WorldWideScience

Sample records for temperature transition

  1. Dielectric determination of the glass transition temperature (T sub g)

    Science.gov (United States)

    Ries, Heidi R.

    1990-01-01

    The objective is to determine the glass transition temperature of a polymer using a dielectric dissipation technique. A peak in the dissipation factor versus temperature curve is expected near the glass transition temperature T sub g. It should be noted that the glass transition is gradual rather than abrupt, so that the glass transition temperature T sub g is not clearly identifiable. In this case, the glass transition temperature is defined to be the temperature at the intersection point of the tangent lines to the dissipation factor versus temperature curve above and below the transition region, as illustrated.

  2. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  3. A universal reduced glass transition temperature for liquids

    Science.gov (United States)

    Fedors, R. F.

    1979-01-01

    Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.

  4. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  5. Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature

    International Nuclear Information System (INIS)

    Hotta, Kenji

    2002-01-01

    In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)

  6. Theory of the transition temperature of superconducting amorphous transition metals

    International Nuclear Information System (INIS)

    Zwicknagel, G.

    1979-11-01

    In the present paper first the transition temperature Tsub(c) is shown to be a local quantity, which depends on the (average) short range order, and second it is demonstrated how to calculate local electronic properties in the framework of a short range order model and the transition temperature of amorphous systems based on accepted structure models of the amorphous state. In chapter I the theoretical basis of this work is presented in brief. The model used to study the role of short range order (in periodically ordered as well as in disordered system) is described in chapter II. The results of this model for the periodically ordered case are compared in chapter III with band structure calculations. In chapter IV it is shown how to establish short range order models for disordered systems and what kind of information can be obtained with respect to the electronic properties. Finally in chapter V it is discussed to what extend the interpretation of the transition temperature Tsub(c) as being determined by short range order effects can be supported by the electronic properties, which are calculated in the chapters III and IV. (orig.) [de

  7. Low-temperature transitions in cod and tuna determined by differential scanning calorimetry

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Jørgensen, Bo; Nielsen, Jette

    2003-01-01

    Differential scanning calorimetry measurements have revealed different thermal transitions in cod and tuna samples. Transition temperatures detected Lit -11degreesC, -15degreesC and -21degreesC were highly dependent on the annealing temperature. In tuna muscle an additional transition was observed...... at -72degreesC. This transition appeared differently than the thermal events observed at higher temperatures, as it spanned a broad temperature interval of 25degreesC. The transition was comparable to low-temperature glass transitions reported in protein-rich systems. No transition at this low...... temperature was detected in cod samples. The transitions observed at higher temperatures (-11degreesC to -21degreesC) may possibly stein from a glassy matrix containing muscle proteins. However, the presence of a glass transition at - 11degreesC was in disagreement with the low storage stability at -18degrees...

  8. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  9. Evolution of low-temperature phases in a low-temperature structural transition of a La cuprate

    International Nuclear Information System (INIS)

    Inoue, Y.; Horibe, Y.; Koyama, Y.

    1997-01-01

    The microstructure produced by a low-temperature structural phase transition in La 1.5 Nd 0.4 Sr 0.1 CuO 4 has been examined by transmission electron microscopy with the help of imaging plates. The low-temperature transition was found to be proceeded not only by the growth of the Pccn/low-temperature-tetragonal phases nucleated along the twin boundary but also by the nucleation and growth of the phases in the interior of the low-temperature-orthorhombic domain. In addition, because the map of the octahedron tilt as an order parameter is not identical to that of the spontaneous strain accompanied by the transition, the microstructure below the transition is understood to be a very complex mixture of the low-temperature phases. copyright 1997 The American Physical Society

  10. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  11. Topological transitions at finite temperatures: A real-time numerical approach

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.

    1989-01-01

    We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)

  12. Ultra-sonic testing for brittle-ductile transition temperature of ferritic steels

    International Nuclear Information System (INIS)

    Nomakuchi, Michiyoshi

    1979-01-01

    The ultra-sonic testing for the brittle-ductile transition temperature, the USTB test for short, of ferritic steels is proposed in the present paper. And also the application of the USTB test into the nuclear pressure vessel surveillance is discussed. The USTB test is based upon the experimental results in the present work that the ultrasonic pressure attenuation coefficient of a ferritic steel has the evident transition property with its temperature due to the nature from which the brittle-ductile fracture transition property of the steel come and for four ferritic steels the upper boundary temperatute of the region in which the transition of the attenuation coefficient of a steel takes place is 4 to 5 0 C higher than the sub(D)T sub(E), i.e. the transition temperature of the fracture absorption energy of the steel by the DWTT test. The USTB test estimates the crack arrest temperature which is defined to be the fracture transition elastic temperature by the upper boundary temperature. (author)

  13. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    Science.gov (United States)

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  14. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    Science.gov (United States)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  15. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    Science.gov (United States)

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  17. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  18. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-02-01

    Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)

  19. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-03-05

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy.

  20. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    International Nuclear Information System (INIS)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi; Liu Baoting

    2008-01-01

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy

  1. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations

    International Nuclear Information System (INIS)

    Pagnon, V.

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that's incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity [fr

  2. Investigation of low glass transition temperature on COTS PEMs reliability

    Science.gov (United States)

    Sandor, M.; Agarwal, S.

    2002-01-01

    Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.

  3. Transition temperature and fracture mode of as-castand austempered ductile iron.

    Science.gov (United States)

    Rajnovic, D; Eric, O; Sidjanin, L

    2008-12-01

    The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.

  4. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations; Etude de la transition resistive sur des composes supraconducteurs a haute temperature critique le role des fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, V

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that`s incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity.

  5. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  6. Temperature-induced transitions between domain structures of ultrathin magnetic films

    International Nuclear Information System (INIS)

    Polyakova, T.; Zablotskii, V.

    2005-01-01

    Full text: Understanding of the influence of temperature on behavior of domain patterns of ultrathin magnetic films is of high significance for the fundamental physics of nanomagnetism as well as for technological applications. A thickness-dependent Curie temperature of ultrathin films may cause many interesting phenomena in the thermal evolution of domain structures (DS): i) nontrivial changes of the anisotropy constants as a function of the film thickness; ii) so-called inverse melting of DSs (processes where a more symmetric domain phase is found at lower temperatures than at higher temperatures - the inverse phase sequence) [1]; iii) temperature-induced transitions between domain structures. The possibility of such transitions is determined by lowering of the potential barriers separating different magnetization states as the film temperature approaches the Curie point. In this case with an increase of temperature, due to a significant decrease of the anisotropy constant, the domain wall energy is low enough and allows the system to reach equilibrium by a change of the domain wall number in the sample. This manifests itself in a transition from a metastable DS to a more stable DS which corresponds to new values of the anisotropy constant and magnetizations saturation. Thus, the temperature-induced transitions are driven by temperature changes of the magnetic parameters of the film. The key parameters controlling the DS geometry and period are the characteristic length, l c =σ/4πM S 2 (the ratio between the domain wall and demagnetization energies), and the quality factor Q =K/2πM S 2 (K is the first anisotropy constant). We show that for films with a pronounced nonmonotonic temperature dependence of l c one can expect a counter thermodynamic behavior: the inverse phase sequence and cooling-induced disordering. On changing temperature the existing domain structure should accommodate itself under new magnitudes of l c and Q. There are the two possible

  7. Critical temperature for shape transition in hot nuclei within covariant density functional theory

    Science.gov (United States)

    Zhang, W.; Niu, Y. F.

    2018-05-01

    Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.

  8. Temperature, transitivity, and the zeroth law

    DEFF Research Database (Denmark)

    Bergthorsson, Bjørn

    1977-01-01

    Different statements of the zeroth law are examined. Two types of statements—which characterize two aspects of temperature—are found. A new formulation of the zeroth law is given and a corollary is stated. By means of this corollary it is shown how temperature and transitivity are used to disclose...

  9. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  10. Preparation of Nb thin films with bulk transition temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Peirce, L H [Florida State Univ., Tallahassee (USA). Dept. of Physics

    1984-08-01

    Thin films (1000-2000 A) of Nb were prepared with bulk transition temperatures (9.25 K) by evaporation from an electron gun. Necessary substrate temperatures, evaporation rates and H/sub 2/O pressures were determined.

  11. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  12. Ab initio computation of the transition temperature of the charge density wave transition in TiS e2

    Science.gov (United States)

    Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian

    2015-12-01

    We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.

  13. Depression of the Superfluid Transition Temperature in 4He by a Heat Flow

    International Nuclear Information System (INIS)

    Yin Liang; Qi Xin; Lin Peng

    2014-01-01

    The depression of the superfluid transition temperature T λ in 4 He by a heat flow Q is studied. A small sealed cell with a capillary is introduced and a stable and flat superfluid transition temperature plateau is easily obtained by controlling the temperature of the variable-temperature platform and the bottom chamber of the sealed cell. Owing to the depression effect of the superfluid transition temperature by the heat flow, the heat flow through the capillary is changed by the temperature control to obtain multiple temperature plateaus of different heat flows. The thermometer self-heating effect, the residual heat leak of the 4.2 K environment, the temperature difference on the He II liquid column, the Kapiza thermal resistance between the liquid helium and the copper surface of the sealed cell, the temperature gradient of the sealed cell, the static pressure of the He II liquid column and other factors have influence on the depression effect and the influence is analyzed in detail. Twenty experiments of the depression of the superfluid transition temperature in 4 He by heat flow are made with four sealed cells in one year. The formula of the superfluid transition temperature pressured by the heat flow is T λ (Q) = −0.00000103Q + 2.1769108, and covers the range 229 ≤ Q ≤ 6462 μW/cm 2

  14. Temperature-dependent electrical property transition of graphene oxide paper

    International Nuclear Information System (INIS)

    Huang Xingyi; Jiang Pingkai; Zhi Chunyi; Golberg, Dmitri; Bando, Yoshio; Tanaka, Toshikatsu

    2012-01-01

    Reduction of graphene oxide is primarily important because different reduction methods may result in graphene with totally different properties. For systematically exploring the reduction of graphene oxide, studies of the temperature-dependent electrical properties of graphene oxide (GO) are urgently required. In this work, for the first time, broadband dielectric spectroscopy was used to carry out an in situ investigation on the transition of the electrical properties of GO paper from −40 to 150 °C. The results clearly reveal a very interesting four-stage transition of electrical properties of GO paper with increasing temperature: insulator below 10 °C (stage 1), semiconductor at between 10 and 90 °C (stage 2), insulator at between 90 and 100 °C (stage 3), and semiconductor again at above 100 °C (stage 4). Subsequently, the transition mechanism was discussed in combination with detailed dielectric properties, microstructure and thermogravimetric analyses. It is suggested that the temperature-dependent transition of electronic properties of GO is closely associated with the ion mobility, water molecules removal and the reduction of GO in the GO paper. Most importantly, the present work clearly demonstrates the reduction of GO paper starts at above 100 °C. (paper)

  15. Absence of low temperature phase transitions and enhancement of ferroelectric transition temperature in highly strained BaTiO{sub 3} epitaxial films grown on MgO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish; Kumar, Dhirendra; Sathe, V. G., E-mail: vasant@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Kumar, Ravi; Sharma, T. K. [Semiconductor Physics and Devices Lab, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-04-07

    Recently, a large enhancement in the ferroelectric transition temperature of several oxides is reported by growing the respective thin films on appropriate substrates. This phenomenon is correlated with high residual strain in thin films often leading to large increase in the tetragonality of their crystal structure. However, such an enhancement of transition temperature is usually limited to very thin films of ∼10 nm thickness. Here, we report growth of fully strained epitaxial thin films of BaTiO{sub 3} of 400 nm thickness, which are coherently grown on MgO substrates by pulsed laser deposition technique. Conventional high resolution x-ray diffraction and also the reciprocal space map measurements confirm that the film is fully strained with in-plane tensile strain of 5.5% that dramatically increases the tetragonality to 1.05. Raman measurements reveal that the tetragonal to cubic structural phase transition is observed at 583 K, which results in an enhancement of ∼200 K. Furthermore, temperature dependent Raman studies on these films corroborate absence of all the low temperature phase transitions. Numerical calculations based on thermodynamical model predict a value of the transition temperature that is greater than 1500 °C. Our experimental results are therefore in clear deviation from the existing strain dependent phase diagrams.

  16. High-temperature phase transition in hadron matter

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Trushevsky, A.A.

    1976-01-01

    A possible phase transition in hadronic systems at temperatures of few of GeV is shown in the framework of the S-matrix formulation of statistical mechanics given by Dashen, Ma, Bernstein by using Regge pole model for the scattering amplitude

  17. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    Science.gov (United States)

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  18. Determination of the glass-transition temperature of proteins from a viscometric approach.

    Science.gov (United States)

    Monkos, Karol

    2015-03-01

    All fully hydrated proteins undergo a distinct change in their dynamical properties at glass-transition temperature Tg. To determine indirectly this temperature for dry albumins, the viscosity measurements of aqueous solutions of human, equine, ovine, porcine and rabbit serum albumin have been conducted at a wide range of concentrations and at temperatures ranging from 278 K to 318 K. Viscosity-temperature dependence of the solutions is discussed on the basis of the three parameters equation resulting from Avramov's model. One of the parameter in the Avramov's equation is the glass-transition temperature. For all studied albumins, Tg of a solution monotonically increases with increasing concentration. The glass-transition temperature of a solution depends both on Tg for a dissolved dry protein Tg,p and water Tg,w. To obtain Tg,p for each studied albumin the modified Gordon-Taylor equation was applied. This equation describes the dependence of Tg of a solution on concentration, and Tg,p and a parameter depending on the strength of the protein-solvent interaction are the fitting parameters. Thus determined the glass-transition temperature for the studied dry albumins is in the range (215.4-245.5)K. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  20. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  1. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  2. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  3. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  4. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    International Nuclear Information System (INIS)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V; Hohlbauch, Sophia; Proksch, Roger; King, William P; Voitchovsky, Kislon; Contera, Sonia Antoranz

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  5. Relaxation dynamics of glass transition in PMMA + SWCNT composites by temperature-modulated DSC

    Science.gov (United States)

    Pradhan, N. R.; Iannacchione, G. S.

    2010-03-01

    The experimental technique offered by temperature-modulated differential scanning calorimeter (TMDSC) used to investigate the thermal relaxation dynamics through the glass transition as a function of frequency was studied for pure PMMA and PMMA-single wall carbon nanotubes (SWCNTs) composites. A strong dependence of the temperature dependence peak in the imaginary part of complex heat capacity (Tmax) is found during the transition from the glass-like to the liquid-like region. The frequency dependence of Tmax of the imaginary part of heat capacity (Cp) is described by Arrhenius law. The activation energy obtained from the fitting shows increases while the characteristic relaxation time decreases with increasing mass fraction (phim) of SWCNTs. The dynamics of the composites during glass transition, at slow and high scan rates, are also the main focus of this experimental study. The change in enthalpy during heating and cooling is also reported as a function of scan rate and frequency of temperature modulation. The glass transition temperature (Tg) shows increases with increasing frequency of temperature modulation and phim of SWCNTs inside the polymer host. Experimental results show that Tg is higher at higher scan rates but as the frequency of temperature modulation increases, the Tg values of different scan rates coincide with each other and alter the scan rate dependence. From the imaginary part of heat capacity, it is obvious that Tmax is not the actual glass transition temperature of pure polymer but Tmax and Tg values can be superimposed when phim increases in the polymer host or when the sample undergoes a transition with a certain frequency of temperature modulation.

  6. Variation of transition temperatures from upper to lower bainites in plain carbon steels

    International Nuclear Information System (INIS)

    Oka, M.; Okamoto, H.

    1995-01-01

    Experimental results and explanations for the transition temperature from upper to lower bainites in carbon steels containing from 0.20 to 1.80 wt%C were presented metallographically and kinematically. The experimental results are summarized as follows: (1) Lower bainite is not formed in steels with less than 0.35 wt%C and no transition from upper to lower bainite occurs. (2) The transition temperature of steels containing from 0.54 to 1.10 %C indicates a constant temperature of 350 C and does not depend on the carbon content. It is important to note that a transition temperature of 350 C corresponds to the Ms temperature of a 0.55%C steel being the boundary of the martensite morphology between a lath and a plate. (3) Transition temperatures of steels with more than 1.10%C decrease along the a line below about 65 C from T 0 -composition line. The bainitic transformation is essentially a kind of the martensitic one and its nucleation site is considered to be a carbon depleted zone in austenite by the thermal fluctuation of carbon atom at an isothermal holding temperature. The supercooling of about 65 C below the T 0 -composition line at the carbon range more than 1.10 wt%C is attributed to the non-chemical free energy for the displacive growth of lower bainite. (orig.)

  7. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  8. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    Science.gov (United States)

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    Science.gov (United States)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  10. Impacts of land cover transitions on surface temperature in China based on satellite observations

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  11. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  12. Heater rod temperature change at boiling transition under flow oscillation

    International Nuclear Information System (INIS)

    Kasai, Shigeru; Toba, Akio; Takigawa, Yukio; Ebata, Shigeo; Morooka, Shin-ichi; Shirakawa, Ken-etsu; Utsuno, Hideaki.

    1986-01-01

    The experiments were performed to investigate the boiling transition phenomenon under flow oscillation (OSBT) during thermal hydraulic instability. It was found, from the experimental results, that the thermal hydraulic instability did not immediately lead to the boiling transition (BT) and, even when the BT occurred due to a power increase, the change in the heater rod temperature was periodically up and down with a saw-toothed shape and no excursion occurred. To investigate the temperature change characteristics, an analysis was also performed using the transient thermal hydraulics code. The analytical results showed that the shape of the heater rod temperature change was well simulated by presuming a repeat of alternate BT and rewetting. Based on these results, further analysis has been performed with the lumped parameter model to investigate the temperature profile characteristics as well as the effects of the post-BT heat transfer coefficient and the flow oscillation period on the maximum temperature. (author)

  13. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  14. Luminous transmittance and phase transition temperature of VO 2 ...

    African Journals Online (AJOL)

    The phase transition temperature (τc) of the films was obtained from both the transmittance and sheet resistance against temperature curves. A change in sheet resistance of 2 to 3 orders of magnitude was observed for both undoped and Ce-doped VO2 films. Comparison between undoped and doped VO2 films revealed ...

  15. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  16. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-01-01

    Studying the 2-loop perturbative contribution to the free energy of supersymmetric grand unified theories, SU(3)xSU(2)xU(1) is found to be the prefered low temperature phase. The transition temperature is still within the weak coupling regime. (author)

  17. On-chip detection of gel transition temperature using a novel micro-thermomechanical method.

    Directory of Open Access Journals (Sweden)

    Tsenguun Byambadorj

    Full Text Available We present a new thermomechanical method and a platform to measure the phase transition temperature at microscale. A thin film metal sensor on a membrane simultaneously measures both temperature and mechanical strain of the sample during heating and cooling cycles. This thermomechanical principle of operation is described in detail. Physical hydrogel samples are prepared as a disc-shaped gels (200 μm thick and 1 mm diameter and placed between an on-chip heater and sensor devices. The sol-gel transition temperature of gelatin solution at various concentrations, used as a model physical hydrogel, shows less than 3% deviation from in-depth rheological results. The developed thermomechanical methodology is promising for precise characterization of phase transition temperature of thermogels at microscale.

  18. Theory of high-T{sub C} superconductivity: transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Harshman, Dale R [Physikon Research Corporation, Lynden, WA 98264 (United States); Fiory, Anthony T [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Dow, John D, E-mail: drh@physikon.net [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-07-27

    It is demonstrated that the transition temperature (T{sub C}) of high-T{sub C} superconductors is determined by their layered crystal structure, bond lengths, valency properties of the ions, and Coulomb coupling between electronic bands in adjacent, spatially separated layers. Analysis of 31 high-T{sub C} materials (cuprates, ruthenates, ruthenocuprates, iron pnictides, organics) yields the universal relationship for optimal compounds, k{sub B}T{sub C0} ={beta}/{iota}{zeta}, where {iota} is related to the mean spacing between interacting charges in the layers, {zeta} is the distance between interacting electronic layers, {beta} is a universal constant and T{sub C0} is the optimal transition temperature (determined to within an uncertainty of {+-} 1.4 K by this relationship). Non-optimum compounds, in which sample degradation is evident, e.g. by broadened superconducting transitions and diminished Meissner fractions, typically exhibit reduced T{sub C} < T{sub C0}. It is shown that T{sub C0} may be obtained from an average of the Coulomb interaction forces between the two layers.

  19. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  20. Taste and Temperature in Swallowing Transit Time after Stroke

    Directory of Open Access Journals (Sweden)

    Paula C. Cola

    2012-09-01

    Full Text Available Background: Oropharyngeal dysphagia is common in individuals after stroke. Taste and temperature are used in dysphagia rehabilitation. The influence of stimuli, such as taste and temperature, on swallowing biomechanics has been investigated in both healthy individuals and in individuals with neurological disease. However, some questions still remain unanswered, such as how the sequence of offered stimuli influences the pharyngeal response. The goal of the present study was to determine the influence of the sequence of stimuli, sour taste and cold temperature, on pharyngeal transit time during deglutition in individuals after stroke. Methods: The study included 60 individuals with unilateral ischemic stroke, 29 males and 31 females, aged 41–88 years (mean age: 66.2 years examined 0–50 days after ictus (median: 6 days, with mild to moderate oropharyngeal dysphagia. Exclusion criteria were hemorrhagic stroke patients, patients with decreased level of consciousness, and clinically unstable patients, as confirmed by medical evaluation. The individuals were divided into two groups of 30 individuals each. Group 1 received a nonrandomized sequence of stimuli (i.e. natural, cold, sour, and sour-cold and group 2 received a randomized sequence of stimuli. A videofluoroscopic swallowing study was performed to analyze the pharyngeal transit time. Four different stimuli (natural, cold, sour, and sour-cold were offered. The images were digitalized and specific software was used to measure the pharyngeal transit time. Since the values did not present regular distribution and uniform variances, nonparametric tests were performed. Results: Individuals in group 1 presented a significantly shorter pharyngeal transit time with the sour-cold stimulus than with the other stimuli. Individuals in group 2 did not show a significant difference in pharyngeal transit time between stimuli. Conclusions: The results showed that the sequence of offered stimuli influences

  1. Relaxation Dynamics of the Glass Transition in PMMA+SWCNT Composites by Temperature-Modulated DSC

    Science.gov (United States)

    Pradhan, Nihar; Iannacchione, Germano

    2010-03-01

    Temperature Modulated Differential Scanning Calorimeter (TMDSC) used to investigate the thermal relaxation dynamics of PMMA-Single wall carbon nanotubes (SWCNTs) through the glass transition as a function of frequency. A strong dependence of the temperature dependence peak in imaginary part of complex heat capacity (Tmax) was found during the transition from glass like to liquid like region and can be described by Arhenius law. The activation energy shows increases while the charactersistic time decreases with increasing mass fraction (φm) of SWCNTs. Decreasing of enthalpy, while heating and slowly increasing while cooling at 2.0 K/min scan rate was observed and as frequency of temperature modulation increases. There is no relative change of enthalpy in heating and cooling observed at sufficiently slow scan rate. The glass transition temperature (Tg) shows increases as a function of frequency of temperature modulation, φm of SWCNTs and with increasing scan rate. From imaginary part of heat capacity, it obvious that Tmax is not the actual glass transition temperature of pure polymer but Tmax and Tg values can be superimpose when φm of SWCNT increases in polymer.

  2. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    Science.gov (United States)

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  3. Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions

    Science.gov (United States)

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445

  4. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions.

    Science.gov (United States)

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang

    2011-01-01

    Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.

  5. Phytoclimatic assessment of air temperatures transition across important Bbundary values

    International Nuclear Information System (INIS)

    Kazandjiev, Valentin; Slavov, Nicola

    2004-01-01

    Thermal regime investigation in global and regional scale is the problem permanently in field of vision of climatologists in the world. Many of investigations abroad and in our country are devoted to discover long time variation, cycles and their periodicity and especially on the registration of air temperatures changes and averages per year, per six months, seasons and months. Great interest is assessment of change of terms for strong air temperatures transition across 0, 5, 10 and 15 o C during spring and autumn seasons, because they have important scientific and practical application i.e. they are the limit between cold and warm part of the year and trace out duration of the vegetative and non vegetative for different bio ecosystems such as phyto ecosystems and zoo ecosystems. For this reason, the interest on the investigation of agro climatic and forest climatic peculiarity of these indicators increase for last few years. This increase is connected with big importance part of nature season's dynamics connected with human economic activity. Increase of air temperature up to 0 o C an transition by this limit certify for change of cold with warm period and beginning of spring; Contrariwise, decrease the temperatures down the 0 o C shows the end of autumn and beginning of winter. In the moderate continental climatic regions, where is classified most big part of Bulgaria territory is observed for seasons - winter, spring, summer and autumn. Climatologists usually accept these seasons with equal duration - three months. This duration of the seasons, do not permit to provide clear assessment of meteorological conditions in connection with development of plant ecosystems and production in different country regions. By this reason, seasons differentiation by agro climatic and forest-climatic point of view is other use the annual course of the air temperatures. As a strong and most suitable way for beginning and end of seasons are air temperatures transitions up and down

  6. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    International Nuclear Information System (INIS)

    Holmlid, Leif; Kotzias, Bernhard

    2016-01-01

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H_2_N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H_4(0) and H_3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H_2_N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  7. Note on the glass transition temperature of poly(vinylphenol)

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Šturcová, Adriana; Sikora, Antonín; Dybal, Jiří

    2009-01-01

    Roč. 45, č. 6 (2009), s. 1851-1856 ISSN 0014-3057 Institutional research plan: CEZ:AV0Z40500505 Keywords : Poly(4-vinylphenol) * glass transition temperature * differential scanning calorimetry Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.310, year: 2009

  8. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Science.gov (United States)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  9. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  10. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  11. Effect of In-Situ Cure on Measurement of Glass Transition Temperatures in High-Temperature Thermosetting Polymers (Briefing Charts)

    Science.gov (United States)

    2015-05-20

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...temperature thermosetting polymer via dynamic mechanical analysis alone. These difficulties result from the residual cure of samples heated beyond their...98) Prescribed by ANSI Std. 239.18 Effect of In-Situ Cure on Measurement of Glass Transition Temperatures in High-Temperature Thermosetting

  12. Elevated transition temperature in Ge doped VO2 thin films

    Science.gov (United States)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  13. On temperature dependence of deformation mechanism and the brittle - ductile transition in semiconductors

    International Nuclear Information System (INIS)

    Pirouz, P.; Samant, A.V.; Hong, M.H.; Moulin, A.; Kubin, L.P.

    1999-01-01

    Recent deformation experiments on semiconductors have shown the occurrence of a break in the variation of the critical resolved shear stress of the crystal as a function of temperature. These and many other examples in the literature evidence a critical temperature at which a transition occurs in the deformation mechanism of the crystal. In this paper, the occurrence of a similar transition in two polytypes of SiC is reported and correlated to the microstructure of the deformed crystals investigated by transmission electron microscopy, which shows evidence for partial dislocations carrying the deformation at high stresses and low temperatures. Based on these results and data in the literature, the explanation is generalized to other semiconductors and a possible relationship to their brittle-ductile transition is proposed. copyright 1999 Materials Research Society

  14. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  15. 'Vanishing' structural effects of temperature in polymer glasses close to the glass-transition temperature

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Suzuki, T.; Ito, Y.; Yu, R.S.; Kondo, K.; Yampolskii, Yu. P.; Alentiev, A.Yu.

    2007-01-01

    Positron annihilation lifetime (PAL) measurements were used for observation of structural effects of temperature in polystyrene (PS), super-cross-linked polystyrene networks (CPS), and in polyimides (PI) below and in the vicinity of glass-transition temperature T g . 'Vanishing' of these structural effects in the repeating cycles of the temperature controlled PAL experiments due to the slow relaxation processes in different conditions and details of chemical structure is demonstrated. Obtained results illustrate complex, dependent on thermal history, inhomogeneous character of the glass structure. In fact, structure of some polymer glasses is changing continuously. Calculations of the number density of free volume holes in these conditions are discussed

  16. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  17. Dipolon theory of energy gap parameters at finite temperature and transition temperatures Tc and T* in high-temperature superconductors

    International Nuclear Information System (INIS)

    Sharma, R.R.

    2006-01-01

    First temperature dependent regular and pseudo-energy gap parameters and regular and pseudo-transition temperatures arising from the same physical origin have been calculated in the strong coupling formalism. Temperature dependent many-body field-theoretic techniques have been developed, as an extension of our previous zero-temperature formalism, to derive temperature dependent general expressions for the renormalized energy gap parameter Δ(k->,ω), the gap renormalization parameter Z(k->,ω) and energy band renormalization parameter χ(k->,ω) for momentum k-> and frequency ω making use of dipolon propagator and electron Green's function taking into account explicitly the dressed dipolons as mediators of superconductivity, the screened Coulomb repulsion and nonrigid electron energy bands considering retardation and damping effects and electron-hole asymmetry. The theory takes into account all necessary and important correlations. Our self-consistent calculations utilize the previously symmetry predicted two energy gap parameters for superconducting cuprates, one being antisymmetric (''as'') with respect to the exchange of the k x and k y components of vector k-> and the other being symmetric (''s'') with respect to the exchange of k x and k y . Our present temperature dependent self-consistent solutions of the real and imaginary parts of the Δ(k->,ω), Z(k->,ω) and χ(k->,ω) confirm the existence of these two (different) solutions and conclude that the antisymmetric solution of the gap parameter corresponds to the observed regular (''reg'') superconducting energy gap whereas the symmetric solution corresponds to the observed pseudo-(''pse-'') energy gap. Explicit temperature dependent self-consistent calculations have been performed here for Bi 2 Sr 2 CaCu 2 O 8+δ as well as Bi 2 Sr 2 CaCu 2 O 8 giving temperature dependent energy gap parameters and corresponding transition temperatures. The calculated results are consistent with the available experimental

  18. Possible higher order phase transition in large-N gauge theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically different behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical

  19. Low temperature phase transition of the stoichiometric Ln2NiO4 oxides

    International Nuclear Information System (INIS)

    Fernandez, F.; Saez-Puche, R.; Botto, I.L.; Baran, E.J.

    1991-01-01

    In this paper we will present a comparative study of the structural phase transition in Ln 2 NiO 4 oxides, by means of neutron diffraction and infrared(IR) spectroscopy. In the Ln 2 NiO 4 oxides (Ln=La, Pr and Nd), there is a low temperature structural phase transition from the orthorhombic symmetry to a tetragonal phase, of first order character. The IR spectra show, at low temperature, a splitting of the bands related with the stretching Ni-O, strongly correlated with the phase transformation. From the neutron data, the phase transition can be visualized as a sudden tilt of the nickel octahedra

  20. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Directory of Open Access Journals (Sweden)

    Rohan Isaac

    2018-02-01

    Full Text Available Charge-transfer (CT complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  1. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy.

    Directory of Open Access Journals (Sweden)

    Yiwen Sun

    Full Text Available The GP2 peptide is derived from the Human Epidermal growth factor Receptor 2 (HER2/nue, a marker protein for breast cancer present in saliva. In this paper we study the temperature dependent behavior of hydrated GP2 at terahertz frequencies and find that the peptide undergoes a dynamic transition between 200 and 220 K. By fitting suitable molecular models to the frequency response we determine the molecular processes involved above and below the transition temperature (T(D. In particular, we show that below T(D the dynamic transition is dominated by a simple harmonic vibration with a slow and temperature dependent relaxation time constant and that above T(D, the dynamic behavior is governed by two oscillators, one of which has a fast and temperature independent relaxation time constant and the other of which is a heavily damped oscillator with a slow and temperature dependent time constant. Furthermore a red shifting of the characteristic frequency of the damped oscillator was observed, confirming the presence of a non-harmonic vibration potential. Our measurements and modeling of GP2 highlight the unique capabilities of THz spectroscopy for protein characterization.

