structure that indicates the effect of tides and gravity waves.

  1. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    Science.gov (United States)

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  2. Quantum localization and protein-assisted vibrational energy flow in cofactors

    International Nuclear Information System (INIS)

    Leitner, David M

    2010-01-01

    Quantum effects influence vibrational dynamics and energy flow in biomolecules, which play a central role in biomolecule function, including control of reaction kinetics. Lifetimes of many vibrational modes of proteins and their temperature dependence, as determined by quantum golden-rule-based calculations, exhibit trends consistent with experimental observation and distinct from estimates based on classical modeling. Particularly notable are quantum coherence effects that give rise to localization of vibrational states of sizable organic molecules in the gas phase. Even when such a molecule, for instance a cofactor, is embedded in a protein, remnants of quantum localization survive that influence vibrational energy flow and its dependence on temperature. We discuss these effects on the mode-damping rates of a cofactor embedded in a protein, using the green fluorescent protein chromophore as a specific example. We find that for cofactors of this size embedded in their protein and solvent environment at room temperature a golden-rule calculation often overestimates the mode-damping rate.

  3. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  4. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  5. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  6. Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy

    Science.gov (United States)

    Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.

    1988-06-01

    The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

  7. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  8. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector.

    Science.gov (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen

    2017-06-01

    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p < 0.01). At 30° tilting deeper drop in tHb and steeper increase in TSI (p < 0.01) were observed when vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  9. Long-Term Vibration Monitoring of the Effects of Temperature and Humidity on PC Girders with and without Fly Ash considering ASR Deterioration

    Directory of Open Access Journals (Sweden)

    Tuan Minh Ha

    2017-01-01

    Full Text Available Structural responses have been used as inputs in the evaluation procedures of civil structures for years. Apart from the degradation of a structure itself, changes in the environmental conditions affect its characteristics. For adequate maintenance, it is necessary to quantify the environment-induced changes and discriminate them from the effects due to damage. This study investigates the variation in the vibration responses of prestressed concrete (PC girders, which were deteriorated because of the alkali–silica reaction (ASR, concerning ambient temperature and humidity. Three PC girders were exposed to outdoor weather conditions outside the laboratory, one of which had a selected amount of fly ash in its mixture to mitigate the ASR. The girders were periodically vibration tested for one and a half years. It was found that when the temperature and humidity increased, the frequencies and damping ratios decreased in proportion. No apparent variation in the mode shapes could be identified. A finite element model was proposed for numerical verification, the results of which were in good agreement with the measured changes in the natural frequencies. Moreover, the different dynamic performances of the three specimens indicated that the fly ash significantly affected the vibrations of the PC girders under ASR deterioration.

  10. Room temperature triplet state spectroscopy of organic semiconductors.

    Science.gov (United States)

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  11. Gas Phase Thz Spectroscopy of Organosulfide and Organophosphorous Compounds Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2011-06-01

    This study concerns the gas phase rovibrational spectroscopy of organosulfide and organophosphorous which are considered as non toxic model compounds in the analysis of chemical weapon materials, high pathogenic and mutagenic agents, and other environmentally interesting air-borne species. The coupling of the synchrotron radiation with multipass cells and the FTIR spectrometer allowed to obtain very conclusive results in term of sensitivity and resolution and improved the previous results obtained with classical sources. For DMSO, using an optical path of 150 m the spectra have been recorded at the ultimate resolution of 0.001 Cm-1 allowing to fully resolve the rotational structure of the lowest vibrational modes observed in the THz region. In the 290 - 420 Cm-1 region, the rovibrational spectrum of the "perpendicular" and "parallel" vibrational bands associated with, respectively, the asymmetric ν23 and symmetric ν11 bending modes of DMSO have been recorded with a resolution of 1.5× 10-3 Cm-1. The gas phase vibrational spectra of organophosphorous compounds were measured by FTIR spectroscopy using the vapor pressure of the compounds. Except for TBP, the room temperature vapor pressure was sufficient to detect all active vibrational modes from THz to NIR domain. Contrary to DMSO, the rotational patterns of alkyl phosphates and alkyl phosphonates could not be resolved; only a vibrational analysis may be performed. Nevertheless, the spectral fingerprints observed in the THz region allowed a clear discrimination between the molecules and between the different molecular conformations. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy and D. A. Sadovskií, Chem. Phys. Lett., 2010, 492: 30-34 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, J. Phys. Chem. B, 2010, 114: 16936-16947.

  12. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui [CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2}, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  13. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Science.gov (United States)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  14. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    International Nuclear Information System (INIS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-01-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N 2 , Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  15. Investigation of oxygen vibrational relaxation by quasi-classical trajectory method

    International Nuclear Information System (INIS)

    Andrienko, Daniil; Boyd, Iain D.

    2015-01-01

    Highlights: • Importance of attraction for the O 2 –O energy exchange in hypersonic flows. • O 2 –O vibrational relaxation time cannot be described by the Millikan–White equation. • Weak dependence of exothermic transition rates on translational temperature. • Multiquantum jumps in molecular oxygen occur mostly via the exchange reaction. - Abstract: O 2 –O collisions are studied by the quasi-classical trajectory method. A full set of cross sections for the vibrational ladder is obtained utilizing an accurate O 3 potential energy surface. Vibrational relaxation is investigated at temperatures between 1000 and 10,000 K, that are relevant to hypersonic flows. The relaxation time is derived based on the removal rate for the first excited vibrational level. A significant deviation from the formula by Millikan and White is observed for temperatures beyond those reported in experimental work. Relaxation becomes less efficient at high temperatures, suggesting that the efficiency of the energy randomization is strongly to the attractive component of the O 3 potential energy surface. These results are explained by analyzing the microscopic parameter of collisions that reflects the number of exchanges in the shortest interatomic distance. The rates of exothermic transitions are found to be nearly independent of the translational temperature in the range of interest.