  2. Glass transition temperature of dried lens tissue pretreated with trehalose, maltose, or cyclic tetrasaccharide.

    Science.gov (United States)

    Kawata, Tetsuhiro; Matsuo, Toshihiko; Uchida, Tetsuya

    2014-01-01

    Glass transition temperature is a main indicator for amorphous polymers and biological macromolecules as materials, and would be a key for understanding the role of trehalose in protecting proteins and cells against desiccation. In this study, we measured the glass transition temperature by differential scanning calorimetry of dried lens tissues as a model of a whole biological tissue to know the effect of pretreatment by trehalose and other sugars. Isolated porcine lenses were incubated with saline, 100 or 1000 mM concentration of trehalose, maltose, or cyclic tetrasaccharide dissolved in saline at room temperature for 150 minutes. The solutions were removed and all samples were dried at room temperature in a desiccator until no weight change. The dried tissues were ground into powder and placed in a measuring pan for differential scanning calorimetry. The glass transition temperature of the dried lens tissues, as a mean and standard deviation, was 63.0 ± 6.4°C (n = 3) with saline pretreatment; 53.0 ± 0.8°C and 56.3 ± 2.7°C (n = 3), respectively, with 100 and 1000 mM trehalose pretreatment; 56.0 ± 1.6°C and 55.8 ± 1.1°C (n = 3), respectively, with 100 and 1000 mM maltose pretreatment; 60.0 ± 8.8°C and 59.2 ± 6.3°C (n = 3), respectively, with 100 and 1000 mM cyclic tetrasaccharide pretreatment. The glass transition temperature appeared lower, although not significantly, with trehalose and maltose pretreatments than with saline and cyclic tetrasaccharide pretreatments (P > 0.05, Kruskal-Wallis test). The glass transition temperature of the dried lens tissues with trehalose pretreatment appeared more noticeable on the thermogram, compared with other pretreatments. The glass transition temperature was measured for the first time in the dried lens tissues as an example of a whole biological tissue and might provide a basis for tissue preservation in the dried condition.

  3. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the

  4. Transitions in aqueous solutions of sucrose at subzero temperatures

    Czech Academy of Sciences Publication Activity Database

    Sikora, Antonín; Dupanov, V. O.; Kratochvíl, Jaroslav; Zámečník, J.

    2007-01-01

    Roč. 46, č. 1 (2007), s. 71-85 ISSN 0022-2348 R&D Projects: GA ČR(CZ) GA522/04/0384 Institutional research plan: CEZ:AV0Z40500505 Keywords : aqueous sucrose solutions * subzero temperature * glass transitions Subject RIV: BJ - Thermodynamics Impact factor: 0.809, year: 2007

  5. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  6. Method for calculating solid-solid phase transitions at high temperature: An application to N2O

    International Nuclear Information System (INIS)

    Kuchta, B.; Etters, R.D.

    1992-01-01

    Two similar techniques for calculating solid-solid phase transitions at high temperatures are developed, where the contribution of the entropy may be a decisive factor. They utilize an artificial reversible path from one phase to another by application of a control parameter. Thermodynamic averages are calculated using constant-volume and constant-pressure Monte Carlo techniques. An application to N 2 O at room temperature shows that the cubic Pa3 to orthorhombic Cmca transition occurs near 4.9-GPa pressure, very close to the value calculated at very low temperatures. These results support experimental evidence that the transition pressure is virtually independent of temperature

  7. Solvent deuteration enhancement of hydrophobicity: DSC study of the inverse temperature transition of elastin-based polypeptides

    International Nuclear Information System (INIS)

    Chihao Luan; Urry, D.W.

    1991-01-01

    As previously shown, the polypentapeptide of elastin, (Val 1 -Pro 2 -Gly 3 -Val 4 -Gly 5 ) n or simply poly(VPGVG), undergoes an inverse temperature transition which is seen macroscopically as a phase separation with a dense viscoelastic phase of about 60% water, 40% peptide by weight and which is characterized molecularly by increase in intra- and intermolecular order as evidenced by formation of specific hydrophobic contacts. Furthermore, from an extensive study of polypentapeptides of the composition poly[f x (VPGXG), f v (VPGVG)], where f x + f v = 1 and X is any of the amino acid residues with apolar (hydrophobic) side chains, it has been shown that the temperature of the transition decreases and the heat of the transition increases with increased hydrophobicity. In the present paper differential scanning calorimetry has been utilized to determine the effect of D 2 O on the temperature and heats of the inverse temperature transitions for poly(VPGVG), poly(IPGVG), poly(LPGVG), and poly(VPAVG) and in the latter case in the presence of 0.5 and 1.0 N NaCl and of 1,2, and 3 M urea. In all cases, the effect of D 2 O as compared to H 2 O is to lower the transition temperature about 2 C and to increase the heat of the transition about 10%, and this occurs also in the presence of NaCl, which itself lowers the temperature and increases the heat, and in the presence of urea, which itself raises the temperature and decreases the heat of the transition. It is concluded that the effect of replacement of H 2 O by D 2 O by D 2 O in these polypeptides is to effect a small but consistent increase in the expression of hydrophobicity

  8. Temperature decline thermography for laminar-turbulent transition detection in aerodynamics

    Science.gov (United States)

    von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.

    2017-09-01

    Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.

  9. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  10. Size dependent hcp-to-fcc transition temperature in Co nanoclusters obtained by ion implantation in silica

    International Nuclear Information System (INIS)

    Mattei, G.; Maurizio, C.; Fernandez, C Julian de; Mazzoldi, P.; Battaglin, G.; Canton, P.; Cattaruzza, E.; Scian, C.

    2006-01-01

    In this work we present in situ investigations on the increase of the hcp-to-fcc transition temperature for Co with respect to the bulk value (420 deg. C) when nanoclusters are considered. Starting from Co:SiO 2 composites obtained by ion implantation with average Co cluster size of about 5 nm, a transition temperature between 800 deg. C and 900 deg. C is found upon thermal annealing in vacuum by in situ transmission electron microscopy. Preliminary results on electron irradiation to promote the transition at lower temperatures are presented

  11. Transition temperature to the superconducting phase of QCD at high baryon density

    International Nuclear Information System (INIS)

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-01-01

    Recent interest in the study of color superconductivity has focused on the regime of high baryon density where perturbative QCD may be employed. Based on the dominant one-gluon-exchange interaction, both the transition temperature and zero temperature gap have been determined to leading order in the coupling g. While the leading non-BCS behavior T C ∼μg -5 e -κ/g is easily obtained, the pre-exponential factor has proved more difficult to evaluate. Focusing on the transition temperature, we present a perturbative derivation of this factor, exact to leading order in g. This approach is first motivated by the study of a toy model and involves working to second order in the perturbative expansion. We compare this result to the zero temperature gap. Additionally, we extend the analysis to the case of higher angular momentum for longitudinal and transverse quark pairing. (c) 2000 The American Physical Society

  12. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    Science.gov (United States)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  13. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  14. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    Science.gov (United States)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  15. Evidence of a low temperature dynamical transition in concentrated PNIPAM microgels

    OpenAIRE

    Zanatta, Marco; Tavagnacco, Letizia; Buratti, Elena; Bertoldo, Monica; Natali, Francesca; Chiessi, Ester; Orecchini, Andrea; Zaccarelli, Emanuela

    2018-01-01

    The occurrence of a dynamical transition at low temperature has been reported in a large number of different proteins. Here we provide the first observation of a "protein-like" dynamical transition in a non-biological aqueous environment. To this aim we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Thanks to the heterogeneous polymeric architecture of the microgels, water crystalliza...

  16. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  17. Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship

    International Nuclear Information System (INIS)

    Bai Yu; Jin Li

    2008-01-01

    The complex mechanical modulus of polymer and polymer based composite materials showed a frequency-dependent behaviour during glass transition relaxation, which was historically modelled by the Arrhenius equation. However, this might not be true in a broad frequency domain based on the experience from the frequency dependence of the complex dielectric permittivity, which resulted from the same glass transition relaxation as for the complex mechanical modulus. Considering a good correspondence between dielectric and mechanical relaxation during glass transition, the Vogel-Fulcher relationship, previously proposed for the frequency dependence of dielectric permittivity, is introduced for that of the mechanical modulus; and the corresponding static glass transition temperature (T f ) was first determined for polymer and polymer based composite materials. (fast track communication)

  18. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  19. Quasi-dynamic pressure and temperature initiated βδ solid phase transitions in HMX

    Science.gov (United States)

    Zaug, Joseph M.; Farber, Daniel L.; Craig, Ian M.; Blosch, Laura L.; Shuh, David K.; Hansen, Donald W.; Aracne-Ruddle, Chantel M.

    2000-04-01

    The phase transformation of β-HMX (>0.5% RDX) to δ phase has been studied for over twenty years and more recently with an high-contrast optical second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al. [1] in 1978. However, the stability field favors the β polymorph over δ as pressure is increased (up to 5.4 GPa) along any thermodynamically reasonable isotherm. In this experiment, strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced β→δ transition, the pressure induced is heterogeneous in nature. The 1 bar 25 °C δ→β transition is not immediate, occuring over tens of hours. Transition points and kinetics are path dependent and consequently this paper describes our work in progress.

  20. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  1. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  2. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  3. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Triana, C.A.; Corredor, L.T.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2011-01-01

    Highlights: ► Crystal structure, thermal expansion and phase transitions at high-temperature of Sr 2 GdRuO 6 perovskite has been investigated. ► X-ray diffraction pattern at 298 K of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with P2 1 /n space group. ► Evolution of X-ray diffraction patterns at high-temperature shows that the Sr 2 GdRuO 6 perovskite suffers two-phase transitions. ► At 573 K the X-ray diffraction pattern of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with I2/m space group. ► At 1273 K the Sr 2 GdRuO 6 perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr 2 GdRuO 6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2 1 /n (no. 14) space group and 1:1 ordered arrangement of Ru 5+ and Gd 3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å 3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å 3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å 3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87) is characterized

  4. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  5. Molecular Motion in Polymers: Mechanical Behavior of Polymers Near the Glass-Rubber Transition Temperature.

    Science.gov (United States)

    Sperling, L. H.

    1982-01-01

    The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)

  6. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    Science.gov (United States)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  7. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew, E-mail: maw64@cornell.edu; Thorne, Robert E. [Physics Department, Cornell University, Ithaca, New York (United States)

    2010-10-01

    Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder. The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol{sup −1} indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol{sup −1}, which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300–80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962 ▶), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183–191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for

  8. Depression of Glass Transition Temperatures of Polymer Networks by Diluents

    NARCIS (Netherlands)

    Brinke, Gerrit ten; Karasz, Frank E.; Ellis, Thomas S.

    1983-01-01

    A classical thermodynamic theory is used to derive expressions for the depression of the glass transition temperature Tg of a polymer network by a diluent. The enhanced sensitivity of Tg in cross-linked systems to small amounts of diluent is explained. Predictions of the theory are in satisfactory

  9. Neutron scattering near the order-disorder transition in Cu3Au: evidence for a lower spinodal temperature

    International Nuclear Information System (INIS)

    Rogge, R.B.; Gaulin, B.D.; Svensson, E.C.; Hallman, E.D.; Wei, W.

    1995-01-01

    The binary alloy Cu 3 Au undergoes a first-order phase transition at 667 ± 3 K Within the context of the Landau theory of phase transitions, there exist, in addition to the order-disorder temperature, T c , upper and lower spinodal temperatures, T su and T si . These mark the first temperatures, upon approaching the phase transition from above and below, respectively, at which metastable droplets of the second phase can fluctuate out of the first phase. Until recently, there has, however, been little physical evidence supporting the existence of the spinodal temperatures. Elastic and inelastic neutron-scattering measurements have been carried out on Cu 3 Au over an extended temperature range with particular emphasis on temperatures near T c . The lattice constant data, order-parameter data, and phonon data provided by these measurements all indicate that there are two temperature regimes just below T c with a crossover between these regimes in the range of (T c - 35) to (T c - 25) K. This crossover temperature is interpreted as the lower spinodal temperature of Cu 3 Au. (author)

  10. Effect of thermal phonons on the superconducting transition temperature

    International Nuclear Information System (INIS)

    Leavens, C.R.; Talbot, E.

    1983-01-01

    There is no consensus in the literature on whether or not thermal phonons depress the superconducting transition temperature T/sub c/. In this paper it is shown by accurate numerical solution of the real-frequency Eliashberg equations for the pairing self-energy phi and renormalization function Z that thermal phonons in the kernel for phi raise T/sub c/ but those in Z lower it by a larger amount so that the net effect is to depress T/sub c/. (A previous calculation which ignored the effect of thermal phonons in phi overestimated the suppression of T/sub c/ by at least a factor of 3.) It is shown how to switch off the thermal phonons in the imaginary-frequency Eliashberg equations, exactly for Z and approximately for phi. The real-frequency and approximate imaginary-frequency results for the depression of T/sub c/ by thermal phonons are in very satisfactory agreement. Thermal phonons are found to depress the transition temperature of Nb 3 Sn by only 2%. It is estimated that the suppression of T/sub c/ by thermal phonons saturates at about 50% in the limit of very strong electron-phonon coupling

  11. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

    Science.gov (United States)

    Popova, V A; Surovtsev, N V

    2014-09-01

    The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

  12. Exploration of a new method in determining the glass transition temperature of BMGs by electrical resistivity

    Science.gov (United States)

    Guo, Jing; Zu, Fangqiu; Chen, Zhihao; Zheng, Shubin; Yuan, Yuan

    2005-07-01

    Based on a brief retrospect of the method in establishing Tg of the bulk metallic glasses (BMGs), some perplexities concerning this are pointed out. With the experimental results of Zr-Al-Ni-Cu-X (Nb,Ti) BMGs, a electrical resistivity method is proposed to determine the glass transition temperature of BMGs. With the method, we define two kinds of characteristic temperature related to the glass transition, Tg-dep and Tg-int, respectively. By comparing Tg-dep and Tg-int with Tg determined by the DSC method, we have found that, for the same alloy at the same heating rate, Tg-dep is very close to Tg-onset while Tg-int is approximate to Tg-mid. As a method to determine the glass transition temperature, the electrical resistivity method has proved to be more convenient and practical in comparison with the DSC method, especially when the DSC curve cannot show the glass transition character of BMGs. In addition, we would emphasize that when we refer to Tg, it is necessary to expatiate on the way of denoting the glass transition temperature, such as Tg-dep or Tg-int ( Tg-onset or Tg-mid), and on the heating rate, in order to avoid ambiguity.

  13. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Christelle, E-mail: christelle.herman@ulb.ac.b [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium); Leyssens, Tom [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1 Place Louis Pasteur, 1348 Louvain-La-Neuve (Belgium); Vermylen, Valerie [UCB Pharma, 60 Allee de la Recherche, 1070 Braine l' Alleud (Belgium); Halloin, Veronique; Haut, Benoit [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium)

    2011-05-15

    Research highlights: We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. The second method is an experimental study of the stability thermal range of each morph. We identify the nature of crystals in suspension at equilibrium through Raman analysis. The solid-solid transition temperature is found equal to 303.65 K {+-} 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T{sub tr}) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T{sub tr} as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T{sub tr} is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC while

  14. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    Research highlights: → We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. → The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. → The second method is an experimental study of the stability thermal range of each morph. → We identify the nature of crystals in suspension at equilibrium through Raman analysis. → The solid-solid transition temperature is found equal to 303.65 K ± 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T tr ) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T tr as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T tr is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC

  15. Determination of the glass transition temperature: methods correlation and structural heterogeneity

    OpenAIRE

    Hutchinson, John M.

    2009-01-01

    The definition of the glass transition temperature, Tg, is recalled and its experimental determination by various techniques is reviewed. The diversity of values of Tg obtained by the different methods is discussed, with particular attention being paid to Differential Scanning Calorimetry (DSC) and to dynamic techniques such as Dynamic Mechanical Thermal Analysis (DMTA) and Temperature Modulated DSC (TMDSC). This last technique, TMDSC, in particular, is considered in respect of ways in which ...

  16. Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films

    Science.gov (United States)

    Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.

    2017-07-01

    We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.

  17. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    Science.gov (United States)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  18. Glass Transition Temperature Measurement for Undercured Cyanate Ester Networks: Challenges, Tips, and Tricks (Briefing Charts)

    Science.gov (United States)

    2014-01-29

    DISTRIBUTION A: Approved for public release; distribution is unlimited. Thermosetting Polymers Have a TG Envelope – Not Just a TG 4 • The glass transition...glass transition temperature of a thermosetting polymer can vary over a wide range of temperatures depending on how the polymer is processed • A... thermosetting polymer with only one kind of network formation and negligible side reactions, the conversion may be determined at every point in the scan. • By

  19. Low temperature phase transition and crystal structure of CsMgPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Maria, E-mail: maria.p.orlova@gmail.com [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Khainakov, Sergey [Departamento de Química Física y Analítica, Universidad de Oviedo—CINN, 33006 Oviedo (Spain); Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Michailov, Dmitriy [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation); Perfler, Lukas [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Langes, Christoph [Institute of Pharmacy, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Kahlenberg, Volker [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck 6020 (Austria); Orlova, Albina [Department of Chemistry, University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod 603950 (Russian Federation)

    2015-01-15

    CsMgPO{sub 4} doped with radioisotopes is a promising compound for usage as a radioactive medical source. However, a low temperature phase transition at temperatures close to ambient conditions (∼−40 °C) was observed. Information about such kind of structural changes is important in order to understand whether it can cause any problem for medical use of this compound. The phase transition has been investigated in detail using synchrotron powder diffraction, Raman spectroscopy and DFT calculations. The structure undergoes a transformation from an orthorhombic modification, space group Pnma (RT phase) to a monoclinic polymorph, space group P2{sub 1}/n (LT phase). New LT modification adopts similar to RT but slightly distorted unit cell: a=9.58199(2) Å, b=8.95501(1) Å, c=5.50344(2) Å, β=90.68583(1)°, V=472.198(3) Å{sup 3}. CsMgPO{sub 4} belongs to the group of framework compounds and is made up of strictly alternating MgO{sub 4}- and PO{sub 4}-tetrahedra sharing vertices. The cesium counter cations are located in the resulting channel-like cavities. Upon the transformation a combined tilting of the tetrahedra is observed. A comparison with other phase transitions in ABW-type framework compounds is given. - Graphical abstract: Structural behavior of β-tridymite-type phosphate CsMgPO{sub 4}, considered as potential chemical form for radioactive Cs-source has been studied at near ambient temperatures. A phase transition at (∼−40 °C) has been found and investigated. It has been established that the known orthorhombic RT modification, space group Pnma, adopts a monoclinic cell with space group P2{sub 1}/n at low temperatures. In this paper, we present results of structural analysis of changes accompanying this phase transition and discuss its possible impact on the application properties. - Highlights: • β-Tridymite type phosphate CsMgPO{sub 4} undergoes so called translationengleiche phase transition of index 2 at −40 °C. • The structure

  20. Determination of the glass transition temperature of cyclodextrin polymers.

    Science.gov (United States)

    Tabary, Nicolas; Garcia-Fernandez, Maria Jose; Danède, Florence; Descamps, Marc; Martel, Bernard; Willart, Jean-François

    2016-09-05

    The aim of this work was to determine the main physical characteristics of β-cyclodextrin polymers, well known for improving complexation capacities and providing enhanced and sustained release of a large panel of drugs. Two polymers were investigated: a polymer of β-cyclodextrin (polyβ-CD) and a polymer of partially methylated (DS=0.57) β-cyclodextrin (polyMe-β-CD). The physical characterizations were performed by powder X-ray diffraction and differential scanning calorimetry. The results indicate that these polymers are amorphous and that their glass transition is located above the thermal degradation point of the materials preventing their direct observation and thus their full characterization. We could however estimate the virtual glass transition temperatures by mixing the polymers with different plasticizers (trehalose and mannitol) which decreases Tg sufficiently to make the glass transition observable. Extrapolation to zero plasticizer concentration then yield the following Tg values: Tg (polyMe-β-CD)=317°C±5°C and Tg (polyβ-CD)=418°C±6°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Upper limit on the transition temperature for non-ideal Bose gases

    International Nuclear Information System (INIS)

    Dai Wusheng; Xie Mi

    2007-01-01

    In this paper, we show that for a non-ideal Bose gas there exists an upper limit on the transition temperature above which Bose-Einstein condensation cannot occur regardless of the pressure applied. Such upper limits for some realistic Bose gases are estimated

  2. Rubberlike Dynamics in Sulphur above the λ-Transition Temperature

    International Nuclear Information System (INIS)

    Monaco, G.; Crapanzano, L.; Crichton, W.; Mezouar, M.; Verbeni, R.; Bellissent, R.; Fioretto, D.; Scarponi, F.

    2005-01-01

    The high-frequency acoustic dynamics of sulfur across the liquid-liquid, λ transition has been studied using inelastic x-ray scattering. The combination of these high-frequency data with lower frequency, literature data indicates that liquid sulfur develops, in the high-temperature, polymeric solution phase, some characteristic features of a rubber. In particular, entanglement coupling among polymeric chains plays a relevant role in the dynamics of this liquid phase

  3. Transition Temperatures of Thermotropic Liquid Crystals from the Local Binary Gray Level Cooccurrence Matrix

    Directory of Open Access Journals (Sweden)

    S. Sreehari Sastry

    2012-01-01

    Full Text Available This paper presents a method which combines the statistical analysis with texture structural analysis called Local Binary Gray Level Cooccurrence Matrix (LBGLCM to investigate the phase transition temperatures of thermotropic p,n-alkyloxy benzoic acid (nOBA, n=4,6,8,10 and 12 liquid crystals. Textures of the homeotropically aligned liquid crystal compounds are recorded as a function of temperature using polarizing optical microscope attached to the hot stage and high resolution camera. In this method, second-order statistical parameters (contrast, energy, homogeneity, and correlation are extracted from the LBGLCM of the textures. The changes associatedwiththe values of extracted parameters as a function of temperature are a helpful process to identify the phases and phase transition temperatures of the samples. Results obtained from this method have validity and are in good agreement with the literature.

  4. High temperature phase transitions in nuclear fuels of the fourth generation

    International Nuclear Information System (INIS)

    De Bruycker, F.

    2010-01-01

    Understanding the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents, relevant to the general objectives of nuclear safety research. The main purpose of this thesis is the study of high temperature phase transitions in nuclear materials, with special attention to the candidate fuel materials for the reactors of the 4. Generation. In this framework, material properties need to be investigated at temperatures higher than 2500 K, where equilibrium conditions are difficult to obtain. Laser heating combined with fast pyrometer is the method used at the European Institute for Transuranium Elements (JRC - ITU). It is associated to a novel process used to determine phase transitions, based on the detection, via a suited low-power (mW) probe laser, of changes in surface reflectivity that may accompany solid/liquid phase transitions. Fast thermal cycles, from a few ms up to the second, under almost container-free conditions and control atmosphere narrow the problem of vaporisation and sample interactions usually meet with traditional method. This new experimental approach has led to very interesting results. It confirmed earlier research for material systems known to be stable at high temperature (such as U-C) and allowed a refinement of the corresponding phase diagrams. But it was also feasible to apply this method to materials highly reactive, thus original results are presented on PuO 2 , NpO 2 , UO 2 -PuO 2 and Pu-C systems. (author)

  5. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  6. Tuning the ferroelectric-to-paraelectric transition temperature and dipole orientation of group-IV monochalcogenide monolayers

    Science.gov (United States)

    Barraza-Lopez, Salvador; Kaloni, Thaneshwor P.; Poudel, Shiva P.; Kumar, Pradeep

    2018-01-01

    Coordination-related, two-dimensional (2D) structural phase transitions are a fascinating facet of two-dimensional materials with structural degeneracies. Nevertheless, a unified theoretical account of these transitions remains absent, and the following points are established through ab initio molecular dynamics and 2D discrete clock models here: Group-IV monochalcogenide (GeSe, SnSe, SnTe,...) monolayers have four degenerate structural ground states, and a phase transition from a threefold coordinated onto a fivefold coordinated structure takes place at finite temperature. On unstrained samples, this phase transition requires lattice parameters to evolve freely. A fundamental energy scale J permits understanding this transition, and numerical results indicate a transition temperature Tc of about 1.41 J . Numerical data provides a relation among the experimental (rhombic) parameter 〈Δ α 〉 [Chang et al., Science 353, 274 (2016), 10.1126/science.aad8609] and T of the form 〈Δ α 〉 =Δ α (T =0 ) (1-T /Tc)β , with a critical exponent β ≃1 /3 that coincides with experiment. It is also shown that 〈Δ α 〉 is temperature independent in another theoretical work [Fei et al., Phys. Rev. Lett. 117, 097601 (2016), 10.1103/PhysRevLett.117.097601], and thus incompatible with experiment. Tc and the orientation of the in-plane intrinsic electric dipole can be controlled by moderate uniaxial tensile strain, and a modified discrete clock model describes the transition on strained samples qualitatively. An analysis of out-of-plane fluctuations and a discussion of the need for van der Waals corrections to describe these materials are given too. These results provide an experimentally compatible framework to understand structural phase transitions in 2D materials and their effects on material properties.

  7. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  8. Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(1 1 1)

    International Nuclear Information System (INIS)

    Grazianetti, C; Chiappe, D; Cinquanta, E; Fanciulli, M; Molle, A

    2015-01-01

    Silicene grown on Ag(1 1 1) is characterized by several critical parameters. Among them, the substrate temperature plays a key role in determining the morphology during growth. However, an unexpected important role is also equally played by the post-deposition annealing temperature which determines the self-organization of silicene domains even in the submonolayer coverage regime and consecutive transitions between silicene with different periodicity. These temperature-driven phase transitions can be exploited to select the desired majority silicene phase, thus allowing for the manipulation of silicene properties. (paper)

  9. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  10. Trends in low-temperature water–gas shift reactivity on transition metals

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Boisen, Astrid; Dahl, Søren

    2005-01-01

    Low-temperature water–gas shift reactivity trends on transition metals were investigated with the use of a microkinetic model based on a redox mechanism. It is established that the adsorption energies for carbon monoxide and oxygen can describe to a large extent changes in the remaining activation...

  11. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  12. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  13. Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids

    OpenAIRE

    Ahmed, Ejaz

    2011-01-01

    Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 i...

  14. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...... at elastic stage. The concentrated stress in crystals at elastic stage provided adequate energy for the direct gamma-alpha phase transition under T-g. The force to promote the gamma-phase into a phase directly is insufficient at the yield stage and a transient phase as a compromise was formed. The transient...... phase was confirmed by DSC measurements and assisted the gamma-alpha phase transition indirectly. The gamma-phase slips into incomplete fragments at yield point, and the parts along tensile direction are responsible for the formation of transient phase. The gamma-fragments after yield is oriented...

  15. A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.

    Science.gov (United States)

    Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A

    2018-03-01

    Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.

  16. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution.

    Science.gov (United States)

    Pansare, Swapnil K; Patel, Sajal Manubhai

    2016-08-01

    Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.

  17. Pressure-Driven Commensurate-Incommensurate Transition Low-Temperature Submonolayer Krypton on Graphite

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Als-Nielsen, Jens Aage; Bohr, Jakob

    1981-01-01

    By using D2 gas as a source of two-dimensional spreading pressure, we have studied the commensurate-incommensurate (C-I) transition in submonolayer Kr on ZYX graphite at temperatures near 40 K. High-resolution synchrotron x-ray diffraction results show both hysteresis and C-I phase coexistence...

  18. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  19. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires.

    Science.gov (United States)

    Zilli, Attilio; De Luca, Marta; Tedeschi, Davide; Fonseka, H Aruni; Miriametro, Antonio; Tan, Hark Hoe; Jagadish, Chennupati; Capizzi, Mario; Polimeni, Antonio

    2015-04-28

    Semiconductor nanowires (NWs) formed by non-nitride III-V compounds grow preferentially with wurtzite (WZ) lattice. This is contrary to bulk and two-dimensional layers of the same compounds, where only zincblende (ZB) is observed. The absorption spectrum of WZ materials differs largely from their ZB counterparts and shows three transitions, referred to as A, B, and C in order of increasing energy, involving the minimum of the conduction band and different critical points of the valence band. In this work, we determine the temperature dependence (T = 10-310 K) of the energy of transitions A, B, and C in ensembles of WZ InP NWs by photoluminescence (PL) and PL excitation (PLE) spectroscopy. For the whole temperature and energy ranges investigated, the PL and PLE spectra are quantitatively reproduced by a theoretical model taking into account contribution from both exciton and continuum states. WZ InP is found to behave very similarly to wide band gap III-nitrides and II-VI compounds, where the energy of A, B, and C displays the same temperature dependence. This finding unveils a general feature of the thermal properties of WZ materials that holds regardless of the bond polarity and energy gap of the crystal. Furthermore, no differences are observed in the temperature dependence of the fundamental band gap energy in WZ InP NWs and ZB InP (both NWs and bulk). This result points to a negligible role played by the WZ/ZB differences in determining the deformation potentials and the extent of the electron-phonon interaction that is a direct consequence of the similar nearest neighbor arrangement in the two lattices.

  20. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    International Nuclear Information System (INIS)

    Karkut, M.G.; Hake, R.R.

    1983-01-01

    Superconducting upper critical fields H/sub c/2(T), transition temperatures T/sub c/, and normal-state electrical resistivities rho/sub n/ have been measured in the amorphous transition-metal alloy series Zr/sub 1-z/Co/sub x/, Zr/sub 1-x/Ni/sub x/, (Zr/sub 1-x/Ti/sub x/)/sub 0.78/Ni/sub 0.22/, and (Zr/sub 1-x/Nb/sub x/)/sub 0.78/Ni/sub 0.22/. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display T/sub c/ = 2.1--3.8 K, rho/sub n/ = 159--190 μΩ cm, and Vertical Bar(dH/sub c/2/dT)cVertical Bar = 28--36 kG/K. These imply electron mean free paths lroughly-equal2--6 A, zero-temperature Ginzburg-Landau coherence distances xi/sub G/0roughly-equal50--70 A, penetration depths lambda/sub G/0roughly-equal(7--10) x 10 3 A, and extremely high dirtiness parameters xi 0 /lroughly-equal300--1300. All alloys display H/sub c/2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time tau/sub so/. This is in contrast to the anomalously elevated H/sub c/2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-tau/sub so/ fits to WHHM theory obtained by others, for various amorphous alloys

  1. Superconducting Mercury-Based Cuprate Films with a Zero-Resistance Transition Temperature of 124 Kelvin

    Science.gov (United States)

    Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.

    1994-03-01

    The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.

  2. Superconducting mercury-based cuprate films with a zero-resistance transition temperature of 124 Kelvin.

    Science.gov (United States)

    Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D

    1994-03-04

    The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.

  3. Method for preparing high transition temperature Nb.sub.3 Ge superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-01-01

    Bulk coatings of Nb.sub.3 Ge superconductors having transition temperatures in excess of 20 K are readily formed by a chemical vapor deposition technique involving the coreduction of NbCl.sub.5 and GeCl.sub.4 in the presence of hydrogen. The NbCl.sub.5 vapor may advantageously be formed quantitatively in the temperature range of about 250.degree. to 260.degree. C by the chlorination of Nb metal provided the partial pressure of the product NbCl.sub.5 vapor is maintained at or below about 0.1 atm.

  4. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

    1998-01-01

    The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

  5. Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Rovigatti, L.; Tavares, J.M.; Sciortino, F.

    2015-01-01

    We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DHS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole–dipole magnetic interaction increases. It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (ρ) of DHS plays a crucial part in this transition: at a very low ρ only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of ρ. The average ring size is found to be a slower increasing function of ρ when compared to that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the ρ-dependence of the initial magnetic susceptibility (χ) when the temperature decreases. The rings due to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. - Highlights: • Found structural chain-to-ring transition at low temperature sheds the light on the no-man's-land of the phase diagram of dipolar hard sphere gas. • Particle concentration plays a crucial part: at high dilution only chains and rings are observed, otherwise different branched structures occur. • The dramatic influence of the ring formation on the concentration dependence of the initial magnetic susceptibility when temperature decreases

  6. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  7. Temperature and center-limb variations of transition region velocities

    International Nuclear Information System (INIS)

    Athay, R.G.; Dere, K.P.

    1989-01-01

    HRTS data from the Spacelab 2 mission are used to derive the center-limb and temperature variations of the mean velocity and the velocity variance in the solar chromosphere and transition zone. The mean velocity is found to vary much more rapidly from center to limb and with temperature than does the velocity variance. Also, the mean velocity shows a characteristic signature at some magnetic neutral lines in accordance with the findings of Klimchuk (1987) from Solar Maximum Mission (SMM) data. The velocity variance does not show a characteristic signature at the neutral lines but shows an inverse correlation with intensity. The latter is interpreted as reduced velocity variance in strong field regions. The results are discussed in terms of downflow along lines of force in magnetic arcades. 23 refs

  8. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

    Science.gov (United States)

    Voudouris, P; Gomopoulos, N; Le Grand, A; Hadjichristidis, N; Floudas, G; Ediger, M D; Fytas, G

    2010-02-21

    The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.

  9. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.

    1996-01-01

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, λ, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/λ∼1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/λ equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/λ = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances

  10. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  11. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    He, R.-H.; Hashimoto, M.; Karapetyan, H.; Koralek, J.D.; Hinton, J.P.; Testaud, J.P.; Nathan, V.; Yoshida, Y.; Yao, H.; Tanaka, K.; Meevasana, W.; Moore, R.G.; Lu, D.H.; Mo, S.-K.; Ishikado, M.; Eisaki, H.; Hussain, Z.; Devereaux, T.P.; Kivelson, S.A.; Orenstein, J.; Kapitulnik, A.

    2011-11-08

    The nature of the pseudogap phase of cuprate high-temperature superconductors is one of the most important unsolved problems in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally-doped Bi2201 crystals. We observe the coincident onset at T* of a particle-hole asymmetric antinodal gap, a non-zero Kerr rotation, and a change in the relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T{sub c}), entangled in an energy-momentum dependent fashion with the pre-existing pseudogap features.

  12. The phase transition in the SU(5) model at high temperatures

    International Nuclear Information System (INIS)

    Daniel, M.; Vayonakis, C.E.

    1981-01-01

    Within the minimum GUT model we have studied the nature of the fluctuation-induced transition between the SU(5) and the SU(3)sub(c) x SU(2) x U(1) phase which occurs at high temperatures. Our analysis is limited to the case when the phase transition occurs outside the critical (fluctuation-dominated) region. For this to happen the SU(5) model has to be in a mode analogous to the type I superconductor. This corresponds to having the scalar quartic couplings in the Higgs sector less than the squared gauge coupling. For generic values of the coupling constants the phase transition is found to be weakly first order. As we approach the boundaries for the region of the SU(3)sub(c) x SU(2) x U(1) phase, however, a strong first-order transition occurs. The SU(5) mode (analogous to the type II superconductor) when the phase transition occurs inside the fluctuation-dominated region has been recently studied by Ginsparg. His results together with ours show that there is a continuous merging of the type I mode into the type II mode. Finally our analysis elucidates some aspects of the monopole problem in grand unified theories. (orig.)

  13. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  14. Organization versus frustration: low temperature transitions in a gelatine-based gel

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Sanctuary, R; Baller, J; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, avenue de la Faiencerie, L-1511 (Luxembourg)], E-mail: martine.philipp@uni.lu

    2008-09-15

    A commercial physical gel composed of gelatine, water and glycerol shows a sol-gel transition which has been resolved by optical rotation measurements by step-wise heating the gel. This transition is not observable in the longitudinal acoustic mode measured at hypersonic frequencies with Brillouin spectroscopy. Depending on the thermal treatment of the investigated material during the sol-gel transition and within the gel state, Brillouin spectroscopy reflects tremendously different hypersonic dynamics. These distinct dynamics are responsible for the formation of different glassy states at low temperatures including that of a glass-ceramic. The large variety of super-cooled and glassy states is attributed to distinct distributions of the gel's constituents within the samples. Surprisingly, the same gel state can be produced either by annealing the gel over months or by the non-equilibrium effect of thermo-diffusion (Soret effect) in the course of some minutes.

  15. West Florida shelf circulation and temperature budget for the 1999 spring transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  16. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Sengupta, Parijat; Tan, Yaohua; Klimeck, Gerhard; Shi, Junxia

    2017-10-01

    We study the low temperature thermal conductivity of single-layer transition metal dichalcogenides (TMDCs). In the low temperature regime where heat is carried primarily through transport of electrons, thermal conductivity is linked to electrical conductivity through the Wiedemann-Franz law (WFL). Using a k.p Hamiltonian that describes the K and K{\\prime} valley edges, we compute the zero-frequency electric (Drude) conductivity using the Kubo formula to obtain a numerical estimate for the thermal conductivity. The impurity scattering determined transit time of electrons which enters the Drude expression is evaluated within the self-consistent Born approximation. The analytic expressions derived show that low temperature thermal conductivity (1) is determined by the band gap at the valley edges in monolayer TMDCs and (2) in presence of disorder which can give rise to the variable range hopping regime, there is a distinct reduction. Additionally, we compute the Mott thermopower and demonstrate that under a high frequency light beam, a valley-resolved thermopower can be obtained. A closing summary reviews the implications of results followed by a brief discussion on applicability of the WFL and its breakdown in context of the presented calculations.

  17. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  18. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    Science.gov (United States)

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  19. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV...

  20. A perspective on transition temperature and KJc data characterization

    International Nuclear Information System (INIS)

    McCabe, D.E.; Merkle, J.G.; Nanstad, R.K.

    1992-01-01

    Proper identification of transition temperature and shape of the lower-bound (K lc ) fracture toughness curve in the transition range has been a long-term objective. A past practice has been to test a large number of specimens of varying sizes, from 1/2T to 8T compacts, in expectation that size effects and statistical variability of (K jc ) could be resolved empirically. Recently, statistical and constraint-based models have been developed that purport to explain much of what has been seen. Weakest-link theory has been successfully used to predict specimen size effects for the lower part of the transition curve. Constraint-based models of β c -- β lc and J ssy (small-scale yield) also can model size effects, but these tend to conflict among themselves with regard to the prediction of full constraint K jc . All lack potential for defining the absolute lower bound of fracture toughness. Statistically based models have the benefit of quantifying data scatter characteristics and provide a basis for making lower-bound toughness estimates with assigned error estimates. The K jc , data are obtained from small specimens, the size of which is dictated by volume limitations of surveillance capsule size. A basis has been explored for establishing a lower-envelope curve from such data

  1. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    Science.gov (United States)

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  2. Reduction in L10 phase transition temperature of PLD grown FePt thin by pre-annealing pulse laser exposure

    International Nuclear Information System (INIS)

    Wang, Y.; Rawat, R.S.; Bisht, A.

    2013-01-01

    A pre-annealing atmospheric pulsed laser exposure was applied to decrease the phase transition (from chemically disordered A1 phase to chemically ordered L1 0 phase) temperature of FePt nano-particles on a Si (100) substrate. Different pre-annealing laser energy densities of 0.024 and 0.079 J/cm2 were utilized to expose the pulsed laser deposition (PLD) FePt thin film samples under atmospheric conditions. Subsequently, FePt thin film samples were annealed at different temperatures of 300 and 400 ºC to observe the influence of laser exposure on the phase transition temperature. The phase transition temperature was decreased from conventional 600 ºC to 400 ºC by one shot pre-annealing atmospheric pulsed laser exposure. (author)

  3. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    Science.gov (United States)

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dynamics of trapped two-component Fermi gas: Temperature dependence of the transition from collisionless to collisional regime

    International Nuclear Information System (INIS)

    Toschi, F.; Vignolo, P.; Tosi, M.P.; Succi, S.

    2003-01-01

    We develop a numerical method to study the dynamics of a two-component atomic Fermi gas trapped inside a harmonic potential at temperature T well below the Fermi temperature T F . We examine the transition from the collisionless to the collisional regime down to T=0.2 T F and find a good qualitative agreement with the experiments of B. DeMarco and D.S. Jin [Phys. Rev. Lett. 88, 040405 (2002)]. We demonstrate a twofold role of temperature on the collision rate and on the efficiency of collisions. In particular, we observe a hitherto unreported effect, namely, the transition to hydrodynamic behavior is shifted towards lower collision rates as temperature decreases

  5. Calculation of the superconducting transition temperature in niobium

    International Nuclear Information System (INIS)

    Perlov, C.M.

    1982-01-01

    The author presents calculations of the superconducting transition temperature, T/sub c/, the electron-phonon coupling constant, lambda, and the spectral function, α 2 f(ω), for niobium. The author's calculations are based on an empirical pseudopotential method (EPM) band structure. Phonon linewidths are also given for longitudinal and transverse branches along different directions. The necessary electron-phonon matrix elements are evaluated using only the rigid-ion approximation by applying Green's theorem. The calculated value of T/sub c/ is 8.4 K which differs from the measured value by only 9%; the calculated lambda is 1.02. The spectral function and linewidths are compared to experimental and previous theoretical results

  6. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  7. Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

    International Nuclear Information System (INIS)

    Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre

    2007-01-01

    We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram

  8. Structural disorder and its effect on the superconducting transition temperature in the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br

    International Nuclear Information System (INIS)

    Su, X.; Zuo, F.; Schlueter, J.A.; Kelly, M.E.; Williams, J.M.

    1998-01-01

    In this paper, we report direct evidence of a structural transition in the organic superconductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Br near 80 K and the effect of disorder on the superconducting transition temperature. By cooling the sample from above 80 K, the interlayer magnetoresistance displays a bumplike feature, which increases sharply with increasing cooling rate. The rapidly cooled sample has a much larger resistivity and a lower transition temperature, which decreases linearly with increasing resistivity near the transition temperature. We propose that rapid cooling quenches the sample into a disordered state. Localized moments in the disordered state reduce the superconducting transition temperature. copyright 1998 The American Physical Society

  9. Physical Properties of Phase Pure 4C Pyrrhotite (Fe7S8) during its Low Temperature Besnus Transition

    Science.gov (United States)

    Volk, M.; Feinberg, J. M.; McCalla, E.; Leighton, C.; Voigt, B.

    2017-12-01

    Of all magnetic minerals that play a role in recording terrestrial and extraterrestrial magnetic fields, the low temperature phase transition of monoclinic Fe7S8 is the least well understood. At room temperature an array of ordered vacancies gives rise to ferrimagnetism in pyrrhotite. The mineral's physical properties change dramatically at ≈30 K during what is known as the Besnus transition. The mechanism driving these changes, however, is not fully understood. Several explanations have been proposed, including changes in crystalline anisotropy, a transformation of the crystal symmetry, and magnetic interactions within in a two-phase (4C/5C*) system among them. To better understand the transition we studied magnetic, electric and structural properties as well as the heat capacity of a large, phase pure monoclinic crystal (Fe6.8±0.1S8). The single-phase sample shows a clear peak at 32 K in the heat capacity associated with a second order phase transition. Zero field cooling of 2.5 T saturating isothermal remanent magnetizations acquired at 300 and 20 K, as well electrical conductivity exhibit sudden changes between 30-33 K. Susceptibility shows a secondary peak within the same temperature interval. These phenomena can be related to the peak in heat capacity, indicating that the changes are related to the phase transition. In-field measurements show that the magnetic and electric transitions are mildly field dependent. Repeated measurements on different instruments show that the transition temperature for susceptibility is 1 K higher when measured parallel to the crystallographic c-axis as compared to within the c-plane. Similar trends could be found in magnetoresistivity, which is negative (≈ -2%) in the c-plane and larger and positive (≈ 5%) along the c-axis. While this comprehensive data set is not able to unambiguously explain the mechanism driving the transition, it indicates the coupling of structural and magnetocrystalline properties and suggests that

  10. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Glass transition temperature of hard chairside reline materials after post-polymerisation treatments.

    Science.gov (United States)

    Urban, Vanessa M; Machado, Ana L; Alves, Marinês O; Maciel, Adeilton P; Vergani, Carlos E; Leite, Edson R

    2010-09-01

    This study evaluated the effect of post-polymerisation treatments on the glass transition temperature (T(g)) of five hard chairside reline materials (Duraliner II-D, Kooliner-K, New Truliner-N, Ufi Gel hard-U and Tokuso Rebase Fast-T). Specimens (10 x 10 x 1 mm) were made following the manufacturers' instructions and divided into three groups (n = 5). Control group specimens were left untreated. Specimens from the microwave group were irradiated with pre-determined power/time combinations, and specimens from the water-bath group were immersed in hot water at 55 degrees C for 10 min. Glass transition ( degrees C) was performed by differential scanning calorimetry. Data were analysed using anova, followed by post hoc Tukey's test (alpha = 0.05). Both post-polymerisation treatments promoted a significant (p glass transition of material Kooliner, with the effect being more pronounced for microwave irradiation.

  12. West Florida shelf circulation and temperature budget for the 1998 fall transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2003-05-01

    Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.

  13. Oxygen order-disorder phase transition in PrBaCo2O5.48 at high temperature

    International Nuclear Information System (INIS)

    Streule, S.; Podlesnyak, A.; Pomjakushina, E.; Conder, K.; Sheptyakov, D.; Medarde, M.; Mesot, J.

    2006-01-01

    We have investigated the PrBaCo 2 O 5.48 compound by means of neutron powder diffraction at temperatures 300K OD =776K, which we associate with an oxygen order-disorder transition: the well-known room temperature ordered crystal structure, in which slabs of CoO 6 octahedra and CoO 5 pyramids interleave (Pmmm symmetry) gets lost at temperatures T>T OD , resulting in a statistical distribution of octahedra and pyramids in the sample. The new phase can be described by the tetragonal P4/mmm space group. The transition is caused by displacement of apical oxygen ions and is an indication that ionic conductivity, which has been observed in 3D cobaltites, may also exist in layered cobaltites

  14. Low-temperature structural phase transition in synthetic libethenite Cu2PO4OH

    International Nuclear Information System (INIS)

    Belik, Alexei A.; Naumov, Pance; Kim, Jungeun; Tsuda, Shunsuke

    2011-01-01

    Low-temperature structural properties of the synthetic mineral libethenite Cu 2 PO 4 OH were investigated by single-crystal X-ray diffraction, synchrotron X-ray powder diffraction, specific heat measurements, and Raman spectroscopy. A second-order structural phase transition from the Pnnm symmetry (a=8.0553(8) A, b=8.3750(9) A, c=5.8818(6) A at 180 K) to the P2 1 /n symmetry (a=8.0545(8) A, b=8.3622(9) A, c=5.8755(6) A, β=90.0012(15) at 120 K) was found at 160 K during cooling. At 120 K, the monoclinic angle is 90.0012(15) from single crystal X-ray data vs 90.083(1) from powder X-ray diffraction data. The P2 1 /n-to-Pnnm transition may be a general feature of the adamite-type compounds, M 2 XO 4 OH. - Graphical Abstract: Fragments of experimental synchrotron X-ray powder diffraction patterns of Cu 2 PO 4 OH between 100 and 280 K. Arrows show additional reflections that appear below 160 K in the monoclinic P2 1 /n phase. Highlights: → A low-temperature phase transition was found in the mineral libethenite Cu 2 PO 4 OH. → No magnetic anomalies and weak specific heat anomalies are detected. → Phase transition is of the second order. → Libethenite may exemplify a general feature of the adamite-type compounds.

  15. High temperature phase transition of Tm2Ti2O7

    International Nuclear Information System (INIS)

    Shlyakhtina, A.V.; Shcherbakova, L.G.; Knot'ko, A.V.; Larina, L.L.; Borichev, S.A.

    2004-01-01

    A high temperature phase transition type order-disorder is investigated in Tm 2 Ti 2 O 7 at t>1600 Deg C. It is shown that this transformation is irreversible. Ion conductivity of synthesized at 1670 Deg C nanocrystalline Tm 2 Ti 2 O 7 constitutes 2x10 -3 S/cm at 740 Deg C and remains constant after heat treatment at 860 Deg C for 240 h in the air. It is revealed that the conductivity of specimens (grain size of 20-30 nm) on the basis of Tm 2 Ti 2 O 7 high temperature modification with a structure of disordered pyrochlore is independent of grain size [ru

  16. Organic superconductors with high transition temperatures and high critical magnetic fields

    International Nuclear Information System (INIS)

    Wolf, A.A.; Halpern, E.H.

    1976-01-01

    Organic compounds exhibit superconducting-like behavior, as to magnetic and electrical properties, at elevated temperatures above 21 0 K, where 21 0 K is the transition temperature of most known metallic superconducting materials. The structure of the organic materials according to this invention is a plurality of superconducting clusters, forming islands within a matrix of insulating material. The ratio of the clusters to the matrix material is a minimum at 1 : 10 4 . The organic compound comprises two distinct atomic groups termed an R group and COOM group combining as R-COOM with the COOM group clustering to form superconducting islands, within the R material matrix. 15 claims, 6 figures

  17. The effect of confinement on the temperature dependence of the excitonic transition energy in GaAs/AlxGa1-xAs quantum wells

    International Nuclear Information System (INIS)

    Silva, M A T da; Morais, R R O; Dias, I F L; Lourenco, S A; Duarte, J L; Laureto, E; Quivy, A A; Silva, E C F da

    2008-01-01

    We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al x Ga 1-x As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed

  18. The pressure effect on the superconducting transition temperature of black phosphorus

    CERN Document Server

    Karuzawa, M; Endo, S

    2002-01-01

    We have measured the pressure effect on the superconducting transition temperature T sub c of black phosphorus up to 160 GPa using a superconducting quantum interference device vibrating coil magnetometer. It was found that T sub c had a maximum value of about 9.5 K at about 32 GPa, began decreasing with pressure and reached about 4.3 K at about 100 GPa.

  19. Hard x-ray photoemission study of the temperature-induced valence transition system EuNi2(Si1-xGex) 2

    Science.gov (United States)

    Ichiki, Katsuya; Mimura, Kojiro; Anzai, Hiroaki; Uozumi, Takayuki; Sato, Hitoshi; Utsumi, Yuki; Ueda, Shigenori; Mitsuda, Akihiro; Wada, Hirofumi; Taguchi, Yukihiro; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    2017-07-01

    We investigated the bulk-derived electronic structure of the temperature-induced valence transition system EuNi2(Si1 -xGex )2 (x =0.70 , 0.79, and 0.82) by means of hard x-ray photoemission spectroscopy (HAXPES). The HAXPES spectra clearly show distinct temperature dependencies in the spectral intensities of the Eu2 + and Eu3 +3 d components. For x =0.70 , the changes in the Eu2 + and Eu3 +3 d spectral components with temperature reflect a continuous valence transition, whereas the sudden changes for x =0.79 and 0.82 reflect first-order valence transitions. The Eu 3 d spectral shapes for all x and particularly the drastic changes in the Eu3 +3 d feature with temperature are validated by a theoretical calculation based on the single-impurity Anderson model (SIAM). SIAM analysis reveals that the valence transition for each x is controlled by the c -f hybridization strength and the charge-transfer energy. Furthermore, the c -f hybridization strength governs the valence transition of this system, which is either first order or continuous, consistent with Kondo volume collapse.

  20. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  1. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  2. Effect of the crack-starter weld condition on the nil-ductility transition temperature

    International Nuclear Information System (INIS)

    Satoh, Masanobu; Funada, Tatsuo; Tomimatsu, Minoru

    1985-01-01

    In ASME Code Sec. III, the value of the reference nil-ductility temperature RT sub(EDT) has an important significance to determine the result of the fracture mechanics evaluation. While in the standard both the drop-weight test and Charpy impact test are required to determine the RT sub(NDT), in practice it is normally determined only by the nil-ductility transition temperature (T sub(EDT)) obtained by the drop-weight test. The cases of data scatter in T sub(NDT) were investigated to establish appropriate conditions of crack-starter bead welding. Drop-weight tests were carried out for nuclear vessel steels by changing welding conditions to examine the effects of welding amperage and shapes of welding table on T sub(NDT). The results show that the preparation of crack-starter bead by small welding amperage should not be allowed, because it makes the measured T sub(NDT) non-conservative, and that it is important to use a welding table which increases the cooling rate of specimen. Furthermore, the authors proposed methods for estimating T sub(NDT) of nuclear vessel steels by using Charpy transition temperatures. (author)

  3. Magnetic phase transitions and large magnetic entropy change with a wide temperature span in HoZn

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingwei, E-mail: wei0396@hotmail.com [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster (Germany); Yuan, Ye [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Zhang, Yikun [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster (Germany); Zhou, Shengqiang [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany)

    2015-09-15

    Highlights: • Magnetic phase transitions and magnetocaloric effect in HoZn were studied. • The critical properties of HoZn were systematically investigated. • The obtained critical exponents are satisfied with scaling theory. • A large reversible magnetocaloric effect in HoZn was observed. • HoZn could be a promising candidate for magnetic refrigeration. - Abstract: CsCl-type HoZn undergoes two successive magnetic phase transitions: (i) paramagnetic to ferromagnetic (FM) at T{sub C} ∼ 72 K and (ii) a spin reorientation (SR) at T{sub SR} ∼ 26 K. Magnetization and modified Arrott plots indicate that HoZn undergoes a second-order magnetic phase transition around T{sub C}. The obtained critical exponents have some small deviations from the mean-field theory, indicating a short range or a local magnetic interaction which is properly related to the coexistence of FM and SR transitions at low temperature. Two successive magnetic transitions in HoZn induce one broad pronounced peak together with a shoulder in the temperature dependence of the magnetic entropy change −ΔS{sub M}(T) curves, resulting in a wide temperature range with a large relative cooling power (RCP). For a field change of 0–7 T, the maximum value of −ΔS{sub M} is 15.2 J/kg K around T{sub C} with a large RCP value of 1124 J/kg. The large reversible magnetocaloric effect (MCE) and RC indicate that HoZn is a good candidate for active magnetic refrigeration.

  4. Influence of the ionic radii on the transition temperature of tilted perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, A S [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Fisica

    1979-03-01

    It is shown that the temperature of the transition to the cubic phase in the perovskites with tilted octahedra, considering compounds with the same central ion, is a decreasing function of the tolerance factor. An explanation is given in terms of empty spaces of the crystal structure and the rms thermal necessary to fill them.

  5. High temperature-induced phase transitions in Sr{sub 2}GdRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Crystal structure, thermal expansion and phase transitions at high-temperature of Sr{sub 2}GdRuO{sub 6} perovskite has been investigated. Black-Right-Pointing-Pointer X-ray diffraction pattern at 298 K of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with P2{sub 1}/n space group. Black-Right-Pointing-Pointer Evolution of X-ray diffraction patterns at high-temperature shows that the Sr{sub 2}GdRuO{sub 6} perovskite suffers two-phase transitions. Black-Right-Pointing-Pointer At 573 K the X-ray diffraction pattern of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with I2/m space group. Black-Right-Pointing-Pointer At 1273 K the Sr{sub 2}GdRuO{sub 6} perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K {<=} T {<=} 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2{sub 1}/n (no. 14) space group and 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Angstrom-Sign , b =5.8234(1) Angstrom-Sign , c =8.2193(9) Angstrom-Sign , V = 278.11(2) Angstrom-Sign {sup 3} and angle {beta} = 90.310(5) Degree-Sign . The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Angstrom-Sign , b = 5.8326(3) Angstrom-Sign , c = 8.2449(2) Angstrom-Sign , V = 280.31(3) Angstrom-Sign {sup 3} and angle {beta} = 90.251(3) Degree-Sign . Close

  6. Calculation of the magnetic anisotropy energy and finite-temperature magnetic properties of transition-metal films

    International Nuclear Information System (INIS)

    Garibay-Alonso, R; Villasenor-Gonzalez, P; Dorantes-Davila, J; Pastor, G M

    2004-01-01

    The magnetic anisotropy energy at the interface (IMAE) of Co films deposited on the Pd(111) surface are determined in the framework of a self-consistent, real-space tight-binding method at zero temperature. Significant spin moments are induced at the Pd atoms at the interface which have an important influence on the observed reorientation transitions as a function of Co film thickness. Film-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of thin transition-metal films deposited on metallic non-magnetic substrates. Furthermore, using a real-space recursive expansion of the local Green function and within the virtual-crystal approximation we calculate the magnetization curves and the Curie temperature T C for free-standing Fe films

  7. Interactions in a blend of two polymers greatly differing in glass transition temperature

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Šturcová, Adriana; Sikora, Antonín; Dybal, Jiří

    2011-01-01

    Roč. 49, č. 14 (2011), s. 1031-1040 ISSN 0887-6266 Institutional research plan: CEZ:AV0Z40500505 Keywords : differential scanning calorimetry (DSC) * fouriertransform infrared spectroscopy (FT-IR) * glass transition temperature Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.531, year: 2011

  8. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  9. Polymer relaxations in thin films in the vicinity of a penetrant or a temperature induced glass transition

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    The transient properties of thin glassy polymer films in the vicinity of the glass transition are investigated. We compare the differences and similarities between sorption and temperature induced glass transitions, referred to as Pg and Tg, respectively. The experimental technique used is in situ

  10. Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Sung, C.; White, A.E.; Howard, N.T.; Oi, C.Y.; Rice, J.E.; Gao, C.; Ennever, P.; Porkolab, M.; Parra, F.; Ernst, D.; Walk, J.; Hughes, J.W.; Irby, J.; Kasten, C.; Hubbard, A.E.; Greenwald, M.J.; Mikkelsen, D.

    2013-01-01

    The first measurements of long wavelength (k y ρ s < 0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (∼40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (ρ ∼ 0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (ρ < 0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge. (paper)

  11. Low temperature synthesis, photoluminescence, magnetic properties of the transition metal doped wurtzite ZnS nanowires

    International Nuclear Information System (INIS)

    Cao, Jian; Han, Donglai; Wang, Bingji; Fan, Lin; Fu, Hao; Wei, Maobin; Feng, Bo; Liu, Xiaoyan; Yang, Jinghai

    2013-01-01

    In this paper, we synthesized the transition metal ions (Mn, Cu, Fe) doped and co-doped ZnS nanowires (NWs) by a one-step hydrothermal method. The results showed that the solid solubility of the Fe 2+ ions in the ZnS NWs was about two times larger than that of the Mn 2+ or Cu 2+ ions in the ZnS NWs. There was no phase transformation from hexagonal to cubic even in a large quantity transition metal ions introduced for all the samples. The Mn 2+ /Cu 2+ /Fe 2+ related emission peaks can be observed in the Mn 2+ ,Cu 2+ and Fe 2+ doped ZnS NWs. The ferromagnetic properties of the co-doped samples were investigated at room temperature. - graphical abstract: The stable wurtzite ZnS:TM 2+ (TM=Mn, Cu, Fe) nanowires with room temperature ferromagnetism properties were obtained. The different elongation of unit cell caused by the different doped ions was observed. Highlights: ► The transition metal ions doped wurtzite ZnS nanowires were synthesized at 180 °C. ► There was no phase transformation from hexagonal to cubic even in a large quantity introduced for all the samples. ► The room temperature ferromagnetism properties of the co-doped nanowires were investigated

  12. Simultaneous Determination of Glass Transition Temperatures of Several Polymers.

    Science.gov (United States)

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.

  13. Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific

    Science.gov (United States)

    Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro

    2018-02-01

    Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.

  14. Thermophysical data for various transition metals at high temperatures obtained by a submicrosecond-pulse-heating method

    International Nuclear Information System (INIS)

    Seydel, U.; Bauhof, H.; Fucke, W.; Wadle, H.

    1979-01-01

    Thermophysical data for several transition metals are reported including enthalpies, electric resistivities, and specific volumes at the melting transition, and volume expansion coefficients and heat capacities in the liquid phase. Values for the critical temperatures, pressures, and volumes are given for molybdenum and tungsten. All data have been obtained by a submicrosecond-pulse-heating method. (author)

  15. Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC.

    Science.gov (United States)

    Royall, P G; Craig, D Q; Doherty, C

    1999-12-01

    The purpose of this study was to investigate the depression of the glass transition temperature, T(g), of the protease inhibitor saquinavir in the first heating scan as a function of the quantity of sorbed water by the application of modulated temperature differential scanning calorimetry (MTDSC). Samples of amorphous saquinavir were pretreated under various humidity conditions and the quantity of sorbed water measured by thermogravimetric analysis. MTDSC runs were performed using hermetically and non-hermetically sealed pans in order to determine the glass transition temperature. MTDSC allowed the separation of the glass transition from the enthalpic relaxation, thereby allowing clear visualisation of T(g) for amorphous saquinavir in the first heating scan. The plasticizing effects of water were assessed, with the depression in T(g) related to the mole fraction of water sorbed via the Gordon-Taylor relationship. An expression has been derived which allows estimation of the water content which lowers the T(g) to the storage temperature, thereby considerably increasing the risk of recrystallisation. It is argued that this model may aid prediction of the optimal storage conditions for amorphous drugs.

  16. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  17. On the high temperature phase transition in Ba(Zr0.20Ti0.80O3 ceramic

    Directory of Open Access Journals (Sweden)

    K. P. Chandra

    2017-08-01

    Full Text Available Temperature dependent X-ray diffraction (XRD and dielectric properties of perovskite Ba(Zr0.2Ti0.8O3 ceramic prepared using a standard solid-state reaction process is presented. Along with phase transitions at low temperature, a new phase transition at high temperature (873∘C at 20Hz, diffusive in character has been found where the lattice structure changes from monoclinic (space group: P2∕m to hexagonal (space group: P6∕mmm. This result places present ceramic in the list of potential candidate for intended high temperature applications. The AC conductivity data followed hopping type charge conduction and supports jump relaxation model. The experimental value of d33=98pC/N was found. The dependence of polarization and strain on electric field at room temperature suggested that lead-free Ba(Zr0.2Ti0.8O3 is a promising material for electrostrictive applications.

  18. The reexamination of thermal expansion of ferromagnetic superconductors and the pressure differential of its superconducting transition temperature-possible application to UGe2

    International Nuclear Information System (INIS)

    Konno, Rikio; Hatayama, Nobukuni

    2011-01-01

    The temperature dependence of thermal expansion of ferromagnetic superconductors below the superconducting transition temperature T scu of a majority spin conduction band is reexamined. In the previous study [to be published in J. M. Phys. B] the volume differential of the kinetic energy of conduction electrons is constant. However, in this study the volume differential of the kinetic energy of conduction electrons is inconstant. The superconducting gap of the majority spin conduction band used in this study has a line node. It is appropriate to UGe 2 . The pressure differential of its superconducting transition temperature is also investigated. We find that the thermal expansion coefficient has the divergence at the superconducting transition temperature. The thermodynamic Grueneisen's relation is satisfied.

  19. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  20. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Roseker, W.; Sikorski, M.

    2004-01-01

    Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition was det...... range of 0-2.2 GPa. This method opens a possibility to study the pressure effect of glass transition process in glassy systems under high pressures (>1 GPa). (C) 2004 American Institute of Physics.......Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition...... was detected from the change of the slope of peak position as a function of temperature. It is found that the glass transition temperature increases with pressure by 4.4 K/GPa for the Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass, and the supercooled liquid range decreases with pressure by 2.9 K/GPa in a pressure...

  1. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  2. Traction and lubricant film temperature as related to the glass transition temperature and solidification. [using infrared spectroscopy on EHD contacts

    Science.gov (United States)

    Lauer, J. L.; Peterkin, M. E.

    1978-01-01

    Does a traction fluid have to be a glass or solid under operating conditions. Infrared spectra on dynamic EHD contacts of several types of fluid were used to determine the surface and oil-film temperatures. Polarized spectral runs were made to study molecular alignment. Static glass transition pressures at appropriate temperatures were between 0.1 and 2.0 GPa, with the traction fluid showing the highest. In the EHD contact region, the traction fluid showed both the highest film temperatures as well as the greatest degree of molecular alignment. A plot of the difference between the film and surface temperatures vs shear rate resulted in a master plot valid for all the fluids. From this work, the authors propose a model of 'fluid' traction, where friction between parallel rough molecules provides the traction.

  3. Tunable diode laser measurement of self broadening versus temperature of five close ammonia transitions of the v2 band

    International Nuclear Information System (INIS)

    Baldacchini, G.; D'Amato, F.; Buffa, G.; Tarrini, O.; Ciucci, A.