  16. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  17. Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy.

    Science.gov (United States)

    Gribov, Evgueni N; Cocina, Donato; Spoto, Giuseppe; Bordiga, Silvia; Ricchiardi, Gabriele; Zecchina, Adriano

    2006-03-14

    The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ approximately 5) has been studied at variable-temperature (90-20 K) and sub-atmospheric pressure (0-40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Brønsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH...P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Brønsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).

  18. Thermal effect on transverse vibrations of double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y Q; Liu, X; Liu, G R

    2007-01-01

    Based on the theory of thermal elasticity mechanics, a double-elastic beam model is developed for transverse vibrations of double-walled carbon nanotubes with large aspect ratios. The thermal effect is incorporated in the formulation. With this double-elastic beam model, explicit expressions are derived for natural frequencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported double-walled carbon nanotubes. The influence of temperature change on the properties of transverse vibrations is discussed. It is demonstrated that some properties of transverse vibrations of double-walled carbon nanotubes are dependent on the change of temperature

  19. Systematic vibration thermodynamic properties of bromine

    Science.gov (United States)

    Liu, G. Y.; Sun, W. G.; Liao, B. T.

    2015-11-01

    Based on the analysis of the maturity and finiteness of vibrational levels of bromine molecule in ground state and evaluating the effect on statistical computation, according to the elementary principles of quantum statistical theorem, using the full set of bromine molecular vibrational levels determined with algebra method, the statistical contribution for bromine systematical macroscopic thermodynamic properties is discussed. Thermodynamic state functions Helmholtz free energy, entropy and observable vibration heat capacity are calculated. The results show that the determination of full set of vibrational levels and maximum vibrational quantum number is the key in the correct statistical analysis of bromine systematical thermodynamic property. Algebra method results are clearly different from data of simple harmonic oscillator and the related algebra method results are no longer analytical but numerical and are superior to simple harmonic oscillator results. Compared with simple harmonic oscillator's heat capacities, the algebra method's heat capacities are more consistent with the experimental data in the given temperature range of 600-2100 K.

  20. The structure of betaxolol studied by infrared spectroscopy and natural bond orbital theory.

    Science.gov (United States)

    Canotilho, João; Castro, Ricardo A E

    2010-08-01

    Betaxolol is a selective beta(1) receptor blocker used in the treatment of hypertension and glaucoma. A study of the betaxolol structure based on infrared spectroscopy and natural bond orbital (NBO) theory is the main aim of the present research. FTIR spectra of the solid betaxolol were recorded in the region from 4000 to 400cm(-1), in the temperature range between 25 and -170 degrees C. For spectral interpretation, spectrum of the deuterated betaxolol and the theoretical vibrational spectra of the conformer present in the solid obtained at the B3LYP/6-31G* level of theory, were used. Further insight into the structure was provided by natural bond orbital theory. NBO analysis of the conformer, before and after optimization, was carried out at the same level of theory referred above. Vibrational modes involved in hydrogen bond in the stretching and bending region were used in the estimation of the enthalpy using empirical correlations between enthalpy and the frequency shift that occurs as a result of the establishment of intermolecular hydrogen bonds. A detailed study of the structure of betaxolol and of its intermolecular interactions was obtained from the combination spectroscopy and NBO theory. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    International Nuclear Information System (INIS)

    Franco-Villafañe, J A; Méndez-Sánchez, R A; Flores-Olmedo, E; Báez, G; Gandarilla-Carrillo, O

    2012-01-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results. (paper)

  2. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  3. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Fatemeh Zabihi

    2017-05-01

    Full Text Available In this work, we communicate a facile and low temperature synthesis process for the fabrication of graphene-TiO2 photocatalytic composite thin films. A sol-gel chemical route is used to synthesize TiO2 from the precursor solutions and spin and spray coating are used to deposit the films. Excitation of the wet films during the casting process by ultrasonic vibration favorably influences both the sol-gel route and the deposition process, through the following mechanisms. The ultrasound energy imparted to the wet film breaks down the physical bonds of the gel phase. As a result, only a low-temperature post annealing process is required to eliminate the residues to complete the conversion of precursors to TiO2. In addition, ultrasonic vibration creates a nanoscale agitating motion or microstreaming in the liquid film that facilitates mixing of TiO2 and graphene nanosheets. The films made based on the above-mentioned ultrasonic vibration-assisted method and annealed at 150 °C contain both rutile and anatase phases of TiO2, which is the most favorable configuration for photocatalytic applications. The photoinduced and photocatalytic experiments demonstrate effective photocurrent generation and elimination of pollutants by graphene-TiO2 composite thin films fabricated via scalable spray coating and mild temperature processing, the results of which are comparable with those made using lab-scale and energy-intensive processes.

  4. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials.

    Science.gov (United States)

    Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L; Veith, Gabriel M; Levine, Alan M; Lee, Richard J; Mahurin, Shannon M; Dai, Sheng; Naskar, Amit K; Paranthaman, Mariappan Parans

    2017-08-23

    Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and -CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced -SO 3 H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. This study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.

  5. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    Science.gov (United States)

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  6. A complete vibrational study on a potential environmental toxicant agent, the 3,3',4,4'-tetrachloroazobenzene combining the FTIR, FTRaman, UV-Visible and NMR spectroscopies with DFT calculations.