    1995-08-01

    Self broadening coefficients have been measured as a functional of temperature form 192 to 377 K for five transition lines of the band of ammonia. The results have been compared with theoretical calculations performed in the semiclassical impact approximation, and although one hot transition does not fit well in this scheme, there is in general a fairly good agreement. Moreover there is also an experimental and theoretical evidence against the commonly assumed power law for the temperature dependence. More measurements are needed to clarify the position of the hot transitions in this respect and to verify the extent of validity of the power law in general

  4. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  6. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    International Nuclear Information System (INIS)

    Borkar, Hitesh; Singh, V N; Kumar, Ashok; Choudhary, R J; Tomar, M; Gupta, Vinay

    2015-01-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr 0.52 Ti 0.48 ) 0.60 (Fe 0.67 W 0.33 ) .40 ]O 3 ] 0.80 –[CoFe 2 O 4 ] 0.20 (PZTFW–CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4–350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (∼0.4–0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (T B ). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite. (paper)

  7. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5TiO3-xBaTiO3 system

    International Nuclear Information System (INIS)

    Zhang, Dawei; Yao, Yonggang; Fang, Minxia; Luo, Zhengdong; Zhang, Lixue; Li, Linglong; Cui, Jian; Zhou, Zhijian; Bian, Jihong; Ren, Xiaobing; Yang, Yaodong

    2016-01-01

    Most ferroelectric transitions occur ultrafast and are time independent. However, here in (1-x) (Bi 0.5 Na 0.5 )TiO 3 -xBaTiO 3 , we have found a ferroelectric phase transition induced solely by increasing waiting time at certain temperatures (isothermal phase transition). Through cooling, a unique metastable state between a relaxor ferroelectric and a ferroelectric is unveiled, which in essence is initially a short-range ordered glassy state and then can evolve into a long-range ordered ferroelectric state through the isothermal process. It is also found that these isothermal ferroelectric transitions only occur within a specific temperature region with different waiting time needed. These features of isothermal phase transition can be understood by Landau theory analysis with the consideration of random defects as a competition between the thermodynamically favored long-range ordered state and the kinetically frustrated short-range ordered glassy state from random defects. This study offers a precise experimental as well as a phenomenological interpretation on the isothermal ferroelectric transition, which may help to further clarify the intricate structure-property relationship in this important lead-free piezoelectric material and other related systems.

  8. Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures

    International Nuclear Information System (INIS)

    Peter, S; Meyer, H; Baschnagel, J; Seemann, R

    2007-01-01

    We employ molecular dynamics simulations to explore the influence that the surface of a free-standing polymer film exerts on its structural relaxation when the film is cooled toward the glass transition. Our simulations are concerned with the features of a coarse-grained bead-spring model in a temperature regime above the critical temperature T c of mode-coupling theory. We find that the film dynamics is spatially heterogeneous. Monomers at the free surface relax much faster than they would in the bulk at the same temperature T. The fast relaxation of the surface layer continuously turns into bulk-like relaxation with increasing distance y from the surface. This crossover remains smooth for all T, but its range grows on cooling. We show that it is possible to associate a gradient in critical temperatures T c (y) with the gradient in the relaxation dynamics. This finding is in qualitative agreement with experimental results on supported polystyrene (PS) films (Ellison and Torkelson 2003 Nat. Mater. 2 695). Furthermore we show that the y dependence of T c (y) can be expressed in terms of the depression of T c (h)-the global T c for a film of thickness h-if we assume that T c (h) is the arithmetic mean of T c (y) and parameterize the depression of T c (h) by T c (h) = T c /(1+h 0 /h), a formula suggested by Herminghaus et al (2001 Eur. Phys. J. E 5 531) for the reduction of the glass transition temperature in supported PS films. We demonstrate the validity of this formula by comparing our simulation results to results from other simulations and experiments

  9. High temperature phase transition in SOFC anodes based on Sr2MgMoO6-δ

    International Nuclear Information System (INIS)

    Marrero-Lopez, D.; Pena-Martinez, J.; Ruiz-Morales, J.C.; Martin-Sedeno, M.C.; Nunez, P.

    2009-01-01

    The double perovskite Sr 2 MgMoO 6-δ has been recently reported as an efficient anode material for solid oxide fuel cells (SOFCs). In the present work, this material have been investigated by high temperature X-ray diffraction (XRD), differential scanning calorimetry (DSC) and impedance spectroscopy to further characterise its properties as SOFC anode. DSC and XRD measurements indicate that Sr 2 MgMoO 6-δ exhibits a reversible phase transition around 275 deg. C from triclinic (I1-bar) with an octahedral tilting distortion to cubic (Fm3-barm) without octahedral distortion. This phase transition is continuous with increasing temperature without any sudden cell volume change during the phase transformation. The main effect of the phase transformation is observed in the electrical conductivity with a change in the activation energy at low temperature. La 3+ and Fe-substituted Sr 2 MgMoO 6-δ phases were also investigated, however these materials are unstable under oxidising conditions due to phase segregations above 600 deg. C. - Graphical abstract: The double perovskite Sr 2 MgMoO 6 , recently proposed as an efficient SOFC anode for direct hydrocarbon oxidation, exhibits a reversible structural phase transition from triclinic to cubic at 275 deg. C.

  10. Investigation of size-temperature effects in thin f;.lms of transition metals

    International Nuclear Information System (INIS)

    Loboda, V.B.; Protsenko, I.E.; Smolin, M.D.; Yaremenko, A.V.

    1985-01-01

    The temperature and size dependences are studied for specific rho and temperature coeficients of resistance of transition metal films obtained and annealed in the 10 -6 - 5x10 -7 Pa vacuum. The size dependence of lambda sub(g)(1-p), rho sub(db), R, r and rhosub(db)sup(v) parameters was calculated using the Tellier, Tosser and Pichard theory. The temperature dependence of the conductivity was investigated in the 80-700 K range. A conclusion is made that all differences between dependences rho(T) for thin and bulk samples may be explained by effects specific for films but presenting no class of new physical effects. The size dependence of the electron-phonon interaction near T>THETAsub(D) and proportionality factors in the approximating equation rho approximately Asub(1.2)xTsup(2) is obtained for Ni films

  11. A phase transition close to room temperature in BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, J; Jadhav, P; Chaix-Pluchery, O [Laboratoire des Materiaux et du Genie Physique, Grenoble INP, CNRS, Minatec, 3, parvis Louis Neel, 38016 Grenoble (France); Varela, M [Departamento Fisica Aplicada i Optica, Universitat de Barcelona, Carrer MartI i Franques 1. 08028 Campus UAB, Bellaterra 08193 (Spain); Dix, N; Sanchez, F; Fontcuberta, J, E-mail: jens.kreisel@grenoble-inp.fr [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193 (Spain)

    2011-08-31

    BiFeO{sub 3} (BFO) multiferroic oxide has a complex phase diagram that can be mapped by using appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, display a reversible temperature-induced phase transition at about 100 deg. C, and thus close to room temperature. (fast track communication)

  12. Effects of hydrostatic pressure and temperature on interband optical transitions in InAs/GaAs vertically coupled double quantum dots

    International Nuclear Information System (INIS)

    Baghramyan, H M; Barseghyan, M G; Kirakosyan, A A

    2012-01-01

    We consider the effect of hydrostatic pressure, temperature and the variations of structure's sizes on interband transition energy and absorption coefficient in InAs/GaAs vertically coupled double quantum dots. The threshold energy of interband optical transitions is examined as a function of hydrostatic pressure and temperature for the different geometries of the structure. We also investigated the dependencies of the interband light absorption coefficient on the incident photon energy.

  13. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    Science.gov (United States)

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  14. Group theoretical treatment of the low-temperature phase transition of the Cd6Ca 1/1-cubic approximant

    International Nuclear Information System (INIS)

    Tamura, R.; Shibata, K.; Nishimoto, K.; Takeuchi, S.; Edagawa, K.; Saitoh, K.; Isobe, M.; Ueda, Y.

    2005-01-01

    An antiparallel orientational transition is reported for an intermetallic compound, i.e., Cd 6 Ca crystal, which is a 1/1-1/1-1/1 crystalline approximant to the icosahedral quasicrystal Cd 5.7 Ca. A group theoretical analysis based on the Landau theory predicts that the space group of the low-temperature phase is either C2/c or C2/m, in good agreement with the observations. Accordingly, two types of orientational orderings of Cd 4 tetrahedra, which are located in the center of icosahedral clusters, may occur below 100 K: In both cases, the Cd 4 tetrahedra are orientationally ordered in an antiparallel fashion along the [110] direction of the high temperature body-centered-cubic phase. Such a transition in a metal is reminiscent of orientational transitions in molecular solids

  15. DWPF glass transition temperatures - What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Applewhite-Ramsey, A.L.; Jantzen, C.M.

    1991-01-01

    The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the first geologic repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  16. Magnetodynamical resonance near the low-temperature phase transition in ErFeO3

    International Nuclear Information System (INIS)

    Dan'shin, N.K.; Kovtun, N.M.; Sdvizhkov, M.A.

    1986-01-01

    Magnetodynamical resonance (MDR) near low-temperature phase transition (PT) in erbium ortoferrite is investigated. At temperature below 4K (PT temperature) pt can be induced by a magnetic field. It is revealed that PT is accompained by partialsoftening of one of the magnetic resonance MR) branches. Besides MR soft mode resonance absorption was observed. This absorption is shown to be related to the excitation in a sample of dielectric resonance (DR). Essential differences of MDR near PT in ErFeO 3 are as follows: interaction between MR abd DR at PT takes place under softening of all interacting models; ErFeO 3 is characterized by a high value of permittivity epslon and by considerable anisotropy epsilon and magnetic permeability

  17. Possibility of the vortex-antivortex transition temperature of a thin-film superconductor being renormalized by disorder

    International Nuclear Information System (INIS)

    Hebard, A.F.; Kotliar, G.

    1989-01-01

    The universal relation between the Kosterlitz-Thouless transition temperature T/sub c/ and the superfluid sheet density of thin-film superconductors with mean-field transition temperature T/sub c/ 0 results in a monotonically decreasing dependence of the ratio T/sub c//T/sub c0/ on the normal-state sheet resistance R/sub n/. Ambiguity in the experimental definition of R/sub n/ in highly disordered thin-film superconductors is addressed by reexamining previously published data on amorphous composite In/InO/sub x/ films. Arguments are presented in favor of using the zero-temperature value of R/sub n/, a quantity obtained by extrapolation. The dependence of T/sub c//T/sub c0/ on R/sub n/ that results from such a choice is in agreement with theory for dirty superconductors and thus suggests that additional corrections to T/sub c/ in the presence of extreme disorder are not required

  18. Temperature-dependent study of isotropic-nematic transition for a Gay-Berne fluid using density-functional theory

    International Nuclear Information System (INIS)

    Singh, Ram Chandra

    2007-01-01

    We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available

  19. Dynamics of the α-β phase transitions in quartz and cristobalite as observed by in-situ high temperature 29Si and 17O NMR

    Science.gov (United States)

    Spearing, Dane R.; Farnan, Ian; Stebbins, Jonathan F.

    1992-12-01

    Relaxation times (T1) and lineshapes were examined as a function of temperature through the α-β transition for 29Si in a single crystal of amethyst, and for 29Si and 17O in cristobalite powders. For single crystal quartz, the three 29Si peaks observed at room temperature, representing each of the three differently oriented SiO4 tetrahedra in the unit cell, coalesce with increasing temperature such that at the α-β transition only one peak is observed. 29Si T1's decrease with increasing temperature up to the transition, above which they remain constant. Although these results are not uniquely interpretable, hopping between the Dauphiné twin related configurations, α1 and α2, may be the fluctuations responsible for both effects. This exchange becomes observable up to 150° C below the transition, and persists above the transition, resulting in β-quartz being a time and space average of α1 and α2. 29Si T1's for isotopically enriched powdered cristobalite show much the same behavior as observed for quartz. In addition, 17O T1's decrease slowly up to the α-β transition at which point there is an abrupt 1.5 order of magnitude drop. Fitting of static powder 17O spectra for cristobalite gives an asymmetry parameter (η) of 0.125 at room T, which decreases to <0.040 at the transition temperature. The electric field gradient (EFG) and chemical shift anisotropy (CSA), however, remain the same, suggesting that the decrease in η is caused by a dynamical rotation of the tetrahedra below the transition. Thus, the mechanisms of the α-β phase transitions in quartz and cristobalite are similar: there appears to be some fluctuation of the tetrahedra between twin-related orientations below the transition temperature, and the β-phase is characterized by a dynamical average of the twin domains on a unit cell scale.

  20. The finite temperature QCD phase transition and the thermodynamic equation of state. An investigation employing lattice QCD with Nf=2 twisted mass quarks

    International Nuclear Information System (INIS)

    Burger, Florian

    2012-01-01

    In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.

  1. Structural phase transitions at high-temperature in double perovskite Sr{sub 2}GdRuO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota D.C (Colombia)

    2012-08-15

    The crystal structure evolution of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K{<=}T{<=}1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P2{sub 1}/n (no. 14) space group and the 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) A, b=5.82341(4) A, c=8.21939(7) A, V=278.11(6) A{sup 3} and angle {beta}=90.311(2){sup o}. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) A, b=5.82526(4) A, c=8.22486(1) A, V=278.56(2) A{sup 3} and angle {beta}=90.28(2){sup o}. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) A, c=8.27261(1) A, V=282.89(5) A{sup 3} and angle {beta}=90.02(9){sup o}. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.

  2. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  3. Tunable diode laser measurement of self broadening versus temperature of five close ammonia transitions of the v{sub 2} band

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G; D` Amato, F [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Buffa, G; Tarrini, O [Pisa Univ. (Italy). Dip. di Fisica; Ciucci, A

    1995-08-01

    Self broadening coefficients have been measured as a functional of temperature form 192 to 377 K for five transition lines of the band of ammonia. The results have been compared with theoretical calculations performed in the semiclassical impact approximation, and although one hot transition does not fit well in this scheme, there is in general a fairly good agreement. Moreover there is also an experimental and theoretical evidence against the commonly assumed power law for the temperature dependence. More measurements are needed to clarify the position of the hot transitions in this respect and to verify the extent of validity of the power law in general.

  4. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  5. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    Science.gov (United States)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  6. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    Science.gov (United States)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  7. Transition to Collisionless Ion-Temperature-Gradient-Driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift

  8. Applications of high transition temperature superconductors at the Savannah River Site

    International Nuclear Information System (INIS)

    Payne, J.E.; Payne, L.L.

    1993-04-01

    The first year of the research program involved evaluating the applications of high transition temperature superconducting devices at the Savannah River Site and initiating the development of high T c circuit elements that might be of use in programs at the site. Although during the course of this year there were major changes in the direction of and areas of interest at the Savannah River Site, it has been possible to accomplish the first year goals. The technology required to produce a useful nitrogen temperature SQUID for applications such as those that might be encountered at the site has developed more rapidly than was anticipated. This has made it possible to begin the initial studies with a high T c device as opposed to starting with the helium temperature SQUID. This will have an important impact on the outcome of the project by allowing for a more complete evaluation of a device that can be used in an industrial situation. The goals of the first year of the project are listed and will be addressed in this report

  9. Effects of molecular weight on the glass transition temperature in Durolon polycarbonate

    International Nuclear Information System (INIS)

    Miranda, Adelina; Sciani, Valdir

    1995-01-01

    The effect of variation of the dose rate on degradation mechanism of PC Durolon irradiated with gamma rays was determined trough out intrinsic viscosity and thermal analysis of DSC-type measurements. The results showed a linear relationship between the glass transition temperature and the viscosimetric average molecular weight. From the results it's shown that with an increased of the dose rate it also increases the degradation of the material. (author). 12 refs., 3 figs

  10. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    Science.gov (United States)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-03-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  11. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-01-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  12. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  13. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    Science.gov (United States)

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.

    Science.gov (United States)

    Drake, Andrew C; Lee, Youngjoo; Burgess, Emma M; Karlsson, Jens O M; Eroglu, Ali; Higgins, Adam Z

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.

  15. Assessment of Physiological Equivalent Temperature (PET in Transitional Spaces of a High-Rise Building

    Directory of Open Access Journals (Sweden)

    Nooriati Taib

    2016-01-01

    Full Text Available One passive approach that can significantly reduce energy usage in high-rise buildings is through the creation of non-air conditioned spaces such as transitional spaces. Optimizing passive design would reduce wastage associated with the building’s energy consumption. The study measures the thermal comfort of three types of transitional spaces (sky court, balcony, and rooftop in a high-rise office building. Based on the assessment of Physiological Equivalent Temperature (PET, the outcome showed significant differences in PET in all locations in both wet and dry season. The effectiveness of such area can be improved with the contributions of landscape, maximizing natural ventilation and day lighting where possible.

  16. Development of DMBZ-15 High-Glass-Transition-Temperature Polyimides as PMR-15 Replacements Given R&D 100 Award

    Science.gov (United States)

    Chuang, Kathy

    2004-01-01

    PMR-15, a high-temperature polyimide developed in the mid-1970s at the NASA Lewis Research Center,1 offers the combination of low cost, easy processing, and good high-temperature performance and stability. It has been recognized as the leading polymer matrix resin for carbon-fiber-reinforced composites used in aircraft engine components. The state-of-the-art PMR-15 polyimide composite has a glass-transition temperature (Tg) of 348 C (658 F). Since composite materials must be used at temperatures well below their glass-transition temperature, the long-term use temperatures of PMR-15 composites can be no higher than 288 C (550 F). In addition, PMR-15 is made from methylene dianiline (MDA), a known liver toxin. Concerns about the safety of workers exposed to MDA during the fabrication of PMR-15 components and about the environmental impact of PMR-15 waste disposal have led to the industry-wide implementation of special handling procedures to minimize the health risks associated with this material. These procedures have increased manufacturing and maintenance costs significantly and have limited the use of PMR-15 in commercial aircraft engine components.

  17. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B.

    Science.gov (United States)

    Kim, Jung Hyun; Yun, Eun Ju; Seo, Nari; Yu, Sora; Kim, Dong Hyun; Cho, Kyung Mun; An, Hyun Joo; Kim, Jae-Han; Choi, In-Geol; Kim, Kyoung Heon

    2017-02-01

    The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the sol-gel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the sol-gel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the sol-gel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40 T , was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the sol-gel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the sol-gel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

  18. Healing of interfaces of high and ultra-high-molecular- weight polystyrene below the bulk glass transition temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    into contact to themselves below the glass transition temperature T-g of the bulk Tg-bulk, in a lap-shear joint geometry, at a constant healing temperature T-h for a healing time t(h) of 10 min to 24 h. The lap-shear strength sigma of the symmetric HMWPS-HMWPS and UHMWPS-URMWPS interfaces has been measured...

  19. Theory of Temperature Dependence of the Magnetization in Rare-Earth-Transition-Metal Alloys

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1977-01-01

    -spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. Es wird gezeigt, daß die Temperaturabhängigkeit der magnetischen Momente und die Curie-Temperatur sowie die Temperatur der ferrimagnetischen Kompensation für Gd1-xTx (T = Co, Ni und Fe) und Y......1-xCox durch ein einfaches Model1 erklärt werden können, das eine RKKY-Wechsel-wirkung zwischen den Momenten der Seltenen Erden und des Pseudo-Spins des Übergangsmetalls annimmt. Die Wechselwirkung wird durch ein effektives Legierungsmedium übermittelt, das mit der CPA-Theorie und elliptischen......It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures for Gdl-xTx (T = Co, Ni, and Fe) and Y1-xCox can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition-metal pseudo...

  20. Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams

    Czech Academy of Sciences Publication Activity Database

    Smetana, B.; Zlá, S.; Kroupa, Aleš; Žaludová, M.; Drápala, J.; Burkovič, R.; Petlák, D.

    2012-01-01

    Roč. 110, č. 1 (2012), s. 369-378 ISSN 1388-6150 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Sn-Zn-Al system * DTA * phase transition temperatures Subject RIV: BJ - Thermodynamics Impact factor: 1.982, year: 2012

  1. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? – A review

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available Motivated by the widespread and contradictory results regarding the glass transition temperature of carbon nanotube (CNT/epoxy composites, we reviewed and analyzed the literature results dealing with the effect of unmodified multiwall carbon nanotubes (MWNT on the cure behaviour of an epoxy resin (as a possible source of this discrepancy. The aim of this work was to clarify the effective role of unmodified multiwall carbon nanotubes on the cure kinetics and glass transition temperature (Tg of their epoxy composites. It was found that various authors reported an acceleration effect of CNT. The cure reaction was promoted in its early stage which may be due to the catalyst particles present in the CNT raw material. While SWNT may lead to a decrease of Tg due to their bundling tendency, results reported for MWNT suggested an increased or unchanged Tg of the composites. The present status of the literature does not allow to isolate the effect of MWNT on the Tg due to the lack of a study providing essential information such as CNT purity, glass transition temperature along with the corresponding cure degree.

  2. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  3. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  4. Treatments of intrinsic viscosity and glass transition temperature data of poly(2,6-dimethylphenylmethacrylate)

    International Nuclear Information System (INIS)

    Hamidi, Nasrollah; Massoudi, Ruhullah

    2003-01-01

    A useful relationship, ln(T g )=ln(T g,∞ )-m[η] -ν , between intrinsic viscosity and glass transition temperature for a series of homologous polymers was obtained by combining the Mark-Houwink-Kuhn-Sakurada (MHKS) relation for intrinsic viscosity and molecular mass, and the Fox-Flory equation for glass transition temperature and number-average molecular mass. This relationship was applied to poly(2,6-dimethylphenylmethacrylate) (PDMPh) in a variety of solvents (ideal to good) such as toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems. The parameter α estimated by this procedure in toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems are 0.50 6 , 0.51 1 , 0.56 7 , and 0.67 3 , respectively which are in agreement with those of Mark-Houwink-Kuhn-Sakurada values by less than 5% differences. The T g,∞ quantity estimated from this equation also is within the standard deviation of that obtained from the Fox-Flory method. The m quantity is increasing as the thermodynamic quality of the solvent improves, therefore, m may be considered as an indicator of coil conformations in a given solvent

  5. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    International Nuclear Information System (INIS)

    Phillips, J.C.

    2010-01-01

    The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  6. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  7. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  8. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  9. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive...... on the temperatures, microstructured phases of both lamellar and droplet symmetry arise, described by a length scale that is determined by the characteristic temperature controlling the diffusive motion of the active impurities....

  10. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    Science.gov (United States)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-12-01

    High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  11. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  12. Protein Internal Dynamics Associated With Pre-System Glass Transition Temperature Endothermic Events: Investigation of Insulin and Human Growth Hormone by Solid State Hydrogen/Deuterium Exchange.

    Science.gov (United States)

    Fang, Rui; Grobelny, Pawel J; Bogner, Robin H; Pikal, Michael J

    2016-11-01

    Lyophilized proteins are generally stored below their glass transition temperature (T g ) to maintain long-term stability. Some proteins in the (pure) solid state showed a distinct endotherm at a temperature well below the glass transition, designated as a pre-T g endotherm. The pre-T g endothermic event has been linked with a transition in protein internal mobility. The aim of this study was to investigate the internal dynamics of 2 proteins, insulin and human growth hormone (hGH), both of which exhibit the pre-T g endothermic event with onsets at 50°C-60°C. Solid state hydrogen/deuterium (H/D) exchange of both proteins was characterized by Fourier transform infrared spectroscopy over a temperature range from 30°C to 80°C. A distinct sigmoidal transition in the extent of H/D exchange had a midpoint of 56.1 ± 1.2°C for insulin and 61.7 ± 0.9°C for hGH, suggesting a transition to greater mobility in the protein molecules at these temperatures. The data support the hypothesis that the pre-T g event is related to a transition in internal protein mobility associated with the protein dynamical temperature. Exceeding the protein dynamical temperature is expected to activate protein internal motion and therefore may have stability consequences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Low-temperature magnetic transition in troilite: A simple marker for highly stoichiometric FeS systems

    Czech Academy of Sciences Publication Activity Database

    Čuda, J.; Kohout, Tomáš; Tuček, J.; Haloda, J.; Filip, J.; Prucek, R.; Zbořil, J.

    2011-01-01

    Roč. 116, č. 11 (2011), art. B11205-B11205 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30130516 Keywords : troilite * meteorite * Mössbauer spectroscopy * low-temperature magnetic behavior * magnetic transition Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.021, year: 2011

  14. Martensitic phase transitions

    International Nuclear Information System (INIS)

    Petry, W.; Neuhaus, J.

    1996-01-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs

  15. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W; Neuhaus, J [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  16. Experimental and computational prediction of glass transition temperature of drugs.

    Science.gov (United States)

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  17. Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Yao

    2015-01-01

    , the onset of the mesocrystal formation is delayed to a higher strain value, whereas corresponding to the same critical orientation degree of amorphous chains (f(am) approximate to 0.45). The DSC results indicated that the post-T-g endothermic peak corresponding to the melting of mesocrystal appears...... and shifts to a higher temperature with increasing stretching temperature, followed by the down-shifts (to a lower temperature) of the exothermic peak of cold crystallization of PLA. The appearance of a small exothermic peak just before the melting peak related to the transition of the alpha' to alpha...... crystal implies the formation of an alpha' crystal during cold crystallization in the drawn PLA samples. The structure evolution of glassy PLA stretched below T-g was discussed in details....

  18. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    Science.gov (United States)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km insulator transition and compare them with the experimental seismic and geomagnetic field data.

  19. Characterizing the transition region of an A508 cl3 steel using small specimens by the reference temperature and the weak-link distances

    International Nuclear Information System (INIS)

    Miranda, C.A.J.

    2001-01-01

    An experimental program was developed to characterize the transition region of an A508 cl3 steel. Some fracture mechanic specimens were tested in the transition region using three geometries with thickness B c values, the reference temperature values, To, associated with each geometry and test temperature, and the measured r wl distances and the theoretical ones. (author)

  20. Effect of γ-radiation on glass transition temperature of Poly(Bisphenol A carbonate) (PC)

    International Nuclear Information System (INIS)

    Kalkar, A.K.; Kundagol, S.

    1988-01-01

    Thin films of pure Poly(Bisphenol A carbonate) (PC) were γ-irradiated at room temperature from Co 60 source for varied doses, for the systematic study of γ-radiation on glass transition temperature (Tsub(g)) of PC. It was found that Tsub(g) of PC decreases with increasing doses. Irradiation of γ-rays on PC results in evolution of CO, CO 2 and H 2 from carbonate linkage and methyl group and which results in lowering of average mol.wt. of bul k polymer. Hence, overall increase in free volume increases chain mobility and thus reduces the Tsub(g). (author)

  1. Theoretical study of pressure dependence of transition temperature of In and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Priyank, E-mail: priyank-kumar2007@yahoo.co.in [Department of Science, Government Polytechnic, Gandhinagar -382024, Gujarat (India); Bhatt, N. K. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat (India); Vyas, P. R.; Gohel, V. B. [Department of Physics, School of Science, Gujarat University, Ahmedabad - 380009, Gujarat (India)

    2015-08-28

    Recently proposed structured local pseudopotential (PP) by Fiolhais et al. has been successfully used to compute superconducting state parameters (SSP): electron-phonon coupling strength (λ), Coulomb pseudopotential (μ*), critical temperature (T{sub c}), effective interaction strength (N{sub 0}V), isotopic effect parameter (α) and their pressure dependence of non-transition metals In and Pb as a test case. Pressure dependence of the Debye temperature has been computed by Gruneisen model. Present results are in good agreement with experimental and other theoretical results. Present study has been further extended to estimate volume (critical volume) at which λ=μ*, where Tc and N{sub 0}V becomes zero. The presently used model is found to be transferable at the extreme environment without any adjustment of parameters further alongwith its simplicity and predictivity.

  2. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering

    Science.gov (United States)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang

    2013-02-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  3. Pressure dependence of the superconducting transition temperature of Rb3C60 up to 20 kbar

    International Nuclear Information System (INIS)

    Bud'ko, S.L.; Meng, R.L.; Chu, C.W.; Hor, P.H.

    1991-01-01

    AC susceptibility measurements of Rb 3 C 60 under hydrostatic pressure up to 20 kbar are reported. The superconducting transition temperature (T c ) decreases linearly under pressure with the pressure derivative dT c /dP = -0.78 K degrees/kbar

  4. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    International Nuclear Information System (INIS)

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-01

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature

  5. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  6. Chiral ward-Takahashi identities at finite temperature and chiral phase transition in (2+1) dimensional chiral Gross-Neveu model

    International Nuclear Information System (INIS)

    Shen Kun; Qiu Zhongping

    1993-01-01

    Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature

  7. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    International Nuclear Information System (INIS)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-01-01

    Highlights: • Vibration of a HTS maglev model on two guideways was studied. • Simulation about vibration of HTS maglev on two guideways is accomplished. • Transition curve can weaken vibration of HTS maglev effectively when it running through curves. • Dynamic characteristics of HTS maglev can be enhanced with transition curve. - Abstract: High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  8. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Nan [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, Botian [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Gou, Yanfeng [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Chen, Ping [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, Jun [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Deng, Zigang, E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China)

    2015-12-15

    Highlights: • Vibration of a HTS maglev model on two guideways was studied. • Simulation about vibration of HTS maglev on two guideways is accomplished. • Transition curve can weaken vibration of HTS maglev effectively when it running through curves. • Dynamic characteristics of HTS maglev can be enhanced with transition curve. - Abstract: High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  9. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  10. Contribution to the study of superconducting magnets using high transition temperature superconducting materials

    International Nuclear Information System (INIS)

    Lecrevisse, Thibault

    2012-01-01

    The new industrial superconductors using high critical temperature compounds offer new possibilities for superconducting magnetism. Indeed they allow higher magnetic field with the same classical cryogenics at 4.2 K on one hand, and on the other hand they also pave the way for superconducting magnets working between 10 K and 30 K. The high temperature superconductors are then needed in order to produce magnetic fields higher than 16 T (case of HTS dipole insert for Large Hadron Collider at CERN) or to increase the specific density stored in one SMES (Superconducting Magnetic Energy Storage, in the case of the SuperSMES ANR Project).Nevertheless the indisputable assets (critical temperature, critical magnetic field, mechanical stresses) brought by the use of High critical temperature superconductors like YBCO, used in superconducting magnets, require to solve some challenges. Their behavior is still badly understood, especially during the resistive transitions. To succeed in protecting these conductors we need a new reflection on protection schemes designed to avoid the thermal and mechanical damages. The answer to the question: 'Can we use those materials in the long run inside superconducting magnets?' is now inescapable.Some answers are given here. The use of the conductors is approached through various experimental studies to understand the material (electrical characterization and modeling of the critical surface) and to define the key stages of high critical temperature superconducting magnets manufacturing (work on the junctions between conductors and pancakes). This study led to the creation of two coils in order to identify the issues related to the use of YBCO tapes. A numerical thermo-electrical model of the high critical temperature superconductor has been developed and a numerical code based on the CEA software CASTEM (Finish Elements Model) allowed to study the resistive transition (or quench) behavior of those conductor and coil. The code has been

  11. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  12. PHASE TRANSITION OF CaFeO2.5 AT HIGH TEMPERATURE

    Directory of Open Access Journals (Sweden)

    T Labii

    2011-12-01

    Full Text Available The numerous studies conducted on the structure of CaFeO2.5 showed that the material undergoes a series of transformations based on temperature. The first one appears around 700 K and indicates the evolution of the phasemagnetic material to a paramagnetic phase. At about 970 K the structure of CaFeO2.5 changes from rhombohedral to centered structure. Finally, around 1180 K it undergoes the transition to a structure that has been described as incommensurate modulated structure. We have observed the behavior of the material beyond this temperature by dilatometry, DSC and TGA. The tests conducted on a single crystal CaFeO2.5 confirm the changes already observed.For the first time there was a dilatometric anomaly (confirmed by DSC and TGA at 1310 K. This anomaly appears only in the crystallographic direction b which should probably be a  commensurate transformation of the material.