    Science.gov (United States)

    Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A

    2015-01-05

    In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. Copyright © 2014. Published by Elsevier B.V.

  7. Effect of oxygen incorporation on the vibrational properties of Al0.2Ga0.3In0.5P:Be films

    International Nuclear Information System (INIS)

    Soubervielle-Montalvo, C.; Vital-Ochoa, O.; Anda, F. de; Vazquez-Cortes, D.; Rodriguez, A.G.; Melendez-Lira, M.; Mendez-Garcia, V.H.

    2011-01-01

    The vibrational properties of Al 0.2 Ga 0.3 In 0.5 P:Be films grown on (100) GaAs substrates by solid source molecular beam epitaxy varying the phosphorous cracking-zone temperature (PCT) were studied by Raman spectroscopy. The Raman-intensity ratio between the allowed longitudinal optical and the forbidden transverse optical (TO) phonons, and the full width at half maximum of their Lorentzian fits were used to characterize the crystalline quality of the films. The Raman spectra from the samples show changes in the shape and intensity of phonon resonances depending on the PCT variation, indicating that the disorder in the lattice increases with PCT. The increasing disorder is related to the inclusion of oxygen, which act as a non-intentional perturbing impurity in the lattice. In addition, a vibrational mode located at 598 cm -1 related to a forbidden InP-like TO phonon resonance was correlated with oxygen-induced disorder. Photoluminescence at room temperature shows that the high inclusion of oxygen also deteriorates the optical properties of the samples, by introducing non-radiative recombination centers.

  8. Advancements of two dimensional correlation spectroscopy in protein researches

    Science.gov (United States)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-01

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.

  9. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  10. Vibrational dynamics (IR, Raman, NRVS) and DFT study of new antitumor tetranuclearstannoxanecluster, Sn(IV)$-$oxo$-${di$-$o$-$vanillin} dimethyl dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry

    2016-06-21

    The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.

  11. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO2-based surfaces

    International Nuclear Information System (INIS)

    Gole, James L.; Prokes, S.M.; White, Mark G.

    2008-01-01

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO 2 and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO 2 nanocolloid lattice

  12. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    Science.gov (United States)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  13. Cavity Ring Down and Thermal Lens Techniques Applied to Vibrational Spectroscopy of Gases and Liquids

    Science.gov (United States)

    Nyaupane, Parashu Ram

    Infrared (IR) and near-infrared (NIR) region gas temperature sensors have been used in the past because of its non-intrusive character and fast time response. In this dissertation cavity ring down (CRD) absorption of oxygen around the region 760 nm has been used to measure the temperature of flowing air in an open optical cavity. This sensor could be a convenient method for measuring the temperature at the input (cold air) and output (hot air) after cooling the blades of a gas turbine. The results could contribute to improvements in turbine blade cooling designs. Additionally, it could be helpful for high temperature measurement in harsh conditions like flames, boilers, and industrial pyrolysis ovens as well as remote sensing. We are interested in experiments that simulate the liquid methane and ethane lakes on Titan which is around the temperature of 94 K. Our specific goal is to quantify the solubility of unsaturated hydrocarbons in liquid ethane and methane. However, it is rather complicated to do so because of the low temperatures, low solubility and solvent effects. So, it is wise to do the experiments at higher temperature and test the suitability of the techniques. In these projects, we were trying to explore if our existing laboratory techniques were sensitive enough to obtain the solubility of unsaturated hydrocarbons in liquid ethane. First, we studied the thermal lens spectroscopy (TLS) of the (Deltav = 6) C-H overtone of benzene and naphthalene in hexane and CCl4 at room temperature.

  14. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  15. New N2(C 3Πu, v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges

    International Nuclear Information System (INIS)

    Dilecce, G; Ambrico, P F; De Benedictis, S

    2007-01-01

    The present paper deals with the determination of discharge parameters using N 2 (C 3 Π u , v) populations deduced from 2.PG emission spectra, focusing on the influence of N 2 (C 3 Π u , v) collision rate coefficients on these determinations. In particular it is shown that the new set of quenching and vibrational relaxation rate coefficients of N 2 (C 3 Π u , v 0-4) vibronic levels recently measured by optical-optical double resonance laser induced fluorescence (LIF) have a large effect on discharge parameter determination in high-pressure discharges. In the present paper we explore this effect, evidencing the differences with respect to the old data set case, in both simulated and real cases of N 2 (C 3 Π u , v) vibrational distributions measured at high pressure in a dielectric barrier discharge. Finally we point out the improved potentiality of 2.PG spectroscopy as a diagnostic technique: with the new rate coefficients, and measurement of the N 2 (C 3 Π u , v) distribution up to at least v = 3, it is possible to have a quasi-independent evaluation of the electron temperature and of the first level vibrational temperature of the N 2 ground state

  16. Superconducting phonon spectroscopy using a low-temperature scanning tunneling microscope

    Science.gov (United States)

    Leduc, H. G.; Kaiser, W. J.; Hunt, B. D.; Bell, L. D.; Jaklevic, R. C.

    1989-01-01

    The low-temperature scanning tunneling microscope (STM) system described by LeDuc et al. (1987) was used to observe the phonon density of states effects in a superconductor. Using techniques based on those employed in macroscopic tunneling spectroscopy, electron tunneling current-voltage (I-V) spectra were measured for NbN and Pb, and dI/dV vs V spectra were measured using standard analog derivative techniques. I-V measurements on NbN and Pb samples under typical STM conditions showed no evidence for multiparticle tunneling effects.

  17. Time-resolved spectroscopy defines perturbation in molecules

    International Nuclear Information System (INIS)

    Ahmed, K.

    1998-01-01

    Time-resolved LIF spectroscopy is employed in order to investigate perturbations in different excited electronic state of alkali molecules. Dunham Coefficients are used to search the selected excited ro-vibrational level, which is overlap with the other nearby excited states. Lifetime measurement has been performed of more than 50 ro-vibrational levels. Out of these 25 levels were observed drastically different lifetimes from the other unperturbed levels. In this report, influence of different perturbations on this anomalous behavior is investigated and discussed. (author)

  18. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Paulo B. [Univ. of California, Berkeley, CA (United States)

    1998-12-14

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayer are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayer at Iiquidhapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the confirmational order of surfactant monolayers.

  19. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  20. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  1. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Science.gov (United States)

    Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per

    2015-12-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  2. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    International Nuclear Information System (INIS)

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-01-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role

  3. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  4. Hydrostatic pressure and temperature effect on the Raman spectra of the molecular crystal 2-amine-1,3,4-thiadiazole

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.

    2018-03-01

    The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.

  5. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  6. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  8. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  9. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  10. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  11. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  12. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  13. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy.

    Science.gov (United States)

    Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  14. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy

    Science.gov (United States)

    Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to

  15. Proceedings of the DAE-BRNS theme meeting on recent trends in spectroscopy: book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The meeting aimed at providing the latest developments in various spectroscopic techniques to the research students and practicing scientists. The proceedings of the symposium covered a wide range of topics of infrared and Raman spectroscopy, time resolved spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, rotational and vibrational spectroscopy, fluorescence spectroscopy, cavity ring down spectroscopy, laser based spectroscopic techniques and electrochemical spectroscopy. Papers relevant to INIS are indexed separately

  16. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    International Nuclear Information System (INIS)

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO 2 + CO 2 collisions have been measured. All data were obtained by double resonance spectroscopy with CO 2 lasers in a 2.5 meter absorption cell at 700 0 K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ΔJ up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 → 101) and hot-band (011 → 110) lasting have been used to observe resonant nu 3 -transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments

  17. High resolution spectroscopy in the quasi continuum. Final report

    International Nuclear Information System (INIS)

    Janda, K.C.

    1986-01-01

    Studies of the spectroscopy of vibrationally metastable molecules are briefly described. The research concentrates on two types of molecules, complexes involving ethylene and rare gas atoms bonded to halogen molecules

  18. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Hilary M.; Chen, Shunli; Fu, Li; Upshur, Mary Alice; Rudshteyn, Benjamin; Thomson, Regan J.; Wang, Hong-Fei; Batista, Victor S.; Geiger, Franz M.

    2017-09-01

    Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.

  19. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  20. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  1. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    Science.gov (United States)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  2. Characterisation of the SOFC material, LaCrO 3, using vibrational spectroscopy

    Science.gov (United States)

    Tompsett, G. A.; Sammes, N. M.

    LaCrO 3 is reported to undergo a low to high temperature (HT) phase transition from orthorhombic ( Pnma) to rhombohedral ( R-3 c), at ca. 255 °C. The phases involved in the low temperature phase transition of LaCrO 3 have been determined using Raman spectroscopy at temperatures from -196 to 300 °C. There are nine Raman bands observed from a total of 24 predicted modes, seven of which are assigned from comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, YMnO 3, as follows: 131(B 2g), 150(B 3g), 174(A g), 252(B 1g), 279(A g), 441(A g) and 590(A g) cm -1. A phase transformation was observed at ca. 260 °C from the change in the Raman profile. The high temperature rhombohedral phase of LaCrO 3 had four bands which are assigned as follows: 58(E g), 161(E g), 288(A 1g) and 434(E g, E g) cm -1, from comparison with the Raman profile and relative band positions observed for the isostructural compound, NdAlO 3. The Fourier transform infrared (FTIR) spectrum of LaCrO 3 showed a total of eight bands discernible at room temperature from 25 predicted modes for the orthorhombic structure. The mode assignments were determined by comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, SmAlO 3, as follows: 138(B 2u), 166(B 3u), 197(B 1u), 240(B 3u), 266(B 2u), 332(B 2u), 357(B 2u), 381(B 3u), 425(B 3u), 446(B 1u), 471(B 3u), 493(B 3u), 573(B 1u), 606(B 3u) and 670 (B 1u) cm -1.

  3. Characterization of the quasi-one-dimensional compounds δ-(EDT-TTF-CONMe{sub 2}){sub 2}X, X=AsF{sub 6} and Br by vibrational spectroscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peterseim, Tobias; Dressel, Martin [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Antal, Ágnes [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Batail, Patrick [Laboratoire MOLTECH, UMR 6200 CNRS-Université d' Angers, Bt. K, UFR Sciences, 2 Boulevard Lavoisier, F-49045 Angers (France); Drichko, Natalia [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-02-14

    We have investigated the infrared spectra of the quarter-filled charge-ordered insulators δ-(EDT-TTF-CONMe{sub 2}){sub 2}X (X= AsF{sub 6}, Br) along all three crystallographic directions in the temperature range from 300 to 10 K. DFT-assisted normal mode analysis of the neutral and ionic EDT-TTF-CONMe{sub 2} molecule allows us to assign the experimentally observed intramolecular modes and to obtain relevant information on the charge ordering and intramolecular interactions. From frequencies of charge-sensitive vibrations we deduce that the charge-ordered state is already present at room temperature and does not change on cooling, in agreement with previous NMR measurements. The spectra taken along the stacking direction clearly show features of vibrational overtones excited due to the anharmonic electronic molecule potential caused by the large charge disproportionation between the molecular sites. The shift of certain vibrational modes indicates the onset of the structural transition below 200 K.