  13. 4-(ALPHA, ALPHA-DIMETHYLBENZYL)PHENYL METHACRYLATE .3. SYNTHESIS, TACTICITY AND GLASS-TRANSITION TEMPERATURES OF ITS POLYMERS

    NARCIS (Netherlands)

    VANEKENSTEIN, GORA; TAN, YY

    Depending on the kind of initiator, anionic Polymerization of 4-(alpha,alpha-dimethylbenzyl)phenyl methacrylate in toluene at -78-degrees-C led either to highly isotactic or predominantly syndiotactic polymers as determined by C-13 NMR spectro copy. The glass transition temperature difference

  14. Is the Freeze Drying Method Effect on the Phase Transition Temperature ofβ/β́́ Lithium Zirconium Phosphate?

    Directory of Open Access Journals (Sweden)

    S. M. Seyedahmadian

    2014-07-01

    Full Text Available Spherical granules of the superionic conductor β/β́ LiZr2(PO43 in the range of sub 100 nm sizewere synthesizedvia freeze drying methodand fully reviewed in all aspects. Samples were characterized by the X-ray diffractometry (XRD, the Thermal analysis (TG, DSC, theFourier Transform Infra-Red Spectroscopy (FTIR and the Scanning Electron Microscopy (SEM.Their structuredepends largely on the method of synthesis, thermaltreatment, and conditions of storing samples. Degree of Crystallinity and phase purity in different annealing time were tested. The synthesize temperature does not exceed 873 K in any step of the synthesis.The low temperature phases (β with the Pbna space group and β́ with the P21/n space group were preparedat optimum condition. By the Differential Scanning Calorimetry it was shown the phase transition from β↔β́ occurred at about 567-597 K. The temperature of annealing the phosphate and calcination time is not very effective to phase transition temperature.

  15. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.

    Science.gov (United States)

    Mallamace, Francesco; Branca, Caterina; Corsaro, Carmelo; Leone, Nancy; Spooren, Jeroen; Chen, Sow-Hsin; Stanley, H Eugene

    2010-12-28

    It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analyze existing data of the transport coefficients of 84 glass-forming liquids. We show the data are consistent, on decreasing temperature, with the onset of a well-defined dynamical crossover η(×), where η(×) has the same value, η(×) ≈ 10(3) Poise, for all 84 liquids. The crossover temperature, T(×), located well above the calorimetric glass transition temperature T(g), marks significant variations in the system thermodynamics, evidenced by the change of the SA-like T dependence above T(×) to Arrhenius behavior below T(×). We also show that below T(×) the familiar Stokes-Einstein relation D/T ∼ η(-1) breaks down and is replaced by a fractional form D/T ∼ η(-ζ), with ζ ≈ 0.85.

  16. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  17. Direct measurement of the low temperature spin state transitions in La1-xSrxCoO3 (0.05 < x < 0.3)

    Science.gov (United States)

    Gulec, A.; Klie, R. F.

    2014-12-01

    Sr-doped LaCoO3 has a complex magnetic phase diagram, which is believed to be directly correlated to changes in the crystal structure and ordering of the Co3+ spin states. In this work, we study the low temperature Co3+-ion spin state transitions in Sr-doped LaCoO3 around the critical doping concentration where a metal to insulator transition has been observed using electron energy-loss spectroscopy of the O K-edge combined with the Co L-edge fine structure. We measure the local spin state of the Co3+-ions and we demonstrate that the Co3+ spin-state transition only occurs in La0.95Sr0.05CoO3 single-crystal materials in the temperature range accessible by LN2 in-situ cooling, while no structural symmetry change is observed. The presence of this low-temperature spin-state transition in La1-xSrxCoO3 (x < 0.17) has been proposed as the origin of the percolative magnetic ordering in doped LaCoO3.

  18. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Malliakos, A.

    1995-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.

    1996-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  20. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature.

    Science.gov (United States)

    Schmidtke, B; Petzold, N; Kahlau, R; Rössler, E A

    2013-08-28

    We determine the reorientational correlation time τ of a series of molecular liquids by performing depolarized light scattering experiments (double monochromator, Fabry-Perot interferometry, and photon correlation spectroscopy). Correlation times in the range 10(-12) s-100 s are compiled, i.e., the full temperature interval between the boiling point and the glass transition temperature T(g) is covered. We focus on low-T(g) liquids for which the high-temperature limit τ ≅ 10(-12) s is easily accessed by standard spectroscopic equipment (up to 440 K). Regarding the temperature dependence three interpolation formulae of τ(T) with three parameters each are tested: (i) Vogel-Fulcher-Tammann equation, (ii) the approach recently discussed by Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)], and (iii) our approach decomposing the activation energy E(T) in a constant high temperature value E∞ and a "cooperative part" E(coop)(T) depending exponentially on temperature [Schmidtke et al., Phys. Rev. E 86, 041507 (2012)]. On the basis of the present data, approaches (i) and (ii) are insufficient as they do not provide the correct crossover to the high-temperature Arrhenius law clearly identified in the experimental data while approach (iii) reproduces the salient features of τ(T). It allows to discuss the temperature dependence of the liquid's dynamics in terms of a E(coop)(T)/E∞ vs. T/E∞ plot and suggests that E∞ controls the energy scale of the glass transition phenomenon.

  1. An investigation of thermal and deformation properties of quartzite at the temperature interval of polymorphic α - β transition by neutron diffraction and acoustic emission

    International Nuclear Information System (INIS)

    Nikitin, A.N.; Vasin, R.N.; Balagurov, A.M.; Sobolev, G.A.; Ponomarev, A.V.

    2006-01-01

    The results of complex application of neutron diffraction and acoustic emission for investigation of the physical properties of synthetic quartz and natural quartzite at the temperature interval of α-β transition are given. During the experiments the quartzite sample was exposed to heating and also to uniaxial compression. The changes of the lattice spacings of quartzite at the temperature interval of 540-620 C were measured and values of lattice stresses were estimated; estimated lattice stresses several times exceed the applied stresses. It is found that short strong splashes of acoustic emission (AE) occurred when the phase transition was completed; the intensity of those splashes exceeds by two orders the level of AE, caused by the thermal bursting of the sample under heating up to the transition temperature. The assumption is placed that anomalous behaviour of quartz-containing rocks being under relatively small stresses near the phase transition temperature could cause the appearance of the concentrators of local stresses. These stresses are commensurable to the strength of quartz, and initiate the microcracking of the material

  2. Thermodynamic studies on the ferroelectric phase transition in neutron irradiated (LixK1-x)2SO4 crystals at high temperature

    International Nuclear Information System (INIS)

    Kassem, M.E.; El-Khatib, A.M.; Ammar, E.A.; Denton, M.M.

    1989-05-01

    Thermodynamic studies of (Li x K 1-x ) 2 SO 4 , LKS, mixed crystals have been made in the concentration range (x=0.1,0.2,...,x=0.5). The thermal behavior has been investigated by differential thermal analysis, DTA, and differential scanning calorimeter, DSC, in the vicinity of high temperature phases. Also, the effect of the mixed neutron field of fast and thermal neutrons (10% of the reactor neutron pile is fast neutrons) on the thermal properties of mixed crystals was studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat Cp at transition temperature, due to the change of stoichiometric ratio and radiation doses. The change of enthalpy and entropy of mixed crystals have been estimated numerically. The obtained small values of ΔS/R is characteristic of incommensurate phase transition as previously confirmed by the results of neutron diffraction technique. (author). 16 refs, 5 figs, 1 tab

  3. Predict the glass transition temperature and plasticization of β-cyclodextrin/water binary system by molecular dynamics simulation.

    Science.gov (United States)

    Zhou, Guohui; Zhao, Tianhai; Wan, Jie; Liu, Chengmei; Liu, Wei; Wang, Risi

    2015-01-12

    The glass transition temperature, diffusion behavior and plasticization of β-cyclodextrin (β-CD), and three amorphous β-CD/water mixtures (3%, 5% and 10% [w/w] water, respectively) were investigated by molecular dynamics simulation, which were performed using Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field and isothermal-isobaric ensembles. The specific volumes of four amorphous cells were obtained as a function of temperature. The glass transition temperatures (T(g)) were estimated to be 334.25 K, 325.12 K, 317.32 K, and 305.41 K for amorphous β-CD containing 0%, 3%, 5% and 10% w/w water, respectively, which compares well with the values observed in published literature. The radial distribution function was computed to elucidate the intermolecular interactions between amorphous β-CD and water, which acts as a plasticizer. These results indicate that the hydrogen bond interactions of oxygen in hydroxyl ions was higher than oxygen in acetal groups in β-CD amorphous mixtures with that in water, due to less accessibility of ring oxygens to the surrounding water molecules. The mobility of water molecules was investigated over various temperature ranges, including the rubbery and glassy phases of the β-CD/water mixtures, by calculating the diffusion coefficients and the fractional free volume. In β-CD amorphous models, the higher mobility of water molecules was observed at temperatures above Tg, and almost no change was observed at temperatures below T(g). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The disparate impact of the ion temperature gradient and the density gradient on edge transport and the low-high transition in tokamaks

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2009-01-01

    Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.

  5. Cosmological phase transitions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1987-01-01

    If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table

  6. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide)

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Sedláková, Zdeňka; Valentová, H.; Spěváček, Jiří

    2013-01-01

    Roč. 291, č. 10 (2013), s. 2409-2417 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * poly (N-isopropylmethacrylamide) poly (Nisopropylacrylamide) interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.410, year: 2013

  7. Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels

    International Nuclear Information System (INIS)

    Baik, J.M.; Kameda, J.; Buck, O.

    1983-01-01

    Small punch tests were developed to determine the ductile-brittle transition temperature of nickel-chromium (Ni-Cr) steels having various degrees of temper embrittlement and various microstructures. It was found that the small punch test clearly shows the ductile-brittle transition behavior of the temper-embrittled steels. The measured values were compared with those obtained from Charpy impact and uniaxial tensile tests. The effects of punch tip shape, a notch, and the strain rate on the ductile-brittle transition behavior were examined. It was found that the combined use of a notch, high strain rates, and a small punch tip strongly affects the ductile-brittle transition behavior. Considerable variations in the data were observed when the small punch tests were performed on coarse-grained steels. Several factors controlling embrittlement measurements of steels are discussed in terms of brittle fracture mechanisms

  8. An unusual isotope effect in a high-transition-temperature superconductor

    International Nuclear Information System (INIS)

    Gweon, G.-H.; Sasagawa, T.; Zhou, S.Y.; Graf, J.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2004-01-01

    In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-Tc) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in Tc of optimally doped Bi2Sr2CaCu2O8 (Bi2212) upon oxygen isotope substitution (16O to 18O leads to Tc decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as ''incoherent peaks''. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other

  9. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron

    Science.gov (United States)

    Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min

    2018-06-01

    With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.

  10. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl

    2014-05-01

    Highlights: • New phase transition for DMPC was found. • FT-IR method is an important addition to the DSC studies. • The proposed method for determining the T{sub C} give very consistent results. - Abstract: In this work, alternatives to differential scanning calorimetry (DSC) as a method of determining the main phospholipid phase transition temperature are presented. The bilayer phase transitions from the ripple gel phase (P{sub β{sup ′}}) to the liquid-crystal phase (L{sub α}) of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were studied by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) methods. In this work, two correlations between the DSC and FT-IR methods, and NMR and EPR methods are shown. The proposed methods allow for determining the T{sub C} temperature with a high degree of accuracy. Furthermore, a comparison of results obtained using the DSC and FT-IR methods allowed for an observation of a new DMPC phase transition. The liposomes analyzed in this work were obtained by the modified reverse-phase evaporation method (mREV)

  11. Influence of entanglements on glass transition temperature of polystyrene

    Science.gov (United States)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  12. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  13. Effect of the Temperature, External Magnetic Field, and Transport Current on Electrical Properties, Vortex Structure Evolution Processes, and Phase Transitions in Subsystems of Superconducting Grains and "Weak Links" of Granular Two-Level High-Temperature Superconductor YBa2Cu3O7-δ

    Science.gov (United States)

    Derevyanko, V. V.; Sukhareva, T. V.; Finkel', V. A.

    2018-03-01

    The temperature dependences of the resistivity of granular high-temperature superconductor YBa2Cu3O7-δ ρ( T) are measured at various transverse external magnetic fields 0 ≤ H ext ≤ 100 Oe in the temperature range from the resistivity onset temperature T ρ = 0 to the superconducting transition critical temperature T c at the transport current density from 50 to 2000 mA/cm2. The effect of the external magnetic field and transport current density on the kinetics of phase transitions in both subsystems of granular two-level HTSC ( T = T c2J, T c1g, T c ) is determined. The feasibility of the topological phase transition, i.e., the Berezinsky-Kosterlitz-Thouless transition, in the Josephson medium at T c2J < T BKT < T c1g "in transport current" is established, and its feasibility conditions are studied.

  14. Effects of finite temperature on two-photon transitions in a Rydberg atom in a high-Q cavity

    International Nuclear Information System (INIS)

    Puri, R.R.; Joshi, A.

    1989-01-01

    The effects of cavity temperature on an effective two-level atom undergoing two-photon transitions in a high-Q cavity are investigated. The quantum statistical properties of the field and the dynamical properties of the atom in this case are studied and compared with those for an atom making one-photon transitions between the two levels. The analysis is based on the solution of the equation for the density matrix in the secular approximation which is known to be a valid approximation in the case of a Rydberg atom in a high-Q cavity. (orig.)

  15. Coarsening-densification transition temperature in sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Narasimha Murty, B.; Chakraborthy, K.P.; Jayaraj, R.N.; Ganguly, C.

    2001-01-01

    The concept of coarsening-densification transition temperature (CDTT) has been proposed to explain the experimental observations of the study of sintering undoped uranium dioxide and niobia-doped uranium dioxide powder compacts in argon atmosphere in a laboratory tubular furnace. The general method for deducing CDTT for a given material under the prevailing conditions of sintering and the likely variables that influence the CDTT are described. Though the present work is specific in nature for uranium dioxide sintering in argon atmosphere, the concept of CDTT is fairly general and must be applicable to sintering of any material and has immense potential to offer advantages in designing and/or optimizing the profile of a sintering furnace, in the diagnosis of the fault in the process conditions of sintering, and so on. The problems of viewing the effect of heating rate only in terms of densification are brought out in the light of observing the undesirable phenomena of coring and bloating and causes were identified and remedial measures suggested

  16. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  17. Energetic M1 transitions as a probe of nuclear collectivity at high temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1987-01-01

    At ORNL, we have recently utilized the Spin Spectrometer setup to investigate the differential effects of increasing spin and excitation energy on nuclear shape and collectivity in 158 Yb. Along the yrast line of this and other N = 88 nuclei, weakly prolate shapes gradually give way to triaxial, and then finally to non-collective oblate shapes as the spin approaches 40 h-bar. However, above the yrast line, large deformation and collectivity once again sets in. This is evidenced by the emergence of a broad quadrupole structure (E/sub γ/ ≅ 1.2 MeV) in the continuum gamma-ray spectra that grows with increasing temperature. The short (sub ps) lifetimes of these transitions attest to the collective nature of these structures. The emergence and growth of the quadrupole structure at high excitation energies is closely correlated with the appearance of energetic (E/sub γ/ ≅ 2.5 MeV), fast M1 transitions which form another broad structure in the continuum spectra. From the centroid of the M1 bump, a quadrupole deformation parameter of 0.35 is inferred. Because of this sensitivity, these energetic M1 transitions provide a unique probe of nuclear shape in the excitation energy range of ≅ 3 to 10 MeV. 6 refs., 2 figs

  18. A Bayesian approach to infer the radial distribution of temperature and anisotropy in the transition zone from seismic data

    Science.gov (United States)

    Drilleau, M.; Beucler, E.; Mocquet, A.; Verhoeven, O.; Moebs, G.; Burgos, G.; Montagner, J.

    2013-12-01

    Mineralogical transformations and matter transfers within the Earth's mantle make the 350-1000 km depth range (considered here as the mantle transition zone) highly heterogeneous and anisotropic. Most of the 3-D global tomographic models are anchored on small perturbations from 1-D models such as PREM, and are secondly interpreted in terms of temperature and composition distributions. However, the degree of heterogeneity in the transition zone can be strong enough so that the concept of a 1-D reference seismic model may be addressed. To avoid the use of any seismic reference model, we developed a Markov chain Monte Carlo algorithm to directly interpret surface wave dispersion curves in terms of temperature and radial anisotropy distributions, considering a given composition of the mantle. These interpretations are based on laboratory measurements of elastic moduli and Birch-Murnaghan equation of state. An originality of the algorithm is its ability to explore both smoothly varying models and first-order discontinuities, using C1-Bézier curves, which interpolate the randomly chosen values for depth, temperature and radial anisotropy. This parameterization is able to generate a self-adapting parameter space exploration while reducing the computing time. Using a Bayesian exploration, the probability distributions on temperature and anisotropy are governed by uncertainties on the data set. The method was successfully applied to both synthetic data and real dispersion curves. Surface wave measurements along the Vanuatu- California path suggest a strong anisotropy above 400 km depth which decreases below, and a monotonous temperature distribution between 350 and 1000 km depth. On the contrary, a negative shear wave anisotropy of about 2 % is found at the top of the transition zone below Eurasia. Considering compositions ranging from piclogite to pyrolite, the overall temperature profile and temperature gradient are higher for the continental path than for the oceanic

  19. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  20. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  1. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC.

    Science.gov (United States)

    Passerini, N; Craig, D Q

    2001-05-18

    The objective of the study was to ascertain residual water levels in polylactide and polylactide-co-glycolide microspheres prepared using the solvent evaporation technique and to investigate the effects of that water on the glass transitional behaviour of the microspheres. Microspheres were prepared from polylactic acid (PLA) and polylactide-co-glycolide (PLGA) 50:50 and 75:25 using a standard solvent evaporation technique. The glass transition was measured as a function of drying conditions using modulated temperature DSC. The microspheres were found to contain very low levels of dichloromethane, while residual water levels of up to circa 3% w/w were noted after freeze or oven drying, these levels being higher for microspheres containing higher glycolic acid levels. The residual water was found to lower the T(g) following the Gordon-Taylor relationship. The data indicate that the microparticles may retain significant water levels following standard preparation and drying protocols and that this drying may markedly lower the T(g) of the spheres.

  2. Variable-temperature Microwave Impedance Microscope with Light Stimulation for Research on Photo-induced Phase Transitions

    Science.gov (United States)

    2017-07-24

    SECURITY CLASSIFICATION OF: The DURIP program "Variable-temperature Microwave Impedance Microscope with Light Stimulation for Research on Photo... Stimulation for Research on Photo- induced Phase Transitions The views, opinions and/or findings contained in this report are those of the author(s) and should...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  3. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.

    Science.gov (United States)

    Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F

    2013-09-01

    The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the

  4. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2004-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations

  5. Thermodynamics of phase transitions

    International Nuclear Information System (INIS)

    Cofta, H.

    1972-01-01

    The phenomenology of the phase transitions has been considered. The definitions of thermodynamic functions and parameters, as well as those of the phase transitions, are given and some of the relations between those quantities are discussed. The phase transitions classification proposed by Ehrenfest has been described. The most important features of phase transitions are discussed using the selected physical examples including the critical behaviour of ferromagnetic materials at the Curie temperature and antiferromagnetic materials at the Neel temperature. Some aspects of the Ehrenfest's equations, that have been derived, for the interfacial lines and surfaces are considered as well as the role the notion of interfaces. (S.B.)

  6. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Glass transition temperatures of microphase separated semi-interpenetrating polymer networks of polystyrene-inter-poly(cross)-2-ethylhexyl-methacrylate

    NARCIS (Netherlands)

    de Graaf, L.A.; de Graaf, Leontine A.; Möller, Martin; Moller, M.

    1995-01-01

    The glass transition temperature of semi-interpenetrating polymer networks (semi-IPNs) of atactic polystyrene (PS) in crosslinked methacrylates was studied by systematic variation of the morphology, that is domain size, continuity and concentration in the domains. Semi-IPNs were prepared from

  8. Phase transformation in multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-02-28

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  9. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    Science.gov (United States)

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  10. Kondo-Anderson transitions

    Science.gov (United States)

    Kettemann, S.; Mucciolo, E. R.; Varga, I.; Slevin, K.

    2012-03-01

    Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical power-law correlations between electron wave functions at different energies in the vicinity of the AMIT result in the formation of pseudogaps of the local density of states. Magnetic impurities can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the zero-temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic moments break the time-reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the appearance of a semimetal phase. The distribution function of the Kondo temperature TK is derived at the AMIT, in the metallic phase, and in the insulator phase. This allows us to find the quantum phase diagram in an external magnetic field B and at finite temperature T. We calculate the resulting magnetic susceptibility, the specific heat, and the spin relaxation rate as a function of temperature. We find a phase diagram with finite-temperature transitions among insulator, critical semimetal, and metal phases. These new types of phase transitions are caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson transitions.

  11. DWPF glass transition temperatures: What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.; Ramsey, A.A.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site will immobilize high-level radioactive liquid waste in borosilicate glass. The glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  12. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  13. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy

    Science.gov (United States)

    Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya

    2018-03-01

    Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above  ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of  ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.

  14. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  15. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  16. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.

    Science.gov (United States)

    Parkin, Gerard

    2009-02-17

    Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component

  17. Using the Weak-Temperature Gradient Approximation to Evaluate Parameterizations: An Example of the Transition From Suppressed to Active Convection

    Science.gov (United States)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    2017-10-01

    Two single-column models are fully coupled via the weak-temperature gradient approach. The coupled-SCM is used to simulate the transition from suppressed to active convection under the influence of an interactive large-scale circulation. The sensitivity of this transition to the value of mixing entrainment within the convective parameterization is explored. The results from these simulations are compared with those from equivalent simulations using coupled cloud-resolving models. Coupled-column simulations over nonuniform surface forcing are used to initialize the simulations of the transition, in which the column with suppressed convection is forced to undergo a transition to active convection by changing the local and/or remote surface forcings. The direct contributions from the changes in surface forcing are to induce a weakening of the large-scale circulation which systematically modulates the transition. In the SCM, the contributions from the large-scale circulation are dominated by the heating effects, while in the CRM the heating and moistening effects are about equally divided. A transition time is defined as the time when the rain rate in the dry column is halfway to the value at equilibrium after the transition. For the control value of entrainment, the order of the transition times is identical to that obtained in the CRM, but the transition times are markedly faster. The locally forced transition is strongly delayed by a higher entrainment. A consequence is that for a 50% higher entrainment the transition times are reordered. The remotely forced transition remains fast while the locally forced transition becomes slow, compared to the CRM.

  18. The effect of transition metals additions on the temperature coefficient of linear expansion of titanium and vanadium

    International Nuclear Information System (INIS)

    Lesnaya, M.I.; Volokitin, G.G.; Kashchuk, V.A.

    1976-01-01

    Results are reported of an experimental research into the influence of small additions of α-transition metals on the temperature coefficient of linear expansion of titanium and vanadium. Using the configuration model of substance as the basis, expeained are the lowering of the critical liquefaction temperature or the melting point of vanadium and the raising of it, as caused by the addition of metals of the 6 group of the periodic chart and by the addition of metals of the 8 group, respectively, and also a shift in the temperature of the polymorphic α-β-transformation of titanium. Suggested as the best alloying metal for vanadium are tungsten and tantalum; for titaniums is vanadium whose admixtures lower the melting point and shift the polymorphic transformation temperature by as much as 100 to 120 degrees

  19. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  20. Curie temperature and magnetic phase transition of nanostructured ultrathin Fe/GaAs (001). Size dependence and relevance of dipolar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Roland

    2009-07-01

    In the present work the impact of lateral patterning of ultrathin ferromagnetic films down to the nanometer range on the magnetic phase transition has been investigated. In this respect on the one hand a size effect on the Curie temperature and, referring to that, the relevance of dipolar coupling were a matter of particular interest. On the other hand the characteristics of the critical behavior itself, becoming apparent by the accurate evaluation of the curvature shape of the magnetization as a function of temperature at T{sub c}, were analyzed with regard to potential and expected size effects. The investigation of similar nanostructures with respect to an effect on Curie temperature respectively phase transition may draw up a correlation. Therefore more than hundred samples were fabricated for this work extensively by means of MBE (Molecular Beam Epitaxy) and ESL (Electron Beam Epitaxy) methods, measured by MOKE (Magneto-Optical Kerr Effect) technique and systematically evaluated. (orig.)

  1. Variability in Glycemic Control with Temperature Transitions during Therapeutic Hypothermia

    Directory of Open Access Journals (Sweden)

    Krystal K. Haase

    2017-01-01

    Full Text Available Purpose. Patients treated with therapeutic hypothermia (TH and continuous insulin may be at increased risk of hyperglycemia or hypoglycemia, particularly during temperature transitions. This study aimed to evaluate frequency of glucose excursions during each phase of TH and to characterize glycemic control patterns in relation to survival. Methods. Patients admitted to a tertiary care hospital for circulatory arrest and treated with both therapeutic hypothermia and protocol-based continuous insulin between January 2010 and June 2013 were included. Glucose measures, insulin, and temperatures were collected through 24 hours after rewarming. Results. 24 of 26 patients experienced glycemic excursions. Hyperglycemic excursions were more frequent during initiation versus remaining phases (36.3%, 4.3%, 2.5%, and 4.0%, p=0.002. Hypoglycemia occurred most often during rewarming (0%, 7.7%, 23.1%, and 3.8%, p=0.02. Patients who experienced hypoglycemia had higher insulin doses prior to rewarming (16.2 versus 2.1 units/hr, p=0.03. Glucose variation was highest during hypothermia and trended higher in nonsurvivors compared to survivors (13.38 versus 9.16, p=0.09. Frequency of excursions was also higher in nonsurvivors (32.3% versus 19.8%, p=0.045. Conclusions. Glycemic excursions are common and occur more often in nonsurvivors. Excursions differ by phase but risk of hypoglycemia is increased during rewarming.

  2. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  3. Temperature-induced valence transition in EuNi2(Si0.20Ge0.80)2 studied by hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya; Kamakura, Nozomu; Taguchi, Munetaka; Chainani, Ashish; Takata, Yasutaka; Horiba, Koji; Shin, Shik; Ikenaga, Eiji; Mimura, Kojiro; Shiga, Masayuki; Wada, Hirofumi; Namatame, Hirofumi; Taniguchi, Masaki; Awaji, Mitsuhiro; Takeuchi, Akihisa; Nishino, Yoshinori; Miwa, Daigo; Tamasaku, Kenji; Ishikawa, Tetsuya; Kobayashi, Keisuke

    2005-01-01

    The temperature-induced mixed valence transition in EuNi 2 (Si 0.20 Ge 0.80 ) 2 has been investigated by hard X-ray (5940 eV) photoemission spectroscopy (HX-PES) for fractured surfaces, with a probing depth larger than 5 nm. The Eu 3d core-level states are studied below and above the critical valence transition temperature, T v = 80 K. The HX-PES spectra at 40 and 120 K show the mixed valence transition, with clear changes in the divalent and trivalent Eu 3d chemically shifted features. The Eu 3d HX-PES spectra indicate a mean valence of 2.70 ± 0.03 at 40 K which changes to 2.40 ± 0.03 at 120 K, in good accordance with the results of bulk Eu III -edge X-ray absorption spectroscopy measurements

  4. Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys

    International Nuclear Information System (INIS)

    Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2008-01-01

    A series of Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni 2 Mn 0.75 Cu 0.25 Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T M , and an increase of the ferromagnetic transition temperature, T C , resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga samples with x>0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition.

  5. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was -5 degree F and, with the addition of a 30 degree F safety factor, the minimum safe operating temperature was determined to be 25 degree F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50 degree F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack

  6. The effective complex permittivity stability in filled polymer nanocomposites studied above the glass transition temperature

    Directory of Open Access Journals (Sweden)

    Elhaouzi F.

    2018-01-01

    Full Text Available The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA polymer filled with three concentrations of the dispersed conducting carbon black (CB nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix Tg=-75°C. For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity ɛ=ɛ' -iɛ'' with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity ɛ'' exhibits a slight decreasewith temperature, the real part ɛ' shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.

  7. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  8. Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4

    Science.gov (United States)

    Hollmann, N.; Haverkort, M. W.; Benomar, M.; Cwik, M.; Braden, M.; Lorenz, T.

    2011-05-01

    We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single crystals in the doping range of 0.5⩽x⩽0.8 for temperatures up to 1000 K. The magnetism below room temperature is described by paramagnetic Co2+ in the high-spin state and by Co3+ in the nonmagnetic low-spin state. At high temperatures, an increase in susceptibility is seen, which we attribute to a temperature-induced spin-state transition of Co3+. The susceptibility is analyzed by comparison to full-multiplet calculations for the thermal population of the high- and intermediate-spin states of Co3+.

  9. A temperature-dependent structural investigation of electrical transitions in A 3conb2o9 perovskites (A=Ca2+, Sr2+, Ba2+)

    International Nuclear Information System (INIS)

    Ting, V.; Liu, Y.; Withers, R.L.

    2006-01-01

    Upon heating, the 1:2 triple perovskites A 3 CoNb 2 O 9 (A=Ca, Sr or Ba) each undergo well-defined insulator to conductor phase transitions at ∼8, ∼126 and ∼325 deg. C, respectively. As the trend in the transition temperatures for these materials does not correlate with the size of the reported band gaps, neutron powder diffraction has been used to investigate if this change in electrical behaviour of the materials was due to a structural phase change. It was found that in the regions of the suspected phase transitions there were only slight perturbations of the structures, namely thermal expansion of the lattices and an apparent muting of the amplitude of the octahedral rotations in the A=Ca and Sr compound at higher temperatures

  10. Domain structures and temperature-dependent spin reorientation transitions in c-axis oriented Co-Cr thin films

    International Nuclear Information System (INIS)

    Kusinski, Greg J.; Krishnan, Kannan M.; Thomas, Gareth; Nelson, E. C.

    2000-01-01

    Highly c-axis oriented Co 95 Cr 5 films with perpendicular anisotropy were grown epitaxially on Si (111), using an Ag seed layer, by physical vapor deposition. Films were characterized by x-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, and Lorentz microscopy in a TEM. The following epitaxial relationship was confirmed: (111) Si (parallel sign)(111) Ag (parallel sign)(0001) CoCr ;[2(bar sign)20] Si (parallel sign)[2(bar sign)20] Ag (parallel sign)[1(bar sign)100] CoCr . Magnetic domain structures of these films were observed as a function of thickness; t, in the range, 200 Aa c ≅300 Aa, the magnetization was found to be effectively in-plane of the film, and above t c a regular, stripe-like domain pattern with a significant, alternating in sign, perpendicular component was observed. The spin reorientation transitions of the stripe domains to the in-plane magnetization were studied dynamically by observing the domains as a function of temperature by in situ heating up to 350 degree sign C. The critical transition thickness, t c , which is a function of K u and magnetostatic energy, was found to increase with increasing temperature. The stripe-domain period, L observed at room temperature was found to increase gradually with thickness; L=90 nm at t=300 Aa, and L=110 nm at t=700 Aa. (c) 2000 American Institute of Physics

  11. Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Osakabe, M.; Tanaka, K.

    2001-01-01

    A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)

  12. A new manganese-based single-molecule magnet with a record-high antiferromagnetic phase transition temperature

    International Nuclear Information System (INIS)

    Cui Yan; Li Yan-Rong; Li Rui-Yuan; Wang Yun-Ping

    2014-01-01

    We perform both dc and ac magnetic measurements on the single crystal of Mn 3 O(Et-sao) 3 (ClO 4 )(MeOH) 3 single-molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction

  13. On the finite temperature λφ4 model. Is there a first order phase transition in (λφ4)3?

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Svaiter, N.F.

    1995-11-01

    We investigate the behavior at finite temperature of the massive λ φ 4 model in a D-dimensional spacetime, performing a renormalization up to the order of one loop. In this approximation we show that the thermal mass increase with the temperature, while the thermal coupling constant decrease with the temperature. We establish that in the (λφ 4 ) 3 model there is a temperature β * -1 above which the coupling constant becomes negative. We argue that the system could develop a first order phase transition, where the origin corresponds to a metastable vacuum. (author). 29 refs

  14. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.

    Science.gov (United States)

    van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry

    2012-03-12

    A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.

  15. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  16. Spin-driven pyroelectricity in Ni{sub 3}TeO{sub 6} without ferroelectric signatures of the transition at Neel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Komarek, A.C. [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Du, C.H. [Department of Physics, Tamkang University, Tamsui, Taiwan (China)

    2017-07-15

    Here we report on dielectric studies on Ni{sub 3}TeO{sub 6}. We confirm the spin-driven pyroelectric transition at the Neel temperature (T{sub N}) of ∝52.5 K. The measurement of single crystalline and polycrystalline samples excludes a ferroelectric nature of the transition at T{sub N} in this compound. The excellent pyroelectric properties without any intrinsic ferroelectric hysteresis make Ni{sub 3}TeO{sub 6} appropriate for applications in future devices. Pyroelectric measurements on our Ni{sub 3}TeO{sub 6} single crystals. The polarization that appears on cooling through T{sub N} can not be inverted by opposite poling fields (applied when cooling from above T{sub N} to base temperature). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  18. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  19. Localization transition in SU(3) gauge theory

    Science.gov (United States)

    Kovács, Tamás G.; Vig, Réka Á.