  4. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Ali, Hassan Refat H.; Edwards, Howell G.M.; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J.

    2008-01-01

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting β-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control

  5. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  6. Structure and Dynamics of Urea/Water Mixtures Investigated by Vibrational Spectroscopy and Molecular Dynamics Simulation

    Science.gov (United States)

    Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.

    2013-01-01

    Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646

  7. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    International Nuclear Information System (INIS)

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known ''W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this ''W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 x 10E15 cm -3 , 1.1 x 10E15 cm -3 , and 2.2 x 10E15 cm -3 , respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs

  8. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  9. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  10. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  11. Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas

    Czech Academy of Sciences Publication Activity Database

    Aouani, H.; Šípová, Hana; Rahmani, M.; Navarro-Cia, M.; Hegnerová, Kateřina; Homola, Jiří; Hong, M.; Maier, S. A.

    2013-01-01

    Roč. 7, č. 1 (2013), s. 669-675 ISSN 1936-0851 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : plasmonic * nanoantenna * vibrational spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 12.033, year: 2013

  12. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  13. Vibrational spectroscopy of SnBr4 and CCl4 using Lie algebraic ...

    Indian Academy of Sciences (India)

    experimentalists because of the development of new laser spectroscopic techniques. Wulfman played a ... used Lie algebraic methods to study the spectra of molecules (vibron model) using. U(4) algebra. ..... to vibrations of gas molecules.

  14. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  15. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  16. Nuclear catalysis mediated by localized anharmonic vibrations

    OpenAIRE

    Dubinko, Vladimir

    2015-01-01

    In many-body nonlinear systems with sufficient anharmonicity, a special kind of lattice vibrations, namely, Localized Anharmonic Vibrations (LAVs) can be excited either thermally or by external triggering, in which the amplitude of atomic oscillations greatly exceeds that of harmonic oscillations (phonons) that determine the system temperature. Coherency and persistence of LAVs may have drastic effect on quantum tunneling due to correlation effects discovered by Schrodinger and Robertson in 1...

  17. Structural dynamics and vibration 1995. PD-Volume 70

    International Nuclear Information System (INIS)

    Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.

    1995-01-01

    The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book

  18. Abnormal vibration of turbine due to oil whip

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Hwang, Jae Hyeon

    2001-01-01

    Almost all rotating machinery has bearings. Bearing is one of the most important part of rotating machinery. Vibration of rotating machinery depend on its bearing conditions. Bearing conditions are following; oil gap, bearing type, bearing temperature, bearing oil condition. Especially, bearing oil condition influences on rotating machinery vibration directly. In this paper we have discussed the abnormal vibration of turbine due to oil condition. Oil whip problem was occurred in the certain power plant and we had solved this problem through the control of operating values and alignment

  19. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  20. Novel determination of surface temperature of lithium hydride hydrolysis using DRIFT spectroscopy

    International Nuclear Information System (INIS)

    Awbery, Roy P.; Tsang, S.C.

    2008-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy has been used to show how increasing temperature causes the hydroxyl band of LiOH to shift linearly and reversibly towards lower wavenumbers. The band shift with temperature was used to determine the surface temperature of LiH when exposed to water vapour at 158, 317, 793 and >1900 Pa (5%, 10%, 25% and >60% relative humidity), the exothermic hydrolysis reaction resulting in surface temperature increases of up to 50 deg. C. The rate of surface heating was found to increase slightly with increasing water vapour exposures up to 793 Pa, demonstrating that the LiH hydrolysis reaction rate was dependent upon the partial pressure of water vapour. The growth of surface LiOH appeared to significantly slow down further reaction until the water vapour exposure was increased beyond 1900 Pa, when formation of hydrated LiOH occurred. The effect of temperature on detectors was also investigated showing that baselines shifted towards higher intensities with increasing temperature when measured with a DTGS detector and towards lower intensities with an MCT detector, over the temperature range 25-450 deg. C

  1. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas

    2005-01-01

    For noninvasive characterization of chemical species or biological components within a complex heterogeneous system, their intrinsic molecular vibrational properties can be used in contrast mechanisms in optical microscopy. A series of recent advances have made coherent anti-Stokes Raman scattering (CARS) microscopy a powerful technique that allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capability. In this review, we discuss theoretical and experimental aspects of CARS microscopy in a collinear excitation beam geometry. Particular attention is given to the underlying physical principles behind the new features of CARS signal generation under tight focusing conditions. We provide a brief overview of the instrumentation of CARS microscopy and its experimental characterization by means of imaging of model systems and live unstained cells. CARS microscopy offers the possibility of spatially resolved vibrational spectroscopy, providing chemical and physical structure information of molecular specimens on the sub-micrometre length scale. We review multiplex CARS microspectroscopy allowing fast acquisition of frequency-resolved CARS spectra, time-resolved CARS microspectroscopy recording ultrafast Raman free induction decays and CARS correlation spectroscopy probing dynamical processes with chemical selectivity. (topical review)

  2. Microresonator soliton dual-comb spectroscopy

    Science.gov (United States)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  3. Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    Full Text Available In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.

  4. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO{sub 2}-based surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gole, James L. [Schools of Physics and Mechanical Engineering, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)], E-mail: jim.gole@physics.gatech.edu; Prokes, S.M. [Code 6876, NRL, Washington, DC 20375 (United States)], E-mail: prokes@estd.nrl.navy.mil; White, Mark G. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Box 959, MS 39762 (United States)], E-mail: white@che.msstate.edu

    2008-11-30

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO{sub 2} and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO{sub 2} nanocolloid lattice.