    2018-01-01

    We study the Anderson-like localization transition in the spectrum of the Dirac operator of quenched QCD. Above the deconfining transition we determine the temperature dependence of the mobility edge separating localized and delocalized eigenmodes in the spectrum. We show that the temperature where the mobility edge vanishes and localized modes disappear from the spectrum coincides with the critical temperature of the deconfining transition. We also identify topological charge related close to zero modes in the Dirac spectrum and show that they account for only a small fraction of localized modes, a fraction that is rapidly falling as the temperature increases.

  20. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2017-05-16

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  1. Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa 2Cu 3O x

    Science.gov (United States)

    Farneth, W. E.; Bordia, R. K.; McCarron, E. M.; Crawford, M. K.; Flippen, R. B.

    1988-06-01

    A detailed study of the superconducting properties and the crystal symmetry of YBa 2Cu 3O x as a function of oxygen content (x) is presented. We correlate the oxygen content, structure and superconducting transition temperature for YBa 2Cu 3O x (6topotactic intercalation/deintercalation of oxygen. It is shown that the orthorhombic to tetragonal phase transition coincides with a loss in superconductivity for samples prepared both by quenching from high temperature and samples prepared by deoxygenation at low temperature. For the orthorhombic phase, T c monotonically decreases as x goes from 7.0 to 6.4 along with a complementary decrease in the extent of orthorhombic distortion. The decrease in T c, however, is not uniform. For quenched samples it shows a plateau for x ˜ 6.75 to 6.55 and then a rather abrupt drop around x ˜ 6.5. Comparison of our data with the literature indicates that the dependence of superconducting properties and crystal structure on the oxygen content can be a complex function of sample processing history. Samples with the same oxygen content but prepared in different ways may have x-ray powder patterns that are indistinguishable, but significantly different electrical properties.

  2. Monte Carlo simulations of the NJL model near the nonzero temperature phase transition

    International Nuclear Information System (INIS)

    Strouthos, Costas; Christofi, Stavros

    2005-01-01

    We present results from numerical simulations of the Nambu-Jona-Lasinio model with an SU(2)xSU(2) chiral symmetry and N c = 4,8, and 16 quark colors at nonzero temperature. We performed the simulations by utilizing the hybrid Monte Carlo and hybrid Molecular Dynamics algorithms. We show that the model undergoes a second order phase transition. The critical exponents measured are consistent with the classical 3d O(4) universality class and hence in accordance with the dimensional reduction scenario. We also show that the Ginzburg region is suppressed by a factor of 1/N c in accordance with previous analytical predictions. (author)

  3. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    International Nuclear Information System (INIS)

    Sirena, M.; Félix, L. Avilés; Haberkorn, N.

    2013-01-01

    High transition temperature superconductor (HTc)/SrTiO 3 (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ∼ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (∼5 × 10 −5 defects/μm 2 ). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions

  4. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  5. Dislocation dynamics modelling of the ductile-brittle-transition

    International Nuclear Information System (INIS)

    Hennecke, Thomas; Haehner, Peter

    2009-01-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  6. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.

    Science.gov (United States)

    Arita, Ryotaro; Koretsune, Takashi; Sakai, Shiro; Akashi, Ryosuke; Nomura, Yusuke; Sano, Wataru

    2017-07-01

    Recent progress in the fully nonempirical calculation of the superconducting transition temperature (T c ) is reviewed. Especially, this study focuses on three representative light-element high-T c superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that T c is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of T c . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-T c superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-T c superconductors will provide a firm ground for future materials design of new superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  8. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  9. Isothermal transitions of a thermosetting system

    Science.gov (United States)

    Gillham, J. K.; Benci, J. A.; Noshay, A.

    1974-01-01

    A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.

  10. Phase transition of aragonite in abalone nacre

    Science.gov (United States)

    An, Yuanlin; Liu, Zhiming; Wu, Wenjian

    2013-04-01

    Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.

  11. Method to increase the transition temperature and for the critical magnetic field strength of the known intermetallic compounds of vanadium or niobium

    International Nuclear Information System (INIS)

    Winter, H.

    1977-01-01

    The invention deals with a method to raise the transition temperature and critical magnetic field strength of superconducting, intermetallic compounds of vanadium and niobium. For example, a niobium alloy with 4 wt.% Al in melted in vacuum electric arc and formed into a sheet of about 1 mm thick. Strips of this sheet are electrically heated up to 1,900 0 C for one hour in a high-vacuum oven. The strips are then annealed in evacuated quartz ampoules for 120 hours at 800 0 C. These strips have a transition temperature of 24 K and a critical magnetic field strength of 600 kg; the critical current density was 5 x 10 4 A/cm 2 . (HPOE) [de

  12. Pairing transition, coherence transition, and the irreversibility line in granular GdBa2Cu3O7-δ

    Science.gov (United States)

    Roa-Rojas, J.; Menegotto Costa, R.; Pureur, P.; Prieto, P.

    2000-05-01

    We report on electrical magnetoconductivity experiments near the superconducting transition of a granular sample of GdBa2Cu3O7-δ. The measurements were performed in magnetic fields ranging from 0 to 500 Oe applied parallel to the current orientation. The results show that the transition proceeds in two steps. When the temperature is decreased we first observe the pairing transition, which stabilizes superconductivity within the grains at a temperature practically coincident with the bulk critical temperature Tc. Analysis of the fluctuation contributions to the conductivity shows that the universality class for this transition is that of the three dimensional (3D)-XY model in the ordered case, with dynamic critical exponent z=3/2. Close to the zero-resistance state, the measurements reveal the occurrence of a coherence transition, where the phases of the order parameter in individual grains become long-range ordered. The critical temperature Tco for this transition is close to the point where the resistivity vanishes. A strong enlargement of the fluctuation interval preceding the coherence transition is caused by the applied magnetic field. In this region, a 3D-Gaussian regime and an asymptotic critical regime were clearly identified. The critical conductivity behavior for the coherence transition is interpreted within a 3D-XY model where disorder and frustration are relevant. The irreversibility line is determined from magnetoconductivity measurements performed according to the zero-field-cooled (ZFC) and field-cooled data collected on cooling (FCC) recipes. The locus of this line coincides with the upper temperature limit for the fluctuation region above the coherence transition. The irreversibility line is interpreted as an effect of the formation of small clusters with closed loops of Josephson-coupled grains.

  13. High temperature spin-glass-like transition in La0.67Sr0.33MnO3 nanofibers near the Curie point.

    Science.gov (United States)

    Lu, Ruie; Yang, Sen; Li, Yitong; Chen, Kaiyun; Jiang, Yun; Fu, Bi; Zhang, Yin; Zhou, Chao; Xu, Minwei; Zhou, Xuan

    2017-06-28

    The glassy transition of superparamagnetic (SPM) (r glass-like (SGL) behavior near the Curie point (T C ), i.e., T 0 = 330 K, in La 0.67 Sr 0.33 MnO 3 (LSMO) nanofibers (NFs) composed of nanoparticles beyond the SPM size (r ≫ r 0 ), resulting in a significant increase of the glass transition temperature. This SGL transition near the T C of bulk LSMO can be explained to be the scenario of locally ordered clusters embedded in a disordered host, in which the assembly of nanoparticles has a magnetic core-shell model driven by surface spin glass. The presence of a surface spin glass of nanoparticles was proved by the Almeida-Thouless line δT f ∝ H 2/3 , exchange bias, and reduced saturation magnetization of the NF system. Composite dynamics were found - that is, both the SPM and the super-spin-glass (SSG) behavior are found in such an NF system. The bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature curves at the ZFC peak, and the flatness of FC magnetization involve SSG, while the frequency-dependent ac susceptibility anomaly follows the Vogel-Fulcher law that implies weak dipole interactions of the SPM model. This finding can help us to find a way to search for high temperature spin glass materials.

  14. The Heat Resistance of Microbial Cells Represented by D Values Can be Estimated by the Transition Temperature and the Coefficient of Linear Expansion.

    Science.gov (United States)

    Nakanishi, Koichi; Kogure, Akinori; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2015-01-01

    We previously developed a method for evaluating the heat resistance of microorganisms by measuring the transition temperature at which the coefficient of linear expansion of a cell changes. Here, we performed heat resistance measurements using a scanning probe microscope with a nano thermal analysis system. The microorganisms studied included six strains of the genus Bacillus or related genera, one strain each of the thermophilic obligate anaerobic bacterial genera Thermoanaerobacter and Moorella, two strains of heat-resistant mold, two strains of non-sporulating bacteria, and one strain of yeast. Both vegetative cells and spores were evaluated. The transition temperature at which the coefficient of linear expansion due to heating changed from a positive value to a negative value correlated strongly with the heat resistance of the microorganism as estimated from the D value. The microorganisms with greater heat resistance exhibited higher transition temperatures. There was also a strong negative correlation between the coefficient of linear expansion and heat resistance in bacteria and yeast, such that microorganisms with greater heat resistance showed lower coefficients of linear expansion. These findings suggest that our method could be useful for evaluating the heat resistance of microorganisms.

  15. Measurement of the dynamic behavior of thin poly(N-isopropylacrylamide) hydrogels and their phase transition temperatures measured using reflectometric interference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Fuminori [Konica Minolta, INC. (Japan); Akiyama, Yoshikatsu, E-mail: akiyama.yoshikatsu@twmu.ac.jp, E-mail: akiyama.yoshikatsu@abmes.twmu.ac.jp; Kobayashi, Jun [Tokyo Women’s Medical University (TWIns), Institute of Advanced Biomedical Engineering and Science (Japan); Ninomiya, Hidetaka [Konica Minolta, INC. (Japan); Kanazawa, Hideko [Keio University, Faculty of Pharmacy (Japan); Yamato, Masayuki; Okano, Teruo [Tokyo Women’s Medical University (TWIns), Institute of Advanced Biomedical Engineering and Science (Japan)

    2015-03-15

    Temperature-responsive cell culture surfaces prepared by modifying tissue-culture polystyrene with nanoscale poly(N-isopropylacrylamide) (PIPAAm) hydrogels are widely used as intelligent surfaces for the fabrication of various cell sheets that change with temperature. In this work, the characteristics of nanoscale PIPAAm hydrogels were phenomenologically elucidated on the basis of time-dependent surface evaluations under conditions of changing temperature. Because the dynamic characteristics of the nanoscale hydrogel did not exhibit good performance, the nanoscale PIPAAm hydrogel was analyzed by monitoring its temperature-dependent dynamic swelling/deswelling changes using reflectometric interference spectroscopy (RIfS) on an instrument equipped with a microfluidic system. RIfS measurements under ambient atmosphere provided the precise physical thickness of the dry PIPAAm hydrogel (6.7 nm), which agreed with the atomic force microscopy results (6.6 nm). Simulations of the reflectance spectra revealed that changes in the wavelength of the minimum reflectance (Δλ) were attributable to the changes in the refractive index of the thin PIPAAm hydrogel induced by a temperature-dependent volume phase transition. The temperature-dependent Δλ change was used to monitor the swelling/deswelling behavior of the nanoscale PIPAAm hydrogel. In addition, the phase transition temperature of the thin PIPAAm hydrogel under aqueous conditions was also determined to be the inflection point of the plot of the change in Δλ as a function of temperature. The dynamic behavior of a thin PIPAAm hydrogel chemically deposited on a surface was readily analyzed using a new analytical system with RIfS and microfluidic devices.

  16. Finite-temperature confinement transitions

    International Nuclear Information System (INIS)

    Svetitsky, B.

    1984-01-01

    The formalism of lattice gauge theory at finite temperature is introduced. The framework of universality predictions for critical behavior is outlined, and recent analytic work in this direction is reviewed. New Monte Carlo information for the SU(4) theory are represented, and possible results of the inclusion of fermions in the SU(3) theory are listed

  17. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Extrapolation of radiation thermometry scales for determining the transition temperature of metal-carbon points. Experiments with the Co-C

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2009-02-01

    Four independent radiation temperature scales approximating the ITS-90 at 900 nm, 950 nm and 1.6 µm have been realized from the indium point (429.7485 K) to the copper point (1357.77 K) which were used to derive by extrapolation the transition temperature T90(Co-C) of the cobalt-carbon eutectic fixed point. An INRIM cell was investigated and an average value T90(Co-C) = 1597.20 K was found with the four values lying within 0.25 K. Alternatively, thermodynamic approximated scales were realized by assigning to the fixed points the best presently available thermodynamic values and deriving T(Co-C). An average value of 1597.27 K was found (four values lying within 0.25 K). The standard uncertainties associated with T90(Co-C) and T(Co-C) were 0.16 K and 0.17 K, respectively. INRIM determinations are compatible with recent thermodynamic determinations on three different cells (values lying between 1597.11 K and 1597.25 K) and with the result of a comparison on the same cell by an absolute radiation thermometer and an irradiance measurement with filter radiometers which give values of 1597.11 K and 1597.43 K, respectively (Anhalt et al 2006 Metrologia 43 S78-83). The INRIM approach allows the determination of both ITS-90 and thermodynamic temperature of a fixed point in a simple way and can provide valuable support to absolute radiometric methods in defining the transition temperature of new high-temperature fixed points.

  19. Infield X-ray diffraction studies of field and temperature driven structural phase transition in Nd{sub 0.49}Sr{sub 0.51}MnO{sub 3+δ}

    Energy Technology Data Exchange (ETDEWEB)

    Shahee, Aga, E-mail: agashahee@gmail.com [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Department of Physics, IIT Bombay, Powai, Mumbai 400076 (India); Sharma, Shivani; Singh, K.; Lalla, N.P. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India)

    2017-07-15

    Highlights: • Temperature and magnetic field driven coupled magneto-structural phase transition in Nd{sub 0.49}Sr{sub 0.51}MnO{sub 3+δ}. • Microscopic evidence of strong spin-charge-lattice coupling. • Iso-thermal magnetic field driven structure phase transition. • Field-driven structural phase transition origin of observed 1st order type CMR effect. - Abstract: Comprehensive X-ray diffraction (XRD) studies have been performed at different temperature (T) (4.2–300 K) and magnetic field (H) (0–8 T) to understand the evolution of crystal structure of Nd{sub 0.49}Sr{sub 0.51}MnO{sub 3+δ} (NSMO) under non ambient conditions. The T dependent XRD results show the abrupt change in the lattice parameters without any change in lattice symmetry at ∼200 K, which is associated with the first order structural phase transition from ferromagnetic to antiferromagnetic phase. This phase transition is strongly H dependent and shifted to lower temperature (∼150 K) on the application of 8 T field with phase coexistence (high temperature phase ∼18%), even down to 4.2 K. Isothermal XRD results at 150 K under different H clearly illustrate the H induced first order structural phase transition. The critical H at which this phase transformation starts is ∼1 T, with rapid growth above 4 T with hysteretic nature during increasing and decreasing H. These results are supported with the resistivity and magnetoresistance results and affirm the strong spin-lattice coupling in NSMO. Our detail studies reveal the structural correlations to the observed colossal magnetoresistance and magnetocaloric effect in this material.

  20. Splitting of the resistive transition of copper oxide superconductors: Intrinsic double superconducting transitions versus extrinsic effects

    International Nuclear Information System (INIS)

    Pomar, A.; Curras, S.R.; Veira, J.A.; Vidal, F.

    1996-01-01

    To prove the possible existence of an intrinsic double superconducting transition in the high-temperature copper oxide superconductors (HTSC), an effect recently attributed by various groups to different intrinsic properties of these materials (including unconventional wave pairing), we present in this paper high resolution data of the electrical resistivity, ρ(T), around the superconducting transition of different single crystal and polycrystal YBa 2 Cu 3 O 7-δ samples. The analysis of the temperature derivative of these ρ(T) data strongly suggests that (i) with a temperature resolution well to within 20 mK, the intrinsic resistive transition of the HTSC does not present any double transition anomaly and (ii) the double peak structure observed in dρ(T)/dT by some authors is probably an extrinsic effect (associated with stoichiometric inhomogeneities in some cases, and with experimental artifacts in other cases). copyright 1996 The American Physical Society

  1. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M.; Félix, L. Avilés [Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche (Argentina); Haberkorn, N. [Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, CNEA, Bustillo 9500, 8400 Bariloche (Argentina)

    2013-07-29

    High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (λ ∼ 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (∼5 × 10{sup −5} defects/μm{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  2. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  3. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  4. Influence of the annealing temperature on the optical transitions of InGaAsP-based quantum well structures investigated by photoreflectance spectroscopy

    International Nuclear Information System (INIS)

    Podhorodecki, A.; Kudrawiec, R.; Andrzejewski, J.; Misiewicz, J.; Wojcik, J.; Robinson, B.J.; Thompson, D.A.; Mascher, P.

    2005-01-01

    Photoreflectance (PR) and photoluminescence (PL) spectroscopies have been used to study the effect of the rapid thermal annealing (RTA) on InGaAsP-based quantum wells (QWs) which are the active part of a laser structure tailored at 1.5 μm. In the case of PL, it has been observed that the RTA enhances PL intensity and tunes the emission wavelength of the laser structure to blue. In case of PR due to its absorption character, we were able to study QW transitions related to excited states, besides the fundamental transition observed in PL. In addition, optical transitions related to other part of the laser structure have been observed in PR. It has been shown that there exists a ''critical'' annealing temperature (720 C) where the energy shift appears. We have observed a blueshift for both the ground and excited state transitions, but in the case of the ground state transitions the blueshift has been found to be bigger. The magnitude of this blueshift has been found to change linearly from 0 to ∝15 meV with the rise of temperature from 720 to 780 C. Below 720 C no significant change in the energy of the QW transitions is observed. In the case of PR transitions related to the other part of the laser structure, i.e., the quaternary InGaAsP barriers, it has been observed that after annealing PR features associated with these layers rather do not shift, they change only their line-shape. Also, it has been shown that RTA does not destroy the optical quality of the samples. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, E706 (IIF)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide presents a method for predicting reference transition temperature adjustments for irradiated light-water cooled power reactor pressure vessel materials based on Charpy V-notch 30-ftlbf (41-J) data. Radiation damage calculative procedures have been developed from a statistical analysis of an irradiated material database that was available as of May 2000. The embrittlement correlation used in this guide was developed using the following variables: copper and nickel contents, irradiation temperature, and neutron fluence. The form of the model was based on current understanding for two mechanisms of embrittlement: stable matrix damage (SMD) and copper-rich precipitation (CRP); saturation of copper effects (for different weld materials) was included. This guide is applicable for the following specific materials, copper, nickel, and phosphorus contents, range of irradiation temperature, and neutron fluence based on the overall database: 1.1.1 MaterialsA 533 Type B Class 1 and 2, A302 Grade B, A302 G...

  6. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  7. Ge(001)-(<2 1>, <0 3>)-Pb(<2 1>, <0 6>)↔Pb: Low-temperature two-dimensional phase transition

    DEFF Research Database (Denmark)

    Bunk, Oliver; Nielsen, Martin Meedom; Zeysing, J.H.

    2001-01-01

    The Ge(001)-((2 1)(0 3))-Pb surface reconstruction with a lead coverage of 5/3 monolayer is on the borderline between the low-coverage covalently-bonded and high-coverage metallic lead overlayers. This gives rise to an unusual low-temperature phase transition with concomitant changes in the bonding...

  8. The effect of water temperature on food transit time and digestive enzymes activity in Caspian kutum (Rutilus kutum larvae

    Directory of Open Access Journals (Sweden)

    Nahid Ghysvandi

    2014-07-01

    Full Text Available The present study investigates the effects of water temperature on digestive enzymes activity and food transit time in Caspian kutum (Rutilus kutum larvae. Caspian kutum larvae (532 ± 0.05 and 543 ± 0.02 mg were divided into two groups with three replicates and reared at different water temperature i.e. 25.6 ± 0.4°C (T1 and 18.4 ± 0.1°C (T2. At the end of the experiment, sampling of intestine was performed at 0, 1, 3, 5, 8, 16, 24 and 30 h after feeding from each treatment. In T2, food was observed until 24 h after feeding and the intestine was empty 29 h after feeding, while in T1 19 h after feeding the intestine was empty. Digestive enzymes activities were higher in T2 treatment. The peaks of trypsin and alkaline phosphatase enzymes activity were found 8 h after feeding in T1, while occurred 16 h after feeding in T2. The highest chymotrypsin and alpha-amylase enzymes activity were observed 5 and 8h after feeding in T1 and T2, respectively. These results confirmed remarkable effects of temperature on food transit time and digestive enzymes activity of Caspian kutum.

  9. Role of temperature-dependent O-p-Fe-d hybridization parameter in the metal-insulator transition of Fe3O4: a theoretical study

    Science.gov (United States)

    Fauzi, A. D.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We propose a simple tight-binding based model for Fe3O4 that captures the preference of ferrimagnetic over ferromagnetic spin configuration of the system. Our model is consistent with previous theoretical and experimental studies suggesting that the system is half metallic, in which spin polarized electrons hop only among the Fe B sites. To address the metal-insulator transition (MIT) we propose that the strong correlation among electrons, which may also be influenced by the electron-phonon interactions, manifest as the temperature-dependence of the O-p-Fe-d hybridization parameter, particularly Fe-d belonging to one of the Fe B sites (denoted as {t}{{FeB}-{{O}}}(2)). By proposing that this parameter increases as the temperature decreases, our density-of-states calculation successfully captures a gap opening at the Fermi level, transforming the system from half metal to insulator. Within this model along with the corresponding choice of parameters and a certain profile of the temperature dependence of {t}{{FeB}-{{O}}}(2), we calculate the resistivity of the system as a function of temperature. Our calculation result reveals the drastic uprising trend of the resistivity profile as the temperature decreases, with the MIT transition temperature located around 100 K, which is in agreement with experimental data.

  10. Light-scattering study of the glass transition in lubricants

    Science.gov (United States)

    Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.

    1977-01-01

    The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.

  11. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    Science.gov (United States)

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  12. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  13. High-temperature phase transitions and domain structures of KLiSO{sub 4}. Studied by polarisation-optics, X-ray topography and liquid-crystal surface decoration

    Energy Technology Data Exchange (ETDEWEB)

    Scherf, Christian; Chung, Su Jin; Hahn, Theo; Klapper, Helmut [RWTH Aachen Univ. (Germany). Inst. fuer Kristallographie; Ivanov, Nicolay R. [Russian Academy of Sciences, Moscow (Russian Federation). Shubnikov Inst. of Crystallography

    2017-07-01

    The transitions between the room temperature phase III (space group P6{sub 3}) and the two high-temperature phases II (Pcmn) and I (P6{sub 3}/mmc) of KLiSO{sub 4} and the domain structures generated by them were investigated by high-temperature polarisation optics (birefringence) and room-temperature X-ray topography, optical activity and nematic-liquid-crystal (NLC) surface decoration. The transition from the polar hexagonal phase III into the centrosymmetric orthorhombic phase II at 708 K leads, due to the loss of the trigonal axis and the radial temperature gradient of the optical heating chamber used, to a roughly hexagonal arrangement of three sets of thin orthorhombic {110} lamelleae with angles of 60 (120 ) between them. The associated twin law ''reflection m{110}{sub orth}'' corresponds to the frequent growth twin m{10 anti 10}{sub hex} of phase III. The domains are easily ferroelastically switched. Upon further heating above 949 K into phase I (P6{sub 3}/mmc) all domains vanish. Upon cooling back into phase II the three domain states related by 60 (120 ) reflections m{110}{sub orth} re-appear, however (due to the higher thermal agitation at 949 K) with a completely different domain structure consisting of many small, irregularly arranged {110}{sub orth} domains. Particular attention is paid to the domain structure of the hexagonal room temperature phase III generated during the re-transition from the orthorhombic phase II. Curiously, from the expected three twin laws inversion anti 1, rotation 2 perpendicular to [001]{sub hex} and reflection m{10 anti 10}{sub hex} only the latter, which corresponds to the frequent growth twinning, has been found. Finally a short treatise of the structural relations of the KLiSO{sub 4} high-temperature polymorphs is given.

  14. Bonding at Compatible and Incompatible Amorphous Interfaces of Polystyrene and Poly(Methyl Methacrylate) Below the Glass Transition Temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Films of high-molecular-weight amorphous polystyrene (PS, M-w = 225 kg/mol, M-w/M-n = 3, T-g-bulk = 97degreesC, where T-g-bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M-w = 87 kg/mol, M-w/M-n = 2, Tg-bulk = 109degreesC) were brought into contact...

  15. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    Science.gov (United States)

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    Science.gov (United States)

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Characterization of the microwave properties of superconducting films with high transition temperature

    International Nuclear Information System (INIS)

    Richter, W.; Klinger, M.; Daginnus, M.

    1989-01-01

    In the meantime high quality Y-Ba-Cu-O thin films were produced. The latest results show, that its surface resistances are clearly lower than the values of copper, measured at a temperature of 77 K and up to frequencies of 86 GHz. This examination had the aim to produce high-T c films with a simple and low cost method, to use them as transmission lines at frequencies up to 30 GHz and above. A screen printing process was investigated, and high-T c thick films were fabricated on several substrates. Superconducting transition temperatures up to 80 K (dc zero resistance) were obtained. The films showed no complete magnetic shielding, and its microwave surface resistances were clearly higher than that ones for copper. The a. c. Josephson effect was proved with granular structures of bulk Y-Ba-Cu-O material and with screen printed thick films. Because of its high surface resistances, these thick films are unsuitable for the use as transmission lines at high frequencies. However, the a.c. Josephson effect can be used to manufacture microwave sensors in bulk Y-Ba-Cu-O and screen printed films of Y-Ba-Cu-O, which have a favourable geometric structure. (orig.) With 16 refs., 2 tabs., 24 figs [de

  18. Thermodynamic properties of bcc crystals at high temperatures: The transition metals

    International Nuclear Information System (INIS)

    MacDonald, R.A.; Shukla, R.C.

    1985-01-01

    The second-neighbor central-force model of a bcc crystal, previously used in lowest-order anharmonic perturbation theory to calculate the thermodynamic properties of the alkali metals, is here applied to the transition metals V, Nb, Ta, Mo, and W. The limitations of the model are apparent in the thermal-expansion results, which fall away from the experimental trend above about 1800 K. The specific heat similarly fails to exhibit the sharp rise that is observed at higher temperatures. A static treatment of vacancies cannot account for the difference between theory and experiment. The electrons have been taken into account by using a model that specifically includes d-band effects in the electron ground-state energy. The results thus obtained for the bulk moduli are quite satisfactory. In the light of these results, we discuss the prerequisites for a better treatment of metals when the electrons play an important role in determining the thermodynamic properties

  19. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  20. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit

    Energy Technology Data Exchange (ETDEWEB)

    Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua

    2017-04-15

    Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.

  1. Relationship between superconducting transition temperature and number of CuO2 layers in mercury-based superconductors

    International Nuclear Information System (INIS)

    Chen Xiaojia; Xu Zhuan; Jiao Zhengkuan; Zhang Qirui

    1997-01-01

    The nonmonotonic dependence of the superconducting transition temperature on the number of CuO 2 layers (n) per unit cell for mercury-based cuprate systems is investigated with the framework of the electrostatic model and the Ginsburg-Landau theory. It is found that the largest value of the normalized density of states is 1.8 when n=3, which corresponds to the highest T c in this series. Using reasonable parameters we predict an upper limit of T c of 160 K. (orig.)

  2. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  3. Phase transitions in K-doped MoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L. M. S., E-mail: leandro-fisico@hotmail.com; Lima, B. S. de; Santos, C. A. M. dos [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena-USP, Lorena, São Paulo 12602-810 (Brazil); Rebello, A.; Masunaga, S. H.; Neumeier, J. J. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, Montana 59717-3840 (United States); Leão, J. B. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr. MS 6102, Gaithersburg, Maryland 20899-6102 (United States)

    2014-05-28

    K{sub 0.05}MoO{sub 2} has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54 K. Below the transition at 54 K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO{sub 2} compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.

  4. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Magoń, A. [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland); Wurm, A.; Schick, C. [Department of Physics, University of Rostock, 18057 Rostock (Germany); Pangloli, Ph.; Zivanovic, S. [Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996 (United States); Skotnicki, M. [Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań (Poland); Pyda, M., E-mail: mpyda@utk.edu [Department of Chemistry, University of Technology, 35-959 Rzeszów (Poland)

    2014-08-10

    Highlights: • Experimental, apparent heat capacity of sucrose was investigated by advanced thermal analysis. • Vibrational heat capacity of solid state was linked with a low temperature experimental heat capacity of sucrose. • Equilibrium melting parameters of sucrose were determined. • Decomposition, superheating of crystalline sucrose during melting process were presented. • TGA, DSC, TMDSC, and FSC are useful tools for characterization of sucrose. - Abstract: The heat capacity (C{sub p}) of crystalline and amorphous sucrose was determined using standard and quasi-isothermal temperature modulated differential scanning calorimetry. The results were combined with the published data determined by adiabatic calorimetry, and the C{sub p} values are now reported for the wide 5–600 K range. The experimental C{sub p} of solid sucrose at 5–300 K was used to calculate the vibrational, solid C{sub p} based on the vibrational molecular motions. The calculated solid and liquid C{sub p} together with the transition parameters for equilibrium conditions were used as references for detailed quantitative thermal analysis of crystalline and amorphous sucrose. Melting temperature (T{sub m}) of the crystalline sucrose was identified in a broad 442–465 K range with a heat of fusion of 40–46 J/mol determined at heating rates 0.5–20 K/min, respectively. The equilibrium T{sub m} and heat of fusion of crystalline sucrose were estimated at zero heating rate as T{sup o}{sub m} = 424.4 K and ΔH{sup o}{sub f} = 32 kJ/mol, respectively. The glass transition temperature (T{sub g}) of amorphous sucrose was at 331 K with a change in C{sub p} of 267 J/(mol K) as it was estimated from reversing heat capacity by quasi-isothermal TMDSC on cooling. At heating rates less than 30 K/min, thermal decomposition occurred during melting, while at extreme rate of 1000 K/s, degradation was not observed. Data obtained by fast scanning calorimetry (FSC) at 1000 K/s, showed that T{sub m} was

  5. Density crosslink study of gamma irradiated LDPE predicted by gel-fraction, swelling and glass transition temperature characterization

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Moraes, Guilherme F.; Ono, Lilian S.; Parra, D.F.; Lugao, Ademar B.

    2011-01-01

    Experimental results showed that the crosslink density of polymeric stocks may be predicted from values of gel content based on the reactive portion of the stocks, that is, exclusive of plasticizers and fillers. Where entanglements may be neglected, the crosslink density is directly proportional to functions of the gel and sol contents. In order to predict the behavior of carbon-chain polymers exposed to ionizing radiation, an empirical rule can be used. According to this rule, polymers containing a hydrogen atom at each carbon atom predominantly undergo crosslinking. During irradiation, chain scission occurs simultaneously and competitively with crosslinking, the end result being determined by the ratio of the yields of the two reactions. The ratio of crosslinking to scission depends basically on factors including total irradiation dose, dose rate and the presence of oxygen. The glass transition temperature (Tg), temperature below which the polymer segments do not have sufficient energy to move past one another, marks the onset of segmental mobility for a polymer. Properties such as melt index, melt strength, crystallinity, glass transition, gel fraction, swelling ratio and elasticity modulus were assessed in LDPE (2.6 g.10 min -1 melt index) gamma irradiated within a 10, 15, 20 and 30 kGy and results obtained were further discussed prior conclusion. (author)

  6. The magnetic transition temperature tuned by strain in YMn0.9Ru0.1O3 thin films

    Directory of Open Access Journals (Sweden)

    L. P. Yang

    2018-05-01

    Full Text Available Epitaxial orthorhombic YMn0.9Ru0.1O3 films with different thickness have been grown on (001-SrTiO3 substrates by pulsed laser deposition (PLD. The crystal structure is well investigated by X-ray Diffraction. It is found that the out-of-plane parameter c slowly increases with decreasing thickness of samples because of the tensile strain between the films and substrates along c axis. The lengths of in-plane Mn-O bonds expand with the enhancement of strains, which is proved by Raman scatting. The magnetic measurements reveal that there exist two magnetic transition temperatures TN1 and TN2. The TN1 is close to that of orthorhombic YMnO3 bulk. With decreasing thickness of the films, TN1 keeps almost constant because of the small stain along c-axis. TN2, however, obviously increases from 117 K to 134 K, which could be related to the expansion of in-plane Mn-O bonds. Results show that the magnetic transition temperature of YMn0.9Ru0.1O3 films can be sensitively manipulated by the strain of the films.