  5. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang Guangchen; Feng Shiwei; Li Jingwan; Guo Chunsheng; Zhao Yan

    2012-01-01

    Channel temperature determinations of AlGaN/GaN high electron mobility transistors (HEMTs) by high spectral resolution micro-Raman spectroscopy are proposed. The temperature dependence of the E2 phonon frequency of GaN material is calibrated by using a JYT-64000 micro-Raman system. By using the Lorentz fitting method, the measurement uncertainty for the Raman phonon frequency of ±0.035 cm −1 is achieved, corresponding to a temperature accuracy of ±3.2 °C for GaN material, which is the highest temperature resolution in the published works. The thermal resistance of the tested AlGaN/GaN HEMT sample is 22.8 °C/W, which is in reasonably good agreement with a three dimensional heat conduction simulation. The difference among the channel temperatures obtained by micro-Raman spectroscopy, the pulsed electrical method and the infrared image method are also investigated quantificationally. (semiconductor devices)

  6. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  7. In Situ Adsorption Studies at the Solid/Liquid Interface: Characterization of Biological Surfaces and Interfaces Using Sum Frequency Generation Vibrational Spectroscopy, Atomic Force Microscopy, and Quartz Crystal Microbalance

    International Nuclear Information System (INIS)

    Phillips, D.C.

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste

  8. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  9. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  10. Formation and vibrational structure of Si nano-clusters in ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Universidad Autonoma del Estado de Hidalgo, Hidalgo (Mexico); Pal, U. [Universidad Autonoma de Puebla, Puebla (Mexico); Koshizaki, N.; Sasaki, T. [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    2001-02-01

    We have studied the formation and vibrational structure of Si nano-clusters in ZnO matrix prepared by radio-frequency (r.f.) co-sputtering, and characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) spectroscopy techniques. The composite films of Si/ZnO were grown o quartz substrates by co-sputtering of Si and ZnO targets. TEM images show a homogeneous distribution of clusters in the matrix with average size varied from 3.7 nm to 34 nm depending on the temperature of annealing. IR absorption measurements revealed the bands correspond to the modes of vibrations of Si{sub 3} in its triangular geometrical structure. By analysing the IR absorption and XPS spectra we found that the nano-clusters consist of a Si{sub 3} core and a SiO{sub x} cap layer. With the increase of annealing temperature, the vibrational states of Si changed from the triplet {sup 3}B1(C2{sub v}) and {sup 3}A'{sub 2}(D{sub 3h}) states to its singlet ground state {sup 1}A{sub 1}(C2{sub v}) and the oxidation state of Si in SiO{sub x} increased. The evolution of the local atomic structure of the Si nano-clusters with the variation of Si content in the film and with the variation of the temperature of annealing are discussed. [Spanish] Se estudia la formacion y estructura vibracional de nano-cumulos de Si en matriz de ZnO preparados por la tecnica de radio-frecuencia (r.f.) co-sputtering, y caracterizados por Microscopia Electronica de Transmision (TEM), Espectroscopia Fotoelectronica de rayos X (XPS) y Espectroscopia de Infrarrojo (IR). Las peliculas compositas de Si/ZnO fueron crecidas sobre sustratos de cuarzo mediante el co-sputtering de blancos de Si y ZnO. Las imagenes de TEM mostraron una distribucion homogenea de cumulos en la matriz con un tamano promedio de 3.7 nm a 34 nm dependiendo de la temperatura de tratamiento. Las mediciones de IR relevaron las bandas correspondientes a los modos de vibracion de Si{sub 3} en su estructura

  11. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    Science.gov (United States)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  12. Preparative conditions and vibrational study of HUP : phase transition and conductivity mechanisms

    International Nuclear Information System (INIS)

    Thi, M.P.; Novak, A.; Colomban, Ph.

    1985-01-01

    Among solid protonic conductors HUP (H 3 OUO 2 PO 4 .3 H 2 O) exhibits very high conducting properties. Uranyl/phosphate hydrates belonging to the HUP family (HUP ; UO 2 (H 2 PO 4 ) 2 .3 H 2 O ; (U= 2 ) 3 (PO 4 ) 2 .4 H 2 O ; (UO O 2 )sub(1.43)PO 4 Hsub(0.14) 2-3.5 H 2 O) have been synthesized in different forms (crystals, powders, films, ...) and characterized by various methods: chemical analysis, DTA, TGA, SEM, X-Ray diffraction, IR and Raman spectroscopy. Morphological studies reveal the presence of various particulat es, from ultrafine powders ( 2 O washing of HUP. Infrared and Raman spectra of polycrystalline H 3 OUO 2 PO 4 .3 H 2 O (HUP) have been investigated at various temperatures between 50 K and 300 K. The most temperature-sensitive bands correspond to PO 4 and H 2 O librations; U-OPO 3 stretching and OH stretching vibrations indicate four different phases of HUP and allow to propose a phasetransition mechanism from a bidimensionnal, quasi-liquid state of a protonated species in the room-temperature phase to a fully ordered crystal below 130 K. The protonic conductivity mechanism of room- and low-temperature phases is discussed. (author)

  13. Vibrational spectroscopic and dielectric properties investigations of phase transitions in KMgPO4 compound

    Science.gov (United States)

    Miladi, L.; Oueslati, A.; Guidara, K.