  7. Stochastic temperature modulation: A new technique in temperature-modulated DSC

    International Nuclear Information System (INIS)

    Schawe, J.E.K.; Huetter, T.; Heitz, C.; Alig, I.; Lellinger, D.

    2006-01-01

    A new temperature-modulated differential scanning calorimetry (TMDSC) technique is introduced. The technique is based on stochastic temperature modulation and has been developed as a consequence of a generalized theory of a temperature-modulated DSC. The quasi-static heat capacity and the frequency-dependent complex heat capacity can be determined over a wide frequency range in one single measurement without further calibration. Furthermore, the reversing and non-reversing heat flows are determined directly from the measured data. Examples show the frequency dependence of the glass transition, the isothermal curing of thermosets and a solid-solid transition

  8. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qin, E-mail: qqiao@ust.hk; Zhang, Hou-Dao [Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Huang, Xuhui, E-mail: xuhuihuang@ust.hk [Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); The HKUST Shenzhen Research Institute, Shenzhen (China)

    2016-04-21

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  9. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Science.gov (United States)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-04-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  10. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    International Nuclear Information System (INIS)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-01-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  11. The influence of sour taste and cold temperature in pharyngeal transit duration in patients with stroke

    Directory of Open Access Journals (Sweden)

    Paula Cristina Cola

    2010-03-01

    Full Text Available CONTEXT: The effect of sour taste and food temperature variations in dysphagic patients has not been entirely clarified. OBJECTIVE: To determine the effect of sour and cold food in the pharyngeal transit times of patients with stroke. METHODS: Patients participating in this study were 30 right-handed adults, 16 of which were male and 14 were female, aged 41 to 88 (average age 62.3 years with ictus varying from 1 to 30 days (median of 6 days. To analyze the pharyngeal transit time a videofluoroscopy swallow test was performed. Each patient was observed during swallow of a 5 mL paste bolus given by spoon, totaling four different stimuli (natural, cold, sour and cold sour, one at a time, room temperature (22ºC and cold (8ºC were used. Later, the tests were analyzed using specific software to measure bolus transit time during the pharyngeal phase. RESULTS: The results showed that the pharyngeal transit time was significantly shorter during swallow of cold sour bolus when compared with other stimuli. Conclusion - Sour taste stimuli associated to cold temperature cause significant change in swallowing patterns, by shortening the pharyngeal transit time, which may lead to positive effects in patients with oropharyngeal dysphagia.CONTEXTO: O efeito do sabor azedo e as variações da temperatura dos alimentos em indivíduos disfágicos, ainda não foi totalmente esclarecidos. OBJETIVO: Verificar o efeito do sabor azedo e da temperatura fria no tempo de trânsito faríngeo da deglutição em indivíduos após acidente vascular encefálico hemisférico isquêmico. MÉTODOS: Participaram deste estudo 30 indivíduos adultos, sendo 16 do gênero masculino e 14 do feminino, destros, com faixa etária variando de 41 a 88 anos (média de 62,3 anos e ictus que variou de 1 a 30 dias (mediana de 6 dias. Para analisar o tempo de trânsito faríngeo da deglutição foi realizado o exame de videofluoroscopia da deglutição. Cada indivíduo foi observado durante a

  12. A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2015-01-01

    This paper describes a two-dimensional (2D) multiphysics model of a packed bed regenerator made of magnetocaloric material. The regenerator operates as a refrigerant for a magnetic refrigerator operating at room temperature on the strength of an active magnetic regenerator (AMR) cycle. The model is able to simulate the thermofluidodynamic behavior of the magnetocaloric material and the magnetocaloric effect of the refrigerant. The model has been validated by means of experimental results. Different magnetic materials have been tested with the model as refrigerants: pure gadolinium, second order phase magnetic transition Pr_0_._4_5Sr_0_._3_5MnO_3 and first order phase magnetic transition alloys Gd_5(Si_xGe_1_−_x)_4, LaFe_1_1_._3_8_4Mn_0_._3_5_6Si_1_._2_6H_1_._5_2, LaFe_1_1_._0_5Co_0_._9_4Si_1_._1_0 and MnFeP_0_._4_5As_0_._5_5. The tests were performed with fixed fluid flow rate (5 l/min), AMR cycle frequency (1.25 Hz) and cold heat exchanger temperature (288 K) while the hot heat exchanger temperature was varied in the range 295–302 K. The results, generated for a magnetic induction which varies from 0 to 1.5 T, are presented in terms of temperature span, refrigeration power and coefficient of performance. From a global point of view (performances and cost), the most promising materials are LaFeSi compounds which are really cheaper than rare earth compounds and they give a performance sufficiently higher than gadolinium. - Graphical abstract: • Active Magnetic Refrigeration (AMR) cycle; • First Order Transition magnetic materials (FOMT); • Second Order Transition magnetic materials (SOMT). - Highlights: • Comparison between different magnetic materials. • 2D model of an Active Magnetic Regenerative refrigeration cycle. • Validation of the model with experimental data. • Gd_5(Si_xGe_1_−_x)_4 is the most performant magnetic material. • The most promising are LaFeSi compounds which are cheaper and they give high performances.

  13. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  14. Determination of thermal diffusivity at low temperature using the two-beam phase-lag photoacoustic method with observation of phase-transitions

    International Nuclear Information System (INIS)

    Jorge, M.P.P.

    1992-01-01

    This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)

  15. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    Science.gov (United States)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  16. NMR and DSC study of temperature-induced phase transition in aqueous solutions of poly(N-isopropylmethacrylamide-co-acrylamide) copolymers

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Spěváček, Jiří

    2012-01-01

    Roč. 290, č. 17 (2012), s. 1811-1817 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : temperature induced phase transition * thermosensitive copolymer * poly(N-isopropylmethacrylamide-co-acrylamide) Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.161, year: 2012

  17. Novel spin transition between S = 5/2 and S = 3/2 in highly saddled iron(III) porphyrin complexes at extremely low temperatures.

    Science.gov (United States)

    Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio

    2006-05-14

    A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.

  18. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  19. Open volume defects and magnetic phase transition in Fe{sub 60}Al{sub 40} transition metal aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, M. O., E-mail: m.liedke@hzdr.de; Anwand, W.; Butterling, M.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Bali, R.; Cornelius, S.; Potzger, K. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Trinh, T. T. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Technical University Dresden, Helmholtzstr. 10, 01609 Dresden (Germany); Salamon, S.; Walecki, D.; Smekhova, A.; Wende, H. [Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg (Germany)

    2015-04-28

    Magnetic phase transition in the Fe{sub 60}Al{sub 40} transition metal aluminide from the ferromagnetic disordered A2-phase to the paramagnetic ordered B2-phase as a function of annealing up to 1000 °C has been investigated by means of magneto-optical and spectroscopy techniques, i.e., Kerr effect, positron annihilation, and Mössbauer spectroscopy. The positron annihilation spectroscopy has been performed in-situ sequentially after each annealing step at the Apparatus for In-situ Defect Analysis that is a unique tool combining positron annihilation spectroscopy with temperature treatment, material evaporation, ion irradiation, and sheet resistance measurement techniques. The overall goal was to investigate the importance of the open volume defects onto the magnetic phase transition. No evidence of variation in the vacancy concentration in matching the magnetic phase transition temperature range (400–600 °C) has been found, whereas higher temperatures showed an increase in the vacancy concentration.

  20. Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25°C.

    Science.gov (United States)

    Cervenka, L; Kubínová, J; Juszczak, L; Witczak, M

    2012-02-01

    Sorption isotherms of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) root samples were obtained at 25 °C. Elecampe exhibited hysteresis loop in the range of 0.35-0.90 a(w) , whereas burdock roots showed significant differences between adsorption and desorption isotherms from 0.65 to 0.80 a(w) . Blahovec-Yanniotis was considered to give the best fit over the whole range of a(w) tested. Various parameters describing the properties of sorbed water derived from GAB, Henderson and Blahovec-Yanniotis models have been discussed. Differential scanning calorimetric method was used to measure the glass transition temperature (T (g)) of root samples in relation to water activity. The safe moisture content was determined in 12.01 and 14.96 g/100 g d. b. for burdock and elecampe root samples at 25 °C, respectively. Combining the T (g) line with sorption isotherm in one plot, it was found that the glass transition temperature concept overestimated the temperature stability for both root samples.

  1. Temperature-dependent IR-transition moment orientational analysis applied to thin supported films of poly-ε-caprolactone.

    Science.gov (United States)

    Kossack, Wilhelm; Schulz, Martha; Thurn-Albrecht, Thomas; Reinmuth, Jörg; Skokow, Viktor; Kremer, Friedrich

    2017-12-13

    A novel experimental setup is described which enables one to carry out infrared transition moment orientational analysis (IR-TMOA) depending on temperature. By this, three dimensional molecular order parameter tensors of IR-active transition dipole moments with respect to the sample coordinate system can be determined in their thermal evolution (35 °C < T < 59 °C). As an example crystallinity and macroscopic order of poly-ε-caprolcatone are monitored. Both remain largely unaltered up to T ∼ 50 °C, above which they decrease. These reductions are explained as the melting of flat-on crystalline lamellae that make up about 34% of the crystalline material. The remaining crystallites are arranged into bulk-like, confined spherulitic structures and do not melt by more than (3 ± 3)%. Therefore, flat-on oriented lamellae are supposed to be kinetically favored by confinement during melt crystallization but are thermodynamically less stable than two-dimensionally confined bulk-like spherulites.

  2. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.

    Science.gov (United States)

    Zhou, Jiadong; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Dai, Lei; Cao, Chuanxiang; Luo, Hongjie; Kanahira, Minoru; Sun, Chao; Yan, Liuming

    2013-05-28

    This paper reports the successful preparation of Mg-doped VO2 nanoparticles via hydrothermal synthesis. The metal-insulator transition temperature (T(c)) decreased by approximately 2 K per at% Mg. The Tc decreased to 54 °C with 7.0 at% dopant. The composite foils made from Mg-doped VO2 particles displayed excellent visible transmittance (up to 54.2%) and solar modulation ability (up to 10.6%). In addition, the absorption edge blue-shifted from 490 nm to 440 nm at a Mg content of 3.8 at%, representing a widened optical band gap from 2.0 eV for pure VO2 to 2.4 eV at 3.8 at% doping. As a result, the colour of the Mg-doped films was modified to increase their brightness and lighten the yellow colour over that of the undoped-VO2 film. A first principle calculation was conducted to understand how dopants affect the optical, Mott phase transition and structural properties of VO2.

  3. High transition-temperature SQUID magnetometers and practical applications

    International Nuclear Information System (INIS)

    Dantsker, E.; Lawrence Berkeley National Lab., CA

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO 3 -YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz -1/2 at 1 Hz and 8.5 fT Hz -1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz -1/2 at 1 Hz and 18 fT Hz -1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room

  4. Gifts from Exoplanetary Transits

    Science.gov (United States)

    Narita, Norio

    2009-08-01

    The discovery of transiting extrasolar planets has enabled us to do a number of interesting studies. Transit photometry reveals the radius and the orbital inclination of transiting planets, which allows us to learn the true mass and density of the respective planets by the combined information from radial velocity (RV) measurements. In addition, follow-up observations of transiting planets, looking at such things as secondary eclipses, transit timing variations, transmission spectroscopy, and the Rossiter-McLaughlin effect, provide us information about their dayside temperatures, unseen bodies in systems, planetary atmospheres, and the obliquity of planetary orbits. Such observational information, which will provide us a greater understanding of extrasolar planets, is available only for transiting planets. Here, I briefly summarize what we can learn from transiting planets and introduce previous studies.

  5. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  6. Thermal comfort in urban transitional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Chungyoon Chun [Yonsei University, Seoul (Korea). College of Human Ecology, Department of Housing and Interior Design; Tamura, A. [Yokohama National University (Japan). Department of Architecture and Building Science

    2005-05-15

    This paper deals with thermal comfort in urban transitional spaces. This topic investigates thermal comfort during walking activities through transitional spaces-urban corridors, shopping streets, and open-ended passageways. The study involves a field study and a laboratory study with a sequenced walk through an environmental control chamber. Subjects in both studies wore the same clothing ensembles, walked the same speed, and evaluated their thermal comfort at 20 designated point in the field and in specific rooms in the control chamber. Air temperature, relative humidity, and air velocity were measured concurrently as the thermal comfort votes completed. Findings revealed that the previously experienced temperatures determined thermal comfort at the following point in the sequence. Because thermal comfort at a point can be influenced widely by relative placement of temperatures in sequence, thermal comfort in transitional spaces can be adapted very widely compared to comfort inside of buildings. Thermal comfort along the experimental courses was evaluated by averaging the temperature of a course. (author)

  7. Holography and the Electroweak Phase Transition

    CERN Document Server

    Creminelli, Paolo; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo

    2002-01-01

    We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.

  8. Hadronization during quark-gluon plasma phase transition

    International Nuclear Information System (INIS)

    Mohanty, A.K.; Kataria, S.K.

    1996-01-01

    The hadron multiplicity distributions and factorial moments are studied in the framework of Landau theory of phase transitions. The factorial moments show a scaling law with a scaling exponent ν which characterizes the intermittency properties of the hadron phase for T c (or T t ) where T c (or T t ) is the transition temperature for second (or first) order transition. The scaling exponent ν is weakly dependent on the free energy parameters as well as on temperature. It is shown that ν remains practically constant in the hadron phase for which T c or T t whether the transition is second order or first order of second kind where the free energy expansion includes cubic term. This universality in the scaling exponent is also maintained above T c over a wide range of temperature even if the transition is strongly first order of first kind where the free energy expansion has only even order coefficients, except around the critical temperature T t where T t approx-gt T c . Therefore, the scaling exponent ν is rather more universal and only indicates the presence of a possible phase transition. It is further shown that the hadron multiplicity distribution is quite sensitive to the free energy parameters. The study of hadron multiplicity distribution at various resolution or bin size reveals more information about the dynamics of the phase transition. The calculated hadron multiplicity distributions are also compared with the negative binomial distribution, often used to explain the experimental multiplicity distributions. copyright 1996 The American Physical Society

  9. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala; Ockendon, John; Howell, Peter; Surovyatkina, Elena

    2013-01-01

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  10. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  11. Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.

    Science.gov (United States)

    Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan

    2017-09-28

    We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.

  12. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals.

    Science.gov (United States)

    Gupta, Jasmine; Nunes, Cletus; Jonnalagadda, Sriramakamal

    2013-11-04

    The objectives of this study were as follows: (i) To develop an in silico technique, based on molecular dynamics (MD) simulations, to predict glass transition temperatures (Tg) of amorphous pharmaceuticals. (ii) To computationally study the effect of plasticizer on Tg. (iii) To investigate the intermolecular interactions using radial distribution function (RDF). Amorphous sucrose and water were selected as the model compound and plasticizer, respectively. MD simulations were performed using COMPASS force field and isothermal-isobaric ensembles. The specific volumes of amorphous cells were computed in the temperature range of 440-265 K. The characteristic "kink" observed in volume-temperature curves, in conjunction with regression analysis, defined the Tg. The MD computed Tg values were 367 K, 352 K and 343 K for amorphous sucrose containing 0%, 3% and 5% w/w water, respectively. The MD technique thus effectively simulated the plasticization effect of water; and the corresponding Tg values were in reasonable agreement with theoretical models and literature reports. The RDF measurements revealed strong hydrogen bond interactions between sucrose hydroxyl oxygens and water oxygen. Steric effects led to weak interactions between sucrose acetal oxygens and water oxygen. MD is thus a powerful predictive tool for probing temperature and water effects on the stability of amorphous systems during drug development.

  13. High-temperature entropy of anionic model for the phase transition in SnCl2.2H2O

    International Nuclear Information System (INIS)

    Freitas, L.C. de; Salinas, S.R.

    1975-01-01

    The basic model of the phase transition in the hydrogen-bonded layered crystal SnCl 2 .2H 2 O to account for the presence of ionic defects is modified. It is easy to obtain a series expansion for the high-temperature entropy of the ionic model in terms of closed subgraphs, with vertices of degree two, of the original three-coordinated 4-8 lattice. High-temperature entropy of the ionic model is shown to be identical to the residual entropy of a simple antiferromagnetic Ising model in a 3-4-8 lattice. This latter model can be solved exact by a set of transformations which lead to a well studied Ising model in a Union Jack lattice [pt

  14. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  15. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  16. Field-induced valence transition in rare-earth system

    International Nuclear Information System (INIS)

    Chattopadhaya, A.; Ghatak, S.K.

    2000-01-01

    The magnetic field-induced valence transition in rare-earth compound has been examined based on a pseudospin S=1 Ising model proposed earlier for valence transition. The model includes finite mixing between two pertinent ionic configurations (magnetic and non-magnetic) separated by an energy gap and with intersite interaction between rare-earth ions. Using the mean field approximation the magnetic behaviour and the critical field (H c ) for transition are obtained as a function of energy gap and temperature. The phase boundary defined in terms of reduced field H c /H co and reduced temperature T/T v (T v being valence transition temperature in absence of field) is nearly independent of energy gap. These results are in qualitative agreement with experimental observation in Yb- and Eu-compounds

  17. Observation of structure transition as a function of temperature in depositing hydrogenated sp2-rich carbon films

    Science.gov (United States)

    Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2018-05-01

    In this study, we carried out the transition experiments of graphite-like (GL) to fullerene-like (FL) structures by placing high temperature steel substrates in the depositing environment which can form FL hydrogenated carbon films. We investigated the changes of bond mixtures, H content, aromatic clusters and internal stress at the transition process, and proposed the transformation mechanism inferred from Raman, TEM cross-section, FTIR and XPS results. It was found that the size of aromatic clusters and accordingly graphene planes and the formation of edge dangling bonds were the key steps. H+ bombardment leaded to the splitting of large graphene planes (at GL stage) into more and smaller planes (at FL stage) and the formation of edge dangling bonds; Some of these dangling bonds were reduced by the formation of pentagons and subsequent curving of the smaller planes, which were an indicator of FL structures.

  18. Theory of Valence Transitions in Ytterbium and Europium Intermetallics

    International Nuclear Information System (INIS)

    Zlatic, V.; Freericks, J.K.

    2001-01-01

    The exact solution of the multi-component Falicov-Kimball model in infinite-dimensions is presented and used to discuss a new fixed point of valence fluctuating intermetallics with Yb and Eu ions. In these compounds, temperature, external magnetic field, pressure, or chemical pressure induce a transition between a metallic state with the f-ions in a mixed-valent (non-magnetic) configuration and a semi-metallic state with the f-ions in an integral-valence (paramagnetic) configuration. The zero-field transition occurs at the temperature T V , while the zero-temperature transition sets in at the critical field H c . We present the thermodynamic and dynamic properties of the model for an arbitrary concentration of d- and f -electrons. For large U, we find a MI transition, triggered by the temperature or field- induced change in the f-occupancy. (author)

  19. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. MS received 9 May 2002 ... exhibit a ferroelectric–paraelectric phase transition at ele- ..... The pattern decomposition and peak extraction methods ...

  20. Revisiting the flocking transition using active spins.

    Science.gov (United States)

    Solon, A P; Tailleur, J

    2013-08-16

    We consider an active Ising model in which spins both diffuse and align on lattice in one and two dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right, which generates a flocking transition at low temperature and high density. We construct a coarse-grained description of the model that predicts this transition to be a first-order liquid-gas transition in the temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition, the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.

  1. Modeling dynamic beta-gamma polymorphic transition in Tin

    Science.gov (United States)

    Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration

    2015-06-01

    Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.

  2. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Ferreira, Fabio F.; Costa, Fanny N. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Giles, Carlos [Depto. de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  3. Application of the RKR model for evaluating the fracture toughness of pressure vessel steel in the transition temperature region

    International Nuclear Information System (INIS)

    Yang, Won Jon; Huh, Moo Young; Lee, Bong Sang; Hong, Jun Hwa

    2002-01-01

    Fracture toughness of a SA 533 B-1 steel was characterized in ductile-brittle transition temperature region by means of a RKR-type model. The original RKR model has been used to predict the plane strain fracture toughness (K IC ) behaviors in lower shelf region by assuming two material parameters, ie, the critical fracture stress and the characteristic distance. In this study, the fracture surface of every specimen was thoroughly investigated using scanning electron microscope to locate the actual cleavage initiation and to measure the cleavage initiation distance (CID) from the initial crack. The local fracture stress (σ f * ) of material was determined from the elastic-plastic stress field at the measured cleavage initiation location in the notched and precracked specimen. The local fracture stress of the precracked specimens was much higher than that of the notched specimen. The measured CIDs were strongly dependent on the test temperature and also on the fracture toughness. Based on the observations, it is found that, in the RKR-type cleavage fracture models, the characteristic distance should not be treated as a constant material parameter in the ductile-brittle transition region where the cleavage initiation controls the overall fracture process

  4. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  5. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    Science.gov (United States)

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  6. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    Science.gov (United States)

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.

  7. Glass transition of anhydrous starch by fast scanning calorimetry.

    Science.gov (United States)

    Monnier, Xavier; Maigret, Jean-Eudes; Lourdin, Denis; Saiter, Allisson

    2017-10-01

    By means of fast scanning calorimetry, the glass transition of anhydrous amorphous starch has been measured. With a scanning rate of 2000Ks -1 , thermal degradation of starch prior to the glass transition has been inhibited. To certify the glass transition measurement, structural relaxation of the glassy state has been investigated through physical aging as well as the concept of limiting fictive temperature. In both cases, characteristic enthalpy recovery peaks related to the structural relaxation of the glass have been observed. Thermal lag corrections based on the comparison of glass transition temperatures measured by means of differential and fast scanning calorimetry have been proposed. The complementary investigations give an anhydrous amorphous starch glass transition temperature of 312±7°C. This estimation correlates with previous extrapolation performed on hydrated starches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  9. Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.

    Science.gov (United States)

    Djemour, A; Sanctuary, R; Baller, J

    2015-04-07

    Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.

  10. Thermal-history dependent magnetoelastic transition in (Mn,Fe){sub 2}(P,Si)

    Energy Technology Data Exchange (ETDEWEB)

    Miao, X. F., E-mail: x.f.miao@tudelft.nl; Dijk, N. H. van; Brück, E. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Caron, L. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden (Germany); Gercsi, Z. [Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); CRANN and School of Physics, Trinity College Dublin, Dublin (Ireland); Daoud-Aladine, A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2015-07-27

    The thermal-history dependence of the magnetoelastic transition in (Mn,Fe){sub 2}(P,Si) compounds has been investigated using high-resolution neutron diffraction. As-prepared samples display a large difference in paramagnetic-ferromagnetic (PM-FM) transition temperature compared to cycled samples. The initial metastable state transforms into a lower-energy stable state when the as-prepared sample crosses the PM-FM transition for the first time. This additional transformation is irreversible around the transition temperature and increases the energy barrier which needs to be overcome through the PM-FM transition. Consequently, the transition temperature on first cooling is found to be lower than on subsequent cycles characterizing the so-called “virgin effect.” High-temperature annealing can restore the cycled sample to the high-temperature metastable state, which leads to the recovery of the virgin effect. A model is proposed to interpret the formation and recovery of the virgin effect.

  11. The transition-edge microbolometer (TREMBOL)

    International Nuclear Information System (INIS)

    Wentworth, S.M.; Neikirk, D.P.

    1990-01-01

    The TREMBOL (transition-edge microbolometer) and the composite TREMBOL are introduced as detectors for FIR imaging arrays. The TREMBOL uses a superconductor's sharp change in resistance at the normal conduction to superconduction transition. The structure of the composite TREMBOL enables heating of the individual detectors in an array up to their transition temperature, and can thus be used in multiplexing, which would be very advantageous for two-dimensional arrays. 23 refs

  12. SCK-CEN Contribution to the''Relation between different measures of exposure-induced shifts in ductile-brittle transition temperatures'' (REFEREE). Progress Report

    International Nuclear Information System (INIS)

    Chaouadi, R.; Van Walle, E.; Fabry, A.; Puzzolante, J.L.

    1998-08-01

    The relationship between Charpy-V (CVN) impact, fracture toughness and tensile properties for selected reactor pressure -vessel steels in the transition temperature range are investigated. Data on the testing of unirradiated material are reported. The applied methods include chemical analysis, Charpy-V impact testing, tensile testing and fracture toughness determination

  13. Chironomid-based reconstructions of summer air temperature from lake deposits in Lyndon Stream, New Zealand spanning the MIS 3/2 transition

    Science.gov (United States)

    Woodward, C. A.; Shulmeister, J.

    2007-01-01

    We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000-18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.

  14. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    Science.gov (United States)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  15. Displacive phase transition at the 5/3 monolayer of Pb on Ge(001)

    Science.gov (United States)

    Cvetko, D.; Ratto, F.; Cossaro, A.; Bavdek, G.; Morgante, A.; Floreano, L.

    2005-07-01

    At a coverage of 5/3 monolayer (ML), Pb adsorbed on Ge(001) forms a ground phase displaying a ((21)/(06)) symmetry. This phase undergoes two reversible phase transitions ((21)/(06))↔((21)/(03))↔(2×1) at the critical temperatures Tc1˜178K and Tc2˜375K , respectively. We investigated the behavior of the relevant order parameters at the critical temperatures by means of He and in-plane x-ray diffraction (HAS and XRD, respectively). Both phase transitions at the critical temperature put in evidence a clear order-disorder behavior, in agreement with the universality class expected for the corresponding symmetry group transformation. The low-temperature transition yields the critical exponent of the two-dimensional (2-D) Ising universality class, whereas the three-state Potts’ critical exponents are found for the high-temperature transition. By out-of-plane XRD measurements, the low-temperature phase transition is observed to be accompanied by a static surface distortion at room temperature. A complementary HAS study of the temperature evolution of the surface charge corrugation reveals that the complete ((21)/(06))↔((21)/(03)) transition is of the displacive type. On the contrary, the high-temperature phase transition does not show any change of the surface corrugation up to its irreversible decomposition, thus pointing to a pure order-disorder character.

  16. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    International Nuclear Information System (INIS)

    Petrov, E.G.; Teslenko, V.I.

    2010-01-01

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X 3 receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  17. Kinetics of quasi-isoenergetic transition processes in biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, E.G., E-mail: epetrov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street, 14-b, UA-03680 Kiev (Ukraine); Teslenko, V.I. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street, 14-b, UA-03680 Kiev (Ukraine)

    2010-10-05

    A master equation describing the evolution of averaged molecular state occupancies in molecular systems where alternation of molecular energy levels is caused by discrete dichotomous and trichotomous stochastic fields, is derived. This study is focused on the kinetics of quasi-isoenergetic transition processes in the presence of moderately high frequency stochastic field. A novel physical mechanism for temperature-independent transitions in flexible molecular systems is proposed. This mechanism becomes effective when the conformation transitions between quasi-isoenergetic molecular states take place. At room temperatures, stochastic broadening of molecular energy levels predominates the energy of low-frequency vibrations accompanying the transition. This leads to a cancellation of the temperature dependence in the stochastically averaged rate constants. As examples, physical interpretations of the temperature-independent onset of P2X{sub 3} receptor desensitization in neuronal membranes, as well as degradation of PER2 protein in embrionic fibroblasts, are provided.

  18. Magnetic-field-induced irreversible antiferromagnetic–ferromagnetic phase transition around room temperature in as-cast Sm–Co based SmCo{sub 7−x}Si{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, D.Y.; Zhao, L.Z.; Liu, Z.W., E-mail: zwliu@scut.edu.cn

    2016-04-15

    A magnetic-field-induced irreversible metamagnetic phase transition from antiferro- to ferromagnetism, which leads to an anomalous initial-magnetization curve lying outside the magnetic hysteresis loop, is reported in arc-melted SmCo{sub 7−x}Si{sub x} alloys. The transition temperatures are near room temperature, much higher than other compounds with similar initial curves. Detailed investigation shows that this phenomenon is dependent on temperature, magnetic field and Si content and shows some interesting characteristics. It is suggested that varying interactions between the Sm and Co layers in the crystal are responsible for the formation of a metastable AFM structure, which induces the anomalous phenomenon in as-cast alloys. The random occupation of 3g sites by Si and Co atoms also has an effect on this phenomenon.

  19. Molecular dynamics simulations of nucleation and phase transitions in molecular clusters of hexafluorides

    International Nuclear Information System (INIS)

    Xu, S.

    1993-01-01

    Molecular dynamics simulations of nucleation and phase transitions in TeF 6 and SeF 6 clusters containing 100-350 molecules were carried out. Simulations successfully reproduced the crystalline structures observed in electron diffraction studies of large clusters (containing about 10 4 molecules) of the same materials. When the clusters were cooled, they spontaneously underwent the same bcc the monoclinic phase transition in simulations as in experiment, despite the million-fold difference in the time scales involved. Other transitions observed included melting and freezing. Several new techniques based on molecular translation and orientation were introduced to identify different condensed phases, to study nucleation and phase transitions, and to define characteristic temperatures of transitions. The solid-state transition temperatures decreased with cluster size in the same way as did the melting temperature, in that the depression of transition temperature was inversely proportional to the cluster radius. Rotational melting temperatures, as inferred from the rotational diffusion of molecules, coincided with those of the solid-state transition. Nucleation in liquid-solid and bcc-monoclinic transitions started in the interior of clusters on cooling, and at the surface on heating. Transition temperatures on cooling were always lower than those on heating due to the barriers to nucleation. Linear growth rates of nuclei in freezing were an order of magnitude lower than those in the bcc-monoclinic transition. Revealing evidence about the molecular behavior associated with phase changes was found. Simulations showed the formation of the actual transition complexes along the transition pathway, i.e., the critical nuclei of the new phase. These nuclei, consisting of a few dozen molecules, were distinguishable in the midst of the surrounding matter

  20. Optical study of phase transitions in single-crystalline RuP

    Science.gov (United States)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  1. Pre-Service Primary Science Teachers' Understandings of the Effect of Temperature and Pressure on Solid-Liquid Phase Transition of Water

    Science.gov (United States)

    Yalcin, Fatma Aggul

    2012-01-01

    The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test…

  2. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  3. A novel approach for analyzing glass-transition temperature vs. composition patterns: application to pharmaceutical compound+polymer systems.

    Science.gov (United States)

    Kalogeras, Ioannis M

    2011-04-18

    In medicine, polymer-based materials are commonly used as excipients of poorly water-soluble drugs. The success of the encapsulation, as well as the physicochemical stability of the products, is often reflected on their glass transition temperature (T(g)) vs. composition (w) dependencies. The shape of the T(g)(w) patterns is critically influenced by polymer's molecular mass, drug molecule's shape and molecular volume, the type and degree of shielding of hydrogen-bonding capable functional groups, as well as aspects of the preparation process. By altering mixture's T(g) the amorphous solid form of the active ingredient may be retained at ambient or body temperatures, with concomitant improvements in handling, solubility, dissolution rate and oral bioavailability. Given the importance of the problem, the glass transitions observed in pharmaceutical mixtures have been extensively analyzed, aiming to appraise the state of mixing and intermolecular interactions. Here, accumulated experimental information on related systems is re-evaluated and comparably discussed under the light of a more effective and system-inclusive T(g)(w) equation. The present analysis indicates that free volume modifications and conformational changes of the macromolecular chains dominate, over enthalpic effects of mixing, in determining thermal characteristics and crystallization inhibition/retardation. Moreover, hydrogen-bonding and ion-dipole heterocontacts--although favorable of a higher degree of mixing--appear less significant compared to the steric hindrances and the antiplasticization proffered by the higher viscosity component. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  5. Size-induced effect upon the Neel temperature of the antiferro/paramagnetic transition in gadolinium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mutelet, B.; Martini, M.; Perriat, P. [Universite de Lyon, MATEIS, UMR 5510 CNRS, Villeurbanne (France); Keller, N. [Universite de Versailles-St-Quentin, GEMAC, UMR 8635 CNRS, Versailles (France); Roux, S. [Universite de Franche-Comte, UTINAM, UMR 6213 CNRS, Besanon (France); Flores-Gonzales, M.A.; Lux, F.; Tillement, O.; Billotey, C.; Janier, M. [Universite de Lyon, Universite Claude Bernard, LPCML, Villeurbanne (France); Villiers, C. [Institut Albert Bonniot, INSERM U823, La Tronche (France); Novitchi, Ghenadie; Luneau, Dominique [Universite de Lyon, Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces, Villeurbanne (France)

    2011-10-15

    In this paper, we demonstrate that cubic gadolinium oxide is paramagnetic and follows the Curie-Weiss law from 20 K to room temperature for particles size comprised between 3.5 and 60 nm. The largest particles (60 nm) possess the macroscopic behaviour of Gd oxide with a Neel temperature, T{sub N}, close to 18 K (Gd oxide is antiferromagnetic below T{sub N}, paramagnetic above). Then size-induced effects can be encountered only for particles smaller than 60 nm. We find that the finite-size scaling model used for describing the size evolution of the antiferro/paramagnetic transition is valid for sizes comprised between 3.5 and 35 nm with parameters in excellent agreement with those usually found for antiferromagnetic materials. The correlation length (3.6 nm) is of the order of magnitude of a few lattice parameters and the critical exponent {lambda} is found equal to 1.3, a value very close to that predicted by the three dimensional Heisenberg model ({lambda}=1.4). (orig.)