    2017-11-01

    The potassium orthophosphate KMgPO4 with a β-tridymite structure was synthesized via solid-state reaction. X-ray diffraction study confirms the formation of a single phase material which crystallizes at room temperature in monoclinic system. This compound has been investigated by vibrational spectroscopy in the temperature range573-723 K. Thermal analysis shows that this composition undergoes two phase transitions at T1=633Kand T2=693 K.The evolution of Raman line ν and half -width Δν versus temperature introduces huge changes which are associated with the phase transitions originating from the reorientation of the PO4 tetrahedron. Besides, an analysis of the dielectric constants ε‧ and ε″versus temperature at several frequencies shows a distribution of relaxation times. This relaxation is probably due to the change in dynamical state of the K+ cation. The ac conductivity behavior can be understood in terms of the motions of K+ cations along the tunnels which are formed by six-membered rings of MgO4 and PO4 tetrahedron linked by common vertices. The activation energies values obtained from the thermal evolution of the conductivity are: Ea1=0.52 eV (T693 K).

  14. Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy.

    Science.gov (United States)

    Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi

    2010-11-28

    Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.

  15. Conformational analysis of quinine and its pseudo enantiomer quinidine: a combined jet-cooled spectroscopy and vibrational circular dichroism study.

    Science.gov (United States)

    Sen, Ananya; Bouchet, Aude; Lepère, Valeria; Le Barbu-Debus, Katia; Scuderi, D; Piuzzi, F; Zehnacker-Rentien, A

    2012-08-16

    Laser-desorbed quinine and quinidine have been studied in the gas phase by combining supersonic expansion with laser spectroscopy, namely, laser-induced fluorescence (LIF), resonance-enhanced multiphoton ionization (REMPI), and IR-UV double resonance experiments. Density funtional theory (DFT) calculations have been done in conjunction with the experimental work. The first electronic transition of quinine and quinidine is of π-π* nature, and the studied molecules weakly fluoresce in the gas phase, in contrast to what was observed in solution (Qin, W. W.; et al. J. Phys. Chem. C2009, 113, 11790). The two pseudo enantiomers quinine and quinidine show limited differences in the gas phase; their main conformation is of open type as it is in solution. However, vibrational circular dichroism (VCD) experiments in solution show that additional conformers exist in condensed phase for quinidine, which are not observed for quinine. This difference in behavior between the two pseudo enantiomers is discussed.

  16. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    Science.gov (United States)

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  17. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  18. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  19. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Scharer, John

    2008-01-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation

  20. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  1. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  2. Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys).

    Science.gov (United States)

    McConney, Michael E; Schaber, Clemens F; Julian, Michael D; Barth, Friedrich G; Tsukruk, Vladimir V

    2007-12-22

    Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curves obtained indicate the presence of a soft, liquid-like epicuticular layer (20-40 nm thick) above the pad material, which has much higher stiffness. The Young modulus of the pad material is close to 15 MPa at low frequencies, but increases rapidly with increasing frequencies approximately above 30 Hz to approximately 70 MPa at 112 Hz. The adhesive forces drop sharply by about 40% in the same frequency range. The strong frequency dependence of the elastic modulus indicates the viscoelastic nature of the pad material, its glass transition temperature being close to room temperature (25 +/- 2 degrees C) and, therefore, to its maximized energy absorption from low-frequency mechanical stimuli. These viscoelastic properties of the cuticular pad are suggested to be at least partly responsible for the high-pass characteristics of the vibration sensor's physiological properties demonstrated earlier.

  3. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    International Nuclear Information System (INIS)

    Yencha, Andrew J; Malins, Andrew E R; Siggel-King, Michele R F; Eypper, Marie; King, George C

    2009-01-01

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R 2 C=O), where R could be H, OH, NH 2 , or CH 3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  4. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  5. The pink pigment prodigiosin: Vibrational spectroscopy and DFT calculations

    Czech Academy of Sciences Publication Activity Database

    Jehlička, J.; Němec, I.; Varnali, T.; Culka, A.; Svatoš, A.; Frank, Otakar; Oren, A.; Edwards, G.M.

    2016-01-01

    Roč. 134, NOV 2016 (2016), s. 234-243 ISSN 0143-7208 Institutional support: RVO:61388955 Keywords : prodigiosin * serratia marcescens * raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.473, year: 2016

  6. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  7. Vibrational excitation in a hydrogen volume source

    International Nuclear Information System (INIS)

    Eenshuistra, P.J.

    1989-01-01

    In this thesis the complex of processes which determines the D - or H - density in a volume source, a hydrogen discharge, is studied. D - beams are of interest for driving the current of a fusion plasma in a TOKAMAK. Densities of vibrationally excited molecules, of H atoms, and of metastable hydrogen molecules were determined using Resonance-Enhanced MultiPhoton Ionization (REMPI). An experiment in which vibrationally highly excited molecules are formed by recombination of atoms in a cold metal surface, is described. The production and destruction of vibrationally excited molecules and atoms in the discharge is discussed. The vibrational distribution for 3≤ν≤5 (ν = vibrational quantumnumber) is strongly super-thermal. This effect is more apparent at higher discharge current and lower gas pressure. The analysis with a model based on rate equations, which molecules are predominantly produced by primary electron excitation of hydrogen molecules and deexcited upon one wall collision. The atom production is compatible with dissociation of molecules by primary electrons, dissociation of molecules on the filaments, and collisions between positive ions and electrons. The electrons are predominantly destroyed by recombination on the walls. Finally the production and destruction of H - in the discharge are discussed. The density of H - in the plasma, the electron density and temperature were determined. H - extraction was measured. The ratio of the extracted H - current and the H - density in the plasma gives an indication of the drift velocity of H - in the plasma. This velocity determines the emittance of the extracted beam. It was found that the H - velocity scales with the square root of the electron temperature. The measured H - densities are compatible with a qualitative model in which dissociative attachment of plasma electrons to vibrationally excited molecules is the most important process. (author). 136 refs.; 39 figs.; 10 tabs

  8. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    International Nuclear Information System (INIS)

    Pirali, O.; Gruet, S.; Kisiel, Z.; Goubet, M.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C 9 H 7 N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν 45 and ν 44 vibrational modes (located at about 168 cm −1 and 178 cm −1 , respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations

  9. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    Science.gov (United States)

    Pirali, O.; Kisiel, Z.; Goubet, M.; Gruet, S.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm-1 and 178 cm-1, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

  10. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    Energy Technology Data Exchange (ETDEWEB)

    Pirali, O.; Gruet, S. [AILES Beamline, Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette cedex (France); Institut des Sciences Moléculaires d’Orsay, UMR8214 CNRS – Université Paris-Sud, Bât. 210, 91405 Orsay cedex (France); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Goubet, M. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS - Université Lille 1, Bâtiment P5, F-59655 Villeneuve d’Ascq Cedex (France); Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G. [Laboratoire de Physico-Chimie de l’Atmosphère, EA-4493, Université du Littoral – Côte d’Opale, 59140 Dunkerque (France)

    2015-03-14

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C{sub 9}H{sub 7}N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν{sub 45} and ν{sub 44} vibrational modes (located at about 168 cm{sup −1} and 178 cm{sup −1}, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

  11. Neurophysiological findings in vibration-exposed male workers.

    Science.gov (United States)

    Strömberg, T; Dahlin, L B; Rosén, I; Lundborg, G

    1999-04-01

    Fractionated nerve conduction, vibrotactile sense, and temperature thresholds were studied in 73 symptomatic vibration-exposed male workers. Three symptomatic groups were distinguished: patients with isolated sensorineural symptoms; with isolated vasospastic problems; and with both. Clinical carpal tunnel syndrome occurred in 14 patients and abnormal cold intolerance (without blanching of the fingers) in 23. In the group as a whole, nerve conduction studies were abnormal in the median nerve but not in the ulnar nerve and vibration perception and temperature thresholds were impaired. Of the three symptomatic groups, patients with isolated sensorineural symptoms differed from controls. No differences were seen between patients with and without clinical carpal tunnel syndrome. With severe sensorineural symptoms the vibration perception thresholds, but not the values of the nerve conduction studies, were further impaired. The results indicated two injuries that are easily confused: one at receptor level in the fingertips and one in the carpal tunnel. Careful clinical assessment, neurophysiological testing, and examination of vibrotactile sense are required before carpal tunnel release should be considered in these patients.

  12. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  13. Microstructure, optical characterization and light induced degradation in a-Si:H deposited at different temperatures

    International Nuclear Information System (INIS)

    Minani, E.; Sigcau, Z.; Adgebite, O.; Ramukosi, F.L.; Ntsoane, T.P.; Harindintwari, S.; Knoesen, D.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2006-01-01

    The microstructure and optical properties of a series of hydrogenated amorphous silicon layers deposited on glass substrates at different temperature have been characterized by means of X-ray diffraction techniques and optical spectroscopy. The radial distribution function of the as-deposited samples showed an increase in the bond angle and a decrease in the radial distance indicating a relaxation of the amorphous network with increasing the deposition temperature. Light induced degradation was studied using a simulated daylight spectrum. The changes in hydrogen bonding configuration, associated with the light soaking at different stages of illumination, was monitored via the transmission bands of the vibrational wag and stretch modes of the IR spectrum

  14. Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings

    Science.gov (United States)

    Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2015-09-01

    In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.

  15. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  16. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karelina, Anna

    2004-02-18

    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)

  17. Nonlinear Optical Spectroscopy in the Time Domain: Studies of Ultrafast Molecular Processes in the Condensed Phase.

    Science.gov (United States)

    Joo, Taiha

    Ultrafast molecular processes in the condensed phase at room temperature are studied in the time domain by four wave mixing spectroscopy. The structure/dynamics of various quantum states can be studied by varying the time ordering of the incident fields, their polarization, their colors, etc. In one, time-resolved coherent Stokes Raman spectroscopy of benzene is investigated at room temperature. The reorientational correlation time of benzene as well as the T_2 time of the nu _1 ring-breathing mode have been measured by using two different polarization geometries. Bohr frequency difference beats have also been resolved between the nu_1 modes of ^ {12}C_6H_6 and ^{12}C_5^{13 }CH_6.. The dephasing dynamics of the nu _1 ring-breathing mode of neat benzene is studied by time-resolved coherent anti-Stokes Raman scattering. Ultrafast time resolution reveals deviation from the conventional exponential decay. The correlation time, tau _{rm c}, and the rms magnitude, Delta, of the Bohr frequency modulation are determined for the process responsible for the vibrational dephasing by Kubo dephasing function analysis. The electronic dephasing of two oxazine dyes in ethylene glycol at room temperature is investigated by photon echo experiments. It was found that at least two stochastic processes are responsible for the observed electronic dephasing. Both fast (homogeneous) and slow (inhomogeneous) dynamics are recovered using Kubo line shape analysis. Moreover, the slow dynamics is found to spectrally diffuse over the inhomogeneous distribution on the time scale around a picosecond. Time-resolved degenerate four wave mixing signal of dyes in a population measurement geometry is reported. The vibrational coherences both in the ground and excited electronic states produced strong oscillations in the signal together with the usual population decay from the excited electronic state. Absolute frequencies and their dephasing times of the vibrational modes at ~590 cm^{-1} are obtained

  18. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  19. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  20. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    Science.gov (United States)

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.