  6. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  7. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  8. Displacive phase transition at the 5/3 monolayer of Pb on Ge(001)

    International Nuclear Information System (INIS)

    Cvetko, D.; Ratto, F.; Cossaro, A.; Floreano, L.; Bavdek, G.; Morgante, A.

    2005-01-01

    At a coverage of 5/3 monolayer (ML), Pb adsorbed on Ge(001) forms a ground phase displaying a ((2 1/0 6)) symmetry. This phase undergoes two reversible phase transitions ((2 1/0 6))↔((2 1/0 3))↔(2x1) at the critical temperatures T c 1 ∼178 K and T c 2 ∼375 K, respectively. We investigated the behavior of the relevant order parameters at the critical temperatures by means of He and in-plane x-ray diffraction (HAS and XRD, respectively). Both phase transitions at the critical temperature put in evidence a clear order-disorder behavior, in agreement with the universality class expected for the corresponding symmetry group transformation. The low-temperature transition yields the critical exponent of the two-dimensional (2-D) Ising universality class, whereas the three-state Potts' critical exponents are found for the high-temperature transition. By out-of-plane XRD measurements, the low-temperature phase transition is observed to be accompanied by a static surface distortion at room temperature. A complementary HAS study of the temperature evolution of the surface charge corrugation reveals that the complete ((2 1/0 6))↔((2 1/0 3)) transition is of the displacive type. On the contrary, the high-temperature phase transition does not show any change of the surface corrugation up to its irreversible decomposition, thus pointing to a pure order-disorder character

  9. Sphalerons and instantons at finite temperature

    International Nuclear Information System (INIS)

    Aoyama, H.; Goldberg, H.; Ryzak, Z.

    1988-01-01

    A variational Ansatz for a solution of the Euclidean time-dependent Weinberg-Salam field equations which connects topologically distinct vacua is presented. The Ansatz allows a unified description of real-time transitions involving baryon-number nonconservation from the zero-temperature (instanton) limit up to the electroweak transition temperature

  10. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  11. Quantum Critical “Opalescence” around Metal-Insulator Transitions

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2006-08-01

    Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperatures can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenomena in two dimensions. The conventional scheme of phase transitions by Ginzburg, Landau, and Wilson is violated because of its topological nature. It offers a clear insight into the criticalities of metal-insulator transitions (MIT) associated with Mott or charge-order transitions. Fermi degeneracy involving the diverging density fluctuations generates emergent phenomena near the endpoint of the first-order MIT and must shed new light on remarkable phenomena found in correlated metals such as unconventional cuprate superconductors. It indeed accounts for the otherwise puzzling criticality of the Mott transition recently discovered in an organic conductor. We propose to accurately measure enhanced dielectric fluctuations at small wave numbers.

  12. Ideal glass transitions by random pinning

    Science.gov (United States)

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  13. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  14. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Science.gov (United States)

    Wong DeRieux, Wing-Sy; Li, Ying; Lin, Peng; Laskin, Julia; Laskin, Alexander; Bertram, Allan K.; Nizkorodov, Sergey A.; Shiraiwa, Manabu

    2018-05-01

    Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol-1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ˜ 1100 g mol-1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg/T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ˜ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon-Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon-Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2-5 orders

  15. Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process.

    Science.gov (United States)

    Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong

    2014-04-09

    On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.

  16. Ductile transition in nylon-rubber blends: influence of water

    NARCIS (Netherlands)

    Gaymans, R.J.; Borggreve, R.J.M.; Spoelstra, A.B.

    1989-01-01

    On nylon 6 and nylon 6/EPDM blends the influence of water on the glass transition temperature, mechanical properties, and the ductile transition temperature was studied. Blends of 10% and 20% were prepared with a particle size of 0.3 µm and the tensile properties, flexural moduli, torsion moduli,

  17. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  18. Phase transitions modern applications

    CERN Document Server

    Gitterman, Moshe

    2014-01-01

    This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.

  19. A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Odette, G.R.; Nanstad, R.K.; Yamamoto, T.

    2013-01-01

    This paper presents a physically-based, empirically calibrated model for estimating irradiation-induced transition temperature shifts in reactor pressure vessel steels, based on a broader database and more complete understanding of embrittlement mechanisms than was available for earlier models. Brief descriptions of the underlying radiation damage mechanisms and the database are included, but the emphasis is on the model and the quality of its fit to U.S. power reactor surveillance data. The model is compared to a random sample of surveillance data that were set aside and not used in fitting and to selected independent data from test reactor irradiations, in both cases showing good ability to predict data that were not used for calibration. The model is a good fit to the surveillance data, with no significant residual error trends for variables included in the model or additional variables that could be included

  20. Effect of Internal Pressure and Temperature on Phase Transitions in Perovskite Oxides: The Case of the Solid Oxide Fuel Cell Cathode Materials of the La2-xSrxCoTiO6 Series.

    Science.gov (United States)

    Gómez-Pérez, Alejandro; Hoelzel, Markus; Muñoz-Noval, Álvaro; García-Alvarado, Flaviano; Amador, Ulises

    2016-12-19

    The symmetry of the room-temperature (RT) structure of title compounds La 2-x Sr x CoTiO 6-δ changes with x, from P2 1 /n (0 ≤ x ≤ 0.2) to Pnma (0.3 ≤ x ≤ 0.5) and to R3̅c (0.6 ≤ x ≤ 1). For x = 1 the three pseudocubic cell parameters become very close suggesting a transition to a cubic structure for higher Sr contents. Similar phase transitions were expected to occur on heating, paralleling the effect of internal pressure induced by substitution of La 3+ by Sr 2+ . However, only some of these aforementioned transitions have been thermally induced. The symmetry-adapted modes formalism is used in the structural refinements and fitting of neutron diffraction data recorded from RT to 1273 K. Thus, for x = 1, the out-of-phase tilting of the BO 6 octahedra vanishes progressively on heating, and a cubic structure with Pm3̅m symmetry is found at 1073 K. For lower Sr contents this transition is predicted to occur far above the temperature limit of common experimental setups. The analysis of the evolution of the perovskite tolerance factor, t-factor, with both Sr content and temperature indicates that temperature has a limited ability to release structural stress and thus to enable transitions to more symmetric phases. This is particularly true when compared to the effect of internal pressure induced by substitution of La by Sr. The existence of phase transitions in materials for solid oxide fuel cells that are usually exposed to heating-cooling cycles may have a detrimental effect. This work suggests strategies to stabilize the high-symmetry high-temperature phase of perovskite oxides through internal-pressure chemically induced.

  1. Relation of ductile-to-brittle transition temperature to phosphorus grain boundary segregation for a Ti-stabilized interstitial free steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.; Weng, L.-Q.; Liu, S.-J.; Wang, K.

    2011-01-01

    Highlights: → The free energy of phosphorus grain boundary segregation in IF steel is ∼44.8 kJ/mol. → A relationship between DBTT and phosphorus segregation is established. → The DBTT increases linearly with increasing phosphorus boundary concentration. → Cold work embrittlement may be severe if the steel is annealed at relatively low temperatures. - Abstract: Equilibrium grain boundary segregation of phosphorus in a Ti-stabilized interstitial free (IF) steel is measured using Auger electron spectroscopy (AES) after the specimens are aged for adequate time at different temperatures between 600 and 850 deg. C. Based on the experimental data of equilibrium grain boundary segregation along with the McLean equilibrium segregation theory, the free energy of segregation of phosphorus is evaluated to be ∼44.8 kJ/mol, being independent of temperature. With the AES results being combined with the ductile-to-brittle transition temperatures (DBTTs) determined by impact tests, a relationship between DBTT and phosphorus boundary concentration is established. Predictions with the relationship indicate that cold work embrittlement may be severe if the steel is annealed at relatively low temperatures after cold rolling.

  2. Martensitic phase transitions in Co-0.85 at % Fe

    International Nuclear Information System (INIS)

    Prem, M.

    1997-12-01

    Co-0.85at%Fe shows the two martensitic phase transitions hcp-dhcp and dhcp-fcc. The lattice dynamics of Co-0.85at%Fe was investigated by the means of inelastic neutron scattering at a series of temperatures up to 750K in order to understand the two martensitic phase transitions of this system. In all of the measured phonon branches anomalies were neither found near the hcp-dhcp phase transition nor going through the dhcp-fcc transition. Lattice-parameter scans were performed through the whole temperature range. Diffuse neutron scattering revealed a lattice parameter shift between the dhcp and fcc phase of ∼0.4 % measured at the same temperature. This was possible because the system shows a wide temperature hysteresis at the two phase transitions. In the temperature region of coexistence of dhcp and fcc phase diffuse satellites arose near the (111)fcc Bragg peak (which is equivalent to the (00.2)dhcp peak). Their intensity varied in accordance to the volume fraction of the phases but vanished on changing wavelength. The elastic measurements were performed at the Austrian triple axis spectrometer VALSE located at the Laboratoire Leon Brillouin (LLB) in Saclay (F); the inelastic measurements were performed at the spectrometers IN3 and INS of the Institute Laue Langevin (ILL) in Grenoble (F). (author)

  3. Ferroelectric InMnO{sub 3}: Growth of single crystals, structure and high-temperature phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany); Svoboda, Ingrid; Liu, Na [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Bayarjargal, Lkhamsuren [Institut für Geowissenschaften, Goethe-Universität, Altenhöferallee 1, d-60438 Frankfurt a.M. (Germany); Irran, Elisabeth [Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin (Germany); Dietz, Christian; Stark, Robert W.; Riedel, Ralf [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Gurlo, Aleksander [Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany)

    2016-09-15

    To understand the origin of the ferroelectricity in InMnO{sub 3}, single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO{sub 3} single crystals reveal that the room-temperature state in this material is ferroelectric with P6{sub 3}cm symmetry. The polar InMnO{sub 3} specimen undergoes a reversible phase transition from non-centrosymmetric P6{sub 3}cm structure to a centrosymmetric P6{sub 3}/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments. - Graphical abstract: Piezoresponse fore microscopy (PFM) studies of high quality InMnO{sub 3} single crystal revealed that the room-temperature state of this material is ferroelectric with a clear cloverleaf pattern corresponding to six antiphase ferroelectric domains with alternating polarization ±P{sub z}. Display Omitted - Highlights: • InMnO{sub 3} single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. • The room-temperature state of InMnO{sub 3} is ferroelectric with polar P6{sub 3}cm structure. • PolarInMnO{sub 3} reversibly transforms to a centrosymmetric P6{sub 3}/mmc structure above 700 °C.

  4. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  5. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    National Research Council Canada - National Science Library

    Morrill, Jason

    2004-01-01

    A designer Quantitative Structure-Property Relationsbip (QSPR) based upon molecular properties calculated using the AM1 semi-empirical quantum mechanical metbod was developed to predict the glass transition temperature (Tg...

  6. The determination of transition probabilities with an inductively-coupled plasma discharge

    International Nuclear Information System (INIS)

    Nieuwoudt, G.

    1984-03-01

    The 27 MHz inductively-coupled plasma discharge (ICP) is used for the determination of relative transition probabilities of the 451, 459 and 470 nm argon spectral lines. The temperature of the argon plasma is determined with hydrogen as thermometric specie, because of the accurate transition probabilities ( approximately 1% uncertainty) there of. The relative transition probabilities of the specific argon spectral lines were determined by substitution of the measured spectral radiances thereof, together with the hydrogen temperature, in the two-line equation of temperature measurement

  7. Photostabilisation of the 'wood-clearcoatings' systems with UV absorbers: correlation with their effect on the glass transition temperature

    International Nuclear Information System (INIS)

    Aloui, F; Ahajji, A; Irmouli, Y; George, B; Charrier, B; Merlin, A

    2006-01-01

    In an application-oriented study, the effective transition temperature T g of organic wood-clearcoatings between a hard, glassy state and a viscoelastic and rubbery state is measured. The value of T g is important in the eventual development of cracks and a thermomechanical analysis is used to study the photostabilisation performance of some UV absorbers. A weathering exposure test suggests that certain organic UV absorbers have quite a low T g and may inhibit the crack formation, in contrast with inorganic UV absorbers

  8. Regularities of transition of steel corrosion products into aqueous medium

    International Nuclear Information System (INIS)

    Nikitin, V.I.; Gvozd', A.M.; Karpova, T.Ya.

    1981-01-01

    Effect of different factors on a degree of steel corrosion product transition to a water medium has been studied. Ratio of a specific masm qsub(c) of the corrosion products transferring to the water and a specific masm q of all the steel corrosion products produced under the given conditions was used as a criterium characterizing a degree of corrosion product transition from steel surfaces to water. The transition degree to water at a high temperature of different kind steel corrosion products differs relatively few (qsub(c)/q=0.5-0.7) in the water containing oxygen and different salts on increasing temperature, the corrosion process is characterized with continuous decrease of a relative amount of the corrosion products transferring to the medium. On the contrary, in the deaerated water the transition degree of perlite steel corrosion products to water remains constant in a wide temperature range (100-320 deg C). Besides chromium, nickel being a part of austenitic steel composition affects positively decrease of the transition degree of the corrosion products to water as well as q and qsub(c) reduction. The most difference in corrosion characteristics and the transition degree to water is observed when affecting colant steels in the low-temperature zone of the steam generator [ru

  9. Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions

    Science.gov (United States)

    de Souza, S. M.; Rojas, Onofre

    2018-01-01

    There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.

  10. Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys

    International Nuclear Information System (INIS)

    Wang, X.H.; Inoue, A.; Kong, F.L.; Zhu, S.L.; Stoica, M.; Kaban, I.; Chang, C.T.; Shalaan, E.; Al-Marzouki, F.; Eckert, J.

    2016-01-01

    We examined the influence of ejection liquid temperature (T el ) on the structure, thermal stability and crystallization of Zr−Al−Ni−Cu ribbons prepared by the melt-spinning technique. The increase in T el was found to cause the formation of an oxide phase on the ribbon surface, more loose atomic configurations, the absence of glass transition (GT) and supercooled liquid (SL) region, and the rise of crystallization temperature. The changes in the GT and SL region occur reversibly by controlling the T el . Neither the change in alloy composition except oxygen nor the difference in crystallized phases is seen. Their hardness increases significantly by the disappearance of GT and SL region. The reversible changes in the appearance and disappearance of GT and SL region was found for different Zr-based glassy ribbons, being independent of alloy compositions. The disappearance is presumably due to the change in atomic configurations from high-coordinated to less-coordinated atomic packing in the melt-spun ribbons by freezing high-temperature liquid. The observed phenomenon of the reversible changes provides a novel opportunity for deep understanding of mutual correlations among liquid structure, GT, stability of SL and bulk glass-forming ability for metallic alloys.

  11. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...... sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results...

  12. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  13. Critical temperature transitions in laser-mediated cartilage reshaping

    Science.gov (United States)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  14. Pressure-induced magnetic transition in CeP

    International Nuclear Information System (INIS)

    Naka, T.; Matsumoto, T.; Mori, N.; Okayama, Y.; Haga, Y.; Suzuki, T.

    1997-01-01

    Pressure dependence of magnetization in CeP is investigated up to 2 GPa. Multi-step transitions are induced by pressure. An antiferromagnetic transition at T N =11 K below 0.1 GPa develops into two (magnetic) transitions at T L and T H in the region of 0.1 L , T H and T d above 1.3 GPa. For decreasing temperature an abrupt increase of magnetization, M(T), has been observed below T H and a round maximum of magnetization appears at T L for P≥0.4 GPa. Above 1.3 GPa, an anomalous decrease of M(T) begins at T d =10 K. Using previously reported 31 P-NMR shift data it is shown that the pressure dependence of a characteristic temperature, which is proportional to the crystal field splitting in the paramagnetic temperature region, decreases rapidly with increasing pressure. (orig.)

  15. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    Science.gov (United States)

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  16. Hydrostatic pressure-tuned magnetostructural transition and magnetocaloric effect in Mn-Co-Ge-In compounds

    Science.gov (United States)

    Liang, F. X.; Shen, F. R.; Liu, Y.; Li, J.; Qiao, K. M.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-05-01

    Polycrystalline MnCoGe0.99In0.01 with magnetostructural transition temperature (Tmstr) around 330 K has been prepared by arc-melting technique, and the pressure-tuned magnetostructural transition as well as the magnetocaloric effect (MCE) has been investigated. The experimental results indicate that a pressure (P) smaller than 0.53 GPa can shift Tmstr to lower temperature at a considerable rate of 119 K/GPa with the coupled nature of magnetostructural transition unchanged. However, as P reaches 0.53 GPa, the martensitic structural transition temperature (TM) further shifts to 254 K while the magnetic transition temperature of austenitic phase (TCA) occurs at around 282 K, denoting the decoupling of magnetostructural transition. Further increasing P to 0.87 GPa leads the further shift of TM to a lower temperature while the TCA keeps nearly unchanged. Therefore, the entropy change (ΔS) of the MnCoGe0.99In0.01 under different magnetic fields can be tailored by adjusting the hydrostatic pressure.

  17. The hadron to quark/gluon transition

    International Nuclear Information System (INIS)

    Brown, G.E.; Bethe, H.A.; Pizzochero, P.M.

    1991-01-01

    In this paper we are concerned with the hadron to quark/gluon transition. We describe the equilibrium states of hadronic matter by a Hagedorn spectrum; introducing scaling masses, as dictated by the restoration of chiral invariance with increasing temperature, we show that in the chiral SU(2) f limit there is a maximum hadron temperature (T H ) max ≅ 128 MeV. Since the quark/gluon perturbative phase involves restoration of conformal invariance, we take the bag constant to be the conformal anomaly, i.e. the gluon condensate. The stability condition P QG > 0 for the pressure requires that there is a minimum temperature; we find (T QG ) min ≅ 172 MeV for SU(2) f . According to the simple Hagedorn model, there appears to be a region of temperature between (T H ) max and (T QG ) min in which no admissible equilibrium states exist. Since the two phases cannot exist at a common temperature, in this model there is no QCD phase transition. (orig.)

  18. Investigation of the Influence of Sucrose and Cholesterol on the Phase Transition Temperature of nanoliposomal formulation besides using particle size Reduction Techniques (Ultrasonication/High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Z Malaei-Balasi

    2017-05-01

    Full Text Available Introduction: The successful application of nanoliposoms as an effective drug delivery system depends on their stability in the medium. In this article, influence of additive materials such as cholesterol and sucrose besides two natural and synthesized phospholipids have been investigated. Methods: In the present study, designing and synthesis of nanoliposomal formulations were prepared using thin film method. This liposomal suspension was downsized by two methods, the high-pressure homogenizer and ultrasound to form small unilamellar vesicles. The size distributions, zeta potentials and phase transition temperature of formulations were all determined by a zetasizer and differential scanning calorimetry(DSC. In addition, the contribution of nanoliposomal formulation has been investigated by HPLC and FTIR methods. Results: Results of the DSC measurments indicated that incorporation of unsaturated phospholipid (SOY PC may cause phase separation with partial miscibility in the liposome bilayer containing of DPPG. The optimal nanoliposomal formulation was composed of (DPPC: CHOL: mPEG2000-DSPE with the mole percents equal to (83:15:2, respectively. In addition, sucrose has been used in the formulation with a total amounts six times greater than that of the lipids. The properties of optimized nanoliposome have been shown as the size average 104nm, zeta potential 8.04mv and phase transition temperature of lipid less than 37°C which were stable enough to be utilized for loading and releasing bioactives in body temperature. Conclusion: Finally the produced nanoliposomes were stable vesicles in the proper size, phase transition temperature and surface charge without any aggregation and fusion.

  19. The influence of the s-d(f) Coulomb interaction on the transition element compound superconductive critical temperature

    International Nuclear Information System (INIS)

    Kravtsov, V.E.; Mal'shukov, A.G.

    1978-01-01

    The influence of s-d Coulomb interaction on the superconductive critical temperature Tsub(c) of transition element compounds and their dilute alloys was investigated in the frame of Anderson model. Coulomb interaction of electrons with opposite spins on the same atom was considered in a ladder approximation valid when hybridization is sufficiently small while s-d Coulomb interaction has led to the 'parquet' summation. It is shown that s-d Coulomb interaction results in the decrease of Tsub(c) and hence the electron mechanism of superconductivity seems to be non-effective in systems under consideration. (author)

  20. Beta transition rates in hot and dense matter

    International Nuclear Information System (INIS)

    Takahashi, K.; El Eid, M.F.; Hillebrandt, W.

    1977-05-01

    Allowed and first-forbidden transition rates of β +- decays and e +- captures under stellar conditions of high temperatures and high densities are reformulated. The present paper mainly describes the formalism which is essentially based on the gross theory of nuclear β-decays, but also contains the numerical results of the transition rates of nuclei with the mass number 56. The discussion includes a short but critical review of several different approaches to the astrophysical β-transitions of nuclei as well as of the neutron and proton. Further results of the transition rates and the neutrino energy losses will soon be presented elsewhere as simple functions of temperature and density for many nuclei, together with an application to collapsing massive stars. (orig.) [de

  1. Can Holstein-Kondo lattice model be used as a candidate for the theory of high transition temperature superconductors

    Directory of Open Access Journals (Sweden)

    R Nourafkan

    2009-08-01

    Full Text Available   It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph interactions as the pairing mechanism (ARPES, and there are others which support the spin fluctuations as their pairing mechanism (tunneling spectroscopy. In this paper, we introduce the Holstein-Kondo lattice model (H-KLM which incorporates the e-ph as well as the Kondo exchange interaction. We have used the dynamical mean field theory (DMFT to describe heavy fermion semiconductors and have employed the exact-diagonalization technique to obtain our results. The phase diagram of these systems in the parameter space of the e-ph coupling, g, and the Kondo exchange coupling, J, show that the system can be found in the Kondo insulating phase, metallic phase or the bi-polaronic phase. It is shown that these systems develop both spin gap and a charge gap, which are different and possess energies in the range of 1-100 meV. In view of the fact that both spin excitation energies and phonon energies lie in this range, we expect our work on H-KLM opens a way to formalize the theory of the high transition temperature superconductors .

  2. Magnetic phase transitions and large mass enhancement in single crystal CaFe4As3

    International Nuclear Information System (INIS)

    Zhang Xiao-Dong; Wu Wei; Zheng Ping; Wang Nan-Lin; Luo Jian-Lin

    2012-01-01

    High quality single crystal CaFe 4 As 3 was grown by using the Sn flux method. Unlike layered CaFe 2 As 2 , CaFe 4 As 3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at ∼ 90 K and ∼ 27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol·K 2 , showing a heavy fermion behavior. (rapid communication)

  3. Quasi-dynamic pressure and temperature

    International Nuclear Information System (INIS)

    Zaug, J M.; Farber, D L; Blosch, L L; Craig, I M; Hansen, D W; Aracne-Ruddle, C M; Shuh, D K

    1998-01-01

    The phase transformation of(beta)-HMX ( and lt; 0.5% RDX) to the(delta) phase has been studied for over twenty years and more recently with an optically sensitive second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al.[l] in 1978. However the stability field favors the(beta) polymorph over(delta) as pressure is increased (up to 5.4 GPa) along any sensible isotherm. In this experiment strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced(beta) - and gt;(delta) transition, the pressure induced is heterogeneous in nature. The room pressure and temperature(delta) - and gt;(beta) transition is not immediate although it seems to occur over tens of hours. Transition points and kinetics are path dependent and so this paper describes our work in progress

  4. Finite-density transition line for QCD with 695 MeV dynamical fermions

    Science.gov (United States)

    Greensite, Jeff; Höllwieser, Roman

    2018-06-01

    We apply the relative weights method to SU(3) gauge theory with staggered fermions of mass 695 MeV at a set of temperatures in the range 151 ≤T ≤267 MeV , to obtain an effective Polyakov line action at each temperature. We then apply a mean field method to search for phase transitions in the effective theory at finite densities. The result is a transition line in the plane of temperature and chemical potential, with an end point at high temperature, as expected, but also a second end point at a lower temperature. We cannot rule out the possibilities that a transition line reappears at temperatures lower than the range investigated, or that the second end point is absent for light quarks.

  5. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    Science.gov (United States)

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  6. Gamma radiation and temperature influence on the chemical effect produced by isomeric transition in the telluric acid

    International Nuclear Information System (INIS)

    Muriel G, M.

    1976-01-01

    When the gamma radiation due to the isomeric transition is internally converted an autoionization is produced. For atoms with a high atomic number this autoionization can be a large one and produce a fragmentation in a molecule. In the specific case of the solid state these fragments remain trapped in different places of the crystalline system. This can be considered as chemical change in the original molecule. These damages produced by the nuclear transformation can be measured by different methods: heating, gamma rays, pressure, etc. In this work the results of an experimental measurement of the behavior of the crystalline telluric acid molecule fragments under gamma radiation (0 to 20 Mrads) with controlled temperature of 2 0 C (-196 0 C to 50 0 C) it is presented. It was observed that the values of the mentioned behavior vary rapidly at first for relatively low doses and that for larger doses these values remained constant. Besides with a lower temperature these variation are progressively lower. (author)

  7. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  8. Large adiabatic temperature change in magnetoelastic transition in Ni{sub 50}Mn{sub 35}Cr{sub 2}Sn{sub 13} Heusler alloy of granular nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, H. R.; Sharma, S. K.; Ram, S., E-mail: prakashhr73@gmail.com [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India); Chatterjee, S. [High Magnetic Field Lab, UGC-DAE Consortium of Scientific Research, Kolkata-700098 (India)

    2016-05-06

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔS{sub M←A} = 4.428 J/kg-K (ΔS{sub M→A} = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1 Oe coercivity.

  9. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    International Nuclear Information System (INIS)

    Zhang Kaicheng; Liu Guibin; Zhu Yan

    2011-01-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.

  10. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method

    International Nuclear Information System (INIS)

    Ovchinnikov, Victor; Karplus, Martin

    2014-01-01

    A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes

  11. Order-disorder transitions in C60 and C70

    International Nuclear Information System (INIS)

    Ramasesha, S.K.

    1995-01-01

    In recent years enormous effort has been put in understanding the chemical and physical properties of C 60 and C 70 . Order-disorder transition in C 60 occurs around 250 K at ambient pressure. At the transition freely rotating molecules get orientationally ordered in a simple cubic lattice. Application of pressure increases the transition temperature at a rate of ≅ 10 K kbar -1 , indicating that pressure favours the ordered state. The DSC and x-ray studies on C 70 indicate two phase transitions, one around 270 K and the other around 340 K at room pressure. These transitions also occur at higher temperatures at higher pressures. Application of pressure is found to lift the degeneracy of the energetically equivalent rotational configurations. The high pressure studies are reviewed in the light of existing literature. (author)

  12. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  13. Exotic Lifshitz transitions in topological materials

    Science.gov (United States)

    Volovik, G. E.

    2018-01-01

    Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant ( N_1, N_2, N_3, {\\tilde N}_3, etc.). The topology of the shape of Fermi surfaces and Dirac lines and the interconnection of objects of different dimensionalities produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe, and a black hole horizon serves as the surface of the Lifshitz transition between vacua with type-I and type-II Weyl points.

  14. Study of the pressure-time-temperature transformation of amorphous La6Ni5Al89 by the energy dispersive method for phase transition

    DEFF Research Database (Denmark)

    Paci, B.; Rossi-Albertini, V.; Sikorski, M.

    2005-01-01

    An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...... was measured and the curves describing the transitions, qualitatively equivalent to a differential scanning calorimetry (DSC) thermogram, could be drawn. Finally, the analysis of such curves allowed calculation of some points of the alloy pressure-time-temperature transformation (PTTT) diagram. More...... importantly, the present work shows that the DCE method can be successfully applied even when DSC can no longer be used. As a consequence, regions of the phase diagram that could not be reached up to now become accessible, opening the way to the study of transition phenomena under extreme conditions....

  15. Zanclean/Piacenzian transition on Cyprus (SE Mediterranean): calcareous nannofossil and Sea Surface Temperatures evidence of sapropel formation

    Science.gov (United States)

    Athanasiou, Maria; Triantaphyllou, Maria; Bouloubassi, Ioanna; Dimiza, Margarita; Gogou, Alexandra; Klein, Vincent; Parinos, Constantine; Theodoroyu, George

    2016-04-01

    Quantitative analyses of calcareous nannofossils in the sediments of Pissouri South section on the island of Cyprus have produced a paleoceanographic record reflecting the paleoclimatic conditions during Zanclean/Piacenzian transition. According to the performed calcareous nannofossil biostratigraphy the studied section is correlated with MNN14/15 and MNN16 calcareous nannofossil biozones and is astronomically dated between 4.065 and 3.217 Ma. Intervals of increased organic carbon content along with the positive values of Florisphaera profunda, Helicosphaera sellii, Discoaster spp. and the subsequent increase of stratification S-index correspond to the sapropel deposition during periods of wetter climate and intense continental runoff especially from the river Nile. These layers are alternating with grey marly intervals, featured by the increased values of small placoliths of Reticulofenestra and Gephyrocapsa species, which are indicative of eutrophic conditions during intense surface waters mixing. Pissouri South section comprises a SSTs sequence using alkenone unsaturation index (Uk 37) providing with the first continuous record from SE Mediterranean covering the Zanclean/Piacenzian (Pliocene) transition (~ 4.1-3.2 Ma). Correlation of the total alkenone concentration to the calcareous nannofossil assemblage and especially representatives among Noelaerhabdaceae family revealed that Pseudoemiliania lacunosa probably had similar temperature sensitivity to that of Emiliania huxleyi, currently producing alkenones in present day oceans.Our data support the prevalence of a generally warm phase characterized by the absence of high-frequency climate variations in the southeastern Mediterranean during the Zanclean/Piacenzian (Early/Late Pliocene) transition.

  16. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. (orig.)

  17. A self consistent study of the phase transition in the scalar electroweak theory at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.

    1995-01-01

    We propose the study of the phase transition in the scalar electroweak theory at finite temperature by a two-step method. It combines i) dimensional reduction to a 3-dimensional lattice theory via perturbative blockspin transformation, and ii) either further real space renormalization group transformations, or solution of gap equations, for the 3d lattice theory. A gap equation can be obtained by using the Peierls inequality to find the best quadratic approximation to the 3d action. This method avoids the lack of self consistency of the usual treatments which do not separate infrared and UV-problems by introduction of a lattice cutoff. The effective 3d lattice action could also be used in computer simulations. ((orig.))

  18. Supersymmetric phase transition in Josephson-tunnel-junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1988-08-31

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.

  19. Transitions to improved core electron heat confinement in JT-II plasmas

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Ascasibar, E.; Balbin, R.; Castejon, F.; Hidalgo, C.; Lopez-Bruna, D.; Petrov, S.

    2008-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II ECH plasmas. Transitions triggered by the rational surface n=4/m=2 show an increase in the ion temperature synchronized with the increase in the electron temperature. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition. (author)

  20. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations