WorldWideScience

Sample records for temperature transients pwr

  1. CRISTE - a subcomputer code for axial distribution, transient, of temperatures in a reactor channel of PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Roberty, N.C.; Carmo, E.G.D. do.

    1983-12-01

    The subroutine CRISTE was developed to calculate the temperature distribution for transients in a PWR coolant. The Crank-Nicholson approximation was used for the temporal discretization and a semi-analytical spatial solution was obtained. The temperature in the cladding was simulated by a routine adapted from the permanent distribution, and was used in on iterative method, following CRISTE subroutine. (E.G.) [pt

  2. Twenty-five years of transient counting experience in French PWR units

    Energy Technology Data Exchange (ETDEWEB)

    Barthelet, B. [Electricite de France (EDF DPN), 93 - Saint-Denis (France); Savoldelli, D.; Fritz, R. [Electricite de France (EDF DPN), 93 - Noisy le Grand (France)

    2001-07-01

    For nearly twenty five years, EDF has been checking that the actual operating transients are neither more severe nor more numerous than the design basis transients. This activity of transient cycle counting and bookkeeping has enabled EDF to own a database of more than 800 reactor.years for the PWR units. The current method of transient cycle counting is presented. In the paper, we will point out the main results of transient cycle counting and lessons learned. In general, the frequencies of transients are lower than the design frequencies. In few cases, they are higher, such as the transient frequencies of the RCS lines connected to auxiliary systems often due to operating procedures or particular periodic testing. Few periodic tests were not taken into account in the design basis transient file ; they have been detected thanks to the transient cycle counting. In the last 1980's, we achieved the first updating of the design basis transient file for the PWR 900 MWe series. In the early 1990's, we updated the design basis transient file of the PWR 1300 MWe series. In fact, since design and start-up, the operating conditions have been modified (fuel cycle with stretch-out, modification of the hot leg and cold leg temperatures for the PWR 1300 MWe,...). This was the cause of many unclassified transients. In the new design basis transient file, we have created new transients and increased the frequencies of some of them. This has enabled to consider the updated design basis transient file more representative of actual operating transients. For some years, we have increasingly associated the operators with the transient cycle counting concern. We noticed progress (decreased frequencies of most transients). (authors)

  3. Twenty-five years of transient counting experience in French PWR units

    International Nuclear Information System (INIS)

    Barthelet, B.; Savoldelli, D.; Fritz, R.

    2001-01-01

    For nearly twenty five years, EDF has been checking that the actual operating transients are neither more severe nor more numerous than the design basis transients. This activity of transient cycle counting and bookkeeping has enabled EDF to own a database of more than 800 reactor.years for the PWR units. The current method of transient cycle counting is presented. In the paper, we will point out the main results of transient cycle counting and lessons learned. In general, the frequencies of transients are lower than the design frequencies. In few cases, they are higher, such as the transient frequencies of the RCS lines connected to auxiliary systems often due to operating procedures or particular periodic testing. Few periodic tests were not taken into account in the design basis transient file ; they have been detected thanks to the transient cycle counting. In the last 1980's, we achieved the first updating of the design basis transient file for the PWR 900 MWe series. In the early 1990's, we updated the design basis transient file of the PWR 1300 MWe series. In fact, since design and start-up, the operating conditions have been modified (fuel cycle with stretch-out, modification of the hot leg and cold leg temperatures for the PWR 1300 MWe,...). This was the cause of many unclassified transients. In the new design basis transient file, we have created new transients and increased the frequencies of some of them. This has enabled to consider the updated design basis transient file more representative of actual operating transients. For some years, we have increasingly associated the operators with the transient cycle counting concern. We noticed progress (decreased frequencies of most transients). (authors)

  4. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  5. VALIDATION OF SIMBAT-PWR USING STANDARD CODE OF COBRA-EN ON REACTOR TRANSIENT CONDITION

    Directory of Open Access Journals (Sweden)

    Muhammad Darwis Isnaini

    2016-03-01

    Full Text Available The validation of Pressurized Water Reactor typed Nuclear Power Plant simulator developed by BATAN (SIMBAT-PWR using standard code of COBRA-EN on reactor transient condition has been done. The development of SIMBAT-PWR has accomplished several neutronics and thermal-hydraulic calculation modules. Therefore, the validation of the simulator is needed, especially in transient reactor operation condition. The research purpose is for characterizing the thermal-hydraulic parameters of PWR1000 core, which be able to be applied or as a comparison in developing the SIMBAT-PWR. The validation involves the calculation of the thermal-hydraulic parameters using COBRA-EN code. Furthermore, the calculation schemes are based on COBRA-EN with fixed material properties and dynamic properties that calculated by MATPRO subroutine (COBRA-EN+MATPRO for reactor condition of startup, power rise and power fluctuation from nominal to over power. The comparison of the temperature distribution at nominal 100% power shows that the fuel centerline temperature calculated by SIMBAT-PWR has 8.76% higher result than COBRA-EN result and 7.70% lower result than COBRA-EN+MATPRO. In general, SIMBAT-PWR calculation results on fuel temperature distribution are mostly between COBRA-EN and COBRA-EN+MATPRO results. The deviations of the fuel centerline, fuel surface, inner and outer cladding as well as coolant bulk temperature in the SIMBAT-PWR and the COBRA-EN calculation, are due to the value difference of the gap heat transfer coefficient and the cladding thermal conductivity.

  6. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  7. An analysis of transients in the PWR downcomer

    International Nuclear Information System (INIS)

    Jovanovic, A.

    1981-01-01

    The paper deals with the problem of determining non-stationary temperature field in the downcomer of a PWR type reactor. For this purpose, an analytical model has been developed. The model covers five components of (PWR - Krsko) downcomer: the core-barrel, floor between the core-barrel and the thermal shield, the thermal shield, flow between the thermal shield and the reactor vessel wall, the reactor vessel wall. The model includes internal heat generation in metal structures. The governing equations of the model have been written in the finite difference explicit form. The system of resulting algebraic equations was solved bu Gauss-Seidel method, using a modular computer code. Several characteristic transients were examined (step and continuous change of fluid temperature at the inlet nozzle). Also, an analysis of main parameters (heat transfer coefficient and flow rate) has been performed. The model is intended to be used as basics for further development of a more realistic model that could be used for practical safety analysis. (author)

  8. PWR plant transient analyses using TRAC-PF1

    International Nuclear Information System (INIS)

    Ireland, J.R.; Boyack, B.E.

    1984-01-01

    This paper describes some of the pressurized water reactor (PWR) transient analyses performed at Los Alamos for the US Nuclear Regulatory Commission using the Transient Reactor Analysis Code (TRAC-PF1). Many of the transient analyses performed directly address current PWR safety issues. Included in this paper are examples of two safety issues addressed by TRAC-PF1. These examples are pressurized thermal shock (PTS) and feed-and-bleed cooling for Oconee-1. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to models of the plant integrated control systems. The results of these analyses show that for these two transients, the reactor cores remained covered and cooled at all times posing no real threat to the reactor system nor to the public

  9. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  10. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  11. Study of anticipated transient without scram for PWR

    International Nuclear Information System (INIS)

    Pu Jilong.

    1985-01-01

    Anticipated Transient Without Scram (ATWS) of PWR, the one of the 'Unresolved Safety Issue' with NRC, has been investigated for many years. The latest analysis done by the author considers the PWR's inherent stability and long-term performence under the condition of ATWS combined with SBLOCA and studies the sensitivity of several assumptions, which shows positive results

  12. Transient performance of flow in PWR reactor circuits

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.; Carajilescov, P.

    1988-12-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  13. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.

    1980-01-01

    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  14. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Eneida Regina G. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cotta, Renato M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Mecanica; Jian, Su, E-mail: eneidadourado@gmail.com, E-mail: sujian@nuclear.ufrj.br, E-mail: cotta@mecanica.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  15. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    International Nuclear Information System (INIS)

    Dourado, Eneida Regina G.; Cotta, Renato M.; Jian, Su

    2017-01-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  16. Pressure-temperature response of a full-pressure PWR containment to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Misak, J.

    1976-01-01

    A mathematical model and computer code TRACO III for pressure-temperature transients in the full-pressure containment of PWR during LOCA is described. Main attention is devoted to the analysis of parametric calculations with respect to the estimation of effect of various factors on the transient process and to the comparison of the theoretical and the experimental results on CVTR. (author)

  17. Validation of the probabilistic approach for the analysis of PWR transients

    International Nuclear Information System (INIS)

    Amesz, J.; Francocci, G.F.; Clarotti, C.

    1978-01-01

    This paper reviews the pilot study at present being carried out on the validation of probabilistic methodology with real data coming from the operational records of the PWR power station at Obrigheim (KWO, Germany) operating since 1969. The aim of this analysis is to validate the a priori predictions of reactor transients performed by a probabilistic methodology, with the posteriori analysis of transients that actually occurred at a power station. Two levels of validation have been distinguished: (a) validation of the rate of occurrence of initiating events; (b) validation of the transient-parameter amplitude (i.e., overpressure) caused by the above mentioned initiating events. The paper describes the a priori calculations performed using a fault-tree analysis by means of a probabilistic code (SALP 3) and event-trees coupled with a PWR system deterministic computer code (LOOP 7). Finally the principle results of these analyses are presented and critically reviewed

  18. Transient study of a PWR pressurizer

    International Nuclear Information System (INIS)

    Sotoma, H.

    1973-01-01

    An appropriate method for the calculation and transient performance of the pressurizer of a pressurized water reactor is presented. The study shows a digital program of simulation of pressurizer dynamics based on the First Law of Thermodynamic and Laws of Heat and Mass Transfer. The importance of the digital program that was written for a pressurizer of PWR, lies in the fact that, this can be of practical use in the safety analysis of a reactor of Angra dos Reis type with a power of about 500 M We. (author)

  19. PWR station blackout transient simulation in the INER integral system test facility

    International Nuclear Information System (INIS)

    Liu, T.J.; Lee, C.H.; Hong, W.T.; Chang, Y.H.

    2004-01-01

    Station blackout transient (or TMLB' scenario) in a pressurized water reactor (PWR) was simulated using the INER Integral System Test Facility (IIST) which is a 1/400 volumetrically-scaled reduce-height and reduce-pressure (RHRP) simulator of a Westinghouse three-loop PWR. Long-term thermal-hydraulic responses including the secondary boil-off and the subsequent primary saturation, pressurization and core uncovery were simulated based on the assumptions of no offsite and onsite power, feedwater and operator actions. The results indicate that two-phase discharge is the major depletion mode since it covers 81.3% of the total amount of the coolant inventory loss. The primary coolant inventory has experienced significant re-distribution during a station blackout transient. The decided parameter to avoid the core overheating is not the total amount of the coolant inventory remained in the primary core cooling system but only the part of coolant left in the pressure vessel. The sequence of significant events during transient for the IIST were also compared with those of the ROSA-IV large-scale test facility (LSTF), which is a 1/48 volumetrically-scaled full-height and full-pressure (FHFP) simulator of a PWR. The comparison indicates that the sequence and timing of these events during TMLB' transient studied in the RHRP IIST facility are generally consistent with those of the FHFP LSTF. (author)

  20. Transient performance of flow in circuits of PWR type reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.; Carajilescov, P.

    1988-09-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which could cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  1. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  2. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  3. Mathematical modelling of plant transients in the PWR for simulator purposes

    International Nuclear Information System (INIS)

    Hartel, K.

    1984-01-01

    This chapter presents the results of the testing of anticipated and abnormal plant transients in pressurized water reactors (PWRs) of the type WWER 440 by means of the numerical simulation of 32 different, stationary and nonstationary, operational regimes. Topics considered include the formation of the PWR mathematical model, the physical approximation of the reactor core, the structure of the reactor core model, a mathematical approximation of the reactor model, the selection of numerical methods, and a computerized simulation system. The necessity of a PWR simulator in Czechoslovakia is justified by the present status and the outlook for the further development of the Czechoslovak nuclear power complex

  4. Transient analysis of multifailure conditions by using PWR plant simulator

    International Nuclear Information System (INIS)

    Morisaki, Hidetoshi; Yokobayashi, Masao.

    1984-11-01

    This report describes results of the analysis of abnormal transients caused by multifailures using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at the end of life. Various malfunctions to simulate abnormal conditions caused by equipment failures are provided. In this report, features of abnormal transients caused by concurrence of malfunctions are discussed. The abnormal conditions studied are leak of primary coolant, loss of charging and feedwater flows, and control systems failure. From the results, it was observed that transient responses caused by some of the malfunctions are almost same as the addition of behaviors caused by each single malfunction. Therefore, it can be said that kinds of malfunctions which are concurrent may be estimated from transient characteristics of each single malfunction. (author)

  5. PWR [pressurized water reactor] pressurizer transient response: Final report

    International Nuclear Information System (INIS)

    Murphy, S.I.

    1987-08-01

    To predict PWR pressurizer transients, Ahl proposed a three region model with a universal coefficient to represent condensation on the water surface. Specifically, this work checks the need for three regions and the modeling of the interfacial condensation coefficient. A computer model has been formulated using the basic mass and energy conservation laws. A two region vapor and liquid model was first used to predict transients run on a one-eleventh scale Freon pressurizer. These predictions verified the need for a second liquid region. As a result, a three region model was developed and used to predict full-scale pressurizer transients at TMI-2, Shippingport, and Stade. Full-scale pressurizer predictions verified the three region model and pointed out the shortcomings of Ahl's universal condensation coefficient. In addition, experiments were run using water at low pressure to study interface condensation. These experiments showed interface condensation to be significant only when spray flow is turned on; this result was incorporated in the final three region model

  6. Abnormal transient analysis by using PWR plant simulator, (2)

    International Nuclear Information System (INIS)

    Naitoh, Akira; Murakami, Yoshimitsu; Yokobayashi, Masao.

    1983-06-01

    This report describes results of abnormal transient analysis by using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at EOL. In the simulator, malfunctions are provided for abnormal conditions of equipment failures, and in this report, 17 malfunctions for secondary system and 4 malfunctions for nuclear instrumentation systems were simulated. The abnormal conditions are turbine and generator trip, failure of condenser, feedwater system and valve and detector failures of pressure and water level. Fathermore, failure of nuclear instrumentations are involved such as source range channel, intermediate range channel and audio counter. Transient behaviors caused by added malfunctions were reasonable and detail information of dynamic characteristics for turbine-condenser system were obtained. (author)

  7. PRETTA:A COMPUTER PROGRAM FOR PWR PRESSURIZER’S TRANSIENT THERMODYNAMICS

    Institute of Scientific and Technical Information of China (English)

    阿谢德; 徐济鋆

    2001-01-01

    A computer program PRETTA “Pressurizer Transient Thermodynamics Analysis” was developed for the prediction of pressurizer under transient conditions. It is based on the solution of the conservation laws of heat and mass applied to the three separate and non equilibrium thermodynamic regions. In the program all of the important thermal-hydraulics phenomena occurring in the pressurizer: stratification of the hot water and incoming cold water, bulk flashing and condensation, wall condensation, and interfacial heat and mass transfer have been considered. The bubble rising and rain-out models are developed to describe bulk flashing and condensation, respectively. To obtain the wall condensation rate, a one-dimensional heat conduction equation is solved by the pivoting method. The presented computer program will predict the pressure-time behavior of a PWR pressurizer during a variety of transients. The results obtained from the proposed mathematical model are in good agreement with available data on the CHASHMA nuclear power plant's pressurizer performance.

  8. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  9. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  10. Sample problem calculations related to two-phase flow transients in a PWR relief-piping network

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1981-03-01

    Two sample problems related with the fast transients of water/steam flow in the relief line of a PWR pressurizer were calculated with a network-flow analysis computer code STAC (System Transient-Flow Analysis Code). The sample problems were supplied by EPRI and are designed to test computer codes or computational methods to determine whether they have the basic capability to handle the important flow features present in a typical relief line of a PWR pressurizer. It was found necessary to implement into the STAC code a number of additional boundary conditions in order to calculate the sample problems. This includes the dynamics of the fluid interface that is treated as a moving boundary. This report describes the methodologies adopted for handling the newly implemented boundary conditions and the computational results of the two sample problems. In order to demonstrate the accuracies achieved in the STAC code results, analytical solutions are also obtained and used as a basis for comparison

  11. Transient thermal-hydraulic characteristics analysis software for PWR nuclear power systems

    International Nuclear Information System (INIS)

    Wu Yingwei; Zhuang Chengjun; Su Guanghui; Qiu Suizheng

    2010-01-01

    A point reactor neutron kinetics model, a two-phase drift-flow U-tube steam generator model, an advanced non-equilibrium three regions pressurizer model, and a passive emergency core decay heat-removed system model are adopted in the paper to develop the computerized analysis code for PWR transient thermal-hydraulic characteristics, by Compaq Visual Fortran 6.0 language. Visual input, real-time processing and dynamic visualization output are achieved by Microsoft Visual Studio. NET language. The reliability verification of the soft has been conducted by RELAP 5, and the verification results show that the software is with high calculation precision, high calculation speed, modern interface, luxuriant functions and strong operability. The software was applied to calculate the transient accident conditions for QSNP, and the analysis results are significant to the practical engineering applications. (authors)

  12. Neutronal aspects of PWR control for transient load following

    International Nuclear Information System (INIS)

    Cossic, A.

    1985-01-01

    The purpose of this thesis is to qualify the CRONOS diffusion code on a load transient in grey mode control. First of all, we have established a general axial calculational model and studied the important physical phenomena: xenon oscillation, grey rods absorption, radial leaks modelling, effect of the initial conditions in Iodine and Xenon. In a second stage, a three dimensional calculation has been performed, the results of which have been compared to a PWR 900 TRICASTIN 3 experiment and have been in good agreement. In the last part, we show that the results of the axial model using one-dimensional CRONOS calculations are quite consistent with the three-dimensional calculation [fr

  13. Assessment of the TASS 1-D neutronics model for the westinghouse and ABB-CE type PWR reactivity induced transients

    International Nuclear Information System (INIS)

    Choi, J.D.; Yoon, H.Y.; Um, K.S.; Kim, H.C.; Sim, S.K.

    1997-01-01

    Best estimate transient analysis code, TASS, has been developed for the normal and transient simulation of the Westinghouse and ABB-CE type PWRs. TASS thermal hydraulic model is based on the non-homogeneous, non-equilibrium two-phase continuity, energy and mixture momentum equations with constitutive relations for closure. Core neutronics model employs both the point kinetics and one-dimensional neutron diffusion model. Semi-implicit numerical scheme is used to solve the discretized finite difference equations. TASS one dimensional neutronics core model has been assessed through the reactivity induced transient analyses for the KORI-3, three loop Westinghouse PWR, and Younggwang-3 (YGN-3), two-loop ABB-CE PWR, nuclear power plants currently operating in Korea. The assessment showed that the TASS one dimensional neutronics core model can be applied for the Westinghouse and ABB-CE type PWRs to gain thermal margin which is necessary for a potential use of the high fuel burnup, extended fuel cycle, power upgrading and for the plant life extension

  14. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  15. Consideration of loading conditions initiated by thermal transients in PWR pressure vessels

    International Nuclear Information System (INIS)

    Azodi; Glahn; Kersting; Schulz; Jansky.

    1983-01-01

    This report describes the present state of PWR-plants in the Federal Republic of Germany with respect to - the design of the primary pressure boundary - the analysis of thermal transients and resulting loads - the material conditions and neutron fluence - the requirements for protection against fast fracture. The experimental and analytical research and development programs are delineated together with some foreign R and D programs. It is shown that the parameters investigated (loading condition, crack shape and orientation etc.) cover a broad range. Extensive analytical investigations are emphasized. (orig./RW) [de

  16. Analysis of a control rod ejection transient in a mox-fuelled PWR

    International Nuclear Information System (INIS)

    Lenain, R.; Mathonniere, G.; Perrutel, J.P.; Schaeffer, H.; Stelletta, S.; Lam Hime, M.

    1988-09-01

    The decision to use mixed-oxide (MOX) fuel in PWR's involved re-investigation of a certain number of accidents and notably control rod ejection transients. It has thus been shown that this accident would be no more severe than in the case of all-uranium cores, since the positive effects on the ejected rod worth would counterbalance the negative effects on the delayed neutron fraction. A new approach to the kinetics aspect of the calculation method for this accident is also presented, involving a 3-D kinetic calculation with only a few axial meshes

  17. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Shih, Chunkuan [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Lin, Hao-Tzu [Atomic Energy Council, Taiwan (China). Inst. of Nuclear Energy Research

    2013-07-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  18. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    International Nuclear Information System (INIS)

    Chen, Che-Hao; Shih, Chunkuan; Wang, Jong-Rong; Lin, Hao-Tzu

    2013-01-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  19. The KINA neutronic module of the LEGO code for steady-state and transient PWR plant simulations

    International Nuclear Information System (INIS)

    Nicolopoulos, D.; Pollacchini, L.; Vimercati, G.; Spelta, S.

    1989-01-01

    The Automation Research Center (CRA) of ENEl has implemented some models for analyzing both incidental and operational transients in PWR power plants. For such models an axial neutron kinetics module characterized by high computational efficency with adequate results accuracy was called for. CISE has been entrusted with the task of implementing such a module named KINA and based on IQS (Improved Quasi Static) method, to be included in the library of LEGO modular code used by CRA to set up PWR power models. Moreover, The KINA module has been adapted to the neutron constants computing model developed by the EdF-SEPTEN, which has been using and improving the LEGO code for a long time in cooperation with ENEL-CRA. In this paper, after some remarks on the LEGO code, a general description of KINA neutronic module is given. The resylts of a preliminary validation activity of KINA for an EdF 1300 MWe PWR plant are also presented

  20. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  1. SARDAN- A program for the transients simulation in a typical PWR plant

    International Nuclear Information System (INIS)

    Mattos Santos, R.L.P. de.

    1979-10-01

    A program in FORTRAN-IV language was developed that simulates the behaviour of the primary circuit in a typical PWR plant during condition II transients, in particular uncontrolled withdrawal of a control rod set, control rod set drops and uncontrolled boron dilution. It the mathematical model adopted the reactor core, the hot piping to which a pressurizer is coupled, the steam generator and the cold piping are considered. The results obtained in the analysis of the mentioned accidents are compared to those present at the Final Safety Analysis Report (FSAR) of the Angra-1 reactor and are considered satisfactory. (F.E.) [pt

  2. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang

    1987-12-01

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  3. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients

  4. Effects of generation and optimization of libraries of effective sections in the analysis of transient in PWR reactors; Efectos de generacion y optimizacion de librerias de secciones eficaces en el analisis de transitorios en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cervera, S.; Garcia Herranz, N.; Cuervo, D.; Ahnert, C.

    2014-07-01

    In this paper evaluates the impact that has a certain mesh on a transient in a PWR reactor in the expulsion of a control bar. Have been used for this purpose the coupled codes neutronic and Thermo-hydraulic COBAYA3/COBRA-TF. This objective has been chosen the OECD/NEA PWR MOX/UO{sub 2} rod ejection transient benchmark provides isotopic compositions and defined geometric configurations that allow the use of codes lattice to generate own bookstores. The code used for this transport has been the code APOLLO2.8. The results show large discrepancies when using the benchmark library or libraries own by comparing them to the other participants solutions. The source of these discrepancies is the nodal effective sections provided in the benchmark. (Author)

  5. Experimental study of effect of initial clad temperature on reflood phenomena during PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1983-01-01

    Integral system tests with the Cylindrical Core Test Facility (CCTF) were performed to investigate the effect of the initial clad temperature on the reflood phenomena in a PWR-LOCA. The initial peak clad temperatures in these three tests were 871, 968 and 1,047K, respectively. The feedback of the system on the core inlet mass flow rate was estimated to be little influenced by the variation of the initial clad temperature except for the first 20s in the transient. The observed temperature rise from the reflood initiation was lower with the higher initial clad temperature. This qualitatively agreed with the results of the small scale forced feed reflood experiments. However, the magnitude of the temperature rise in CCTF was significantly low due to the high initial core inlet mass flow rate. Also observed were the multi-dimensional thermal behaviors for the three cases in the CCTF wide core. The analysis codes REFLA and TRAC reasonably predicted the effect of the initial clad temperature on the core thermo-hydraulics under the simulated core inlet flow conditions. However, the calculated temperature rise of the maximum powered rod based on the one-dimensional core analysis was higher than that of the average powered rod, which contradicts the tendency observed in CCTF tests. (author)

  6. PANTHER solution to the NEA-NSC 3-D PWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1994-10-01

    This report contains the results of PANTHER calculations for the ``NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power``. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.).

  7. PANTHER solution to the NEA-NSC 3-D PWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1994-10-01

    This report contains the results of PANTHER calculations for the ''NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power''. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.)

  8. Improvements to the transient solution in the PANTHER space-time code

    International Nuclear Information System (INIS)

    Kutt, P.K.; Knight, M.P.

    1993-01-01

    The three dimensional, two-group, nodal diffusion code PANTHER has been developed for the analysis of almost all thermal reactor types [pressurized water reactor (PWR), boiling water reactor, VVER, RBMK, advanced gas-cooled reactor, MAGNOX]. It can perform a comprehensive range of calculations for fuel management, operational support including on-line application, and transient analysis. Transient results for a number of light water reactor (LWR) benchmark problems have been reported previously. This paper outlines some recent developments of the transient solution in PANTHER, showing results for two LWR benchmark problems. Recently, PANTHER results have been accepted as the reference solutions for a Nuclear Energy Agency Committee on Reactor Physics (NEACRP) rod ejection benchmark Unlike previous simplified rod ejection benchmarks, it represents a real PWR with a detailed thermal model and cross sections dependent on boron, fuel temperature, and water density and temperature. This reference solution was computed with fine time steps

  9. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  10. A neural networks based ``trip`` analysis system for PWR-type reactors; Um sistema de analise de ``trip`` em reatores PWR usando redes neuronais

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    1993-12-31

    The analysis short after automatic shutdown (trip) of a PWR-type nuclear reactor takes a considerable amount of time, not only because of the great number of variables involved in transients, but also the various equipment that compose a reactor of this kind. On the other hand, the transients`inter-relationship, intended to the detection of the type of the accident is an arduous task, since some of these accidents (like loss of FEEDWATER and station BLACKOUT, for example), generate transients similar in behavior (as cold leg temperature and steam generators mixture levels, for example). Also, the sequence-of-events analysis is not always sufficient for correctly pin point the causes of the trip. (author) 11 refs., 39 figs.

  11. A neural networks based ``trip`` analysis system for PWR-type reactors; Um sistema de analise de ``trip`` em reatores PWR usando redes neuronais

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    1994-12-31

    The analysis short after automatic shutdown (trip) of a PWR-type nuclear reactor takes a considerable amount of time, not only because of the great number of variables involved in transients, but also the various equipment that compose a reactor of this kind. On the other hand, the transients`inter-relationship, intended to the detection of the type of the accident is an arduous task, since some of these accidents (like loss of FEEDWATER and station BLACKOUT, for example), generate transients similar in behavior (as cold leg temperature and steam generators mixture levels, for example). Also, the sequence-of-events analysis is not always sufficient for correctly pin point the causes of the trip. (author) 11 refs., 39 figs.

  12. Prevention against fragile fracture in PWR pressure vessel in the presence of pressurized thermal shock

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Oliveira, L.F.S. de; Roberty, N.C.

    1984-01-01

    A method for the determination of operational limit curves (primary pressure versus temperature) for PWR is presented. Such curves give the operators indications related to the safety status of the plant concerning the possibility of a pressurized thermal shock. The method begins by a thermal analysis for several postulated transients, followed by the determination of the thermomechanical stresses in the vessel and finally it makes use of the linear elasticity fracture mechanics. Curves are shown for a typical PWR. (Author) [pt

  13. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  14. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, J R [comp.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs.

  15. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs

  16. Fatigue analysis of a PWR steam generator tube sheet

    International Nuclear Information System (INIS)

    Billon, F.; Buchalet, C.; Poudroux, G.

    1985-01-01

    The fatigue analysis of a PWR steam generator (S.G) tube sheet is threefold. First, the flow, pressure and temperature variations during the design transients are defined for both the primary fluid and the normal and auxiliary feedwater. Second, the flow, velocities, pressure and temperature variations of the secondary fluid at the bottom of the downcomer and above the tube sheet are determined for the transients considered. Finally, the corresponding temperatures and stresses in the tube sheet are calculated and the usage factors determined at various locations in the tube sheet. The currently available standard design transients for the primary fluid and the feedwater are too conservative to be utilized as such in the fatigue analysis of the S.G. tube sheets. Thus, a detailed examination and reappraisal of each operating transient was performed. The revised design conditions are used as inputs to the calculation model TEMPTRON. TEMPTRON determines the mixing conditions between the feedwater and the recirculation fluid from the S.G. feedwater nozzles to the center of the tube sheet via the downcomer. The fluid parameters, flow rate and velocity, temperature and pressure variations, as a function of the time during the transients are obtained. Finally, the usage factors at various locations on the tube sheet are derived using the standard ASME section III method

  17. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  18. Summary of transient analysis

    International Nuclear Information System (INIS)

    Saha, P.

    1984-01-01

    This chapter reviews the papers on the pressurized water reactor (PWR) and boiling water reactor (BWR) transient analyses given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Most of the papers were based on the systems calculations performed using the TRAC-PWR, RELAP5 and RETRAN codes. The status of the nuclear industry in the code applications area is discussed. It is concluded that even though comprehensive computer codes are available for plant transient analysis, there is still a need to exercise engineering judgment, simpler tools and even hand calculations to supplement these codes

  19. Verification of NUREC Code Transient Calculation Capability Using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Lee, Hyung Chul; Yoo, Jae Woon

    2006-01-01

    In this report, we verified the NUREC code transient calculation capability using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem. The benchmark problem consists of Part 1, a 2-D problem with given T/H conditions, Part 2, a 3-D problem at HFP condition, Part 3, a 3-D problem at HZP condition, and Part 4, a transient state initiated by a control rod ejection at HZP condition in Part 3. In Part 1, the results of NUREC code agreed well with the reference solution obtained from DeCART calculation except for the pin power distributions at the rodded assemblies. In Part 2, the results of NUREC code agreed well with the reference DeCART solutions. In Part 3, some results of NUREC code such as critical boron concentration and core averaged delayed neutron fraction agreed well with the reference PARCS 2G solutions. But the error of the assembly power at the core center was quite large. The pin power errors of NUREC code at the rodded assemblies was much smaller the those of PARCS code. The axial power distribution also agreed well with the reference solution. In Part 4, the results of NUREC code agreed well with those of PARCS 2G code which was taken as the reference solution. From the above results we can conclude that the results of NUREC code for steady states and transient states of the MOX loaded LWR core agree well with those of the other codes

  20. Fatigue life evaluation method of austenitic stainless steel in PWR water

    International Nuclear Information System (INIS)

    Sakaguchi, Katsumi; Nomura, Yuichiro; Suzuki, Shigeki; Kanasaki, Hiroshi; Higuchi, Makoto

    2006-09-01

    It is known that the fatigue life in elevated temperature water is substantially reduced compared with that in the air. The fatigue life reduction has been investigated experimentally in EFT project of Japan Nuclear Energy Safety Organization (JNES) to evaluate the environmental effect on fatigue life. Many tests have been done for carbon, low alloy, stainless steels and nickel-based alloy under the various conditions. In this paper, the results of the stainless steel in simulated PWR water environments were reported. Fatigue life tests in simulated PWR environments were carried out and the effect of key parameters on fatigue life reduction was examined. The materials used in this study were base and weld metal of austenitic stainless steel SS316, weld metal of SS304 and the base and aged metal of the duplex stainless steel SCS14A. In order to evaluate the effects of stain amplitude, strain rate, strain ratio, temperature, aging, water flow rate and strain holding time, many fatigue tests were examined. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm the applicability of modified rate approach method together with cumulative usage factor, fatigue tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which strain rate changes in response to temperature in a simulated PWR water environment. Consequently, fatigue life could be evaluated with an accuracy of factor of 3

  1. THYDE-P, PWR LOCA Thermohydraulic Transient Analysis

    International Nuclear Information System (INIS)

    Asahi, Yoshiro

    2001-01-01

    1 - Description of problem or function: THYDE-P1 analyzes the behaviour of LWR plants in response to various disturbances, including the thermal hydraulic transient following a break of the primary coolant pipe system, generally referred to as a loss-of-coolant-accident (LOCA). LOCA can be considered as the most critical condition for testing the methods and models for plant dynamics, since thermal hydraulic conditions in the system change drastically during the transient. THYDE-P is capable of a complete LOCA calculation from start to complete reflooding of the core by subcooled water. The program performs steady-state adjustment, which is complete in the sense that the steady state obtained is a set of exact solutions of all the transient equations without time derivatives, not only for plant hydraulics but also for all the other phenomena in the simulation of a PWR plant. THYDE-P2 contains among others the following improvements over THYDE-P1: (1) not only the mass and momentum equations but also the energy equation are included in the non-linear implicit scheme; (2) the valve model is implemented; (3) the relaxation equation for void fraction is theoretically derived; (4) vectorized programming is implemented; (5) both EM (evaluation mode) and BE (best estimate) calculations are possible. THYDE-W is an improved version of THYDE-P2 and contains the following additional features: (a) analysis of multiple number of disjoint loops is possible; (b) a control system simulation model is included; (c) the trip model has been improved; (d) heavy water is allowed as coolant; (e) the effect of drift flux is accounted for in the steady state calculation; (f) boron transport is included; (g) to obtain steady state loop heat balance, the option of adjusting the enthalpy distribution is prepared included in addition to that of adjusting heat exchanger areas; (h) to obtain steady state pressure distribution, three other options are prepared in addition to the original ones

  2. Structural evaluation of electrosleeved tubes under severe accident transients

    International Nuclear Information System (INIS)

    Majumdar, S.

    1999-01-01

    A flow stress model was developed for predicting failure of Electrosleeved PWR steam generator tubing under severe accident transients. The Electrosleeve, which is nanocrystalline pure nickel, loses its strength at temperatures greater than 400 C during severe accidents because of grain growth. A grain growth model and the Hall-Petch relationship were used to calculate the loss of flow stress as a function of time and temperature during the accident. Available tensile test data as well as high temperature failure tests on notched Electrosleeved tube specimens were used to derive the basic parameters of the failure model. The model was used to predict the failure temperatures of Electrosleeved tubes with axial cracks in the parent tube during postulated severe accident transients

  3. Pitot tube and drag body measurements in transient steam--water flows

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.; Dacus, M.W.

    1979-01-01

    The use of full-flow drag devices and rakes of water-cooled Pitot tubes to measure the transient two-phase mass flow during loss-of-coolant experiments in pressurized water reactor (PWR) environments has been developed. Mass flow rate measurements have been obtained in high temperature and pressure environments, similar to PWRs, under transient conditions. Comparisons of the measured time integrated value of mass flow to the known system mass before depressurization are made

  4. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.; Fero, A.; Snyder, M.

    2004-01-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR

  5. Behavior of four PWR rods subjected to a simulated loss-of-coolant accient in the power burst facility

    International Nuclear Information System (INIS)

    Cook, T.F.; Hagrman, D.L.; Sepold, L.K.

    1978-01-01

    Cladding deformation characteristics resulting from the first nuclear blowdown tests (LOC-11) conducted in the Power Burst Facility (PBF) are emphasized in this paper. The objective of the LOC-11 tests was to obtain data on the thermal, mechanical, and materials behavior of pressurized and unpressurized fuel rods when exposed to a blowdown similiar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. The test hardware consisted of four separately shrouded fresh fuel rods of PWR 15 x 15 design. Initial plenum pressures ranged from atmospheric to 4.8 MPa (representative of end-of-life). During LOC-11C, the four fuel rods were subjected to 6.5 hours of nuclear operation at approximately 67 kW/m average rod power to cause decay heat build-up. Just before the start of blowdown, cladding surface temperatures were about 620 K and fuel centerline temperatures were in the 2500 to 2600 K range. During the 30-second blowdown transient, CHF occurred 2 seconds after initiation. Fuel centerline temperature dropped continuously, while cladding surface temperatures increased. Maximum cladding temperatures of 1030 to 1050 K occurred 15 seconds into the transient. Posttest destructive examination revealed cladding microstructures and oxide thicknesses consistent with the measured cladding temperatures. The cladding surface thermocouples did not appreciably affect cladding temperature distributuion (fin cooling effect) in the vicinity of the thermocouples

  6. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  7. Experiment data report for LOFT anticipated transient-without-scram Experiment L9-3

    International Nuclear Information System (INIS)

    Bayless, P.D.; Divine, J.M.

    1982-05-01

    Selected pertinent and uninterpreted data from the third anticipated transient with multiple failures experiment (Experiment L9-3) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)], commercial PWR operations. Experiment L9-3 simulated a loss-of-feedwater anticipated transient without scram. The loss-of-feedwater accident led to an increase in the primary coolant system temperature and pressure. Both the experiment power-operated relief valve (PORV) and safety relief valve opened and were able to limit and control the pressure transient. The plant was then recovered with the control rods still withdrawn by injecting 7200-ppM borated water, manually cycling the PORV and feeding and bleeding the steam generator

  8. Experiment data report for LOFT anticipated transient without scram Experiment L9-4

    International Nuclear Information System (INIS)

    Batt, D.L.; Divine, J.M.; McKenna, K.J.

    1982-11-01

    Selected pertinent and uninterpreted data from the fourth anticipated transient with multiple failures experiment (Experiment L9-4) conducted on September 24, 1982, in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system's thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)], commercial PWR operations. Experiment L9-4 simulated a loss-of-offsite-power anticipated transient without reactor scram. The loss-of-offsite-power accident led to an increase in the primary coolant system temperature and pressure. The experiment safety relief valve opened and was able to limit and control the pressure transient. In addition, subsequent heat generation was dissipated by the auxiliary feedwater flow in the secondary coolant system until the reactor was scrammed at experiment termination

  9. Study on transient hydrogen behavior and effect on passive containment cooling system of the advanced PWR

    International Nuclear Information System (INIS)

    Wang Yan

    2014-01-01

    A certain amount of hydrogen will be generated due to zirconium-steam reaction or molten corium concrete interaction during severe accidents in the pressurized water reactor (PWR). The generated hydrogen releases into the containment, and the formed flammable mixture might cause deflagration or detonation to produce high thermal and pressure loads on the containment, which may threaten the integrity of the containment. The non-condensable hydrogen in containment may also reduce the steam condensation on the containment surface to affect the performance of the passive containment cooling system (PCCS). To study the transient hydrogen behavior in containment with the PCCS performance during the accidents is significant for the further study on the PCCS design and the hydrogen risk mitigation. In this paper, a new developed PCCS analysis code with self-reliance intellectual property rights, which had been validated by comparison on the transients in the containment during the design basis accidents with other developed PCCS analysis code, is brief introduced and used for the transient simulation in the containment under a postulated small break LOCA of cold-leg. The results show that the hydrogen will flow upwards with the coolant released from the break and spread in the containment by convection and diffusion, and it results in the increase of the pressure in the containment due to reducing the heat removal capacity of the PCCS. (author)

  10. PWR fuel behavior: lessons learned from LOFT

    International Nuclear Information System (INIS)

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior

  11. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  12. PWR-blowdown heat transfer separate effects program

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  13. PWR accident management realated tests: some Bethsy results

    International Nuclear Information System (INIS)

    Clement, P.; Chataing, T.; Deruaz, R.

    1993-01-01

    The BETHSY integral test facility which is a scaled down model of a 3 loop FRAMATOME PWR and is currently operated at the Nuclear Center of Grenoble, forms an important part of the French strategy for PWR Accident Management. In this paper the features of both the facility and the experimental program are presented. Two accident transients: a total loss of feedwater and a 2'' cold leg break in case of High Pressure Safety Injection System failure, involving either Event Oriented - or State Oriented-Emergency Operating Procedures (EO-EOP or SO-EOP) are described and the system response analyzed. CATHARE calculation results are also presented which illustrate the ability of this code to adequately predict the key phenomena of these transients. (authors). 13 figs., 11 refs., 2 tabs

  14. Contribution to study and design of PWR plant simulation code

    International Nuclear Information System (INIS)

    Delourme, Didier.

    1980-11-01

    This paper presents an improvement of PICOLO, a package for PWR plants simulation. Its describes principally the integration to the code of a primary loop and pressurizer model and the corresponding control loops. Fast transients are tested on the packages and results are compared with real transients obtained on plants [fr

  15. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  16. Analytical technical of lightning surges induced on grounding mesh of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ikeda, I.; Tani, M.; Yonezawa, T.

    1990-01-01

    An analytical lightning surge technique is needed to make a qualitative and predictive evaluation of transient voltages induced on local grounding meshes and instrumentation cables by a lightning strike on a lightning rod in a PWR plant. This paper discusses an experiment with lightning surge impulses in a PWR plant which was setup to observe lightning caused transient voltages. Experimental data when compared with EMTP simulation results improved the simulation method. The improved method provides a good estimation of induced voltages on grounding meshes and instrumentation cables

  17. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  18. Thermal-hydraulic transient characteristics of ship-propulsion reactor investigated through safety analysis

    International Nuclear Information System (INIS)

    Fujiki, Kazuo; Asaka, Hideaki; Ishida, Toshihisa

    1986-01-01

    Thermal-hydraulic behaviors in the reactor of Nuclear Ship ''Mutsu'' were investigated through safety evaluation of operational transients by using RETRAN and COBRA-IV codes. The results were compared to the transient behaviors of typical commercial PWR and the characteristics of transient thermal-hydraulic behaviors in ship-loaded reactor were figured out. ''Mutsu'' reactor has larger thermal margin than commercial PWR because it is designed to be used as ship-propulsion power source in the load-following operation mode. This margin makes transient behavior in general milder than in commercial PWR but high opening pressure set point of main-steam safety valves leads poor heat-sink condition after reactor trip. The effects of other small-sized components are also investigated. The findings in the paper will be helpful in the design of future advanced reactor for nuclear ship. (author)

  19. Measurement of mist cooling of PWR during LOCA by LDA

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Issapour, I.

    1985-01-01

    The prediction of temperature distribution and heat transfer within rod bundles during the refill and reflood phase of a LOCA (loss of coolant accident) is of critical importance for determining the location and size of blockages due to clad deformation in a pressurized water reactor (PWR). Mist cooling by small droplets generated from large droplets on hitting grid spacers has been suggested as one of the most important heat transfer mechanisms which are responsible for the development of this temperature transient. The questions to be asked are whether such small droplets indeed exist and, if so, how are they related to the cooling of the fuel rods. Hereby reported is the result of a direct experimental investigation on these questions by a special laser-Doppler anemometry (LDA) particle sizing technique together with temperature measurements of the rod claddings and flow in the subchannel

  20. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A

    2007-12-15

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  1. A Multi-Physics PWR Model for the Load Following

    OpenAIRE

    Muniglia , Mathieu; Do , Jean-Michel; Jean-Charles , Le Pallec; Grard , Hubert; Verel , Sébastien; David , S.

    2016-01-01

    International audience; In this paper, a new model of a Pressurized Water Reactor (PWR) is described. This model includes the description of the core as well as a simplified secondary loop: the goal is to reproduce a load-following type transient, where the output power of the plant is controlled by the electric grid. Consequently, the control systems are also modeled, as the control rods or the soluble boron. The reference power plant is a 1300MW electrical PWR, managed with the french G mode.

  2. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  3. Study of transient heat transfer in a fuel rod 3D, in a situation of unplanned shutdown of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Martins, Rodolfo Ienny; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: rodolfoienny@gmail.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The study, in situations involving accidents, of heat transfer in fuel rods is of known importance, since it can be used to predict the temperature limits in designing a nuclear reactor, to assist in making more efficient fuel rods, and to increase the knowledge about the behavior of the reactor's components, a crucial aspect for safety analysis. This study was conducted using as parameter the fuel rod that has the highest average power in a typical PWR reactor. For this, we developed a program (Fuel{sub R}od{sub 3}D) in Fortran language using the Finite Elements Method (FEM) for the discretization of a fuel rod and coolant channel, in order to study the temperature distribution in both the fuel rod and the coolant channel. Transient parameters were coupled to the heat transfer equations in order to obtain details of the behavior of the rod and the channel, which allows the analysis of the temperature distribution and its change over time. This work aims to present a study case of an accident where there is a lack of energy in the reactor's coolant pumps and in the diesel engines, resulting in an unplanned shutdown of the reactor. In order to achieve the intended goal, the present work was divided as follows: a short introduction about heat transfer, including the equations concerning the fuel rod and the energy equation in the channel, an explanation about how the verification of the Fuel{sub R}od{sub 3}D program was made, and the analysis of the results. (author)

  4. Ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming; Lu Jie; Wang Yingguan

    1994-01-01

    It is a continuation of research work for sealing analysis and tests on the PRV of PWR. It expounds that the key of solving thermal transient sealing problem lies in giving the thermal increment of stud-bolt fatigue life and transient loading spectrum for vessel analysis. The authors recounted the fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on the reactor of Qinshan Nuclear Power Plant. The measuring capability exceeds 1 m length and 300 degree C temperature. Therefore, it is possible to be used in the field of NPP

  5. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  6. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  7. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  8. Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2017-01-01

    Full Text Available The in-house coupled neutronic and thermal-hydraulic (N/T-H code of BATAN (National Nuclear Energy Agency of Indonesia, NODAL3, based on the few-group neutron diffusion equation in 3-dimensional geometry using the polynomial nodal method, has been verified with static and transient PWR benchmark cases. This paper reports the verification of NODAL3 code in the NEA-NSC PWR uncontrolled control rods withdrawal at zero power benchmark. The objective of this paper is to determine the accuracy of NODAL3 code in solving the continuously slow and fast reactivity insertions due to single and group of control rod bank withdrawn while the power and temperature increment are limited by the Doppler coefficient. The benchmark is chosen since many organizations participated using various methods and approximations, so the calculation results of NODAL3 can be compared to other codes’ results. The calculated parameters are performed for the steady-state, transient core averaged, and transient hot pellet results. The influence of radial and axial nodes number was investigated for all cases. The results of NODAL3 code are in very good agreement with the reference solutions if the radial and axial nodes number is 2 × 2 and 2 × 18 (total axial layers, respectively.

  9. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  10. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  11. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200-percent double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops (three intact, one broken) and cold-leg emergency-core-cooling systems (ECCS). The finely noded TRAC model employed 440 three dimensional (r, THETA, z) vessel cells along with approximately 300 one-dimensional cells that modeled the primary system loops. The calculated peak-clad temperature of 950 0 K occurred during blowdown and the clad temperature excursion was terminated at 175 s, when complete core quenching occurred. Accumulator flows were initiated at 10 s, when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated

  12. Nupec thermal hydraulic test to evaluate post-DNB characteristics for PWR fuel assemblies (1. general test plan and results)

    International Nuclear Information System (INIS)

    Norio, Kono; Kenji, Murai; Kaichiro, Misima; Takayuki, Suemura; Yoshiei, Akiyama; Keiichi, Hori

    2001-01-01

    In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)

  13. Transient analysis of blowdown thrust force under PWR LOCA

    International Nuclear Information System (INIS)

    Yano, Toshikazu; Miyazaki, Noriyuki; Isozaki, Toshikuni

    1982-10-01

    The analytical results of blowdown characteristics and thrust forces were compared with the experiments, which were performed as pipe whip and jet discharge tests under the PWR LOCA conditions. The blowdown thrust forces obtained by Navier-Stokes momentum equation about a single-phase, homogeneous and separated two-phase flow, assuming critical pressure at the exit if a critical flow condition was satisfied. The following results are obtained. (1) The node-junction method is useful for both the analyses of the blowdown thrust force and of the water hammer phenomena. (2) The Henry-Fauske model for subcooled critical flow is effective for the analysis of the maximum thrust force under the PWR LOCA conditions. The jet thrust parameter of the analysis and experiment is equal to 1.08. (3) The thrust parameter of saturated blowdown has the same one with the value under pressurized condition when the stagnant pressure is chosen as the saturated one. (4) The dominant terms of the blowdown thrust force in the momentum equation are the pressure and momentum terms except that the acceleration term has large contribution only just after the break. (5) The blowdown thrust force in the analysis greatly depends on the selection of the exit pressure. (author)

  14. SCAR - Post-Accident Simulator SIPA with safety analysis code CATHARE-2 and PWR cold shutdown state simulation

    International Nuclear Information System (INIS)

    Farvacque, M.; Faydide, B.; Dufeil, Ph.; Raimond, E.

    2003-01-01

    The use of Cathare in the simulators of pressurized water reactors has been effective since the beginning of the nineties. Scar project is the second stage of the Cathare strategy for the simulators, its main objective is the extension of the field of simulation to the accident situations in cold shutdown states. Work was carried out in 3 major areas: modelling, optimization and integration in the simulator. Throughout the project, the developments were part of a 3 stages validation strategy: -) elementary tests of the developments of new model on the N4 (1450 MW PWR); -) analytical tests and systems to ensure non regression of the validation of the physical laws of the Cathare code during the modifications carried out within the optimization stage; and -) overall tests of the SIPA-CP1 (900 MW PWR) simulator, controlled automatically by programmed scenarios including the transients which are carried out in PWR, the transients of the Regulatory Guides and the accident transients

  15. A nodal model for the simulation of a PWR core

    International Nuclear Information System (INIS)

    Souza Pinto, R. de.

    1981-06-01

    A computer program FORTRAN language was developed to simulate the neutronic and thermal-hydraulic transient behaviour of a PWR reactor core. The reator power is calculated using a point kinectics model with six groups of delayed neutron precursors. The fission product decay heat was considered assuming three effective decay heat groups. A nodal model was employed for the treatment of heat transfer in the fuel rod, with integration of the heat equation by the lumped parameter technique. Axial conduction was neglected. A single-channel nodal model was developed for the thermo-hydrodynamic simulation using mass and energy conservation equations for the control volumes. The effect of the axial pressure variation was neglected. The computer program was tested, with good results, through the simulation of the transient behaviour of postulated accidents in a typical PWR. (Author) [pt

  16. Thermal analysis of a one-element PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Fields, S.R.

    1979-06-01

    The transient thermal behavior of a typical one-element PWR spent fuel shipping cask, following a hypothetical accident and fire, has been simulated. The objectives of the study were to determine the transient behavior of the cask and its spent fuel primary coolant through the pressure relief system and possible fuel pin clad failure due to overheating following loss of coolant. 15 figures, 7 tables

  17. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  18. Study On Safety Analysis Of PWR Reactor Core In Transient And Severe Accident Conditions

    International Nuclear Information System (INIS)

    Le Dai Dien; Hoang Minh Giang; Nguyen Thi Thanh Thuy; Nguyen Thi Tu Oanh; Le Thi Thu; Pham Tuan Nam; Tran Van Trung; Le Van Hong; Vo Thi Huong

    2014-01-01

    The cooperation research project on the Study on Safety Analysis of PWR Reactor Core in Transient and Severe Accident Conditions between Institute for Nuclear Science and Technology (INST), VINATOM and Korean Atomic Energy Research Institute (KAERI), Korea has been setup to strengthen the capability of researches in nuclear safety not only in mastering the methods and computer codes, but also in qualifying of young researchers in the field of nuclear safety analysis. Through the studies on the using of thermal hydraulics computer codes like RELAP5, COBRA, FLUENT and CFX the thermal hydraulics research group has made progress in the research including problems for safety analysis of APR1400 nuclear reactor, PIRT methodologies and sub-channel analysis. The study of severe accidents has been started by using MELCOR in collaboration with KAERI experts and the training on the fundamental phenomena occurred in postulated severe accident. For Vietnam side, VVER-1000 nuclear reactor is also intensively studied. The design of core catcher, reactor containment and severe accident management are the main tasks concerning VVER technology. The research results are presented in the 9 th National Conference on Mechanics, Ha Noi, December 8-9, 2012, the 10 th National Conference on Nuclear Science and Technology, Vung Tau, August 14-15, 2013, as well as published in the journal of Nuclear Science and Technology, Vietnam Nuclear Society and other journals. The skills and experience from using computer codes like RELAP5, MELCOR, ANSYS and COBRA in nuclear safety analysis are improved with the nuclear reactors APR1400, Westinghouse 4 loop PWR and especially the VVER-1000 chosen for the specific studies. During cooperation research project, man power and capability of Nuclear Safety center of INST have been strengthen. Three masters were graduated, 2 researchers are engaging in Ph.D course at Hanoi University of Science and Technology and University of Science and Technology, Korea

  19. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-01-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH(T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields

  20. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    International Nuclear Information System (INIS)

    Kavaklioglu, K.; Ikonomopoulos, A.

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint

  1. ANALISIS SENSITIVITAS TURBULENSI ALIRAN PADA KANAL BAHAN BAKAR PWR BERBASIS CFD

    Directory of Open Access Journals (Sweden)

    Endiah Puji Hastuti

    2015-04-01

    yang sangat lama dan membutuhkan memori yang besar. Kata kunci: aliran turbulen, kanal PWR, CFD, tunak, transien   Coolant flow turbulence on heat transfer process serves to enhance the heat transfer coefficient, likewise flow in the fuel sub channel. Computational fluid dynamic program, FLUENT is a computational program based on finite element, that is able to predict and analyze the dynamics of fluid flow phenomena, accurately. CFD calculation program is selected in this study because of its accurately and it also can provide good visualization. Purpose of this research was to understand the characteristics of heat transfer, mass and momentum of the fuel rod to the coolant visually on: the temperature field, pressure field, and the kinetic energy field, as a function of the flow dynamics within fuel channel, on steady state and transient condition. Analysis of flow dynamics in the fuel channel base on CFD was done by using the PWR sample data with reactor power of 1000 MWe on 17x17 array of fuel. To examine the sensitivity of the flow equation in accordance with the model of turbulent flow on fuel channel, the turbulence equation model of k-omega (Ƙ-ω, k-epsilon (Ƙ-ε, and Reynold stress model (RSM for steady state was used, while for transient turbulence model DES and LES are applied. In the sensitivity analysis of turbulent flow, hexahedral mesh model of three cell geometry each are 0.5 mm, 0.2 mm and 0.15 mm, was selected. The analysis shows that there are similar results of turbulen model Ƙ-ε and Ƙ-ω standard, on steady state analysis. Comparing with Dittus Boelter criteria for Nusselt number, the Reynolds stress model (RSM is recommended. Sensitivity analysis of mesh geometry between cell size 0.5 mm, 0.2 mm and 0.15 mm, indicating that the cell size of 0.5 mm was sufficient. Developed flow already reached on DES and LES model, however only for short time (3 seconds for transient condition. LES model need very long computation time and big memory

  2. Development of computational program for studying the reactor control system in PWR plants; Desenvolvimento de um programa computacional para estudo do sistema de controle do reator em plantas PWR

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Ricardo de; Soares, Adalberto Jose [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    In this work a computational program is presented which has been developed for specific application on the study of the reactor control system of a typical PWR plant. As to the basic function of simulating power transients the program has the following structure: a representative mathematical model of the dynamic and stationary behaviors of the primary circuit; a group of equations associated to the reactor power control and system pressure control; screens for the entry of reference data as well as of control blocks and control bar speed programming module parameters; main entering screens for the configuration of the excitement/transient function as well as of simulation time and control mood; and graphical output of all the process variables incorporated to the model. As premise it has been considered as sufficient the modeling of the primary circuit, a differential equation being used which associates the average temperature of the coolant within the steam generator with the potency transferred to the secondary circuit, denominated 'secondary potency', as an interface with the secondary circuit. Every transient - ramp or step - is established upon the 'turbine power' variable, which in turn is related to the 'secondary power' variable by means of a differential equation that represents a first - order delay, having adjustable parameters on the data - entry screen. In the neutronic model as defined for the reactor, the reactivity feedback effects due to primary circuit pressure variation, as well as fuel and coolant temperature variation, were taken into consideration. Thermo-hydraulics constants and project data taken from the available bibliography, adapted to a particular small PWR unit conception , were employed for loading the program. With the open-loop simulation results a positive qualitative evaluation of the program was obtained, in comparison to published results related to simulators bearing equal purposes, more

  3. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  4. Scaling studies - PWR

    International Nuclear Information System (INIS)

    Sonneck, G.

    1983-05-01

    A RELAP 4/MOD 6 study was made based on the blowdown phase of the intermediate break experiment LOFT L5-1. The method was to set up a base model and to vary parametrically some areas where it is known or suspected that LOFT differs from a commercial PWR. The aim was not to simulate LOFT or a PWR exactly but to understand the influence of the following parameters on the thermohydraulic behaviour of the system and the clad temperature: stored heat in the downcomer (LOFT has rather large filler blocks in this part of the pressure vessel); bypass between downcomer and upper plenum; and core length. The results show that LOFT is prototypical for all calculated blowdowns. As the clad temperatures decrease with decreasing stored energy in the downcomer, increased bypass and increased core length, LOFT results seem to be realistic as long as realistic bypass sizes are considered; they are conservative in the two other areas. (author)

  5. Is it possible to improve regulation system of PWR

    International Nuclear Information System (INIS)

    Bonnemay, A.; Martinez, J.M.

    1983-03-01

    This paper deals with two problems: first of all, it presents the critical analysis of usually implemented general regulation systems, on PWR plants, and derives from it same possibilities to improve the transient behavior of reactor, the second part is a proposition from an automatic control system for spatial distribution of flux

  6. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  7. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    International Nuclear Information System (INIS)

    Virpi Kouhia, V.; Purhonen, H.; Riikonen, V.; Puustinen, M.; Kyrki-Rajamaki, R.; Vihavainen, J.

    2012-01-01

    This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  8. Anticipated transient without SCRAM experiments at LOFT

    International Nuclear Information System (INIS)

    Grush, W.H.; Harvego, E.A.; Koizumi, Y.; Varacalle, D.J.

    1983-01-01

    This paper discusses the experimental results for two anticipated transients without scram (ATWS) experiments, and compares computer code predictions with the experimental data. Experiment L9-3 simulated an ATWS in a commercial pressurized water reactor (PWR) initiated by a complete loss of feedwater and Experiment L9-4 simulated a loss-of-offsite-power-initiated (loss of feedwater and trip of the primary coolant pumps) ATWS. The LOFT facility is uniquely suited for ATWS experiments because it is a volumetrically scaled (1/44) experimental PWR designed to simulate the major components and system responses of larger commercial PWRs during both hypothesized loss-of-coolant accidents and anticipated transients. In both of the examined experiments, the primary system transient behavior was dominated by the interactions between the steam generator primary-to-secondary heat removal, the reactor kinetics, and the relief valve actuation. It is demonstrated that the discussed ATWS events can be controlled by properly sized automatic safety systems

  9. Transient temperature distributions in geological media surrounding radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Beyerlein, S W; Sunderland, J E [Massachusetts Univ., Amherst (USA). Dept. of Mechanical Engineering

    1981-01-01

    Closed form analytical solutions are presented for the transient temperature distributions resulting from underground radioactive waste disposal. The thermal source term is represented by point or spherical sources whose strength decreases exponentially with time. The transient temperature distributions can be determined above the disposal horizon over a time interval of hundreds of years.

  10. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  11. Experiment data report for Loft anticipated transient experiments 16-1, 16-2, and 16-3

    International Nuclear Information System (INIS)

    Batt, D.L.; Carpenter, J.M.

    1980-12-01

    This report presents uninterpreted experimental data from the second, third, and fourth anticipated transient experiments (Experiments L6-2, L6-1, and L6-3), conducted in the Loss-of-Fluid Test (LOFT) facility. Experiment L6-2 simulated a loss of forced primary coolant flow in a large PWR by tripping power to primary coolant pump motor generator sets, allowing the pumps to coast down under the influence of the flywheel system. Reactor scram initiated on indication of low flow in the primary coolant system (PCS). Experiment L6-1 simulated a loss of steam load in a large PWR by closing the steam flow control valve which reduced heat removal from the secondary coolant system and caused the PCS temperature and pressure to increase until reactor scram initiated on indication on high PCS pressure. Experiment L6-3 simulated an excessive load increase in a large PWR by opening the steam flow control valve at its maximum rate. PCS temperature and pressure decreased, causing the reactor to scram on indication of low PCS pressure. All experiments were complete when the plant was returned to a hot-standby condition

  12. Utilizing elements of the CSAU phenomena identification and ranking table (PIRT) to qualify a PWR non-LOCA transients system code

    Energy Technology Data Exchange (ETDEWEB)

    Greene, K.R.; Fletcher, C.D.; Gottula, R.C.; Lindquist, T.R.; Stitt, B.D. [Framatome ANP, Richland, WA (United States)

    2001-07-01

    Licensing analyses of Nuclear Regulatory Commission (NRC) Standard Review Plan (SRP) Chapter 15 non-LOCA transients are an important part of establishing operational safety limits and design limits for nuclear power plants. The applied codes and methods are generally qualified using traditional methods of benchmarking and assessment, sample problems, and demonstration of conservatism. Rigorous formal methods for developing code and methodology have been created and applied to qualify realistic methods for Large Break Loss-of-Coolant Accidents (LBLOCA's). This methodology, Code Scaling, Applicability, and Uncertainty (CSAU), is a very demanding, resource intensive, process to apply. It would be challenging to apply a comprehensive and complete CSAU level of analysis, individually, to each of the more than 30 non-LOCA transients that comprise Chapter 15 events. However, certain elements of the process can be easily adapted to improve quality of the codes and methods used to analyze non- LOCA transients. One of these elements is the Phenomena Identification and Ranking Table (PIRT). This paper presents the results of an informally constructed PIRT that applies to non-LOCA transients for Pressurized Water Reactors (PWR's) of the Westinghouse and Combustion Engineering design. A group of experts in thermal-hydraulics and safety analysis identified and ranked the phenomena. To begin the process, the PIRT was initially performed individually by each expert. Then through group interaction and discussion, a consensus was reached on both the significant phenomena and the appropriate ranking. The paper also discusses using the PIRT as an aid to qualify a 'conservative' system code and methodology. Once agreement was obtained on the phenomena and ranking, the table was divided into six functional groups, by nature of the transients, along the same lines as Chapter 15. Then, assessment and disposition of the significant phenomena was performed. The PIRT and

  13. Study on external reactor vessel cooling capacity for advanced large size PWR

    International Nuclear Information System (INIS)

    Jin Di; Liu Xiaojing; Cheng Xu; Li Fei

    2014-01-01

    External reactor vessel cooling (ERVC) is widely adopted as a part of in- vessel retention (IVR) in severe accident management strategies. In this paper, some flow parameters and boundary conditions, eg., inlet and outlet area, water inlet temperature, heating power of the lower head, the annular gap size at the position of the lower head and flooding water level, were considered to qualitatively study the effect of them on natural circulation capacity of the external reactor vessel cooling for an advanced large size PWR by using RELAP5 code. And the calculation results provide some basis of analysis for the structure design and the following transient response behavior of the system. (authors)

  14. Experimental results of the effective water head in downcomer during reflood phase of a PWR LOCA

    International Nuclear Information System (INIS)

    Sudo, Yukio; Murao, Yoshio; Akimoto, Hajime

    1980-08-01

    The results and analysis of an experiment for the effective water head in downcomer with 50mm gap size are described. The main objective of the experiment was to clarify the effect of gap size on reflooding in a PWR LOCA. The effective water head in downcomer is the driving force for feeding emergency coolant into the core during reflood phase of a PWR LOCA. Discussions presented here follow those of a previous report in which experimental results and analysis were described for the case of 200mm gap size. Experimental Conditions were: Initial Wall Temperature = 200 -- 300 0 C, Back Pressure = 1 atm., Coolant Temperature = 71 -- 100 0 C, Extraction Water Velocity = 0 -- 2 cm/s, Gap Size = 50 mm. The effective water head history obtained in the experiment was compared with those predicted with Sudo's void fraction correlation. In the prediction, heat input to coolant was calculated from the response of measured wall temperature with heat condition analysis. The experimental results and analysis reveals that: (1) The effects of the gap size and initial wall temperature are evident, (2) The effect of extraction water velocity is negligible, and (3) The predicted history of effective water head is in good agreement with the experimental results except during the transient period in which the effective water head is descreasing. (author)

  15. New developments in French transient monitoring: SYSFAC

    International Nuclear Information System (INIS)

    L'huby, Y.; Genette, P.; Faidy, C.; Kappler, F.; Balley, J.; Bimont, G.

    1991-01-01

    After more than ten years of experience with Transient Monitoring and Logging Procedure (TMLP) and six years of successfully experience with Fatiguemeters, EDF has decided to study a new concept of Fatigue Monitoring System: SYSFAC. This new automatic system which is developed to be operating in all the French PWR units is composed of three modules: mechanical transient logging, functional transient logging and fatiguemeters. This application must be connected to the on-site data acquisition system without complementary instrumentation on the plant. (author)

  16. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  17. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  18. Transient analysis for PWR reactor core using neural networks predictors

    International Nuclear Information System (INIS)

    Gueray, B.S.

    2001-01-01

    In this study, transient analysis for a Pressurized Water Reactor core has been performed. A lumped parameter approximation is preferred for that purpose, to describe the reactor core together with mechanism which play an important role in dynamic analysis. The dynamic behavior of the reactor core during transients is analyzed considering the transient initiating events, wich are an essential part of Safety Analysis Reports. several transients are simulated based on the employed core model. Simulation results are in accord the physical expectations. A neural network is developed to predict the future response of the reactor core, in advance. The neural network is trained using the simulation results of a number of representative transients. Structure of the neural network is optimized by proper selection of transfer functions for the neurons. Trained neural network is used to predict the future responses following an early observation of the changes in system variables. Estimated behaviour using the neural network is in good agreement with the simulation results for various for types of transients. Results of this study indicate that the designed neural network can be used as an estimator of the time dependent behavior of the reactor core under transient conditions

  19. Categorization of PWR accident sequences and guidelines for fault trees: seismic initiators

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1984-09-01

    This study developed a set of dominant accident sequences that could be applied generically to domestic commercial PWRs as a standardized basis for a probabilistic seismic risk assessment. This was accomplished by ranking the Zion 1 accident sequences. The pertinent PWR safety systems were compared on a plant-by-plant basis to determine the applicability of the dominant accident sequences of Zion 1 to other PWR plants. The functional event trees were developed to describe the system functions that must work or not work in order for a certain accident sequence to happen, one for pipe breaks and one for transients

  20. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    International Nuclear Information System (INIS)

    Rebollo, L.

    1993-01-01

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests

  1. Modal analysis of temperature feedback in oscillations induced by xenon

    International Nuclear Information System (INIS)

    Passos, E.M. dos.

    1976-01-01

    The flux oscillations induced by Xenon distribution in homogeneous thermal reactors are studied treating the space dependence through the modal expansion technique and the stability limits against power oscillations and spatial oscillations are determined. The effect of the feedbacks due to Xenon and temperature coefficient on the linear stability of the free system is investigated employing several number of terms in the transient expansion, considering the various sizes of the reactor. The heat transfer model considered includes one term due to cooling proportional to the temperature. A PWR model reactor is utilized for numerical calculations. It is found that a slightly higher temperature feedback coefficient is necessary for stability against power oscillations when larger number of terms in the transient modal expansion is maintained. (author)

  2. The development of the Nuclear Electric core performance and fault transient analysis code package in support of Sizewell B

    International Nuclear Information System (INIS)

    Hall, P.; Hutt, P.

    1994-01-01

    This paper describes Nuclear Electric's (NE) development of an integrated code package in support of all its reactors including Sizewell B, designed for the provision of fuel management design, core performance studies, operational support and fault transient analysis. The package uses the NE general purpose three-dimensional transient reactor physics code PANTHER with cross-sections derived in the PWR case from the LWRWIMS LWR lattice neutronics code. The package also includes ENIGMA a generic fuel performance code and for PWR application VIPRE-01 a subchannel thermal hydraulics code, RELAP5 the system thermal hydraulics transient code and SCORPIO an on-line surveillance system. The paper describes the capabilities and validation of the elements of this package for PWR, how they are coupled within the package and the way in which they are being applied for Sizewell B to on-line surveillance and fault transient analysis. (Author)

  3. FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Koranne, S.M.

    1976-01-01

    FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)

  4. Assessment of predictive capability of REFLA/TRAC code for large break LOCA transient in PWR using LOFT L2-5 test data

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Ohnuki, Akira; Murao, Yoshio

    1994-03-01

    The REFLA/TRAC code is a best estimate code developed at Japan Atomic Energy Research Institute (JAERI) to provide advanced predictions of thermal hydraulic transient in light water reactors (LWRs). The REFLA/TRAC code uses the TRAC-PF1/MOD1 code as the framework of the code. The REFLA/TRAC code is expected to be used for the calibration of licensing codes, accident analysis, accident simulation of LWRs, and design of advanced LWRs. Several models have been implemented to the TRAC-PF1/MOD1 code at JAERI including reflood model, condensation model, interfacial and wall friction models, etc. These models have been verified using data from various separate effect tests. This report describes an assessment result of the REFLA/TRAC code, which was performed to assess the predictive capability for integral system behavior under large break loss of coolant accident (LBLOCA) using data from the LOFT L2-5 test. The assessment calculation confirmed that the REFLA/TRAC code can predict break mass flow rate, emergency core cooling water bypass and clad temperature excellently in the LOFT L2-5 test. The CPU time of the REFLA/TRAC code was about 1/3 of the TRAC-PF1/MOD1 code. The REFLA/TRAC code can perform stable and fast simulation of thermal hydraulic behavior in PWR LBLOCA with enough accuracy for practical use. (author)

  5. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Steady state and transients computations

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.

    1996-03-01

    The paper explains the chronological account and the first results obtained in the R and D program on the mixing in the 900 MW PWR vessels. After the presentation of the plant type simulated, we define the numerical tool, the (Finite Element Modelling) FEM N3S code. Two results are presented with a comparison with the experiment results issued of the BORA BORA mock up. The first case is dealing with the isothermal steady state mixing in the vessel with the three loops mass flow rate balanced. This case identified as a validation of our numerical tool shows a good agreement. The second case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. We compare the numerical and experiment results giving the mean boron concentration at the core inlet for several clear water plugs. The results show again a good agreement. (authors). 12 refs., 10 figs., 1 tab

  6. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  7. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    International Nuclear Information System (INIS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; Araújo Figueiredo, C. de

    2016-01-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H 2 /kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition. - Highlights: • Exposure tests with Ni-coupons showed that the Ni/NiO transition curve shifted to more oxidizing conditions. • The Ni specimens tested in PWR water were free of oxides at all temperatures. • The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures. • The Alloy 182 surface morphology changed from spinel crystals to needle like oxides when the Ni/NiO curve was approached

  8. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, R. [CAPES Foundation, Ministry of Education, Brasilia (Brazil); Bosch, R.-W., E-mail: rbosch@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van Renterghem, W.; Vankeerberghen, M. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Araújo Figueiredo, C. de [CDTN/CNEN, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG (Brazil)

    2016-08-15

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H{sub 2}/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition. - Highlights: • Exposure tests with Ni-coupons showed that the Ni/NiO transition curve shifted to more oxidizing conditions. • The Ni specimens tested in PWR water were free of oxides at all temperatures. • The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures. • The Alloy 182 surface morphology changed from spinel crystals to needle like oxides when the Ni/NiO curve was

  9. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru [Purdue Univ., West Lafayette, IN (United State

    2016-11-30

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results and models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup

  10. An investigation of loads generated by temperature transients in pipes

    International Nuclear Information System (INIS)

    Maneschy, C.E.

    1988-12-01

    An analysis is presented of the effect of a transient temperature on the stress distribution due to a fluid flowing through a pipe, is analytically determined using the definition of a variable called in this paper as ''shifted time''. This variable, which is related to the axial coordinate, the average fluid velocity and the real time, is defined to make the transient thermal problem one-dimensional. The stresses are then calculated from the temperature solution using the linear theory of viscoelasticity. (author) [pt

  11. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  12. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  13. Steady-state and transient studies on critical heat flux of a PWR 5 x 5 fuel element bundle with complex spacer wire geometry

    International Nuclear Information System (INIS)

    Fulfs, H.; Katsaounis, A.; Kreubig, M.; Minden, C. von; Orlowski, R.

    1980-01-01

    The results will be described in exemplary presentations completely and concluding. The experimental examination of the steady state simularity of critical heat flux (CHF) in freon 12 and water at identical PWR-5 x 15-rod bundles will show that hot rod/hot channels position as well as CHF can be transformed from model to original fluid with good accuracy. The investigated mass flow and power transients (only in freon 12) point out a definite influence of initial and boundary conditions on CHF and CHF time delay at changing rates higher than 10 to 20%/s. On the contrary simulation of primary pump failure (LOFA) shows no or only small improvement in CHF behaviour while a coupled Scram prevents from reaching the boiling crisis. (orig.) [de

  14. Steady state and transient critical heat flux examinations

    International Nuclear Information System (INIS)

    Szabados, L.

    1978-02-01

    In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)

  15. Assessment of void swelling in austenitic stainless steel PWR core internals

    International Nuclear Information System (INIS)

    Chung, H.M.

    2006-01-01

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  16. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200% double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops and cold-leg emergency-core-cooling systems (ECCS). The calculated peak cladding temperature of 950 K occurred during blowdown and the cladding temperature excursion was terminated at 175 s when complete core quenching occurred. Accumulator flows were initiated at 10 s when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated. Top quenching was caused by entrainment from the lower plenum and lower core regions. The entrained liquid was sufficient to form a small, saturated pool (0.3 m deep) above the upper core support plate. Also, some of the entrained liquid was carried out the hot legs and vaporized in the steam generators. Strong multidimensional effects were calculated in the reactor vessel, particularly with respect to rod quenching

  17. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  18. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  19. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  20. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); deHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-11

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$_2$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  1. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    International Nuclear Information System (INIS)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi; Schunert, Sebastian; DeHart, Mark

    2017-01-01

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$ 2 $, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  2. LOFT/LP-FW-1, Loss of Fluid Test, PWR Response to Loss-of-Feedwater Transient

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: The first OECD LOFT experiment was conducted on February 20, 1983. It was designed to evaluate the generic PWR system response during a complete loss-of-feedwater transient. The objective of the experiment was to investigate the performance of primary 'feed and bleed' using a 'bleed' from the PORV and 'feed' from the HPIS to provide decay heat removal and system pressure reduction while maintaining the primary coolant inventory. 3 - Experimental limitations or shortcomings: Short core and steam generator, excessive core bypass, other scaling compromises, and lack of adequate measurements in certain areas

  3. Transient temperature variations during the self-heating of a plasma by thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Greyber, Howard D [University of California Radiation Laboratory, Livermore, CA (United States)

    1958-07-01

    The motivation for this work arose from an observation by Rosenbluth that in a different but related physical situation, the electron temperature) could exceed ion temperature, during transient heating. We have undertaken to trace the transient temperatures to be expected in an idealized physical situation that still bears some resemblance to what one envisions for the Controlled Thermonuclear Reactor.

  4. Computer code to simulate transients in a steam generator of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Silva, J.M. da.

    1979-01-01

    A digital computer code KIBE was developed to simulate the transient behavior of a Steam Generator used in Pressurized Water Reactor Power PLants. The equations of Conservation of mass, energy and momentum were numerically integrated by an implicit method progressively in the several axial sections into which the Steam Generator was divided. Forced convection heat transfer was assumed on the primary side, while on the secondary side all the different modes of heat transfer were permitted and deternined from the various correlations. The stability of the stationary state was verified by its reproducibility during the integration of the conservation equation without any pertubation. Transient behavior resulting from pertubations in the flow and the internal energy (temperature) at the inlet of the primary side were simulated. The results obtained exhibited satisfactory behaviour. (author) [pt

  5. Construction of PWR nuclear cross sections for transient calculations. Test of the ANTI program against TWODIM

    International Nuclear Information System (INIS)

    Thorlaksen, B.

    1981-05-01

    Nuclear cross sections for fuel assemblies of the more recent Westinghouse designs, representing two different PWR reactor cores, are calculated as functions of average fuel temperature, moderator density, and moderator poison concentration. The cross-section functions are verified by referring to Westinghouse power-shape calculations and other analysis. Computations on the side reflector resulted in significantly higher albedo values than used previously for BWR's in similar nodal codes. This led to an investigation of the influence of the internodal coupling coefficients on the power shape. It is concluded that the calculated power shape is strongly dependent, on the choise of coupling coefficients. However, it is shown that ''the correct'' set of coupling coefficients depends mostly on the nodal configuration, and that it is fairly independent of the power condition. (author)

  6. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  7. Analysis of reactivity insertion accidents in PWR reactors

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1978-06-01

    A calculation model to analyze reactivity insertion accidents in a PWR reactor was developed. To analyze the nuclear power transient, the AIREK-III code was used, which simulates the conventional point-kinetic equations with six groups of delayed neutron precursors. Some modifications were made to generalize and to adapt the program to solve the proposed problems. A transient thermal analysis model was developed which simulates the heat transfer process in a cross section of a UO 2 fuel rod with Zircalloy clad, a gap fullfilled with Helium gas and the correspondent coolant channel, using as input the nulcear power transient calculated by AIREK-III. The behavior of ANGRA-i reactor was analized during two types of accidents: - uncontrolled rod withdrawal from subcritical condition; - uncontrolled rod withdrawal at power. The results and conclusions obtained will be used in the license process of the Unit 1 of the Central Nuclear Almirante Alvaro Alberto. (Author) [pt

  8. Effects of temperature on corrosion fatigue crack growth of pressure vessel steels in PWR coolant

    International Nuclear Information System (INIS)

    Tice, D.R.; Bramwell, I.L.; Fairbrother, H.; Worswick, D.

    1994-01-01

    This paper presents experimental results concerning crack propagation rates in A508-III pressure vessel steel (medium sulphur content) exposed to PWR primary water at temperatures between 130 and 290 C. The results indicate that the greatest increase in corrosion fatigue crack growth rate occurs at temperatures in the range 150 to 200 C. Under these conditions, there was a marked change in the appearance of the fracture surface, with extensive micro-branching of the crack front and occasional bifurcation of the whole crack path. In contrast, at 290 C, the fracture surface is smoother, similar to that due to inert fatigue. The implication of these observations for assessment of the pressure vessel integrity, is examined. 14 refs., 15 figs., 3 tabs

  9. Analysis of dynamic behavior of a PWR utilizing the computer program SARDAN 2

    International Nuclear Information System (INIS)

    Pessanha, J.A.O.

    1982-07-01

    In the design of a PWR nuclear plant it is necessary to verify if the design limits are respected, even under abnormal operation condition. An evolution of SARDAN code, developed to simulate transients in PWR, are presented. The new aspects incorporeted in SARDAN 2 are: the fuel ROD analysis in finite-diference, an open channel model for the critic subchannel analysis and the introduction of a simplified model for the automatic control system. The program has been tested in accident condition II, in special, uncontrolled ROD cluster assembly bank withoraw, dropped full-length assembly group, uncontrolled Boron dilution, and the results obtained were considered satisfactory. (Author) [pt

  10. Temperature transient response measurement in flowing water

    International Nuclear Information System (INIS)

    Rainbird, J.C.

    1980-01-01

    A specially developed procedure is described for determining the thermal transient response of thermocouples and other temperature transducers when totally immersed in flowing water. The high velocity heat transfer conditions associated with this facility enable thermocouple response times to be predicted in other fluids. These predictions can be confirmed by electrical analogue experiments. (author)

  11. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Dias, A.F.V.

    1980-10-01

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.) [pt

  12. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  13. Temperature and concentration transients in the aluminum-air battery

    Science.gov (United States)

    Homsy, R. V.

    1981-08-01

    Coupled conservation equations of heat and mass transfer are solved that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to maximum and decreases slowly.

  14. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  15. Evaluation of the heat transfer in a geological repository concept containing PWR, VHTR and hybrid ads-fission spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jonusan, Raoni A.S.; Pereira, Fernando; Velasquez, Carlos E.; Salome, Jean A.D.; Cardoso, Fabiano; Pereira, Claubia; Fortini, Angela, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    The investigation of the thermal behavior of spent fuel (SF) materials is essential to determining appropriate potential sites to accommodate geological repositories as well as the design of canisters, considering their potential risk to people health and of environmental contamination. This work presents studies of the temperature in a canister containing spent fuels discharged from Pressurized Water Reactor (PWR), Very High-Temperature Reactor (VHTR) and Accelerator-Driven Subcritical Reactor System (ADS) reactor systems in a geological repository concept. The thermal analyses were performed with the software ANSYS, which is widely used to solve engineering problems through the Finite Element Method. The ANSYS Transient Thermal module was used. The spent nuclear fuels were set as heat sources using data of previous studies derived from decay heat curves. The studies were based on comparison of the mean temperature on a canister surface along the time under geological disposal conditions, for a same amount of each type of spent nuclear fuel evaluated. The results conclude that fuels from VHTR and ADS systems are inappropriate to be disposed in a standardized PWR canister, demanding new studies to determine the optimal amount of spent fuel and new internal canister geometries. It is also possible to conclude that the hypothetical situation of a single type of canister being used to accommodate different types of spent nuclear fuels is not technically feasible. (author)

  16. B ampersand W PWR advanced control system algorithm development

    International Nuclear Information System (INIS)

    Winks, R.W.; Wilson, T.L.; Amick, M.

    1992-01-01

    This paper discusses algorithm development of an Advanced Control System for the B ampersand W Pressurized Water Reactor (PWR) nuclear power plant. The paper summarizes the history of the project, describes the operation of the algorithm, and presents transient results from a simulation of the plant and control system. The history discusses the steps in the development process and the roles played by the utility owners, B ampersand W Nuclear Service Company (BWNS), Oak Ridge National Laboratory (ORNL), and the Foxboro Company. The algorithm description is a brief overview of the features of the control system. The transient results show that operation of the algorithm in a normal power maneuvering mode and in a moderately large upset following a feedwater pump trip

  17. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  18. DRUFAN-01/MOD2, Transient Thermohydraulics of PWR Primary System LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Burwell, M J; Lerchl, G; Steinhoff, F; Wolfert, K [Gesellschaft fuer Reaktorsicherheit (GRS) mbH, Forschungsgelaende, 8046 Garching (Germany)

    1982-12-13

    1 - Description of problem or function: DRUFAN is an advanced best estimate code for simulation of the transient thermal hydraulic behaviour during PWR-blowdown with large break size. 2 - Method of solution: The code is based on the lumped parameter approach and allows flexible control volume configurations. The physical model takes into account thermodynamic nonequilibrium. Using finite difference techniques a 1-dimensional representation of the discharge flow path including geometrical influences is possible. The physical model is based on separated field equations for liquid and vapour mass and overall field equations for energy and momentum. The mass transfer rates between phases during evaporation and condensation are based on correlations for the controlled growth and shrinkage of vapour bubbles or liquid droplets, respectively. A heat conductor model based on the energy transport equation is available for simulation of structures, electrical heater rods and fuel rods. For the heat transfer between solid structures and the fluid a comprehensive package of flow regime dependent heat transfer and critical heat flux correlations can be used. Simulation of components (valve, pressurizer, accumulator, pump, steam generator) is possible with functions or models. Power generation in solid structures may be simulated by an input time function, an electrical heater model or a neutron kinetics models. As a result of the lumped parameter approach a set of ordinary differential equations is obtained from the field equations. These equations, together with those resulting from the simulation of critical discharge flow near the outlet by a finite difference method, are solved by an explicit/implicit integration method with automatic time step, order and error control. The ordinary differential equations representing heat conductors are solved by an essentially implicit integration method. 3 - Restrictions on the complexity of the problem: - Vapour or liquid phase are

  19. Benchmarking Computational Fluid Dynamics for Application to PWR Fuel

    International Nuclear Information System (INIS)

    Smith, L.D. III; Conner, M.E.; Liu, B.; Dzodzo, B.; Paramonov, D.V.; Beasley, D.E.; Langford, H.M.; Holloway, M.V.

    2002-01-01

    The present study demonstrates a process used to develop confidence in Computational Fluid Dynamics (CFD) as a tool to investigate flow and temperature distributions in a PWR fuel bundle. The velocity and temperature fields produced by a mixing spacer grid of a PWR fuel assembly are quite complex. Before using CFD to evaluate these flow fields, a rigorous benchmarking effort should be performed to ensure that reasonable results are obtained. Westinghouse has developed a method to quantitatively benchmark CFD tools against data at conditions representative of the PWR. Several measurements in a 5 x 5 rod bundle were performed. Lateral flow-field testing employed visualization techniques and Particle Image Velocimetry (PIV). Heat transfer testing involved measurements of the single-phase heat transfer coefficient downstream of the spacer grid. These test results were used to compare with CFD predictions. Among the parameters optimized in the CFD models based on this comparison with data include computational mesh, turbulence model, and boundary conditions. As an outcome of this effort, a methodology was developed for CFD modeling that provides confidence in the numerical results. (authors)

  20. Fluid-structure coupled dynamic response of PWR core barrel during LOCA

    International Nuclear Information System (INIS)

    Lu, M.W.; Zhang, Y.G.; Shi, F.

    1991-01-01

    This paper is engaged in the Fluid-Structure Interaction LOCA analysis of the core barrel of PWR. The analysis is performed by a multipurpose computer code SANES. The FSI inside the pressure vessel is treated by a FEM code including some structural and acoustic elements. The transient in the primary loop is solved by a two-phase flow code. Both codes are coupled one another. Some interesting conclusions are drawn. (author)

  1. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  2. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  3. Investigation of spatial coupling aspects for coupled code application in PWR safety analysis

    International Nuclear Information System (INIS)

    Todorova, N.K.; Ivanov, K.N.

    2003-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3-D) modeling of the reactor core to ensure a realistic description of physical phenomena. This paper describes a part of the research activities carried out on the sensitivity of coupled neutronics/thermal-hydraulic system code's results to the spatial mesh overlays used for modeling pressurized water reactor (PWR) cores for analysis of different transients. The coupled TRAC-PF1/NEM was used to model PWR rod ejection accident (REA). Modeling schemes for pressurized water reactor are described in detail, followed by a comparative analysis of both steady state and transient calculations. By using different TRAC-PF1/NEM vessel modeling options it was demonstrated that the geometric refinement plays a great role in determining the local parameters and control rod worth in the case of spatially asymmetric transients. The capability of TRAC-PF1/NEM to introduce local refinement of heat structure models was explored while preserving the original coarse-mesh structure of the hydraulic model. The obtained results indicated that the thermal-hydraulic feedback phenomenon is non-linear and cannot be separated even in rod ejection accident analysis, where the Doppler feedback plays a dominant role. While the impact of neutronics mesh refinement is well known, this research found that the local predictions, as well as the global predictions are also very sensitive to the thermal-hydraulic refinement

  4. Simulation of hot-channel transients for PHWR reactors

    International Nuclear Information System (INIS)

    Masriera, N.A.

    1988-01-01

    For the simulation of transients a whole-plant code is needed. These codes model the core in a very simplified way. When local variables have to be calculated a different kind of code is needed: a subchannel-code. This report studies the use of the cobra code as a subchannel-code, for the simulation of a PHWR fuel channel, considering that this code was developed for PWR cores calculation. A special effort is made to obtain optimized models for different calculations: steady state, soft transients and severe transients. These models differ in number of subchannels, axial nodes, and the choice of the most important variables. (Author) [es

  5. Thermodynamics and the transport of corrosion products in PWR primary circuits

    International Nuclear Information System (INIS)

    Turner, D.J.

    1992-01-01

    It is argued that practically useful models for the activation, transport and deposition of corrosion products in PWR primary circuits can only be produced on the basis of an improved understanding of the chemical processes which control them. In particular, if a model is to make reliable predictions it is essential that its thermodynamic basis be sound. This is not the case with most current models which employ the erroneous concept of a corrosion product 'solubility'. In addition to the misuse of this term, other complications are discussed. These include the need to take account of the consequences of Gibbs' phase rule and the fact that, for mixed spinels, neither the concept of a thermodynamic solubility nor of a solubility product is valid. There is no reason to believe that measured apparent solubilities of nickel ferrites or spinel mixtures containing cobalt can give any direct guidance on the direction of transport of Ni or Co in PWR primary circuits. This is more likely to be determined by the distribution of stable and unstable ferrites and chromites than by any temperature coefficient of apparent solubility. Most of the transport of Ni and Co into and out of the core probably occurs as a consequence of either chemical or mechanical transients. Most important is likely to be the oxidative destruction and subsequent re-precipitation of chromites which occurs as a consequence of the oxygenated conditions employed during plant shutdown. (author)

  6. ZOCO-6, Temperature Transients in BWR and PWR Containment During LOCA

    International Nuclear Information System (INIS)

    Brosche, D.

    1974-01-01

    1 - Nature of physical problem solved: ZOCO-VI is a multi-node computer code which calculates the time and space dependent pressure distribution in containments of water-cooled nuclear power reactors following a loss-of-coolant accident. It should be used primarily for the short term behaviour but can also be used for the long term behaviour. 2 - Method of solution: Using the equations of the mass balances for steam, water and air, and the energy and volume balances, for each pressure node, four or six (non-thermodynamic equilibrium) ordinary non-linear differential equations for the time dependent variations of the temperature and the masses of steam, water and air are obtained. The solution of the system of differential equations will be performed using the integration and iteration procedure DIFSYS. 3 - Restrictions on the complexity of the problem: The quantity of the pressure nodes is only limited by the computer capacity and the computing time

  7. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  8. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  9. PWR: 10 years after and perspectives

    International Nuclear Information System (INIS)

    1990-01-01

    These proceedings of the SFEN days on PWR (Ten years after and perspectives) comprise 13 conferences bearing on: - From the occurential approach to the state approach - Evolution of calculating tools - Human factors and safety - Reactor safety in the PWR 2000 - The PWR and the electrical power grid load follow - Fuel aspect of PWR management - PWR chemistry evolution - Balance of radiation protection - PWR modifications balance and influence on reactor operation - Design and maintenance of reactor components: 4 conferences [fr

  10. Boron mixing transients in a 900 MW PWR vessel for a reactor start-up operation

    International Nuclear Information System (INIS)

    Alvarez, D.; Martin, A.; Schneider, J.P.

    1995-01-01

    In 1991 a R and D action, based on numerical simulations and experiments on PWRs'S primary coolant temperature or boron mixing capabilities, was initiated. This paper presents the test facility BORA-BORA (a 1/5th scaled mock-up of a 900 MW PWR vessel) and the Thermalhydraulic Finite Element Code N3S used for 3D calculations performed on the accurate geometry of the plant. As a validation test case of these experimental and numerical tools, we present the results obtained on the primary coolant mixing capabilities in the vessel with the three loops balanced in mass flow rate. The second part of this report deals with the mixing of a clear water plug in the vessel when a primary coolant pump start-up. The results are obtained in the mock-up in terms of boron concentration at the core inlet for several clear water plug volumes. The numerical results give the complete fluid flow and boron concentration patterns but comparisons were made at the core inlet. (author). 15 refs., 9 figs., 1 tab

  11. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  12. CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

    Directory of Open Access Journals (Sweden)

    Yann Périn

    2017-09-01

    Full Text Available In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

  13. Simple analysis of very long term proceses without operational and emergency energy supply in the PWR power plant

    International Nuclear Information System (INIS)

    Benedek, S.

    1983-01-01

    Published calculational methods are cited and used for examination of PWR transients after a loss-of-coolant accident. For different sizes of breaks and breakdown of the pumps the long term transients - without operational and emergency power supply - were calculated. The results show the critical time interval until the operational or emergency/safety water pump/supply should be made into operation to avoid the core heat-up, melt down and the large radioactive issue. (orig.)

  14. Improving MODPRESS heat loss calculations for PWR pressurizers

    International Nuclear Information System (INIS)

    Ramos, Natalia V.; Lira, Carlos A. Brayner O.; Castrillho, Lazara S.

    2009-01-01

    The improvement of heat loss calculations in MODPRESS transient code for PWR pressurizer analysis is the main focus of this investigation. Initially, a heat loss model was built based on heat transfer coefficient (HTC) correlations obtained in handbooks of thermal engineering. A hand calculation for Neptunus experimental test number U47 yielded a thermal power loss of 11.2 kW against 17.3 kW given by MODPRESS at the same conditions, while the experimental estimate is given as 17 kW. This comparison is valid only for steady state or before starting the transient experiment, because MODPRESS does not update HTC's when the transient phase begins. Furthermore, it must be noted that MODPRESS heat transfer coefficients are adjusted to reproduce the experimental value of the specific type of pressurizer. After inserting the new routine for HTC's into MODPRESS, the heat loss was calculated as 11.4 kW, a value very close to the first estimate but far below 17 kW found in the U47 experiment. In this paper, the heat loss model and results will be described. Further research is being developed to find a more general HTC that allows the analysis of the effects of heat losses on transient behavior of Neptunus and IRIS pressurizers. (author)

  15. Fatigue Life of Stainless Steel in PWR Environments with Strain Holding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taesoon; Kim, Kyuhyung [KHNP CRI, Daejeon (Korea, Republic of); Seo, Myeonggyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Many components and structures of nuclear power plants are exposed to the water chemistry conditions during the operation. Recently, as design life of nuclear power plant is expanded over 60 years, the environmentally assisted fatigue (EAF) due to these water chemistry conditions has been considered as one of the important damage mechanisms of the safety class 1 components. Therefore, many studies to evaluate the effect of light water reactor (LWR) coolant environments on fatigue life of materials have been conducted. Many EAF test results including Argonne National Laboratory’s consistently indicated the substantial reduction of fatigue life in the light water reactor environments. However, there is a discrepancy between laboratory test data and plant operating experience regarding the effects of environment on fatigue: while laboratory test data suggest huge accumulation of fatigue damage, very limited experience of cracking caused by the low cycle fatigue in light water reactor. These hold-time effect tests are preformed to characterize the effects of strain holding on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 stainless steel in 310℃ air and PWR environments with triangular strain. In agreement with the previous reports, the LCF life was reduced in PWR environments. Also for the slower strain rate, the reduction of LCF life was greater than the faster strain rate. The LCF test conditions for the hold-time effects were determined by the references and consideration of actual plant transient. To simulate the heat-up and cooldown transient, sub-peak strain holding during the down-hill of strain amplitude was chosen instead of peak strain holding which used in the previous researches.

  16. A numerical method for a transient two-fluid model

    International Nuclear Information System (INIS)

    Le Coq, G.; Libmann, M.

    1978-01-01

    The transient boiling two-phase flow is studied. In nuclear reactors, the driving conditions for the transient boiling are a pump power decay or/and an increase in heating power. The physical model adopted for the two-phase flow is the two fluid model with the assumption that the vapor remains at saturation. The numerical method for solving the thermohydraulics problems is a shooting method, this method is highly implicit. A particular problem exists at the boiling and condensation front. A computer code using this numerical method allow the calculation of a transient boiling initiated by a steady state for a PWR or for a LMFBR

  17. Water-hammer experimental set-up and water-hammer experimental study for new types of check valve applied to PWR

    International Nuclear Information System (INIS)

    Liu Hanxun.

    1985-01-01

    This paper describes a self-designed constant temperature water-hammer shock test rig with stainless steel loop in which deionized water is used as working medium. To conduct water-hammer shock simulation tests for the countercurrent phenomenon occurred in the process of shutting, stopping, parallelling and switching the coolant loops of nuclear reactor, a specially designed four-way switching valve and its pneumatic mechanism are used. Water-hammer experimental study is performed for two types of PWR's nonshock check valve with diameter of 150 mm and 200 mm simultaneously. Transient performance of the shock waves, magnitude of their peaks and durations of their fluctuation, is obtained. Some analyses for existing calculational method on water-hammer are made

  18. Steam generator transient studies using a simplified two-fluid computer code

    International Nuclear Information System (INIS)

    Munshi, P.; Bhatnagar, R.; Ram, K.S.

    1985-01-01

    A simplified two-fluid computer code has been used to simulate reactor-side (or primary-side) transients in a PWR steam generator. The disturbances are modelled as ramp inputs for pressure, internal energy and mass flow-rate for the primary fluid. The CPU time for a transient duration of 4 s is approx. 10 min on a DEC-1090 computer system. The results are thermodynamically consistent and encouraging for further studies. (author)

  19. Analysis of the Mannshan Unit 2 full load rejection transient

    International Nuclear Information System (INIS)

    Kang, J.C.; Pei, B.S.; Yu, G.P.; Yuann, R.Y.

    1987-01-01

    Mannshan Unit 2 is a Westinghouse three-loop pressurized water reactor with a rated core power of 2775 MW(thermal) and a rated core flow of 4702 kg/s. Before full power operation, a planned net load rejection was performed during the startup test by opening the main transformer highside breakers. The generator power rapidly reduced to station load. All 16 steam dump valves immediately popped open, and control bank-D rods automatically stepped in as the temperature difference T/sub avg/ - T/sub ref/ reached a programmed 2.8 0 C. Nuclear power decreased smoothly as control rods were inserted into the core. The pressurizer pressure and liquid levels also dropped. Neither safety injection nor reactor trip occurred during this transient. The test was done to verify that the whole system would function properly under a transient to keep the reactor from scramming and that the vessel integrity would also be protected. In this study, which is the preliminary stage of RELAP5/MOD2 transient simulation of the Mannshan PWR plants, system thermal-hydraulic response is tested first and isolated from the neutronic effects. The variation of core power versus time curve was extracted from the power test data to serve as a time varying boundary condition. The comparison of the analytical results of four major parameters (pressurizer pressure, average temperature of the core, steam dump flow rate, and feedwater flow rate) from RELAP5/MOD2 and the power test data is illustrated

  20. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  1. A new approach to PWR power control using intelligent techniques

    International Nuclear Information System (INIS)

    Boroushaki, M.; Ghofrani, M.B.; Lucas, C.; Yazdanpanah, M.J.; Sadati, N.

    2004-01-01

    Improved load following capability is one of the main technical performances of advanced PWR(APWR). Controlling the nuclear reactor core during load following operation encounters some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking, while the core is subject to large and sharp variation of local power density during transients. Axial offset (A.O) is the parameter usually used to represent of core power peaking, in form of a practical parameter. This paper, proposes a new intelligent approach to A.o control of PWR nuclear reactors core during load following operation. This method uses a neural network model of the core to predict the dynamic behavior of the core and a fuzzy critic based on the operator knowledge and experience for the purpose of decision-making during load following operations. Simulation results show that this method can use optimum control rod groups maneuver with variable overlapping and may improve the reactor load following capability

  2. Simulation model for the dynamic behavior of the hydraUlic circuito of PWR reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.

    1987-01-01

    The present work consist of the development of a computer code for the simulations of hydraulic transients caused by stoppages of the primary coolant pumps of nuclear reactors and it applied to the hydraulic circuits typical of PWR reactor. The code calculates the time-histories of the mass flux, rotation speed, electric and hydraulic torque and dynamic head of the pumps. It can be used for any combination of active and inactive pumps. Several transients were analysed and the results were compared with comparared with data from the Angra-I nuclear power plant. The results were considered satisfactory. (author) [pt

  3. An homogeneous model of steam generator to simulate operational transiento and accidents in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Souza, A.L. de.

    1981-07-01

    GEVAP - A digital computer code was developed to simulate the thermodynamic transient behaviour of steam generators. The steam generator is divided in heating sections. In each section, the conservation equations of mass and energy are integrated numerically, using a predictor-corrector method. As good reslts where obtained, as compared to transients simulated using more detainled codes, it is concluded that GEVAP can be included as the steam generator module of a more complete systems simulation code for PWR's. (E.G.) [pt

  4. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  5. Analysis of the NEACRP PWR rod ejection benchmark problems with DIF3D-K

    International Nuclear Information System (INIS)

    Kim, M.H.

    1994-01-01

    Analyses of the NEACRP PWR rod ejection transient benchmark problems with the DIF3D-K nodal kinetics code are presented. The DIF3D-K results are shown to be in generally good agreement with results obtained using other codes, in particular reference results previously generated with the PANTHER code. The sensitivity of the transient results to the DIF3D-K input parameters (such as time step size, radial and axial node sizes, and the mesh structure employed for fuel pin heat conduction calculation) are evaluated and discussed. In addition, the potential in reducing computational effort by application of the improved quasistatic scheme (IQS) to these rod ejection transients, which involve very significant flux shape changes and thermal-hydraulic feedback is evaluated

  6. Assessment of RELAP5/MOD2 code using loss of offsite power transient data of KNU [Korea Nuclear Unit] No. 1 Plant

    International Nuclear Information System (INIS)

    Chung, Bud-Dong; Kim, Hho-Jung

    1990-04-01

    This report presents a code assessment study based on a real plant transient that occurred on June 9, 1981 at the KNU number-sign 1 (Korea Nuclear Unit Number 1). KNU number-sign 1 is a two-loop Westinghouse PWR plant of 587 Mwe. The loss of offsite power transient occurred at the 77.5% reactor power with 0.5%/hr power ramp. The real plant data were collected from available on-line plant records and computer diagnostics. The transient was simulated by RELAP5/MOD2/36.05 and the results were compared with the plant data to assess the code weaknesses and strengths. Some nodalization studies were performed to contribute to developing a guideline for PWR nodalization for the transient analysis. 5 refs., 18 figs., 3 tabs

  7. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    International Nuclear Information System (INIS)

    Laird, J.S.; Bardos, R.; Legge, G.J.F.; Jagadish, C.

    1998-01-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient

  8. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    Leech, W.J.; Kaiser, R.S.

    1980-01-01

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50,000 to 60,000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  9. Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes

    International Nuclear Information System (INIS)

    Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.

    2013-01-01

    The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)

  10. SCANAIR: A transient fuel performance code

    International Nuclear Information System (INIS)

    Moal, Alain; Georgenthum, Vincent; Marchand, Olivier

    2014-01-01

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  11. SCANAIR: A transient fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Moal, Alain, E-mail: alain.moal@irsn.fr; Georgenthum, Vincent; Marchand, Olivier

    2014-12-15

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  12. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  13. Development of a model of a NSSS of the PWR reactor with thermo-hydraulic code GOTHIC; Desarrollo de un modelo del NSSS de un reactor PWR con el codigo termo-hidraulico GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Garcia-Torano, I.; Jimenez, G.

    2013-07-01

    The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.

  14. Maturity of the PWR

    International Nuclear Information System (INIS)

    Bacher, P.; Rapin, M.; Aboudarham, L.; Bitsch, D.

    1983-03-01

    Figures illustrating the predominant position of the PWR system are presented. The question is whether on the basis of these figures the PWR can be considered to have reached maturity. The following analysis, based on the French program experience, is an attempt to pinpoint those areas in which industrial maturity of the PWR has been attained, and in which areas a certain evolution can still be expected to take place

  15. Coolant Mixing in a Pressurized Water Reactor: Deboration Transients, Steam-Line Breaks, and Emergency Core Cooling Injection

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael; Grunwald, Gerhard; Hoehne, Thomas; Kliem, Soeren; Rohde, Ulrich; Weiss, Frank-Peter

    2003-01-01

    The reactor transient caused by a perturbation of boron concentration or coolant temperature at the inlet of a pressurized water reactor (PWR) depends on the mixing inside the reactor pressure vessel (RPV). Initial steep gradients are partially lessened by turbulent mixing with coolant from the unaffected loops and with the water inventory of the RPV. Nevertheless the assumption of an ideal mixing in the downcomer and the lower plenum of the reactor leads to unrealistically small reactivity inserts. The uncertainties between ideal mixing and total absence of mixing are too large to be acceptable for safety analyses. In reality, a partial mixing takes place. For realistic predictions it is necessary to study the mixing within the three-dimensional flow field in the complicated geometry of a PWR. For this purpose a 1:5 scaled model [the Rossendorf Coolant Mixing Model (ROCOM) facility] of the German PWR KONVOI was built. Compared to other experiments, the emphasis was put on extensive measuring instrumentation and a maximum of flexibility of the facility to cover as much as possible different test scenarios. The use of special electrode-mesh sensors together with a salt tracer technique provided distributions of the disturbance within downcomer and core entrance with a high resolution in space and time. Especially, the instrumentation of the downcomer gained valuable information about the mixing phenomena in detail. The obtained data were used to support code development and validation. Scenarios investigated are the following: (a) steady-state flow in multiple coolant loops with a temperature or boron concentration perturbation in one of the running loops, (b) transient flow situations with flow rates changing with time in one or more loops, such as pump startup scenarios with deborated slugs in one of the loops or onset of natural circulation after boiling-condenser-mode operation, and (c) gravity-driven flow caused by large density gradients, e.g., mixing of cold

  16. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  17. The PWR cores management

    International Nuclear Information System (INIS)

    Barral, J.C.; Rippert, D.; Johner, J.

    2000-01-01

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  18. Solution of the transient Fourier heat conduction equation in r,phi geometry

    International Nuclear Information System (INIS)

    Kowa, E.; Ehnis, L.

    1978-11-01

    The two-dimensional transient Fourier heat conduction equation is solved in r,phi geometry for anisotropic materials with the computer program TERFI. The Alternating-Direction-Implicit method is used for the solution of this equation with specified start- and boundary conditions, temperature dependent material properties and space dependent heat sources. The solution area is devided in a mesh grid by the finite difference method. Slidely non-orthogonaly geometry (displacement of mesh grid) can be regarded. There were some difficulties in the treatment of the boundary conditions for the circularly-closed solution area because of the continuity of temperature and heat flux on the 0 0 /360 0 -line. This problem can be solved by an iterativ method with different starting points for the solution scheme. Emphasis was put on reaching reasonable computer time for the iteration. The computer code TERFI, programed in FORTRAN IV, is a modul of the program system RSYST. As an example the temperature distribution of a PWR fuel rod is calculated. (orig.) [de

  19. NUMERICAL MULTIGROUP TRANSIENT ANALYSIS OF SLAB NUCLEAR REACTOR WITH THERMAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Filip Osuský

    2016-12-01

    Full Text Available The paper describes a new numerical code for multigroup transient analyses with thermal feedback. The code is developed at Institute of Nuclear and Physical Engineering. It is necessary to carefully investigate transient states of fast neutron reactors, due to recriticality issues after accident scenarios. The code solves numerical diffusion equation for 1D problem with possible neutron source incorporation. Crank-Nicholson numerical method is used for the transient states. The investigated cases are describing behavior of PWR fuel assembly inside of spent fuel pool and with the incorporated neutron source for better illustration of thermal feedback.

  20. The PWR spectral code GELS. Pt. 1

    International Nuclear Information System (INIS)

    Penndorf, K.; Schult, F.; Schulz, G.

    1976-01-01

    The code procedures group constant libraries for the static PWR design of whatever fuel cycle - Uranium, Thorium, or Plutonium. The whole reach of temperatures is covered and the treatment of strong lumped absorbers as control or burnable poison pins is included. The main features are: 1) Good accuracy in spite of not fitting the material data to critical experiments; 2) speed and relatively low computer equipment; 3) restriction to PWR's only. In case of demands for higher accuracy there is a further restriction concerning the library data of the epithermal resonance absorbers: They are strictly valid only for several special lattice geometrics. Three samples are given each representing a typical application of the code. Two of them likewise are demonstrations of recalculated experiments. (orig.) [de

  1. Lumped-parameter modeling of PWR downcomer and pressurizer for LOCA conditions

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Saha, P.; Dubow, A.A.

    1978-01-01

    Two lumped-parameter models, one for a PWR downcomer and the other for a pressurizer, are presented. The models are based on the transient, nonhomogeneous, drift-flux description of two-phase flow, and are suitable for simulating a hypothetical LOCA condition. Effects of thermal nonequilibrium are incorporated in the downcomer model, whereas the pressurizer model can track the interfaces among various flow regimes. Semiimplicit numerical schemes are used for solution. Encouraging results have been obtained for both the models. (author)

  2. An efficient Neuro-Fuzzy approach to nuclear power plant transient identification

    Energy Technology Data Exchange (ETDEWEB)

    Gomes da Costa, Rafael [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Abreu Mol, Antonio Carlos de, E-mail: mol@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Instituto Nacional de C and T de Reatores Nucleares Inovadores (Brazil); Carvalho, Paulo Victor R. de, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Lapa, Celso Marcelo Franklin, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear - CNEN, Programa de Pos-Graduacao em Ciencia e Tecnologia Nucleares, Via Cinco, s/no, Cidade Universitaria, Rua Helio de Almeida, 75, Postal Box 68550, Zip Code 21941-906 Rio de Janeiro (Brazil); Instituto Nacional de C and T de Reatores Nucleares Inovadores (Brazil)

    2011-06-15

    Highlights: > We investigate a Neuro-Fuzzy modeling tool use for able transient identification. > The prelusive transient type identification is done by an artificial neural network. > After, the fuzzy-logic system analyzes the results emitting reliability degree of it. > The research support was made in a PWR simulator at the Brazilian Nuclear Engineering Institute. > The results show the potential to help operators' decisions in a nuclear power plant. - Abstract: Transient identification in nuclear power plants (NPP) is often a computational very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Recently, several works have been developed for transient identification. These works frequently present a non reliable response, using the 'don't know' as the system output. In this work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A validation of this identification system was made at the three loops Pressurized Water Reactor (PWR) simulator of the Human-System Interface Laboratory (LABIHS) of the Nuclear Engineering Institute

  3. An efficient Neuro-Fuzzy approach to nuclear power plant transient identification

    International Nuclear Information System (INIS)

    Gomes da Costa, Rafael; Abreu Mol, Antonio Carlos de; Carvalho, Paulo Victor R. de; Lapa, Celso Marcelo Franklin

    2011-01-01

    Highlights: → We investigate a Neuro-Fuzzy modeling tool use for able transient identification. → The prelusive transient type identification is done by an artificial neural network. → After, the fuzzy-logic system analyzes the results emitting reliability degree of it. → The research support was made in a PWR simulator at the Brazilian Nuclear Engineering Institute. → The results show the potential to help operators' decisions in a nuclear power plant. - Abstract: Transient identification in nuclear power plants (NPP) is often a computational very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Recently, several works have been developed for transient identification. These works frequently present a non reliable response, using the 'don't know' as the system output. In this work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A validation of this identification system was made at the three loops Pressurized Water Reactor (PWR) simulator of the Human-System Interface Laboratory (LABIHS) of the Nuclear Engineering Institute (IEN

  4. RELAP5/MOD2: for PWR transient analysis

    International Nuclear Information System (INIS)

    Ransom, V.H.

    1983-01-01

    RELAP5 is a light water reactor system transient simulation code for use in nuclear plant safety analysis. Development of a new version, RELAP5/MOD2, has been completed and will be released to the United States Nuclear Regulatory Commission during September of 1983. The new and improved modeling capability of RELAP5/MOD2 is described and some developmental assessment results are presented. The future plans for extension to severe accident modeling are briefly discussed

  5. Simplified model of a PWR primary circuit

    International Nuclear Information System (INIS)

    Souza, A.L.; Faya, A.J.G.

    1988-07-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analyzed by a nodal model. Average and hot channels are treated so that bulk response of the core and DNBR can be evaluated. A homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  6. Numerical analysis and simulation of behavior of high burn-up PWR fuel pulse-irradiated in reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Suzuki, M.; Sugiyama, T.; Udagawa, Y.; Nagase, F.; Fuketa, T.

    2010-01-01

    The four cases of the NSRR experiments, consisting of two room temperature tests and two high temperature tests, using high burn-up PWR fuel rods are analyzed by using the RANNS code to discuss the fuel behavior in hypothetical pulse-irradiation conditions, and the results are compared with metallography observations of ruptured claddings. The cladding rupture occurred by a shear sliding which starts from the tip of incipient crack generated in the hydride dense layer. The analyses reveal that the onset of shear sliding leading to cladding rupture can be closely associated with the stress intensity factor KI at the crack tip and local plastic strain evolution around the tip as well, and that these two factors depend also on the temperature of cladding. Simulation calculations on the basis of experimental conditions reveals that the cladding stress is dependent on the height and half-width of pulse power, and for the same integral enthalpy of pulse a larger half-width mitigates the severity of transient and decreases KI to allow plastic strain by temperature rise, thus failure possibility would be markedly decreased

  7. PWR thermocouple mechanical sealing structure

    International Nuclear Information System (INIS)

    Shen Qiuping; He Youguang

    1991-08-01

    The PWR in-core temperature detection device, which is one of measures to insure reactor safety operation, is to monitor and diagnose reactor thermal power output and in-core power distribution. The temperature detection device system uses thermocouples as measuring elements with stainless steel protecting sleeves. The thermocouple has a limited service time and should be replaced after its service time has reached. A new sealing device for the thermocouples of reactor in-core temperature detection system has been developed to facilitate replacement. The structure is complete tight under high temperature and pressure without any leakage and seepage, and easy to be assembled or disassembled in radioactive environment. The device is designed to make it possible to replace the thermocouple one by one if necessary. This is a new, simple and practical structure

  8. A study on thimble plug removal for PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee, Jae Yong; Jun, Hwang Yong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The thermal-hydraulic effects of removing the RCC guide thimble plugs are evaluated for 8 Westinghouse type PWR plants in Korea as a part of feasibility study: core outlet loss coefficient, thimble bypass flow, and best estimate flow. It is resulted that the best estimate thimble bypass flow increases about by 2% and the best estimate flow increases approximately by 1.2%. The resulting DNBR penalties can be covered with the current DNBR margin. Accident analyses are also investigated that the dropped rod transient is shown to be limiting and relatively sensitive to bypass flow variation. 8 refs., 5 tabs. (Author)

  9. A study on thimble plug removal for PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee, Jae Yong; Jun, Hwang Yong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The thermal-hydraulic effects of removing the RCC guide thimble plugs are evaluated for 8 Westinghouse type PWR plants in Korea as a part of feasibility study: core outlet loss coefficient, thimble bypass flow, and best estimate flow. It is resulted that the best estimate thimble bypass flow increases about by 2% and the best estimate flow increases approximately by 1.2%. The resulting DNBR penalties can be covered with the current DNBR margin. Accident analyses are also investigated that the dropped rod transient is shown to be limiting and relatively sensitive to bypass flow variation. 8 refs., 5 tabs. (Author)

  10. Investigations of anticipated transients without scram (ATWS) for the high temperature reactor

    International Nuclear Information System (INIS)

    Heckhoff, H.D.

    1981-10-01

    In this study anticipated transients without scram (ATWS) are investigated for the high temperature reactor, especially for the thorium high temperature reactor (THTR) 300 MWe as an example. It is shown that the two ATWS 'feedwater flow reduction from full power' and 'positive reactivity insertion of 1 mNile/s from 40 per cent power' are the most important transients for the THTR. The additional load caused by the ATWS can be reduced sufficiently by some small modifications of the afterheat removal system. Supplementary precautions are not necessary. In the last part of this study some possibilities to improve the behaviour of the power plant are shown with regard to high temperature reactors of the future, the partial scram as well as some modifications of heating and cooling of the steam generator. (orig.) [de

  11. Predication of skin temperature and thermal comfort under two-way transient environments.

    Science.gov (United States)

    Zhou, Xin; Xiong, Jing; Lian, Zhiwei

    2017-12-01

    In this study, three transient environmental conditions consisting of one high-temperature phase within two low-temperature phases were developed, thus creating a temperature rise followed by a temperature fall. Twenty-four subjects (including 12 males and 12 females) were recruited and they underwent all three test scenarios. Skin temperature on seven body parts were measured during the whole period of the experiment. Besides, thermal sensation was investigated at specific moments by questionnaires. Thermal sensation models including PMV model, Fiala model and the Chinese model were applied to predict subjects' thermal sensation with comparisons carried out among them. Results show that most predicated thermal sensation by Chinese model lies within the range of 0.5 scale of the observed sensation vote, and it agrees best with the observed thermal sensation in transient thermal environment than PMV and Fiala model. Further studies should be carried out to improve performance of Chinese model for temperature alterations between "very hot" to "hot" environment, for prediction error in the temperature-fall situation of C5 (37-32°C) was over 0.5 scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  13. Proceedings of a specialist meeting on boron reactivity transients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The CSNI Specialist Meeting on Boron Dilution Reactivity Transients was hosted by the Penn State University in collaboration with the US Nuclear Regulatory Commission and the TRAC Users Group. More than 70 experts from 12 OECD countries, as well as experts from Russia and other non-OECD countries attended the meeting. Thirty papers were presented in five technical sessions. The purpose of the meeting was to bring together experts involved in the different activities related to boron dilution transients. The experts came from all involved parties, including research organizations, regulatory authorities, vendors and utilities. Information was openly shared and discussed on the experimental results, plant and systems analysis, numerical analysis of mixing and probability and consequences of these transients. Regulatory background and licensing implications were also included to provide the proper frame work for the technical discussion. Each of these areas corresponded to a separate session. The meeting focused on the thermal-hydraulic aspects because of the current interest in that subject and the significant amount of new technical information being generated. Three papers of the same conference are already available in INIS as individual reports: Potential for boron dilution during small-break LOCAs in PWRs (Ref. number: 27029412); Analysis of boron dilution in a four-loop PWR (Ref. number: 27051651); Probability and consequences of a rapid boron dilution sequence in a PWR (Ref. number: 27029411)

  14. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests

    International Nuclear Information System (INIS)

    Garzarolli, F.; Broy, Y.; Busch, R.A.

    1996-01-01

    Laboratory corrosion tests have always been an important tool for Zr alloy development and optimization. However, it must be known whether a test is representative for the application in-reactor. To shed more light on this question, coupons of several Zr alloys were exposed under isothermal conditions in BWR and PWR type environments. For evaluation of the in-PWR tests and for comparison of out-of-pile and in-pile tests, the different temperatures and times were normalized to a temperature-independent normalized time by assuming an activation temperature (Q/R) of 14,200 K. Comparison of in-PWR and out-of-pile corrosion behavior of Zircaloy shows that corrosion deviates to higher values in PWR if a weight gain of about 50 mg/dm 2 is exceeded. In the case of the Zr2.5Nb alloy, a slight deviation of corrosion as compared to laboratory results starts in PWR only above a weight gain of 100 mg/dm 2 . In BWR, corrosion of Zircaloy is enhanced early in time if compared with out-of-pile. Zr2.5Nb exhibits higher corrosion results in BWR than Zircaloy-4. Alloying chemistry and material condition affect corrosion of Zr alloys. However, several of the material parameters have shown a different ranking in the different environments. Nevertheless, several material parameters influencing in-reactor corrosion like the second phase particle (SPP) size of in-PWR behavior as the Sn and Fe content can be optimized by out-of-pile corrosion tests

  15. EP1000 anticipated transient without scram analyses

    International Nuclear Information System (INIS)

    Saiu, G.; Frogheri, M.; Schulz, T.L.

    2001-01-01

    The present paper summarizes the main results of the Anticipated Transient Without Scram (ATWS) analysis activity, performed for the European Passive Plant Program (EPP). The behavior of the EP1000 plant following an ATWS has been analyzed by means of the RELAP5/Mod3.2 code. An ATWS is defined as an Anticipated Transient accompanied by a common mode failure in the reactor protection system, such that the control rods do not scram as required to mitigate the consequences of the transient. According to the experience gained in PWR design, the limiting ATWS events, in a PWR, have been found to be the heatup transients caused by a reduction of heat removal capability by the secondary side of the plant. For this reason, the Loss of Normal Feedwater initiating event, to which the failure of the reactor scram is associated, has been analyzed. The purpose of the study is to verify the performance requirements set for the core feedback characteristics (that is to evaluate the effect of the low boron core neutron kinetic parameters), the overpressure protection system, and boration systems to cope with the EUR Acceptance Criteria for ATWS. Another purpose of this analysis was to support development of revised PSA success criteria that would reduce the contribution of ATWS to the large release frequency (LRF). The low boron core improved the basic EP1000 response to an ATWS event. In particular, the peak pressure was significantly lower than that which would result from a standard core configuration. The improved ATWS analysis results also permitted improved ATWS PSA success criteria. For example, the reduced peak pressure allows the use of other plant features to mitigate the event, including manual initiation of feed-bleed cooling in the event of PRHR HX failure. As a result, the core melt frequency and especially the LRF are significantly reduced. (author)

  16. Assessment of environmentally assisted cracking in PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Tice, D.R.

    1991-01-01

    There is a possibility that extension of pre-existing flaws in the reactor pressure vessel of a pressurised water reactor (PWR) may occur by environmentally assisted cracking, in particular by corrosion fatigue under cyclic transient loading. Crack growth predictions have usually been carried out using cyclic crack growth rate (da/dN) versus stress intensity range (δK) curves, such as those given in Section XI, Appendix A of the ASME Boiler and Pressure Vessel Code. However, the inherent time dependent nature of environmental cracking processes renders such an approach unrealistic. The present paper describes the development of an alternative time based assessment methodology. Illustrative calculations of expected crack growth of assumed defects made using the cyclic (ASME XIA) and time-based approaches are compared. The results illustrate that crack growth predicted by the time-based approach can be greater or less than that calculated by the traditional method. For a PWR operated with good control of water chemistry, actual crack growth rates are expected to be well below those predicted by the ASME code. (Author)

  17. Short-term calculations to supplement the RS 16 B PWR experiments with internals (PWR1 to PWR5), using the LECK 4 computer code

    International Nuclear Information System (INIS)

    Hughes, G.; Mueller, R.

    1980-03-01

    Within the framework of research project RS 16 B sponsored by the German BMFT a series of a blowdown experiments, DWR1 to DWR5, were performed using a vessel with dummy internals under conditions similar to those in a PWR. The prime objective of these experiments was the investigation of the highly transient blowdown phenomena in the discharge nozzle and the determination of the induced loads on the internals. As a partner in the project, KWU carried out both pre-test predictions and post-test analyses of these experiments using, among others, the computer code LECK 4. For the most severe blowdown test DWR5, the influence of the most important model parameters on the blowdown analysis was investigated in detail. These investigations suggest that, similar to the long-term analyses, calculations using the homogeneous critical flow model would improve agreement between calculation and experiment. (orig./RW) [de

  18. R.B. pressure and temperature transient following main steam line break

    International Nuclear Information System (INIS)

    Das, M.; Bhawal, R.N.; Prakash, P.

    1989-01-01

    The R.B. containment plays an important role in mitigating the consequences of any accident core. The analysis of Main Steam Line Break (MSLB), though not of relevance from activity release considerations, is essentially from structural integrity point of view. In this paper the outline of the likely scenario is drawn and the approach for thermal hydraulic simulation of the system for carrying out transient blowdown analysis is discussed. The results of the containment pressure and temperature transient analysis are also presented. (author). 4 refs., 7 figs

  19. Irradiation temperature memorization by retention of krypton-85. Application to the temperature determination for the internal cladding surface of fuel elements in PWR

    International Nuclear Information System (INIS)

    Fremiot, Claude

    1977-01-01

    The temperature of the inner surface of the cladding fuel elements, which can not be measured directly, can be determined after irradiation. During its stage within the reactor, the cladding is bombarded by krypton-85 fission product, which is trapped in the metallic lattice defects. The experience shows that the krypton release during postirradiation heating takes place at the irradiation temperature. This method was applied for PWR fuel element. A very simple model for retention and release of the krypton is proposed. The krypton trap-energy in zircaloy partakes in this model. This technique can be ordered amongst the Hot'Lab' control methods and expert appraisements. It is pointed out that the principal interest in that method is the fact that it does not need any fuel element instrumentation. At the present, this method is being used by CEA for routine-control. [fr

  20. Flow transients experiments with refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    Flow transients have been investigated in a wide range of thermal-hydraulics situations with Refrigerannt-12. Six pressures (including the reference to PWR and BWR characteristic liquid to vapour densities ratios), several periods of the flowrate transients coastdown during the simulated flow decays, and different specific mass flowrate have been studied emploiyng a circular duct test section (Dsub(i)=7,5 mm). Two heated lengths of the test section have been considered (L = 2300 and 1180 mm). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast flow transients (half-flow decay time, tsub(h)lt5.0-6.0 s). The flow transient does not show dependence, in terms of DNB conditions ,upon the length of the test section: the ratio between transient and steady-state critical mass flowrate is not dependent on the tested geometry. The time interval from the start of the flowrate transient to the onset of DNB (time to crisis), has been experimentally determined for all the runs. Data analysis for a better theoretical prediction of the phenomenon has been accomplished, and a design correlation for DNB conditons and time to crisis prediction has been proposed

  1. Calculation of the fuel temperature field under heat release and heat conductance transient conditions

    International Nuclear Information System (INIS)

    Kazakov, E.K.; Chernukhina, G.M.

    1974-01-01

    Results of calculation of the temperature distribution in an annular fuel element at transient thermal conductivity and heat release values are given. The calculation has been carried out by the mesh technique with the third-order boundary conditions for the inner surface assumed and with heat fluxes and temperatures at the zone boundaries to be equal. Three variants of solving the problem of a stationary temperature field are considered for failed fuel elements with clad flaking or cracks. The results obtained show the nonuniformity of the fuel element temperature field to depend strongly on the perturbation parameter at transient thermal conductivity and heat release values. In case of can flaking at a short length, the core temperature rises quickly after flaking. While evaluating superheating, one should take into account the symmetry of can flaking [ru

  2. The behaviour of irradiated fuel under RIA transients: Interpretation of the CABRI experiments

    International Nuclear Information System (INIS)

    Papin, J.; Rigat, H.; Breton, J.P.; Schmitz, F.

    1996-01-01

    Paper presents the results of investigation of highly irradiated PWR fuel behaviour under fast power transients conducted in a sodium loop of CABRI reactor, as well as the results on development and validation of computer code SCANAIR. (author). 8 refs, 9 figs, 2 tabs

  3. Stress analysis in pipelines submitted to internal pressure - and temperature transients

    International Nuclear Information System (INIS)

    Mansur, T.R.

    1981-08-01

    Experimental determination of the structural behaviour of a thermal-hydraulic loop, when submitted to simultaneous fast change of pressure and temperature, was performed. For this, electrical strain-gages were positioned at some critical points in order to measure the deformation conditions of the structure. The study of the kinetics of the deformation revealed the presence of important transient stresses, mainly from thermal origin. After this transient behaviour, the structure is submitted to a thermal stress, which is shown to be strongly dependent on the degree of restraint of the structure. (Author) [pt

  4. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  5. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  6. Experimental and numerical investigation of the coolant mixing during fast deboration transients

    International Nuclear Information System (INIS)

    Hoehne, T.; Rohde, U.; Weiss, F.P.

    1999-01-01

    For the analysis of boron dilution transients and main steam line break scenarios the modeling of the coolant mixing inside the reactor vessel is important, because the reactivity insertion strongly depends on boron acid concentration or the coolant temperature distribution. Calculations for steady state flow conditions for the VVER-440 were performed with a CFD code (CFX-4). The comparison with experimental data and an analytical mixing model which is implemented in the neutron-kinetic code DYN3D showed a good agreement for near-nominal conditions. First experiments at the Rossendorf Mixing Test Facility ROCOM were performed simulating the start-up of the first main coolant pump. The reference reactor for the geometrically 1:5 scaled Plexiglas model is the German Konvoi type PWR. After demonstrating the capability of the CFD code to simulate these complicated flow transients, calculations were performed for the start-up of the first pump in a VVER-440 type reactor. These calculations are a first step of understanding the coolant mixing in the RPV of a VVER-440 type reactor under transient conditions. The results of the calculation show a very complex flow in the downcomer. A high downcomer of VVER-440 and the existence of the lower control rod chamber support coolant mixing is concluded. (author)

  7. ALADDIN: Advancements and application to the diagnosis of PWR Islanding anomalies

    International Nuclear Information System (INIS)

    Roverso, Davide

    1999-04-01

    This document reports on the latest advancements of the ALADDIN project, which has the general aim of developing a flexible and robust tool for event identification in dynamic processes, through the classification of signal transients. The determination of the correct mapping from process trends to operational conditions is the pivotal task in applications ranging from supervisory control, to detection and diagnosis of faults, process quality control, and recovery from operational anomalies. Wavelet denoising and compression, ensemble learning, and bagging are proposed and described here as viable solutions to the main problems that were encountered with earlier versions of ALADDIN. The resulting system is both better equipped to deal with a wider range of transients and is more reliably stable. The application of ALADDIN to the diagnosis of anomalies in PWR plant islanding is also described, and very encouraging results are presented. The system is shown to be able to deal effectively with relatively long transients, and with the handicap of having only one example for each anomaly class to learn from (author) (ml)

  8. Observations of crud deposits, corrosion and erosion of BWR and PWR fuel

    International Nuclear Information System (INIS)

    Bairiot, H.

    1983-01-01

    The BWR experience is limited to one reactor but the PWR experience covers a wide range of successive generations of power plants (7 in total). The systems are described and their water chemistry briefly commented. Some R and D performed on the effects of the operating regimes (steady state and transients) are summarized. Observations made by pool-side inspections and postirradiation examinations of fuel are outlined concerning water chemistry effects (crud deposits and corrosion) and ''mechanical'' coolant-cladding interaction (chip deposits and baffle jetting). (author)

  9. Source terms associated with two severe accident sequences in a 900 MWe PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Berthion, Y.; Lhiaubet, G.; Lucas, M.

    1983-12-01

    Hypothetical accidents taken into account in PWR risk assessment result in fission product release from the fuel, transfer through the primary circuit, transfer into the reactor containment building (RCB) and finally release to the environment. The objective of this paper is to define the characteristics of the source term (noble gases, particles and volatile iodine forms) released from the reactor containment building during two dominant core-melt accident sequences: S 2 CD and TLB according to the ''Reactor Safety Study'' terminology. The reactor chosen for this study is a French 900 MWe PWR unit. The reactor building is a prestressed concrete containment with an internal liner. The first core-melt accident sequence is a 2-break loss-of-coolant accident on the cold leg, with failure of both system and the containment spray system. The second one is a transient initiated by a loss of offsite and onsite power supply and auxiliary feedwater system. These two sequences have been chosen because they are representative of risk dominant scenarios. Source terms associated with hypothetical core-melt accidents S 2 CD and TLB in a French PWR -900 MWe- have been performed using French computer codes (in particular, JERICHO Code for containment response analysis and AEROSOLS/31 for aerosol behavior in the containment)

  10. Development of a model of a NSSS of the PWR reactor with thermo-hydraulic code GOTHIC

    International Nuclear Information System (INIS)

    Gomez Garcia-Torano, I.; Jimenez, G.

    2013-01-01

    The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.

  11. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR); Implementacion en software libre del simulador universitario de nucleoelectrica tipo PWR (SU-PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Hidago H, F.; Morales S, J.B. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: julfi_jg@yahoo.com.mx

    2007-07-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  12. Validating Westinghouse atom 16 x 16 and 18 x 18 PWR fuel performance

    International Nuclear Information System (INIS)

    Andersson, S.; Gustafson, J.; Jourdain, P.; Lindstroem, L.; Hallstadius, L.; Hofling, C.G.

    2001-01-01

    Westinghouse Atom designs and fabricates PWR fuel for all major European fuel types: 17 x 17 standard (12 ft) and 17 x 17 XL (14 ft) for Westinghouse type PWRs, and 16 x 16 and 18 x 18 fuel for Siemens type PWRs. The W Atom PWR fuel designs are based on the extensive Westinghouse CE PWR fuel experience from combustion engineering type PWRs. The W atom designs utilise basic design features from the W CE fuel tradition, such as all-Zircaloy mid grids and the proven ( 6 rod years) Guardian TM debris catcher, which is integrated in the bottom Inconel grid. Several new features have been developed to meet with stringent European requirements originating from requirements on very high burnup, in combination with low-leakage core operating strategies and high coolant temperatures. The overall reliability of the Westinghouse Atom PWR fuel is very high; no fuel failure has been detected since 1997. (orig.)

  13. Research on the improvement of nuclear safety -Development of a nuclear power plant system analysis code TASS (Transient and setpoint simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Suk Koo; Jang, Won Pyo; Kim, Heui Chul; Kim, Kyung Doo; Lee, Sung Jae; Hah, Kyooi Suk; Song, Soon Jah; Um, Kil Sub; Yoon, Han Yung; Kim, Doo Il; Yoo, Hyung Keun; Choi, Jae Don; Lee, Byung Il; Kim, Jung Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    During the third year of the project the development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the Westinghouse and CE type operating reactors as well as the PWR reactors under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the YGN-3/4 FSAR transients, Kori-3 loss of AC power transient, plant data, Kori-4 load rejection and YGN-3 startup test data as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best estimate RELAP5/MOD 3.1 calculation for the YGN-3/4 FASR transients and shows its capability in simulating plant transient and startup data as well as the thermal hydraulic transient test data. Topical reports on TASS 1.0 code have been prepared and will be submitted to Korea Institute of Nuclear Safety for its licensing application to Westinghouse and CE type PWR transient analyses. The development of TASS 2.0 code has been head started in this year to timely utilize the TASS 2.0 code for the KNGR design certification. 65 figs, 30 tabs, 44 refs. (Author).

  14. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  15. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  16. ITER-W monoblocks under high pulse number transient heat loads at high temperature

    International Nuclear Information System (INIS)

    Loewenhoff, Th.; Linke, J.; Pintsuk, G.; Pitts, R.A.; Riccardi, B.

    2015-01-01

    In the context of using a full-tungsten (W) divertor for ITER, thermal shock resistance has become even more important as an issue that may potentially influence the long term performance. To address this issue a unique series of experiments has been performed on ITER-W monoblock mock ups in three EU high heat flux facilities: GLADIS (neutral beam), JUDITH 2 (electron beam) and Magnum-PSI (plasma beam). This paper discusses the JUDITH 2 experiments. Two different base temperatures, 1200 °C and 1500 °C, were chosen superimposed by ∼18,000/100,000 transient events (Δt = 0.48 ms) of 0.2 and 0.6 GW/m 2 . Results showed a stronger surface deterioration at higher base temperature, quantified by an increase in roughening. This is intensified if the same test is done after preloading (exposure to high temperature without transients), especially at higher base temperature when the material recrystallizes

  17. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  18. Control of the neutronic and thermohydraulic conditions of power ramps in an irradiation loop for PWR fuel rod; Controle des conditions neutroniques et thermohydrauliques des rampes de puissance dans une boucle d`irradiation de combustibles de reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D J.F.

    1993-09-10

    In order to study the power transients effects on PWR fuel rod clad, ramp tests in a pressurized water loop, are carried out at OSIRIS reactor. The present thesis deals with the on-line control of the device, during power ramp and conditioning irradiation. Based on a convolution-type resolution of the kinetics equations, a dynamic compensation of the Silver self-powered neutron detector was developed. With this method, the uncertainty of the ramp end-point is lower than 1%, thus it is very suited for monitoring both transient, as well as steady state conditions. Furthermore, a thermohydraulic model of the irradiation device is described: heat transfer equations, including gamma heating in materials, are solved to obtain temperatures and thermal fluxes of steady states. Results from the model and temperature measurements of the coolant are used together for fuel power determination, in real time. The clad external temperature profile is also calculated and displayed, to improve the irradiation monitoring. (author), 51 refs., 12 annexes, 66 figs.

  19. Analysis of Moderator Temperature Reactivity Coefficient of the PWR Core Using WIMS-ANL

    International Nuclear Information System (INIS)

    Tukiran; Rokhmadi

    2007-01-01

    The Moderator Temperature Reactivity Coefficient (MTRC) is an important parameter in design, control and safety, particularly in PWR reactor. It is then very important to validate any new processed library for an accurate prediction of this parameter. The objective of this work is to validate the newly WIMS library based on ENDF/B-VI nuclear data files, especially for the prediction of the MTRC parameter. For this purpose, it is used a set of light water moderated lattice experiments as the NORA experiment and R1-100H critical reactors, both of reactors using UO 2 fuel pellet. Analysis is used with WIMSD/4 lattice code with original cross section libraries and WIMS-ANL with ENDF/B-VI cross section libraries. The results showed that the moderator temperatures reactivity coefficients for the NORA reactor using original libraries is - 5.039E-04 %Δk/k/℃ but for ENDF/B-VI libraries is - 2.925E-03 %Δk/k/℃. Compared to the designed value of the reactor core, the difference is in the range of 1.8 - 3.8 % for ENDF/B-IV libraries. It can be concluded that for reactor safety and control analysis, it has to be used ENDF/B- VI libraries because the original libraries is not accurate any more. (author)

  20. Experiments on natural circulation during PWR severe accidents and their analysis

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Stewart, W.A.; Sha, W.T.

    1988-01-01

    Buoyancy-induced natural circulation flows will occur during the early-part of PWR high pressure accident scenarios. These flows affect several key parameters; in particular, the course of such accidents will most probably change due to local failures occurring in the primary coolant system (CS) before substantial core degradation. Natural circulation flow patterns were measured in a one-seventh scale PWR PCS facility at Westinghouse RandD laboratories. The measured flow and temperature distributions are report in this paper. The experiments were analyzed with the COMMIX code and good agreement was obtained between data and calculations. 10 refs., 8 figs., 2 tabs

  1. Thermal-hydraulic analysis of NSSS and containment response during extended station blackout for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Hsu, Keng-Hsien, E-mail: hardlycampus@iner.gov.tw; Lin, Chin-Tsu, E-mail: jtling@iner.gov.tw

    2015-07-15

    Highlights: • Calculate NSSS and containment transient response during extended SBO of 24 h. • RELAP5-3D and GOTHIC models are developed for Maanshan PWR plant. • Reactor coolant pump seal leakage is specifically modeled for each loop. • Analyses are performed with and without secondary-side depressurization, respectively. • Considering different total available time for turbine driven auxiliary feedwater system. - Abstract: A thermal-hydraulic analysis has been performed with respect to the response of the nuclear steam supply system (NSSS) and the containment during an extended station blackout (SBO) duration of 24 h in Maanshan PWR plant. Maanshan plant is a Westinghouse three-loop PWR design with rated core thermal power of 2822 MWt. The analyses in the NSSS and the containment are based on the RELAP5-3D and GOTHIC models, respectively. Important design features of the plant in response to SBO are considered in the respective models, e.g., the steam generator PORVs, turbine driven auxiliary feedwater system (TDAFWS), accumulators, reactor coolant pump (RCP) seal design, various heat structures in the containment, etc. In the analysis it is assumed that the shaft seal in each RCP failed due to loss of seal cooling and the RCS fluid flows to the containment directly. Some parameters calculated from the RELPA5-3D model are input to the containment GOTHIC model, including the RCS average temperature and the RCP seal leakage flow and enthalpy. The RCS average temperature is used to drive the sensible heat transfer to the containment. It is found that the severity of the event depends mainly on whether the secondary side is depressurized or not. If the secondary side is depressurized in time (within 1 h after SBO) and the TDAFWS is available greater than 19 h, then the reactor core will be covered with water throughout the SBO duration, which ensures the integrity of the reactor core. On the contrary, if the secondary side is not depressurized, then the RCS

  2. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  3. Probabilistic fracture mechanics analysis of boiling water reactor vessel for cool-down and low temperature over-pressurization transients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Soon; Choi, Young Hwan; Jhung, Myung Jo [Safety Research Division, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  4. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Anglaret, G.; Lasne, M.

    1983-08-01

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  5. Simplified model of a PWR primary coolant circuit

    International Nuclear Information System (INIS)

    Souza, A.L. de; Faya, A.J.G.

    1988-01-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analysed by a nodal model. Average and hot channels are treated so that the bulk response of the core and DNBR can be evaluated. A Homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  6. Comparison of rod-ejection transient calculations in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Knight, M.P.; Brohan, P.; Finnemann, H.; Huesken, J.

    1995-01-01

    This paper proposes a set of 3-dimensional benchmark rod ejection problems for a VVER reactor, based on the well-known NEACRP PWR rod-ejection problems defined by Siemens/KWU. Predictions for these benchmarks derived using three hexagonal-z nodal transient codes, the PANTHER code of Nuclear Electric, the HEXTIME code of Siemens/KWU, and the DYN3D code of FZ-Rossendorf are presented and compared

  7. Experiments on ballooning in pressurized and transiently heated Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Markiewicz, M.E.; Erbacher, F.J.

    1988-02-01

    Single-rod burst tests were performed with Atucha I Zircaloy-4 cladding tubes in the REBEKA burst equipment of KfK. The objective was to investigate the ballooning and burst behavior of argentine cladding tubes obtained from NRG, Germany and CONVAR, Argentina. The burst data were compared with those of cladding tubes used in german PWR's. It was found that the burst data e.g. burst temperature, circumferential burst strain and its response to azimuthal temperature differences are identical for the Argentine and German tubing quality. The burst data are in good agreement with those of German PWR-Zircaloy tubes. Thus, the fuel rod behavior codes developed for German PWR's can also be used for the Argentine reactor Atucha I. (orig.) [de

  8. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  9. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.

    2004-01-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR

  10. AGR v PWR

    International Nuclear Information System (INIS)

    Green, D.

    1986-01-01

    When the Central Electricity Generating Board (CEGB) invited tenders and placed a contract for the Advanced Gas Cooled Reactor (AGR) at Dungeness B in 1965 -preferring it to the Pressurised Water Reactor (PWR) -the AGR was lamentably ill developed. The effects of the decision were widely felt, for it took the British nuclear industry off the light water reactor highway of world reactor business and up and idiosyncratic private highway of its own, excluding it altogether from any material export business in the two decades which followed. Yet although the UK may have made wrong decisions in rejecting the PWR in 1965, that does not mean that it can necessarily now either correct them, or redeem their consequence, by reversing the choice in 1985. In the 20 years since 1965 the whole world economic and energy picture has been transformed and the national picture with it. Picking up the PWR now could prove as big a disaster as rejecting it may have been in 1965. (author)

  11. The physical and chemical degradation of PWR fuel rods in severe accident conditions

    International Nuclear Information System (INIS)

    Parsons, P.D.; Mowat, J.A.S.; Dewhurst, D.W.F.; Hughes, T.E.

    1983-01-01

    An experimental study of the interaction between Zircaloy-4 cladding and UO 2 in PWR fuel rods heated to high temperatures with a negligible differential pressure across the cladding wall is described. The fuel rods were of dimensions appropriate to the 17x17 PWR fuel sub-assembly and were heated in a non-oxidising environment (vacuum) up to approx. 1850 deg. C either isothermally or through heating ramps. Observations were made concerning the extent and nature of the reaction zone between Zircaloy-4 and UO 2 over the temperature range 1500-1850 deg. C for times ranging from 1 min to 125 min. The location, morphology and the chemical composition of the phases formed are described along with the kinetics of their formation. (author)

  12. Data assimilation and PWR primary measurement

    International Nuclear Information System (INIS)

    Mercier, Thibaud

    2015-01-01

    A Pressurized Water Reactor (PWR) Reactor Coolant System (RCS) is a highly complex physical process: heterogeneous power, flow and temperature distributions are difficult to be accurately measured, since instrumentations are limited in number, thus leading to the relevant safety and protection margins. EDF R and D is seeking to assess the potential benefits of applying Data Assimilation to a PWR's RCS (Reactor Coolant System) measurements, in order to improve the estimators for parameters of a reactor's operating setpoint, i.e. improving accuracy and reducing uncertainties and biases of measured RCS parameters. In this thesis, we define a 0D semi-empirical model for RCS, satisfying the description level usually chosen by plant operators, and construct a Monte-Carlo Method (inspired from Ensemble Methods) in order to use this model with Data Assimilation tools. We apply this method on simulated data in order to assess the reduction of uncertainties on key parameters: results are beyond expectations, however strong hypothesis are required, implying a careful preprocessing of input data. (author)

  13. A theoretical model of accelerated irradiation creep at low temperatures by transient interstitial absorption

    International Nuclear Information System (INIS)

    Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.

    1990-01-01

    A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200 degree C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100 degree C is about 100 dpa. At 550 degree C this transient is over by 10 -8 dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350 degree C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment

  14. The development of a transient neutron flux solution in the PANTHER code

    International Nuclear Information System (INIS)

    Hutt, P.K.; Knight, M.P.

    1990-01-01

    In the United Kingdom a new three-dimensional, two-group, homogeneous reactor diffusion code, PANTHER, has been developed for the analysis of pressurized water reactors (PWRs) and advanced gas-cooled reactors (AGRs). The code can perform a comprehensive range of calculations, steady state, depletion, and transient with either a finite difference or analytic nodal flux solution. The nodal solution allows the representation of within-node burnup variation and pin-power reconstruction in either steady-state or transient mode. Specific steady-state and transient thermal feedback modules are included for both PWRs and AGRs. The code is being developed to perform a complete range of reactor calculations from online operational support to fuel management and fault transient analysis. In the area of transient analysis, the code is currently being used for a number of PWR fault transient assessments, including rod ejection and steam-line break. In addition, work is proceeding to incorporate the PANTHER 3D nodal transient solution in the TRAC-P code. This paper outlines the development of the transient flux solutions within PANTHER

  15. A probabilistic SSYST-3 analysis for a PWR-core during a large break LOCA

    International Nuclear Information System (INIS)

    Schubert, J.D.; Gulden, W.; Jacobs, G.; Meyder, R.; Sengpiel, W.

    1985-05-01

    This report demonstrates the SSYST-3 analysis and application for a German PWR of 1300 MW. The report is concerned with the probabilistic analysis of a PWR core during a loss-of-coolant accident due to a large break. With the probabilistic analysis, the distribution functions of the maximum temperatures and cladding elongations occuring in the core can be calculated. Parameters like rod power, the thermohydraulic boundary conditions, stored energy in the fuel rods and the heat transfer coefficient were found to be the most important. The expected value of core damage was determined to be 2.9% on the base of response surfaces for cladding temperature and strain deduced from SSYST-3 single rod results. (orig./HP) [de

  16. Analytical one-dimensional frequency response and stability model for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Hoeld, A.

    1975-01-01

    A dynamic model for PWR nuclear power plants is presented. The plant is assumed to consist of one-dimensional single-channel core, a counterflow once-through steam generator (represented by two nodes according to the nonboiling and boiling region) and the necessary connection coolant lines. The model describes analytically the frequency response behaviour of important parameters of such a plant with respect to perturbations in reactivity, subcooling or mass flow (both at the entrances to the reactor core and/or the secondary steam generator side), the perturbations in steam load or system pressure (on the secondary side of the steam generator). From corresponding 'open' loop considerations it can then be concluded - by applying the Nyquist criterion - upon the degree of the stability behaviour of the underlying system. Based on this theoretical model, a computer code named ADYPMO has been established. From the knowledge of the frequency response behaviour of such a system, the corresponding transient behaviour with respect to a stepwise or any other perturbation signal can also be calculated by applying an appropriate retransformation method, e.g. by using digital code FRETI. To demonstrate this procedure, a transient experimental curve measured during the pre-operational test period at the PWR nuclear power plant KKS Stade was recalculated using the combination ADYPMO-FRETI. Good agreement between theoretical calculations and experimental results give an insight into the validity and efficiency of the underlying theoretical model and the applied retransformation method. (Auth.)

  17. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  18. Industrial assessment of nonbackfittable PWR design modifications. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Daleas, R.S.; Miller, D.D.

    1980-11-01

    As part of the US Department of Energy's Advanced Reactor Design Study, various nonbackfittable PWR design modifications were evaluated to determine their potential for improved uranium utilization and commercial viability. Combustion Engineering, Inc. contributed to this effort through participation in the Battelle Pacific Northwest Laboratory industrial assessment of such design modifications. Seven modifications, including the use of higher primary system temperatures and pressures, rapid-frequent refueling, end-of-cycle stretchout, core periphery modifications, radial blankets, low power density cores, and small PWR assemblies, were evaluated with respect to uranium utilization, economics, technical and operational complexity, and several other subjective considerations. Rapid-frequent refueling was judged to have the highest potential although it would probably not be economical for the majority of reactors with the design assumptions used in this assessment

  19. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  20. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  1. Experimental investigation of transient temperature characteristic in high power fiber laser cutting of a thick steel plate

    Science.gov (United States)

    Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu

    2016-10-01

    Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.

  2. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  3. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  4. Intermediate Leg SBLOCA - Long Lasting Pressure Transient

    International Nuclear Information System (INIS)

    Konjarek, D.; Bajs, T.; Vukovic, J.

    2010-01-01

    The basic phenomenology of Small Break Loss of Coolant Accident (SBLOCA) for PWR plant is described with focus on analysis of scenario in which reactor coolant pressure decreases below secondary system pressure. Best estimate light water reactor transient analysis code RELAP5/mod3.3 was used in calculation. Rather detailed model of the plant was used. The break occurs in intermediate leg on lowest elevation near pump suction. The size of the break is chosen to be small enough to cause cycling of safety valves (SVs) on steam generators (SGs) for some time, but, afterwards, it is large enough to remove decay heat through the break, causing cooling the secondary side. In this case of SBLOCA, when primary pressure decreases below secondary pressure, long lasting pressure transients with significant amplitude occur. Reasons for such behavior are explained.(author).

  5. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  6. Analysis of transient permeation behavior of hydrogen isotope caused by abrupt temperature change of first wall and blanket wall material

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Tanaka, Satoru; Kiyoshi, Tsukasa

    1989-01-01

    To obtain further information on the transient permeation behavior of hydrogen isotopes as caused by an abrupt temperature change, numerical calculations were carried out for two typical metals, nickel and vanadium. Deuterium permeation through nickel is analyzed as a typical case of bulk-diffusion-limited permeation. Its transient behavior changed dramatically according to the specimen thickness. The transient behavior, in general, is separated into two parts, initial and latter period behaviors. Conditions which cause such a separation were evaluated. Evaluation of the hydrogen diffusivity and solubility by an analysis of transient curves of hydrogen permeation was carried out. The transient behavior of simultaneous gas- and ion-driven hydrogen permeation through vanadium was also analyzed. Overshooting of the hydrogen permeation rate appears with an abrupt temperature increase. Increasing the impinging ion flux causes the overshooting peak to become sharper, and also reduces the change of the steady-state permeation rate to be attained after the temperature change compared with the initial value. (orig.)

  7. Fluid transient analysis and design considerations in TVA PWR feedwater systems and steam generators

    International Nuclear Information System (INIS)

    Kelley, B.T.

    1979-01-01

    TVA has evaluated a number of fluid transients in an effort to discover areas of potential problems and to improve overall unit operation. The transients recently or currently being evaluated fall into four major areas - accident analyses, fast valving, heater drain systems, and steam generators. A discussion of each area follows

  8. Concrete creep at transient temperature: constitutive law and mechanism

    International Nuclear Information System (INIS)

    Chern, J.C.; Bazant, Z.P.; Marchertas, A.H.

    1985-01-01

    A constitutive law which describes the transient thermal creep of concrete is presented. Moisture and temperature are two major parameters in this constitutive law. Aside from load, creep, cracking, and thermal (shrinkage) strains, stress-induced hygrothermal strains are also included in the analysis. The theory agrees with most types of test data which include basic creep, thermal expansion, shrinkage, swelling, creep at cyclic heating or drying, and creep at heating under compression or bending. Examples are given to demonstrate agreement between the theory and the experimental data. 15 refs., 6 figs

  9. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  10. Coolant flow monitoring in a PWR core using noise analysis

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1992-01-01

    Experimental investigations of the neutron and temperature noise field have been performed in the 1350 MW PWR nuclear power plant. Evaluation in the low frequency range, where both feedback effects and different thermohydraulics phenomena are dominant, succeeded in measuring the coolant velocity. This is important for determination and localization of essential deviations and possible anomalies. (author)

  11. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR)

    International Nuclear Information System (INIS)

    Valle H, J.; Hidago H, F.; Morales S, J.B.

    2007-01-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  12. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Cha, Chong Hee; Chung, Chang Hwan; Chun, Se Young; Song, Chul Hwa; Chung, Heung Joon; Won, Soon Yeun; Cho, Yeong Rho; Kim, Bok Deuk

    1988-05-01

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  13. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  14. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    International Nuclear Information System (INIS)

    Ferroukhi, H.; Coddington, P.

    2001-01-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  15. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    Science.gov (United States)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  16. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo codes for transient reactor analysis

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2013-01-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branch-less collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires the coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3*3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3*3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail. (authors)

  17. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  18. THALES, Thermohydraulic LOCA Analysis of BWR and PWR

    International Nuclear Information System (INIS)

    ABE, Kiyoharu

    1990-01-01

    reactor coolant system, combustible gas burning, atmosphere- structure heat transfer, ventilation, containment spray cooling, etc. After the molten core penetrates the reactor bottom head, steam generation, concrete disintegration and noncondensable gas generation are calculated in the reactor cavity or the pedestal. 2 - Method of solution: Each of the THALES member codes first establishes the steady state conditions after reading input data. Then iterative time-dependent calculation is continued, taking account of various phenomena and events and their interactions which will occur in the course of a postulated severe accident. The transient calculations are iterated by the physical times specified by input. Generally the RCS thermal hydraulic analysis with the THALES-PM or THALES-BM code is first carried out and its results are transferred to the following containment analysis with the THALES-CV code. Then both results are transferred to a code for analyzing fission product release and transport behavior. Automatic data transfer is possible in the case the JAERI's ART code is used for fission product behavior analysis. In overall thermal hydraulic analysis, a new method is adopted aiming at sufficiently accurate estimation of mixture levels in the reactor coolant system and the containment in a reasonable computer time. The heat transfer calculation in the core is carried out based on the backward method. 3 - Restrictions on the complexity of the problem: Restrictions relating to storage allocation are: (1) Maximum number of radial regions in the core : 10; (2) Maximum number of axial increments in the fuel rods : 50; (3) Maximum number of loops in the PWR primary system : 4; (4) Maximum number of volumes in the PWR primary system : 11; (5) Number of BWR recirculation loops: 2 (fixed); (6) Number of volumes in the BWR reactor coolant system : 7 (fixed); (7) Maximum number of compartments in the containment : 10. There is another restriction, which relates to time step

  19. Transient analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Oriani, L.; Ricotti, M.E.; Barroso, A.C.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a modular, integral, light water cooled, small to medium power reactor, the International Reactor Innovative and Secure (IRIS). IRIS features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). Given the large number of organizations involved in the IRIS design, the RELAP5/MOD 3.3 code has been selected as the main system code. A nodalization of the reference IRIS design has been developed with a basic set of protective functions and controls. Engineered Safety Features of the concept are being also implemented, and in particular the Emergency Heat Removal System that is used for safety grade decay heat removal and in the small break LOCA response of IRIS (Large break LOCAs are eliminated in IRIS by the adoption of the Integral layout) This paper discusses developed model and transient behavior of the system for representative transient sequences.(author)

  20. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  1. An analytical approximation for the prediction of transients with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro (IFRJ), RJ (Brazil); Martinez, Aquilino S. [COPPE/UFRJ, RJ (Brazil). Programa de Engenharia Nuclear

    2010-05-15

    In the present paper a new analytical solution for the point kinetics equation system with temperature feedback is presented. This solution is based on the expansion of the neutron density in terms of the generation time of prompt neutrons (Nahla, 2009) and presents the advantage of being explicit in time and having a simple functional form in comparison with other existing formulations in supercritical transients. (orig.)

  2. An analytical approximation for the prediction of transients with temperature feedback

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Martinez, Aquilino S.

    2010-01-01

    In the present paper a new analytical solution for the point kinetics equation system with temperature feedback is presented. This solution is based on the expansion of the neutron density in terms of the generation time of prompt neutrons (Nahla, 2009) and presents the advantage of being explicit in time and having a simple functional form in comparison with other existing formulations in supercritical transients. (orig.)

  3. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  4. Plutonium rock-like fuel LWR nuclear characteristics and transient behavior in accidents

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Anoda, Yoshinari; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamaguchi, Chouichi; Sugo, Yukihiro

    1998-03-01

    For the disposition of excess plutonium, rock-like oxide (ROX) fuel systems based on zirconia (ZrO{sub 2}) or thoria (ThO{sub 2}) have been studied. Safety analysis of ROX fueled PWR showed it is necessary to increase Doppler reactivity coefficient and to reduce power peaking factor of zirconia type ROX (Zr-ROX) fueled core. For these improvements, Zr-ROX fuel composition was modified by considering additives of ThO{sub 2}, UO{sub 2} or Er{sub 2}O{sub 3}, and reducing Gd{sub 2}O{sub 3} content. As a result of the modification, comparable, transient behavior to UO{sub 2} fuel PWR was obtained with UO{sub 2}-Er{sub 2}O{sub 3} added Zr-ROX fuel, while the plutonium transmutation capability is slightly reduced. (author)

  5. Results from the first cycle of the PWR crud deposition test (IFA-665.1)

    International Nuclear Information System (INIS)

    Bennett, Peter

    2004-03-01

    The main objective of IFA-665.1 is to deposit crud on fuel rods operating under PWR thermal-hydraulic and water chemistry conditions, and to measure the resulting power reduction due to incorporation of boron into the crud. The test has operated for 160 days at power. Water chemistry conditions were 3.15 ppm LiOH and 1400 ppm boron (pH 300 =7.0). The coolant inlet temperature was 290/294 C, with sub-cooled nucleate boiling along the upper half of the fuel bundle. This report presents the results from the first cycle of operation. Three methods have been used to attempt to accelerate crud formation: (i) injection of simulated crud particles (NiFe 2 O 4 ); (ii) pH transients (reduction of pH 300 from 7.0 to 6.0 for periods of 48 hours); and (iii) oxygen addition transients. While the pH transients resulted in movement of large amounts of corrosion products around the loop, no significant deposition onto the fuel surfaces was measured. Comparison of the heat fluxes in IFA-665 with those in previous tests in which crud deposition has occurred does not clearly identify reasons for the lack of crud formation, although it is noted that higher heat fluxes may be required. In addition, the relatively benign boiling conditions in the current test (small void fraction with no detached voidage) may partly explain the absence of crud formation. For the second cycle of the test, changes will be made to the water chemistry to attempt to increase the concentrations of dissolved and colloidal Fe and Ni in the test rig, such that a continuous (Fe + Ni) level of 100 ppb will be targeted, with short-term concentrations of colloids of up to 500 ppb. (Author)

  6. Analysis of PWR control rod ejection accident with the coupled code system SKETCH-INS/TRACE by incorporating pin power reconstruction model

    International Nuclear Information System (INIS)

    Nakajima, T.; Sakai, T.

    2010-01-01

    The pin power reconstruction model was incorporated in the 3-D nodal kinetics code SKETCH-INS in order to produce accurate calculation of three-dimensional pin power distributions throughout the reactor core. In order to verify the employed pin power reconstruction model, the PWR MOX/UO_2 core transient benchmark problem was analyzed with the coupled code system SKETCH-INS/TRACE by incorporating the model and the influence of pin power reconstruction model was studied. SKETCH-INS pin power distributions for 3 benchmark problems were compared with the PARCS solutions which were provided by the host organisation of the benchmark. SKETCH-INS results were in good agreement with the PARCS results. The capability of employed pin power reconstruction model was confirmed through the analysis of benchmark problems. A PWR control rod ejection benchmark problem was analyzed with the coupled code system SKETCH-INS/ TRACE by incorporating the pin power reconstruction model. The influence of pin power reconstruction model was studied by comparing with the result of conventional node averaged flux model. The results indicate that the pin power reconstruction model has significant effect on the pin powers during transient and hence on the fuel enthalpy

  7. Reassessment of PWR pressure-vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Ball, D.G.

    1983-01-01

    A continuing analysis of the PTS problem associated with PWR postuated OCA's indicates that the previously accepted degree of conservatism in the fracture-mechanics model needs to be more closely evaluated, and if excessive, reducted. One feature that was believed to be conservative was the use of two-dimensional as opposed to finite-length (three-dimensional) flaws. A flaw of particular interest is one that is located in an axial weld of a plate-type vessel. For those vessels that suffer relatively high radiation damage in the welds, the length of the flaw will be no greater than the length of the weld, and recent calculations indicate that a deep flaw of that length (approx. 2 m) is not effectively infinitely long, contrary to previous thinking. The benefit to be derived from consideration of the 2-m flaw and also a semielliptical flaw with a length-to-depth ratio of 6/1 was investigated by analyzing several postulated transients. In doing so the sensitivity of the benefit to a specified maximum crack arrest toughness and to the duration of the transient was investigated. Results of the analysis indicate that for some conditions the benefit in using the 2-m flaw is substantial, but it decreases with increasing pressure, and above a certain pressure there may be no benefit, depending on the duration of the transient and the limit on crack arrest toughness

  8. Length determination on industrial polymer parts from measurement performed under transient temperature conditions

    DEFF Research Database (Denmark)

    Dalla Costa, Giuseppe; Madruga, Daniel González; De Chiffre, Leonardo

    2016-01-01

    A way to reduce the cost of metrology in manufacturing is to perform dimensional verification directly in the production environment, avoiding a long and expensive acclimatization phase. In this work the effect of a transient temperature state, typical of the production environment, was investiga...

  9. TRAC analysis and support of Oconee-1 PTS studies

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1983-01-01

    This paper describes the overall pressurized thermal shock (PTS) program at Los Alamos with emphasis on TRAC-PF1 calculations of severe overcooling transients for the Oconee-1 pressurized water reactor (PWR). A summary of results for several calculations are presented for the Oconee-1 PWR along with detailed discussions of two of the most severe overcooling transients predicted [main steam-line break and turbine-bypass valve (TBV) failures]. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to a detailed model of the plant Integrated Control System (ICS). For the Oconee-1 main steam-line break transient, a minimum downcomer fluid temperature of approx. 405 K was predicted. For the TBV transient involving the failure of one bank of TBVs to close after initially opening following reactor and turbine trips, an extrapolated downcomer fluid temperature of approx. 365 K was estimated. The latter temperature is at the nil-ductility temperature (NDT) limit (approx. 365 K) for Oconee-1

  10. Full-length high-temperature severe fuel damage test No. 5

    International Nuclear Information System (INIS)

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy's Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant (∼50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident

  11. Electrochemical evaluation of zinc effect on the corrosion of nickel alloy in PWR solutions with increasing temperature

    International Nuclear Information System (INIS)

    Alvial M, Gaston; Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Quinan, Marco Antonio D.

    2007-01-01

    The main objective for the addition of zinc acetate to the reactor coolant system of PWRs is to effect radiation dose rate reductions. However, zinc is also added as an approach to mitigate the occurrence or severity of primary water stress corrosion cracking of nickel alloy 600. The mechanism by which zinc affects the corrosion of austenitic nickel-base alloys is by incorporation of zinc into the spinel oxide corrosion films. The purpose of this work is to evaluate the influence of zinc on the corrosion behavior of the nickel alloy 600 in PWR chemical environment (1200 ppm B, 2.2 ppm Li, deoxygenated water) with increasing temperature at room pressure. Electrochemical tests (anodic potentiodynamic polarization and electrochemical impedance spectroscopy) were used to characterize the alloy 600. Two conditions were applied: 0 and 100 ppb zinc and the temperature range was 50 - 90 deg C, at ambient pressure. Potentiodynamic polarization was inefficient to present conclusive results. Impedance measurements showed single semicircle in the Nyquist plane suggesting reduction of the charge transference resistance in zinc-containing solutions. This effect is evident at 90 deg C suggesting prejudicial influence of zinc for the alloy 600 at room pressure. (author)

  12. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  13. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    Carew, J.F.; Neogy, P.

    1983-01-01

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  14. In-pile data analysis of the comparative WWER/PWR test IFA-503.1. Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, B.; Devold, H.; Ryazantzev, E.; Yakovlev, V.

    1999-04-15

    The comparative WWER/PWR test in IFA-503.1 was commenced in July 1995 and successfully finished at the end of November 1998. The main objective of the test was generation of representative and comparative data of standard WWER-440 fuel fabricated at the 'MSZ' Electrostal (Russia) and PWR type fuel manufactured at IFE Kjeller (Norway). The test assembly comprised two clusters, each with 3 WWER rods and 3 PWR type rods. Eight rods with two types of fuel were instrumented with expansion thermometers, four rods were equipped with both fuel stack elongation detectors and pressure transducers. All sensors worked satisfactorily during the test. The average burnups achieved in the lower and upper clusters were around 25 and 20 MWd/kgUO{sub 2}, respectively. Some difference in densification of the two types of fuel was revealed during the first irradiation period. However, the fuel temperatures and commencement of fuel stack swelling were similar despite this fact. At the end of the test the rig was moved to a higher flux position in the HBWR core with the aim of promoting FGR and to compare the behaviour of the two types of fuel under higher power. Pressure measurements indicated a comparable low FGR (around 1 percent) in both types of rods. The centreline temperatures measured in the PWR rods were very close to the Halden FGR threshold whilst the WWER fuel temperatures were slightly lower. Despite the differences found in the behaviour of the two types of fuel during the test, the analysis of the in-pile data showed that these differences would not affect the fuel efficiency, at least, up to the burnup achieved in the test. It is supposed that these differences can be related to the fuel microstructure, in particular to the fuel grain and pore sizes (author) (ml)

  15. In-pile data analysis of the comparative WWER/PWR test IFA-503.1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, B.; Devold, H.; Ryazantzev, E.; Yakovlev, V

    1999-04-15

    The comparative WWER/PWR test in IFA-503.1 was commenced in July 1995 and successfully finished at the end of November 1998. The main objective of the test was generation of representative and comparative data of standard WWER-440 fuel fabricated at the 'MSZ' Electrostal (Russia) and PWR type fuel manufactured at IFE Kjeller (Norway). The test assembly comprised two clusters, each with 3 WWER rods and 3 PWR type rods. Eight rods with two types of fuel were instrumented with expansion thermometers, four rods were equipped with both fuel stack elongation detectors and pressure transducers. All sensors worked satisfactorily during the test. The average burnups achieved in the lower and upper clusters were around 25 and 20 MWd/kgUO{sub 2}, respectively. Some difference in densification of the two types of fuel was revealed during the first irradiation period. However, the fuel temperatures and commencement of fuel stack swelling were similar despite this fact. At the end of the test the rig was moved to a higher flux position in the HBWR core with the aim of promoting FGR and to compare the behaviour of the two types of fuel under higher power. Pressure measurements indicated a comparable low FGR (around 1 percent) in both types of rods. The centreline temperatures measured in the PWR rods were very close to the Halden FGR threshold whilst the WWER fuel temperatures were slightly lower. Despite the differences found in the behaviour of the two types of fuel during the test, the analysis of the in-pile data showed that these differences would not affect the fuel efficiency, at least, up to the burnup achieved in the test. It is supposed that these differences can be related to the fuel microstructure, in particular to the fuel grain and pore sizes (author) (ml)

  16. Simulation of LOFT anticipated-transient experiments L6-1, L6-2, and L6-3 using TRAC-PF1/MOD1

    International Nuclear Information System (INIS)

    Sahota, M.S.

    1984-01-01

    Anticipated-transient experiments L6-1, L6-2, and L6-3, performed at the Loss-of-fluid Test (LOFT) facility, are analyzed using the latest released version of the Transient Reactor Analysis Code (TRAC-PF1/MOD1). The results are used to assess TRAC-PF1/MOD1 trip and control capabilities, and predictions of thermal-hydraulic phenomena during slow transients. Test L6-1 simulated a loss-of-stream load in a large pressurized-water reactor (PWR), and was initiated by closing the main steam-flow control valve (MSFCV) at its maximum rate, which reduced the heat removal from the secondary-coolant system and increased the primary-coolant system pressure that initiated a reactor scram. Test L6-2 simulated a loss-of-primary coolant flow in a large PWR, and was initiated by tripping the power to the primary-coolant pumps (PCPs) allowing the pumps to coast down. The reduced primary-coolant flow caused a reactor scram. Test L6-3 simulated an excessive-load increase incident in a large PWR, and was initiated by opening the MSFCV at its maximum rate, which increased the heat removal from the secondary-coolant system and decreased the primary-coolant system pressure that initiated a reactor scram. The TRAC calculations accurately predict most test events. The test data and the calculated results for most parameters of interest also agree well

  17. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  18. Simulation of dynamic response of nuclear power plant based on user-defined model in PSASP

    International Nuclear Information System (INIS)

    Zhao Jie; Liu Dichen; Xiong Li; Chen Qi; Du Zhi; Lei Qingsheng

    2010-01-01

    Based on the energy transformation regularity in physical process of pressurized water reactors (PWR), PWR NPP models are established in PSASP (Power System Analysis Software Package), which are applicable for calculating the dynamic process of PWR NPP and power system transient stabilization. The power dynamic characteristics of PWR NPP is simulated and analyzed, including the PWR self-stability, self-regulation and power step responses under power regulation system. The results indicate that the PWR NPP can afford certain exterior disturbances and 10%P n step under temperature negative feedbacks. The regulate speed of PWR power can reach 5%P n /min under the power regulation system, which meets the requirement of peak regulation in Power Grid. (authors)

  19. Strain rate dependent environmental cracking of ferritic steels in high temperature water

    International Nuclear Information System (INIS)

    Tice, D.R.

    1989-01-01

    Corrosion fatigue crack growth testing demonstrates that a pre-existing defect which might be inadvertently present in the wall of a thick walled component such as the main reactor pressure vessel would not grow in service under transient loading to reach a critical size which would threaten vessel integrity. Steady load stress corrosion has received renewed attention following publication of data showing that stress corrosion cracking can occur in high temperature aqueous environments. Evidence shows that stress corrosion cracking cannot occur in normal pressurized water reactor (PWR) operating conditions. Environmental cracking of ferritic steels in high temperature aqueous environments is influenced by a range of material and environmental variables, amongst the most important being dissolved oxygen (or other oxidants) in the water, water purity and the sulphur content of the steel

  20. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V; Rosenberg, R [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  1. Thermal-hydraulics analysis of a PWR reactor using zircaloy and carbide silicon reinforced with type S fibers as fuel claddings: Simulation of a channel blockage transient

    Energy Technology Data Exchange (ETDEWEB)

    Matuck, Vinicius; Ramos, Mario C.; Faria, Rochkhudson B.; Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: matuck747@gmail.com, E-mail: patricialire@yahoo.com.br, E-mail: marc5663@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    A detailed thermal-hydraulic reactor model using as reference data from the Angra 2 Final Safety Analysis Report (FSAR) has been developed and SiC reinforced with Hi-Nicalon type S fibers (SiC HNS) was used as fuel cladding. The goal is to compare its behavior from the thermal viewpoint with the Zircaloy, at the steady- state and transient conditions. The RELAP-3D was used to perform the thermal-hydraulic analysis and a blockage transient has been investigated at full power operation. The transient considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)

  2. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  3. Material property changes of stainless steels under PWR irradiation

    International Nuclear Information System (INIS)

    Fukuya, Koji; Nishioka, Hiromasa; Fujii, Katsuhiko; Kamaya, Masayuki; Miura, Terumitsu; Torimaru, Tadahiko

    2009-01-01

    Structural integrity of core structural materials is one of the key issues for long and safe operation of pressurized water reactors. The stainless steel components are exposed to neutron irradiation and high-temperature water, which cause significant property changes and irradiation assisted stress corrosion cracking (IASCC) in some cases. Understanding of irradiation induced material property changes is essential to predict integrity of core components. In the present study, microstructure and microchemistry, mechanical properties, and IASCC behavior were examined in 316 stainless steels irradiated to 1 - 73 dpa in a PWR. Dose-dependent changes of dislocation loops and cavities, grain boundary segregation, tensile properties and fracture mode, deformation behavior, and their interrelation were discussed. Tensile properties and deformation behavior were well coincident with microstructural changes. IASCC susceptibility under slow strain rate tensile tests, IASCC initiation under constant load tests in simulated PWR primary water, and their relationship to material changes were discussed. (author)

  4. Thermal-hydraulic study of integrated steam generator in PWR

    International Nuclear Information System (INIS)

    Osakabe, Masahiro

    1989-01-01

    One of the safety aspects of innovative reactor concepts is the integration of steam generators (SGs) into the reactor vessel in the case of the pressurized water reactor (PWR). All of the reactor system components including the pressurizer are within the reactor vessel in the SG integrated PWR. The simple heat transfer code was developed for the parametric study of the integrated SG. The code was compared to the once-through 19-tube SG experiment and the good agreement between the experimental results and the code predictions was obtained. The assessed code was used for the parametric study of the integrated once-through 16 m-straight-tube SG installed in the annular downcomer. The proposed integrated SG as a first attempt has approximately the same tube size and pitch as the present PWR and the SG primary and secondary sides in the present PWR is inverted in the integrated PWR. Based on the study, the reactor vessel size of the SG integrated PWR was calculated. (author)

  5. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    Science.gov (United States)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  6. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  7. French experience in transient data collection and fatigue monitoring of PWR's nuclear steam supply system

    International Nuclear Information System (INIS)

    Sabaton, M.; Morilhat, P.; Savoldelli, D.; Genette, P.

    1995-10-01

    Electricite de France (EDF), the french national electricity company, is operating 54 standardized pressurizer water reactors. This about 500 reactor-years experience in nuclear stations operation and maintenance area has allowed EDF to develop its own strategy for monitoring of age-related degradations of NPP systems and components relevant for plant safety and reliability. After more than fifteen years of experience in regulatory transient data collection and seven years of successful fatigue monitoring prototypes experimentation, EDF decided to design a new system called SYSFAC (acronym for SYsteme de Surveillance en FAtigue de la Chaudiere) devoted to transient logging and thermal fatigue monitoring of the reactor coolant pressure boundary. The system is fully automatic and directly connected to the on-site data acquisition network without any complementary instrumentation. A functional transient detection module and a mechanical transient detection module are in charge of the general transient data collection. A fatigue monitoring module is aimed towards a precise surveillance of five specific zones particularly sensible to thermal fatigue. After the first step of preliminary studies, the industrial phase of the SYSFAC project is currently going on, with hardware and software tests and implementation. The first SYSFAC system will be delivered to the pilot power plant by the beginning of 1996. The extension to all EDF's nuclear 900 MW is planned after one more year of feedback experience. (authors). 12 refs., 3 figs

  8. Influence of taking into account in-pressurizer convective heat- and mass transfer influence effects at the transients in VVER with code RELAP 5/MOD 3.2

    International Nuclear Information System (INIS)

    Konovalyuk, L.N.; Shevelev, D.V.; Kravchenko, V.G.

    2003-01-01

    PRZ model is proposed which allows taking into account in pressurizer convective heat- and mass transfer influence effects at the transients in VVER (PWR) Type Reactors case when calculations performed with using 1D thermohydraulic codes. The theoretical backgrounds are given to define the transients with the convective coolant instability in PRZ. The instability threshold is given for real PRZ geometry

  9. Strength and reliability of low temperature transient liquid phase bonded Cu-Sn-Cu interconnects

    DEFF Research Database (Denmark)

    Brincker, Mads; Söhl, Stefan; Eisele, Ronald

    2017-01-01

    As power electronic devices have tendencies to operate at higher temperatures and current densities, the demand for reliable and efficient packaging technologies are ever increasing. This paper reports the studies on application of transient liquid phase (TLP) bonding of CuSnCu systems...

  10. Influence of spectral history on PWR full core calculation results

    International Nuclear Information System (INIS)

    Bilodid, Y.; Mittag, S.

    2011-01-01

    The few-group cross section libraries, used by reactor dynamics codes, are affected by the spectral history effect-a dependence of fuel cross sections not only on burnup, but also on local spectral conditions during burnup. A cross section correction method based on Pu-239 concentration was implemented in the reactor dynamic code DYN3D. This paper describes the influence of a cross section correction on full-core calculation results. Steady-state and burnup characteristics of a PWR equilibrium cycle, calculated by DYN3D with and without cross section corrections, are compared. A study has shown a significant influence of spectral history on axial power and burnup distributions as well as on calculated cycle length. An impact of the correction on transient calculations is studied for a control rod ejection example. (Authors)

  11. PWR and BWR anticipated and abnormal plant transient research sponsored by the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Beckner, W.D.; Sullivan, L.H.

    1984-01-01

    This chapter reviews the regulatory activities of the US NRC since the realization that anticipated transients with multiple failures (including operator actions) are the major contributors to risk from reactor operations and that the low probability design basis accidents (DBA) are relatively small contributors to risk. The Three Mile Island-2 accident demonstrated that anticipated transients, combined with multiple equipment and/or operator failures, can result in significant core damage. Topics considered include research in direct response to Three Mile Island-2, research in response to specific safety issues, and research to improve the overall understanding of transients (experimental facilities, computer codes). It is concluded that the US NRC has made significant progress in improving its ability to analyze and evaluate abnormal and anticipated transients

  12. Determination of threshold values for operating transients via 3-D parametric analyses

    International Nuclear Information System (INIS)

    Raju, P.P.; Baylac, G.; Faidy, C.

    1983-01-01

    The main objective of the work reported herein was to determine the threshold values of operating parameters such as internal pressure and temperature fluctuations in order that the monitoring of these parameters could be optimized in an operating nuclear power plant on the basis that these fluctuations would not adversely affect the structural integrity and/or fatigue life of the systems and components involved. Accordingly, a parametric study was performed, using a typical and potentially critical lateral connection commonly used in the PWR system. The d/D and D/T ratios for the selected configuration were 0.36 and 10.6, respectively. A three dimensional finite element model was generated for the study using the latest modeling techniques. The stresses due to 1 MPa internal pressure were computed first. Then, a transient thermal analysis was performed for the specified fluid temperature fluctuation of 30 0 C in 60 seconds. Subsequently, a thermal stress analysis was performed using the calculated thermal gradients through the wall. The results of the foregoing analyses are presented and discussed with the help of a threshold equation formulated to prevent fatigue failure. Stress intensification factors are also reported for critical areas

  13. Validation of CATHARE 3D code against UPTF TRAM C3 transients

    International Nuclear Information System (INIS)

    Glantz, Tony; Freitas, Roberto

    2007-01-01

    Within the nuclear reactor safety analysis, one of the events that could potentially lead to a recriticality accident in case of a Small Break LOCA (SBLOCA) in a pressurized water reactor (PWR) is a boron dilution scenario followed by a coolant mixing transient. Some UPTF experiments can be interpreted as generic boron dilution experiments. In fact, the UPTF experiments were originally designed to conduct separate effects studies focused on multi-dimensional thermal hydraulic phenomena. But, in the case of experimental program TRAM, some studies are realized on the boron mixing: tests C3. Some of these tests have been used for the validation and assessment of the 3D module of CATHARE code. Results are very satisfying; CATHARE 3D code is able to reproduce correctly the main features of the UPTF TRAM C3 tests, the temperature mixing in the cold leg, the formation of a strong stratification in the upper downcomer, the perfect mixing temperature in the lower downcomer and the strong stratification in the lower plenum. These results are also compared with the CFX-5 and TRIO-U codes results on these tests. (author)

  14. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  15. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  16. MELCOR 1.8.2 assessment: Surry PWR TMLB' (with a DCH study)

    International Nuclear Information System (INIS)

    Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Summers, R.M.; Thompson, S.L.

    1994-02-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified

  17. Parasitic bipolar amplification in a single event transient and its temperature dependence

    International Nuclear Information System (INIS)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor

  18. TEMP: a computer code to calculate fuel pin temperatures during a transient

    International Nuclear Information System (INIS)

    Bard, F.E.; Christensen, B.Y.; Gneiting, B.C.

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method

  19. Pressure transients analysis of a high-temperature gas-cooled reactor with direct helium turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dang, M.; Dupont, J. F.; Jacquemoud, P.; Mylonas, R. [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1981-01-15

    The direct coupling of a gas cooled reactor with a closed gas turbine cycle leads to a specific dynamic plant behaviour, which may be summarized as follows: a) any operational transient involving a variation of the core mass flow rate causes a variation of the pressure ratio of the turbomachines and leads unavoidably to pressure and temperature transients in the gas turbine cycle; and b) very severe pressure equalization transients initiated by unlikely events such as the deblading of one or more turbomachines must be taken into account. This behaviour is described and illustrated through results gained from computer analyses performed at the Swiss Federal Institute for Reactor Research (EIR) in Wurenlingen within the scope of the Swiss-German HHT project.

  20. Explicit treatment of spectral history effects in PWR design

    International Nuclear Information System (INIS)

    Gavin, P.H.

    1995-01-01

    Spectral history effects in pressurized water reactors (PWRs) are a consequence of spatially distributed and/or time-dependent quantities such as power, moderator temperature, soluble boron concentration, control rod position, etc., defining open-quotes operating conditions.close quotes Operating conditions, global and local, affect neutron spectrum and isotopic reaction rates and thus the evolution of the fuel composition. Any effect that hardens the neutron spectrum, such as elevated temperature or high soluble boron concentration, will increase the fuel conversion ratio and result in more reactive fuel. This paper describes history effects for an 18-month equilibruim cycle of an ABB CE system 80 PWR

  1. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  2. TASS code topical report. V.2 TASS code validation report for the non-LOCA transient analysis of the CE and Westinghouse type plants

    International Nuclear Information System (INIS)

    Sim, Suk K.; Chang, W. P.; Kim, K. D.; Lee, S. J.; Kim, H. C.; Yoon, H. Y.

    1997-02-01

    The development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the CE and Westinghouse type operating reactors as well as the PWR plants under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the FSAR transients, loss of AC power transient plant data, load rejection and startup test data for the reference plants as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best FSAR transient and shows its capability in simulating plant transient analyses. (author). 12 refs., 32 tabs., 132 figs

  3. Transient diagnosis system using quantum-inspired computing and Minkowski distance

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b [Federal University of Rio de Janeiro (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program

    2011-07-01

    This paper proposes a diagnosis system model for identification of transient in a PWR nuclear power plant, optimized by the Quantum Inspired Evolutionary Algorithm - QEA in order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition. This method was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the nuclear power plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). This System compares the similarly distance between the set of variables of the anomalous event, in a given time t, and the centroids of the design-basis transient variables. The lower similarly distance indicates the class of the transient to which the anomalous event belongs. The QEA was then used to find the best position of the centroids of each class of the selected transients. Such positions maximize the number of the correct classifications. Unlike the diagnosis system proposed in the literature, Minkowski distance was employed to calculate the similarity distance. The signatures of four transients were submitted to 1% and 2% of noise, and tested with prototype vector found by QEA. The results showed that the present transient diagnostic system was successfully implemented in the nuclear accident identification problem and was compatible with the techniques presented in the literature. (author)

  4. Transient diagnosis system using quantum-inspired computing and Minkowski distance

    International Nuclear Information System (INIS)

    Nicolau, Andressa dos Santos; Schirru, Roberto

    2011-01-01

    This paper proposes a diagnosis system model for identification of transient in a PWR nuclear power plant, optimized by the Quantum Inspired Evolutionary Algorithm - QEA in order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition. This method was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the nuclear power plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). This System compares the similarly distance between the set of variables of the anomalous event, in a given time t, and the centroids of the design-basis transient variables. The lower similarly distance indicates the class of the transient to which the anomalous event belongs. The QEA was then used to find the best position of the centroids of each class of the selected transients. Such positions maximize the number of the correct classifications. Unlike the diagnosis system proposed in the literature, Minkowski distance was employed to calculate the similarity distance. The signatures of four transients were submitted to 1% and 2% of noise, and tested with prototype vector found by QEA. The results showed that the present transient diagnostic system was successfully implemented in the nuclear accident identification problem and was compatible with the techniques presented in the literature. (author)

  5. Microcomputer simulation of PWR power plant pressurizer

    International Nuclear Information System (INIS)

    Araujo, L.R.A. de; Calixto Neto, J.; Martinez, A.S.; Schirru, R.

    1990-01-01

    It is presented a method for the simulation of the pressurizer behavior of a PWR power plant. The method was implanted in a microcomputer, and it considers all the devices for the pressure control (spray and relief valves, heaters, controller, etc.). The physical phenomena and the PID (Proportional + Integral + Derivative) controller were mathematically represented by linear relations, uncoupled, discretized in the time. There are three different algorithms which take into account the non-linear effects introduced by the variation of the physical properties due to the temperature and pressure, and also the mutual effects between the physical phenomena and the PID controller. (author)

  6. Final PANTHER solution to the NEA-NSC3-DPWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1996-10-01

    This report contains the final results of PANTHER calculations for the 'NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power'. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.)

  7. Final PANTHER solution to the NEA-NSC3-DPWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1996-10-01

    This report contains the final results of PANTHER calculations for the `NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power`. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.).

  8. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  9. BARS - a heterogeneous code for 3D pin-by-pin LWR steady-state and transient calculation

    International Nuclear Information System (INIS)

    Avvakumov, A.V.; Malofeev, V.M.

    2000-01-01

    A 3D pin-by-pin dynamic model for LWR detailed calculation was developed. The model is based on a coupling of the BARS neutronic code with the RELAP5/MOD3.2 thermal hydraulic code. This model is intended to calculate a fuel cycle, a xenon transient, and a wide range of reactivity initiated accidents in a WWER and a PWR. Galanin-Feinberg heterogeneous method was realized in the BARS code. Some results for a validation of the heterogeneous method are presented for reactivity coefficients, a pin-by-pin power distribution, and a fast pulse transient. (Authors)

  10. PREP-PWR-1.0: a WIMS-D/4 pre-processor code for the generation of data for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Ball, G.

    1991-06-01

    The PREP-PWR-1.0 computer code is a substantially modified version of the PREWIM code which formed part of the original MARIA System (Report J.E.N. 543). PREP-PWR-1.0 is a comprehensive pre-processor code which generates input data for the WIMS-D/4.1 code (Report PEL 294) for PWR fuel assemblies, with or without control and burnable poison rods. This data is generated at various base and off-base conditions. The overall cross section generation methodology is described, followed by a brief overview of the model. Aspects of the base/off-base calculational scheme are outlined. Additional features of the code are described while the input data format of PREP-PWR-1.0 is listed. The sample problems and suggestions for further improvements to the code are also described. 2 figs., 2 tabs., 12 refs

  11. Experimental evidence of oxygen thermo-migration in PWR UO{sub 2} fuels during power ramps using in-situ oxido-reduction indicators

    Energy Technology Data Exchange (ETDEWEB)

    Riglet-Martial, Ch., E-mail: chantal.martial@cea.fr; Sercombe, J.; Lamontagne, J.; Noirot, J.; Roure, I.; Blay, T.; Desgranges, L.

    2016-11-15

    The present study describes the in-situ electrochemical modifications which affect irradiated PWR UO{sub 2} fuels in the course of a power ramp, by means of in-situ oxido-reduction indicators such as chromium or neo-formed chemical phases. It is shown that irradiated fuels (of nominal stoichiometry close to 2.000) under temperature gradient such as that occurring during high power transients are submitted to strong oxido-reduction perturbations, owing to radial migration of oxygen from the hot center to the cold periphery of the pellet. The oxygen redistribution, similar to that encountered in Sodium Fast Reactors fuels, induces a massive reduction/precipitation of the fission products Mo, Ru, Tc and Cr (if present) in the high temperature pellet section and the formation of highly oxidized neo-formed grey phases of U{sub 4}O{sub 9} type in its cold section, of lower temperature. The parameters governing the oxidation states of UO{sub 2} fuels under power ramps are finally debated from a cross-analysis of our results and other published information. The potential chemical benefits brought by oxido-reductive additives in UO{sub 2} fuel such as chromium oxide, in connection with their oxygen buffering properties, are discussed.

  12. Summary of PWR leak detection studies

    International Nuclear Information System (INIS)

    Cho, J.H.; Elia, F.A. Jr.

    1986-01-01

    Thermal-hydraulic analysis can be used to determine the location and magnitude of leaks inside and location of leaks outside a pressurized water reactor (PWR) containment as required by plant technical specifications. The major advantage of this detection method is that it minimizes radiation exposure of maintenance personnel because most of the leak detection process is performed from the control room outside containment. Plant-specific analyses are utilized to predict change in parameters such as local dew point temperature, relative humidity, dry bulb temperature, and flow rate to sump for various leak rates and enthalpies. These parameter responses are then programmed into the plant computer and instrumentation is provided for area monitoring. The actual inputs are continuously monitored and compared to the predicted plant responses to identify the leak location and quantify the leak. This study concludes that a system that monitors dew point (or relative humidity) and dry bulb temperature changes together with the flow rate to the sump will provide the capability to both locate and quantify a leak inside a containment, while a system that monitors dew point temperature (or relative humidity) changes will provide the capability to locate a leak outside a containment

  13. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  14. Advanced high conversion PWR: preliminary analysis

    International Nuclear Information System (INIS)

    Golfier, H.; Bellanger, V.; Bergeron, A.; Dolci, F.; Gastaldi, B.; Koberl, O.; Mignot, G.; Thevenot, C.

    2007-01-01

    In this paper, physical aspects of a HCPWR (High Conversion Light Water Reactor), which is an innovative PWR fuelled with mixed oxide and having a higher conversion ratio due to a lower moderation ratio. Moderation ratios lower than unity are considered which has led to low moderation PWR fuel assembly designs. The objectives of this parametric study are to define a feasibility area with regard to the following neutronic aspects: moderation ratio, Pu loading, reactor spectrum, irradiation time, and neutronic coefficients. Important thermohydraulic parameters are the pressure drop, the critical heat flux, the maximum temperature in the fuel rod and the pumping power. The thermohydraulic analysis shows that a range of moderation ratios from 0.8 to 1.2 is technically possible. A compromise between improved fuel utilization and research and development effort has been found for the moderation ration of about 1. The parametric study shows that there are 2 ranges of interest for the moderation ratio: -) moderation ratio between 0.8 and 1.2 with reduced fissile heights (> 3 m), hexagonal arrangement fuel assembly and square arrangement fuel assembly are possible; and -) moderation between 0.6 and 0.7 with a modification of the reactor operating conditions (reduction of the primary flow and of the thermal power), the fuel rods could be arranged inside a hexagonal fuel rod assembly. (A.C.)

  15. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  16. Study on thermo-hydraulic behavior during reflood phase of a PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1989-01-01

    This paper describes thermo-hydraulic behavior during the reflood phase in a postulated large-break loss-of-coolant accident (LOCA) of a PWR. In order to better predict the reflood transient in a nuclear safety analysis specific analytical models have been developed for, saturated film boiling heat transfer in inverted slung flow, the effect of grid spacers on core thermo-hydraulics, overall system thermo-hydraulic behavior, and the thermal response similarity between nuclear fuel rods and simulated rods. A heat transfer correlation has been newly developed for saturated film boiling based on a 4 x 4-rod experiment conducted at JAERI. The correlation provides a good agreement with existing experiments except in the vicinity of grid spacer locations. An analytical model has then been developed addressing the effect of grid spacers. The thermo-hydraulic behavior near the grid spacers was found to be predicted well with this model by considering the breakup of droplets in dispersed flow and water accumulation above the grid spacers in inverted slung flow. A system analysis code has been developed which couples the one-dimensional core and multi-loop primary system component models. It provides fairly good agreement with system behavior obtained in a large-scale integral reflood experiment with active primary system components. An analytical model for the radial temperature distribution in a rod has been developed and verified with data from existing experiments. It was found that a nuclear fuel rod has a lower cladding temperature and an earlier quench time than an electrically heated rod in a typical reflood condition. (author)

  17. Application of the Relap5-3D to phase 1 and 3 of the OECD-CSNI/NSC PWR MSLB benchmark related to TMI-1

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.; Spadoni, A.; Hassan, Y.

    2001-01-01

    The Relap5-3D, the latest in the series of the Relap5 code, distinguishes from the previous versions by the fully integrated, multi-dimensional thermalhydraulic and kinetic modeling capability. It has been applied to Phase I and III of OECD-CSNI/ NSC PWR MSLB Benchmark adopting the same thermalhydraulic input deck already used with Relap5/Parcs and Relap5/Quabbox coupled codes during the previous MSLB analysis. The OECD jointly with the US NRC proposed the PWR MSLB Benchmark in order to gather a common understanding about the coupling between thermal hydraulics and neutronics, and evaluating the behavior of this transient with different coupled codes, giving emphasis to the 3-D modeling. This paper deals with the application of Relap5-3D code to phase I and III of the PWR MSLB Benchmark. The Relap5-3D is a thermal hydraulics-neutronics internally coupled code, the thermal hydraulics module is the INEEL version of Relap and the neutronics module is derived from NESTLE multi-dimension kinetics code. (author)

  18. Temperature noise characteristics of pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1984-01-01

    The core exit temperature noise RMS is linearly related to the core ΔT at a commercial PWR and LOFT. Test loop observations indicate that this linear behavior becomes nonlinear with blockages, boiling, or power skews. The linear neutron flux to temperature noise phase behavior is indicative of a pure time delay process, which has been shown to be related to coolant flow velocity in the core. Therefore, temperature noise could provide a valuable diagnostic tool for the detection of coolant blockages, boiling, and sensor malfunction under both normal and accident conditions in a PWR

  19. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  20. Nonlinear transient heat transfer and thermoelastic analysis of thick-walled FGM cylinder with temperature-dependent material properties using Hermitian transfinite element

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-10-15

    Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant

  1. A Feasibility Study on Core Cooling of Reduced-Moderation PWR for the Large Break LOCA

    International Nuclear Information System (INIS)

    Hiroyuki Yoshida; Akira Ohnuki; Hajime Akimoto

    2002-01-01

    A design study of a reduced-moderation water reactor (RMWR) with tight lattice core is being carried out at the Japan Atomic Energy Research Institute (JAERI) as one candidate for future reactors. The concept is developed to achieve a conversion ratio greater than unity using the tight lattice core (volume ratio of moderator to fuel is around 0.5 and the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated). Under such tight configuration, the core thermal margin becomes smaller and should be evaluated in a normal operation and also during the reflood phase in a large break loss-of-coolant accident (LBLOCA) for PWR type reactors. In this study, we have performed a feasibility evaluation on core cooling of reduced moderation PWR for the LBLOCA (200% break). The evaluation was performed for the primary system after the break by the REFLA/TRAC code. The core thermal output of the reduced moderation PWR is 2900 MWt, the gap between adjacent fuel rods is 1 mm, and heavy water is used as the moderator and coolant. The present design adopts seed fuel assemblies (MOX fuel) and several blanket fuel assemblies. In the blanket fuel assemblies, power density is lower than that of the seed fuel assemblies. Then, we set a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because the possibility that the coolant boils in the seed fuel assemblies is very high. The pressure vessel diameter is bigger in comparison with a current PWR and core height is smaller than the current one. The current 4-loop PWR system is used, and, however, to fit into the bigger pressure vessel volume (about 1.5 times), we set up the capacity of the accumulator (1.5 times of the current PWR). Although the maximum clad temperature reached at about 1200 K in the position of 0.6 m from the lower core support plate, it is sufficiently lower than the design criteria of the current PWR (1500 K). The core cooling of the reduced moderation

  2. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  3. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  4. Characterization of Factors affecting IASCC of PWR Core Internals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Kim, Won Sam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    A lot works have been performed on IASCC in BWR. Recent efforts have been devoted to investigate IASCC in PWR, but the mechanism in PWR is not fully understood yet as compared with that in BWR due to a lack of data from laboratories and fields. Therefore it is strongly needed to review and analyse recent researches of IASCC in both BWR and PWR for establishing a proactive management technology for IASCC of core internals in Korean PWRs. This work is aimed to review mainly recent technical reports on IASCC of stainless steels for core internals in PWR. For comparison, the works on IASCC in BWR were also reviewed and briefly introduced in this report.

  5. A universal PWR spectral history correction

    International Nuclear Information System (INIS)

    Hutt, P.K.; Nunn, D.L.

    1989-01-01

    The accuracy of a form of universal correction for the difference between depletion conditions assumed in PWR assembly lattice calculations and those experienced in a reactor burn-up is investigated. The correction is based on lattice calculations in which only one such depletion history difference, depletion at two different water densities, is explicitly represented by lattice calculations. The assumption is made that other historical effects bear the same relationship to an appropriate time-average of the two-group neutron flux spectrum. The correction is shown to be accurate for the most important historical effects, depletion with burnable absorbers inserted, control rods inserted or at a different soluble boron level, in addition to density itself. The correction is less accurate for representing depletion at a different fuel or coolant temperature but even in these cases gives an improvement over no correction. In addition it is argued that these historic temperature effects are likely to be of minor importance. (author)

  6. Steady-state and transient core feasibility analysis for a thorium-fuelled reduced-moderation PWR performing full transuranic recycle

    International Nuclear Information System (INIS)

    Lindley, Benjamin A.; Ahmad, Ali; Zainuddin, N. Zara; Franceschini, Fausto; Parks, Geoffrey T.

    2014-01-01

    Highlights: • We present a core analysis for a thorium-transuranic fuelled reduced-moderation PWR. • There is the possibility of positive reactivity in severe large break LOCAs. • Mechanical shim is used to control reactivity within power peaking constraints. • Adequate shutdown margin can be achieved with B 4 C control rods are required. • The response to a rod ejection accident is within likely licensing limits. - Abstract: It is difficult to perform multiple recycle of transuranic (TRU) isotopes in PWRs as the moderator temperature coefficient (MTC) tends to become positive after a few recycles and the core may have positive reactivity when fully voided. Due to the favourable impact on the MTC fostered by use of thorium (Th), the possibility of performing Th–TRU multiple-recycle in reduced-moderation PWRs (RMPWRs) is under consideration. Heterogeneous fuel design with spatial separation of Th–U and Th–TRU is necessary to improve neutronic performance. This can take the form of a heterogeneous fuel assembly (TPUC), or whole assembly heterogeneity (WATU). Satisfactory discharge burn-up can be maintained while ensuring negative MTC, with the pin diameter of a standard PWR increased from 9.5 to 11 mm. However, the reactivity becomes positive when the coolant density in the core becomes extremely low. This could lead to positive reactivity in some loss of coolant accident (LOCA) scenarios, for example a surge line break, if the reactor does not trip. To protect against this beyond design basis accident, a second redundant set of shutdown rods is added to the reactor, so that either the usual or secondary rods can trip the reactor when there is zero coolant in the core. Even so, this condition is likely to be concerning from a regulatory standpoint. Reactivity control is a key challenge due to the reduced worth of neutron absorbers and their detrimental effect on the void coefficients, especially when diluted, as is the case for soluble boron

  7. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    Weidinger, H.

    2006-01-01

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  8. Transient simulation of an endothermic chemical process facility coupled to a high temperature reactor: Model development and validation

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Seker, Volkan; Revankar, Shripad T.; Downar, Thomas J.

    2012-01-01

    Highlights: ► Models for PBMR and thermochemical sulfur cycle based hydrogen plant are developed. ► Models are validated against available data in literature. ► Transient in coupled reactor and hydrogen plant system is studied. ► For loss-of-heat sink accident, temperature feedback within the reactor core enables shut down of the reactor. - Abstract: A high temperature reactor (HTR) is a candidate to drive high temperature water-splitting using process heat. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Three thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. The models and coupling scheme are presented here, as well as a transient test case initiated within the chemical plant. The 50% feed flow failure within the chemical plant results in a slow loss-of-heat sink (LOHS) accident in the nuclear reactor. Due to the temperature feedback within the reactor core the nuclear reactor partially shuts down over 1500 s. Two distinct regions are identified within the coupled plant response: (1) immediate LOHS due to the loss of the sulfuric

  9. Electrochemical measurements in PWR steam generators to follow crevice chemistry

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    In PWR steam generator crevices, the evolution of chemistry is important for the understanding of corrosion phenomena. Electrochemical measurements have been performed in high temperature simulated crevice environments in order to follow hideout processes and remedial actions (on-line addition of boric acid). Reported tests have been conducted with model boilers of AJAX facilities. Eccentric and concentric tube support plate crevices have been instrumented with platinum electrodes. Electrochemical measurements have been collected when model boiler was under nominal conditions (primary temperature: 335 deg C, secondary temperature: 280 deg C). They include Electrochemical Impedance Spectroscopy (EIS) and potential measurements: with EIS, sodium and boric acid hideouts have been detected and followed. Potential measurements have been performed in an attempt to measure crevice PH evolution

  10. Computational methods and implementation of the 3-D PWR core dynamics SIMTRAN code for online surveillance and prediction

    International Nuclear Information System (INIS)

    Aragones, J.M.; Ahnert, C.

    1995-01-01

    New computational methods have been developed in our 3-D PWR core dynamics SIMTRAN code for online surveillance and prediction. They improve the accuracy and efficiency of the coupled neutronic-thermalhydraulic solution and extend its scope to provide, mainly, the calculation of: the fission reaction rates at the incore mini-detectors; the responses at the excore detectors (power range); the temperatures at the thermocouple locations; and the in-vessel distribution of the loop cold-leg inlet coolant conditions in the reflector and core channels, and to the hot-leg outlets per loop. The functional capabilities implemented in the extended SIMTRAN code for online utilization include: online surveillance, incore-excore calibration, evaluation of peak power factors and thermal margins, nominal update and cycle follow, prediction of maneuvers and diagnosis of fast transients and oscillations. The new code has been installed at the Vandellos-II PWR unit in Spain, since the startup of its cycle 7 in mid-June, 1994. The computational implementation has been performed on HP-700 workstations under the HP-UX Unix system, including the machine-man interfaces for online acquisition of measured data and interactive graphical utilization, in C and X11. The agreement of the simulated results with the measured data, during the startup tests and first months of actual operation, is well within the accuracy requirements. The performance and usefulness shown during the testing and demo phase, to be extended along this cycle, has proved that SIMTRAN and the man-machine graphic user interface have the qualities for a fast, accurate, user friendly, reliable, detailed and comprehensive online core surveillance and prediction

  11. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Schaltz, Erik; Rosendahl, Lasse

    2015-01-01

    Characterization methods for thermoelectric generator (TEG) modules play an important role in studying their behavior and in enhancing the performance and simulation of TEG systems also. The purpose of this study is to analyze the behavior in transient and steady-state of the temperature applied...

  12. Control rod ejection accident analysis for a PWR with thorium fuel loading

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D.F. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2010-07-01

    This paper presents the results of 3-D transient analysis of a pressurized water reactor (PWR) core loaded with 100% Th-Pu MOX fuel assemblies. The aim of this study is to evaluate the safety impact of applying a full loading of this innovative fuel in PWRs of the current generation. A reactivity insertion accident scenario has been simulated using the reactor core analysis code PANTHER, used in conjunction with the lattice code WIMS. A single control rod assembly, with the highest reactivity worth, has been considered to be ejected from the core within 100 milliseconds, which may occur due to failure of the casing of the control rod driver mechanism. Analysis at both hot full power and hot zero power reactor states have been taken into account. The results were compared with those obtained for a representative PWR fuelled with UO{sub 2} fuel assemblies. In general the results obtained for both cores were comparable, with some differences associated mainly to the harder neutron spectrum observed for the Th-Pu MOX core, and to some specific core design features. The study has been performed as part of the LWR-DEPUTY project of the EURATOM 6. Framework Programme, where several aspects of novel fuels are being investigated for deep burning of plutonium in existing nuclear power plants. (authors)

  13. Sizewell 'B' PWR reference design

    International Nuclear Information System (INIS)

    1982-04-01

    The reference design for a PWR power station to be constructed as Sizewell 'B' is presented in 3 volumes containing 14 chapters and in a volume of drawings. The report describes the proposed design and provides the basis upon which the safety case and the Pre-Construction Safety Report have been prepared. The station is based on a 3425MWt Westinghouse PWR providing steam to two turbine generators each of 600 MW. The layout and many of the systems are based on the SNUPPS design for Callaway which has been chosen as the US reference plant for the project. (U.K.)

  14. Two-dimensional transient far-field analysis for the excess temperature from an arbitrary source

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.J.; Long, E.C.

    1978-07-01

    An analytic solution is presented for the two-dimensional time-dependent advective diffusion equation governing the distribution of excess temperature in a river of uniform width, depth, and downstream flow. The solution is also applicable to a straight coastline with uniform longshore flow. Exact solutions are obtained for a point heat source and a particular line heat source, while an approximate representation is given for an arbitrary time-varying heat source. These solutions are incorporated into a computer program which calculates excess temperature and time rate-of-change of excess temperature in a river or coast as a result of waste heat discharged from various transient sources.

  15. System for stress corrosion conditions tests on PWR reactors

    International Nuclear Information System (INIS)

    Castro, Andre Cesar de Jesus

    2007-01-01

    The study of environmentally assisted cracking (EAC) involves the consideration and evaluation of the inherent compatibility between a material and the environment under conditions of either applied or residual stress. EAC is a critical problem because equipment, components and structure are subject to the influence of mechanical stress, water environment of different composition, temperature and different material history. Testing for resistance to EAC is one of the most effective ways to determine the interrelationships among this variables on the process of EAC. Up to now, several experimental techniques have been developed worldwide, which address different aspects of environmental caused damage. Constant loading of CT specimens test is a typical example of test, which is used for the estimation of parameters of stress corrosion cracking. To assess the initiation stages and kinetics of crack growth, the testing facility should allow active loading of specimens in the environment that is close to the actual operation conditions of assessed component. This paper presents a testing facility for stress corrosion cracking to be installed at CDTN, which was designed and developed at CDTN. The facility is used to carry out constant load tests under simulated PWR environment, where temperature, water pressure and chemistry are controlled, which are considered the most important factors in SCC. Also, the equipment operational conditions, its applications, and restrictions are presented. The system was developed to operate at temperature until 380 degree C and pressure until 180 bar. It consists in a autoclave stuck at a mechanical system, responsible of producing load , a water treatment station, and a data acquisition system. This testing facility allows the evaluation of cracking progress, especially at PWR reactor. (author) operational conditions. (author)

  16. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  17. Containment fan cooler heat transfer calculation during main steam line break for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Kao, Lain-Su, E-mail: lskao@iner.gov.tw

    2013-10-15

    Highlights: • Evaluate component cooling water (CCW) thermal response during MSLB for Maanshan. • Using GOTHIC to calculate CCW temperature and determine time required to boil CCW. • Both convective and condensation heat transfer from the air side are considered. • Boiling will not occur since T{sub B} is sufficiently longer than CCW pump restart time. -- Abstract: A thermal analysis has been performed for the Containment Fan Cooler Unit (FCU) during Main Steam Line Break (MSLB) accident, concurrent with loss of offsite power, for Maanshan PWR plant. The analysis is performed in order to address the waterhammer and two-phase flow issues discussed in USNRC's Generic Letter 96-06 (GL 96-06). Maanshan plant is a twin-unit Westinghouse 3-loop PWR currently operated at rated core thermal power of 2822 MWt for each unit. The design basis for containment temperature is Main Steam Line Break (MSLB) accident at power of 2830.5 MWt, which results in peak vapor temperature of 387.6 °F. The design is such that when MSLB occurs concurrent with loss of offsite power (MSLB/LOOP), both the coolant pump on the secondary side and the fan on the air side of the FCU loose power and coast down. The pump has little inertia and coasts down in 2–3 s, while the FCU fan coasts down over much longer period. Before the pump is restored through emergency diesel generator, there is potential for boiling the coolant in the cooling coils by the high-temperature air/steam mixture entering the FCU. The time to boiling depends on the operating pressure of the coolant before the pump is restored. The prediction of the time to boiling is important because it determines whether there is potential for waterhammer or two-phase flow to occur before the pump is restored. If boiling occurs then there exists steam region in the pipe, which may cause the so called condensation induced waterhammer or column closure waterhammer. In either case, a great amount of effort has to be spent to

  18. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature

    NARCIS (Netherlands)

    Montanari, Ivan; Nogueira, Ana F.; Nelson, Jenny; Durrant, James R.; Winder, Christoph; Loi, Maria Antonietta; Sariciftci, Niyazi Serdar; Brabec, Christoph

    2002-01-01

    The recombination kinetics of photogenerated charge carriers in a composite of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1-4-phenylene vinylene], (MDMO–PPV) and the functionalised fullerene 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 are investigated at room temperature by transient absorption

  19. Program of monitoring PWR fuel in Spain; Programa de Vigilancia de Combustible pwr en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Murillo, J. C.; Quecedo, M.; Munoz-Roja, C.

    2015-07-01

    In the year 2000 the PWR utilities: Centrales Nucleares Almaraz-Trillo (CNAT) and Asociacion Nuclear Asco-Vandellos (ANAV), and ENUSA Industrias Avanzadas developed and executed a coordinated strategy named PIC (standing for Coordinated Research Program), for achieving the highest level of fuel reliability. The paper will present the scope and results of this program along the years and will summarize the way the changes are managed to ensure fuel integrity. The excellent performance of the ENUSA manufactured fuel in the PWR Spanish NPPs is the best indicator that the expectations on this program are being met. (Author)

  20. Study on virtual simulation technology for operation and control of PWR

    International Nuclear Information System (INIS)

    Fang Baoguo; Zhang Dafa; Lin Yajun

    2006-01-01

    The way to build graphical models of PWR with MultiGen Creator is discussed, and the three-dimensional model used in the virtual simulation is built. The mathematical simulation model for PWR based on the platform of MFC and Vega is built through the analysis of the mathematical simulation of PWR. The way to perform the virtual effect is introduced associating with the Pressurizer. And, all above parts are connected in one with VC++ to perform the whole virtual simulation of PWR. (authors)

  1. Dynamic modeling of primary and secondary systems of IRIS reactor for transient analysis using SIMULINK

    International Nuclear Information System (INIS)

    Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da

    2011-01-01

    The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)

  2. Computational model for transient studies of IRIS pressurizer behavior

    International Nuclear Information System (INIS)

    Rives Sanz, R.; Montesino Otero, M.E.; Gonzalez Mantecon, J.; Rojas Mazaira, L.

    2014-01-01

    International Reactor Innovative and Secure (IRIS) excels other Small Modular Reactor (SMR) designs due to its innovative characteristics regarding safety. IRIS integral pressurizer makes the design of larger pressurizer system than the conventional PWR, without any additional cost. The IRIS pressurizer volume of steam can provide enough margins to avoid spray requirement to mitigate in-surge transient. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial finite volume Computational Fluid Dynamic code CFX 14. A symmetric tridimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of three phases: liquid, steam, and vapor bubbles in liquid volume. Additionally, it takes into account the heat losses between the pressurizer and primary circuit. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX by using expressions in CFX Command Language (CCL) format. Moreover, several additional variables are defined for improving the convergence and allow monitoring of boron dilution sequences and condensation-evaporation rate in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences such as the in/out-surge transients and boron dilution sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  3. Water chemistry in PWR

    International Nuclear Information System (INIS)

    Abe, Kenji

    1987-01-01

    This article outlines major features and basic concept of the secondary system of PWR's and water properties control measures adopted in recent PWR plants. The secondary system of a PWR consists of a condenser cooling pipe (aluminum-brass, titanium, or stainless steel), low-pressure make-up water heating pipe (aluminum-brass or stainless steel), high-ressure make-up water heating pipe (cupro-nickel or stainless steel), steam generator heat-transfer pipe (Inconel 600 or 690), and bleed/drain pipe (carbon steel, low alloy steel or stainless steel). Other major pipes and equipment are made of carbon steel or stainless steel. Major troubles likely to be caused by water in the secondary system include reduction in wall thickness of the heat-transfer pipe, stress corrosion cracking in the heat-transfer pipe, and denting. All of these are caused by local corrosion due to concentration of purities contained in water. For controlling the water properties in the secondary system, it is necessary to prevent impurities from entering the system, to remove impurities and corrosion products from the system, and to prevent corrosion of apparatus making up the system. Measures widely adopted for controlling the formation of IGA include the addition of boric acid for decreasing the concentration of free alkali and high hydrazine operation for providing a highly reducing atmospere. (Nogami, K.)

  4. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  5. Investigation of radial power and temperature effects in large-scale reflood experiments

    International Nuclear Information System (INIS)

    Motley, F.

    1983-01-01

    The largest reflood test facility in the world has been designed and constructed by the Japan Atomic Energy Research Institute (JAERI). The experimental test facility, known as the Cylindrical Core Test Facility (CCTF), models a full-height core section and the four primary loops of a Pressurized Water Reactor (PWR). The radial power distribution and temperature distribution were varied during the testing program. The test results indicate that the radial effects, while noticeable, do not appreciably alter the overall quenching behavior of the facility. The Transient Reactor Analysis Code (TRAC) correctly predicted the experimental results of several of the tests. The code results indicate that the core flow pattern adjusts multidimensionally to mitigate the effects of increased power or stored energy

  6. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  7. PWR boron dilution transients. Thermal-hydraulic analyses of PKL-E experiments

    International Nuclear Information System (INIS)

    Pietro Alessandro Di Maio; Antonino Tomasello; Giuseppe Vella

    2005-01-01

    Full text of publication follows: In the field of PWR reactor safety, one of the topics that is currently of major interest worldwide is that of inadvertent boron dilution events. The safety issue involved in such scenarios is that inadvertent transport into the reactor core of un-borated water - or water having only a low boron concentration - can lead to local recriticality and possibly to power excursions. Studies on various accidental sequences that could initiate boron dilution events revealed that some SBLOCAs, occurring in the primary system, lead to reflux condenser conditions and subsequent re-establishment of natural circulation are of particular significance. In this work, the first field of analysis is related to the investigation of the thermal - hydraulic conditions that could lead to boron dilution events, such as the stop of natural circulation within primary system and the subsequent start of reflux condenser functioning mode. The investigation of the primary thermal - hydraulic conditions has been performed using the experimental results obtained in the PKL test integral facility in which some SBLOCA sequences have been carried out. Particular useful were the PKL III E experiments data whose results have been numerically reproduced using the code Relap5/MOD3.3/Beta code, contributing to understand the complex thermalhydraulic phenomena related to a PWR boron dilution event. The second field of analysis is related to the effects that possible displacements of un-borated water slugs towards the Reactor Pressure Vessel (RPV) could have on the core reactivity. A numerical approach using the Relap5 reactor kinetics model has been adopted to integrate the experimental thermal - hydraulic data obtained in the PKL III E tests. A careful analysis has been performed in order to establish which core conditions at incident start could produce the largest reactivity increase as a consequence of restarting of natural circulation during the primary system

  8. PWR boron dilution transients. Thermal-hydraulic analyses of PKL-E experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pietro Alessandro Di Maio; Antonino Tomasello; Giuseppe Vella [Dipartimento di Ingegneria Nucleare, Viale delle Scienze, 90128 Palermo (Italy)

    2005-07-01

    Full text of publication follows: In the field of PWR reactor safety, one of the topics that is currently of major interest worldwide is that of inadvertent boron dilution events. The safety issue involved in such scenarios is that inadvertent transport into the reactor core of un-borated water - or water having only a low boron concentration - can lead to local recriticality and possibly to power excursions. Studies on various accidental sequences that could initiate boron dilution events revealed that some SBLOCAs, occurring in the primary system, lead to reflux condenser conditions and subsequent re-establishment of natural circulation are of particular significance. In this work, the first field of analysis is related to the investigation of the thermal - hydraulic conditions that could lead to boron dilution events, such as the stop of natural circulation within primary system and the subsequent start of reflux condenser functioning mode. The investigation of the primary thermal - hydraulic conditions has been performed using the experimental results obtained in the PKL test integral facility in which some SBLOCA sequences have been carried out. Particular useful were the PKL III E experiments data whose results have been numerically reproduced using the code Relap5/MOD3.3/Beta code, contributing to understand the complex thermalhydraulic phenomena related to a PWR boron dilution event. The second field of analysis is related to the effects that possible displacements of un-borated water slugs towards the Reactor Pressure Vessel (RPV) could have on the core reactivity. A numerical approach using the Relap5 reactor kinetics model has been adopted to integrate the experimental thermal - hydraulic data obtained in the PKL III E tests. A careful analysis has been performed in order to establish which core conditions at incident start could produce the largest reactivity increase as a consequence of restarting of natural circulation during the primary system

  9. The assessment of RELAP5/MOD2 based on pressurizer transient experiments

    International Nuclear Information System (INIS)

    Xue Hanjun; Tanrikut, A.; Menzel, R.

    1992-03-01

    Two typical experiments have been performed in Chinese test facility under full pressure load corresponding to typical PWRs, 1) dynamic behavior of pressurizer due to relief valve operations (Case-I) is extremely important in transients and accident conditions regarding depressurization of PWR primary system; 2) Outsurge/Insurge operation is one of the transient which is often encountered and experienced in pressurizer systems due to pressure transients in primary system of PWRs. The simulation capability of RELAP5/MOD2 is good in comparison to experimental results. The physical models (such as interface model, stratification model), playing a major role in such simulation, seems to be realistic. The effect of realistic valve modeling in depressurization simulation is extremely important. Sufficient data for relief valve (the dynamic characteristics of valve) play a major role. The time dependent junction model and the trip valve model with a reduced discharge coefficient of 0.2 give better predictions in agreement with the experiment data while the trip valve models with discharge coefficient 1.0 yield overdepressurization. The simulation of outsurge/insurge transient yields satisfactory results. The thermal non-equilibrium model is important with respect to simulation of complicated physical phenomena in outsurge/insurge transient but has a negligible effect upon the depressurization simulation. (orig./HP)

  10. IGENPRO knowledge-based digital system for process transient diagnostics and management

    International Nuclear Information System (INIS)

    Morman, J.A.; Reifman, J.; Vitela, J.E.; Wei, T.Y.C.; Applequist, C.A.; Hippely, P.; Kuk, W.; Tsoukalas, L.H.

    1998-01-01

    Verification and validation issues have been perceived as important factors in the large scale deployment of knowledge-based digital systems for plant transient diagnostics and management. Research and development (R and D) is being performed on the IGENPRO package to resolve knowledge base issues. The IGENPRO approach is to structure the knowledge bases on generic thermal-hydraulic (T-H) first principles and not use the conventional event-basis structure. This allows for generic comprehensive knowledge, relatively small knowledge bases and above all the possibility of T-H system/plant independence. To demonstrate concept feasibility the knowledge structure has been implemented in the diagnostic module PRODIAG. Promising laboratory testing results have been obtained using data from the full scope Braidwood PWR operator training simulator. This knowledge structure is now being implemented in the transient management module PROMANA to treat unanticipated events and the PROTREN module is being developed to process actual plant data. Achievement of the IGENPRO R and D goals should contribute to the acceptance of knowledge-based digital systems for transient diagnostics and management. (author)

  11. IGENPRO knowledge-based digital system for process transient diagnostics and management

    International Nuclear Information System (INIS)

    Morman, J.A.; Reifman, J.; Wei, T.Y.C.

    1997-01-01

    Verification and validation issues have been perceived as important factors in the large scale deployment of knowledge-based digital systems for plant transient diagnostics and management. Research and development (R ampersand D) is being performed on the IGENPRO package to resolve knowledge base issues. The IGENPRO approach is to structure the knowledge bases on generic thermal-hydraulic (T-H) first principles and not use the conventional event-basis structure. This allows for generic comprehensive knowledge, relatively small knowledge bases and above all the possibility of T-H system/plant independence. To demonstrate concept feasibility the knowledge structure has been implemented in the diagnostic module PRODIAG. Promising laboratory testing results have been obtained using data from the full scope Braidwood PWR operator training simulator. This knowledge structure is now being implemented in the transient management module PROMANA to treat unanticipated events and the PROTREN module is being developed to process actual plant data. Achievement of the IGENPRO R ampersand D goals should contribute to the acceptance of knowledge-based digital systems for transient diagnostics and management

  12. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  13. RETRAN-02: a program for transient thermal-hydraulic analysis of complex fluid-flow systems. Volume 4. Applications

    International Nuclear Information System (INIS)

    Peterson, C.E.; Gose, G.C.; McFadden, J.H.

    1983-01-01

    RETRAN-02 represents a significant achievement in the development of a versatile and reliable computer program for use in best estimate transient thermal-hydraulic analysis of light water reactor systems. The RETRAN-02 computer program is an extension of the RETRAN-01 program designed to provide analysis capabilities for 1) BWR and PWR transients, 2) small break loss of coolant accidents, 3) balance of plant modeling, and 4) anticipated transients without scram, while maintaining the analysis capabilities of the predecessor code. The RETRAN-02 computer code is constructed in a semimodular and dynamic dimensioned form where additions to the code can be easily carried out as new and improved models are developed. This report (the fourth of a five volume computer code manual) describes the verification and validation of RETRAN-02

  14. Analytical solution of transient temperature in continuous wave end-pumped laser slab: Reduction of temperature distribution and time of thermal response

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available An analytical solution of transient 3-D heat equation based on integral transform method is derived. The result are compared with numerical solution, and good agreements are obtained. Minimization of response time and temperature distribution through a laser slab are tested. It is found that the increasing in the lateral convection heat transfer coefficient can significantly reduce the response time and the temperature distribution while no effect on response time is observed when changing pumping profile from Gaussian to top hat beam in spite of the latter reduce the temperature distribution, also it is found that dividing the pumping power between two slab ends might reduce the temperature distribution and it has no effect on thermal response time.

  15. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  16. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    V. Delabrosse

    2003-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  17. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    T. Schmitt

    2005-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  18. The AMEBA PWR, a new concept in the technology of nuclear reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A

    2000-05-01

    AMEBA is an Italian acronym which stands for 'alta moderazione e basso arricchimento' (high moderation and low enrichment). The AMEBA reactor is nothing more than a PWR which possesses very unusual values of both volumetric ratio moderator/fuel and U-235 enrichment of UO{sub 2}. The possibility is shown of the technical realisation of a nuclear power plant equipped with an AMEBA PWR reactor. Among the most enticing properties of AMEBA are the following: self-shut-down in any abnormal condition, elimination of all need for control rods and boric acid dissolution in the water, absolute impossibility of reaching values of reactivity greater than a fraction of a dollar, intrinsic subcriticality, attaining to several dollars, in non-operative condition when the water is at ambient temperature, normal operation with a very small-sized pressurizer, self-start-up.

  19. The AMEBA PWR, a new concept in the technology of nuclear reactor safety

    International Nuclear Information System (INIS)

    Novelli, A.

    2000-01-01

    AMEBA is an Italian acronym which stands for 'alta moderazione e basso arricchimento' (high moderation and low enrichment). The AMEBA reactor is nothing more than a PWR which possesses very unusual values of both volumetric ratio moderator/fuel and U-235 enrichment of UO 2 . The possibility is shown of the technical realisation of a nuclear power plant equipped with an AMEBA PWR reactor. Among the most enticing properties of AMEBA are the following: self-shut-down in any abnormal condition, elimination of all need for control rods and boric acid dissolution in the water, absolute impossibility of reaching values of reactivity greater than a fraction of a dollar, intrinsic subcriticality, attaining to several dollars, in non-operative condition when the water is at ambient temperature, normal operation with a very small-sized pressurizer, self-start-up

  20. Survey of the power ramp performance testing of KWU'S PWR UO 2, fuel

    Science.gov (United States)

    Ga¨rtner, M.; Fischer, G.

    1987-06-01

    To determine the power ramp performance of KWU's PWR UO 2 fuel, 134 fuel rodlets with burnups of up to 46 GWd/ t (U) and several fuel assemblies with 19 to 30 GWd/t (U) burnup were ramped in power in the research reactors HFR Petten/The Netherlands and R2 Studsvik/Sweden and in the power plants KWO and KWB-A/Germany, respectively. The power ramp tests demonstrate decreasing resistance of the PWR fuel rods to PCI (pellet-to-clad interaction) up to fuel burnups of 35 GWd/t (U) and a reversal effect at higher burnups. The fuel rods can be operated free of defects at fast power transients to linear heat generation rates of up to 400 W/cm, at least.Power levels of up to 490 W/cm can be reached without defects by reducing the ramp rate. After reshuffling according to an out-in scheme, 1-cycle fuel assemblies may return to rod powers of up to 480 W/cm with a power increase rate of up to 10 W/(cm min) without fuel rod damage. Set points basing on these test results and incorporated into the power distribution control and power density limitation system of KWU's advanced power plants guarantee safe plant operation under normal and load follow operating conditions.

  1. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  2. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  3. Status of developing advanced PWR in Japan

    International Nuclear Information System (INIS)

    Iida, Yotaro

    1982-01-01

    During past eleven years since the first PWR power plant, Mihama Unit 1 of Kansai Electric Power Co., started the commercial operation in 1970, Mitsubishi Heavy Industries has endeavored to improve PWR technologies on the basis of the advice from electric power companies and the technical information to overcome difficulties in PWR power plants. Now, the main objective is to improve the overall plant performance, and the rate of operation of Japanese PWR power plants has significantly risen. The improvement of the reliability, the shortening of regular inspection period and the reduction of radioactive waste handling were attempted. In view of the satisfactory operational experience of Westinghouse type PWRs, the basic reactor concept has not been changed so far. Mitsubishi and Westinghouse reached basic agreement in August, 1981, to develop a spectral shift type large capacity reactor as the advanced PWRs for Japan. This type of PWRs hab higher degree of freedom for extended fuel cycle operation and enhances the advantage of entire fuel cycle economy, particularly the significant reduction of uranium use. The improved neutron economy is attainable by reducing neutron loss, and the core design with low power density and the economical use of plutonium are advantageous for the fuel cycle economy. (Kako, I.)

  4. Transient calculation performance of the MASTER code for control rod ejection problem

    International Nuclear Information System (INIS)

    Cho, B. O.; Joo, H. G.; Yoo, Y. J.; Park, S. Y.; Zee, S. Q.

    1999-01-01

    The accuracy and the effectiveness of the solution methods of the MASTER code for reactor transient problems were analyzed with a set of NEACRP PWR control rod ejection benchmark problems. A series of sensitivity study for the effects on the solution by the neutronic solution methods and the neutronic and thermal-hydraulic model parameters were thus investigated. The MASTER results were then compared with the reference PANTHER results. This indicates that the MASTER solution is sufficiently accurate and the computing time is fast enough for nuclear design application

  5. Transient calculation performance of the MASTER code for control rod ejection problem

    Energy Technology Data Exchange (ETDEWEB)

    Cho, B. O.; Joo, H. G.; Yoo, Y. J.; Park, S. Y.; Zee, S. Q. [KAERI, Taejon (Korea, Republic of)

    1999-10-01

    The accuracy and the effectiveness of the solution methods of the MASTER code for reactor transient problems were analyzed with a set of NEACRP PWR control rod ejection benchmark problems. A series of sensitivity study for the effects on the solution by the neutronic solution methods and the neutronic and thermal-hydraulic model parameters were thus investigated. The MASTER results were then compared with the reference PANTHER results. This indicates that the MASTER solution is sufficiently accurate and the computing time is fast enough for nuclear design application.

  6. Low temperature transient response and electroluminescence characteristics of OLEDs based on Alq3

    Science.gov (United States)

    Yuan, Chao; Guan, Min; Zhang, Yang; Li, Yiyang; Liu, Shuangjie; Zeng, Yiping

    2017-08-01

    In this work, the organic light-emitting diodes (OLEDs) based on Alq3 are fabricated. In order to make clear the transport mechanism of carriers in organic light-emitting devices at low temperature, detailed electroluminescence transient response and the current-voltage-luminescence (I-V-L) characteristics under different temperatures in those OLEDs are investigated. It founds that the acceleration of brightness increases with increasing temperature is maximum when the temperature is 200 K and it is mainly affected by the electron transport layer (Alq3). The MoO3 injection layer and the electroluminescent layer have great influence on the delay time when the temperature is 200 K. Once the temperature is greater than 250 K, the delay time is mainly affected by the MoO3 injection layer. On the contrary, the fall time is mainly affected by the electroluminescent material. The Vf is the average growth rate of fall time when the temperature increases 1 K which represents the accumulation rate of carriers. The difference between Vf caused by the MoO3 injection layer is 0.52 us/K and caused by the electroluminescent material Ir(ppy)3 is 0.73 us/K.

  7. Definition of thermal-hydraulics parameters of a naval PWR via energy balance of a Westinghouse PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Luiz C.; Curi, Marcos F., E-mail: marcos.curi@cefet-rj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Department of Mechanical Engineering

    2017-07-01

    In this work, we used the operational parameters of the Angra 1 nuclear power plant, designed by Westinghouse, to estimate the thermal-hydraulic parameters for naval nuclear propulsion, focusing on the analysis of the reactor and steam generator. A thermodynamics analysis was made to reach the operational parameters of primary circuit such as pressure, temperature, power generated among others. Previous studies available in literature of 2-loop Westinghouse Nuclear Power Plants, which is based on a PWR and similar to Angra-1, support this analysis in the sense of a correct procedure to deal with many complex processes to energy generation from a nuclear source. Temperature profiles in reactor and steam generator were studied with concepts of heat transfer, fluid mechanics and also some concepts of nuclear systems, showing the behavior into them. In this simulation, the Angra 1 primary circuit was reduced on a scale of 1: 3.5 to fit in a Scorpène-class submarine. The reactor generates 85.7 MW of total thermal power. The maximum power and temperatures reached were lower than the operational safe limits established by Westinghouse. The number of tubes of the steam generator was determined in 990 U-tubes with 6.3 m of average length. (author)

  8. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made

  9. Secure and effective valve stem sealing in PWR power generating plants

    International Nuclear Information System (INIS)

    Reynolds, J.

    1991-01-01

    The PWR power generating plant combines severe operating conditions with the highest safety requirements, making it one of the most demanding environments for seals. An analysis of the conditions inherent in its operation reveals: an aggressive and radioactive fluid at high temperature and pressure; frequent thermal shocks; and hazards for maintenance personnel in the containment area unless the reactor is shut down. The achievement of today's quality and safety standards owes much to the experience, research and testing carried out by the Electricite de France during its graduation from its first nuclear unit to become the world's most important manager of PWR plants with over 45 now under its control. The number of valves involved in the French nuclear program is in excess of 1,300,000. Knowing what the affect of a leak can be, especially if it necessitates a shutdown of the power station, the need to insure the quality of valve sealing can be appreciated. At the beginning of their nuclear building program, the EdF was finding that valves, representing only 2 percent of the investment in a PWR plant, caused 20% of the unwanted outages and cost 60% of the total of plant maintenance. In this report, the author endeavors to show how this problem was solved by team work and concerted action by the EdF, the valve constructors and seal manufacturer, not forgetting the importance of informing and training the maintenance and repair teams within the power stations themselves

  10. Highlights of the French program on PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pages, J P [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1997-12-01

    The presentation reviews the French programme on PWR fuel including the overall results of the year 1996 for nuclear operation; fuel management and economy; French nuclear electricity generation sites; production of nuclear generated electricity; energy availability of the 900 and 1,300 Mw PWR units; average radioactive liquid releases excluding tritium per unit; plutonium recycling experience.

  11. Pushing back the boundaries of PWR fuel performance

    International Nuclear Information System (INIS)

    Sofer, G.A.; Skogen, F.B.; Brown, C.A.; Fresk, Y.U.

    1985-01-01

    In today's fiercely competitive PWR reload market utilities are benefiting from a variety of design innovations which are helping to cut fuel cycle costs and to improve fuel performance. An advanced PWR fuel design from Exxon, for example, currently under evaluation at the Ginna plant in the United States, offers higher burn-up and greater power cycling. (author)

  12. Application of ADINA fluid element for transient response analysis of fluid-structure system

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kodama, T.; Shiraishi, T.

    1985-01-01

    Pressure propagation and Fluid-Structure Interaction (FSI) in 3D space were simulated by general purpose finite element program ADINA using the displacement-based fluid element which presumes inviscid and compressible fluid with no net flow. Numerical transient solution was compared with the measured data of an FSI experiment and was found to fairly agree with the measured. In the next step, post analysis was conducted for a blowdown experiment performed with a 1/7 scaled reactor pressure vessel and a flexible core barrel and the code performance was found to be satisfactory. It is concluded that the transient response of the core internal structure of a PWR during the initial stage of LOCA can be analyzed by the displacement-based finite fluid element and the structural element. (orig.)

  13. ATWS: a reappraisal, part II, evaluation of societal risks due to reactor protection systems failure. Vol. 3. Pwr risk analysis. Phase report

    International Nuclear Information System (INIS)

    Lellouche, G.S.

    1976-08-01

    This document is the third volume of part 2 in a series of studies which will examine the basis for the problem of Anticipated Transients Without Scram (ATWS). The purpose of part 2 is an evaluation of societal risks due to RPS failure based on more current data and methodology than used in WASH-1270. This volume examines and documents the potential contribution to societal risk due to ATWS in the PWR. Volumes 1 and 2 described a similar analysis for the BWR

  14. Physical modelling of a rapid boron dilution transient

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G.; Hemstroem, B.; Karlsson, R. [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Jacobson, S. [Vattenfall AB, Ringhals, Vaeroebacka (Sweden)

    1995-09-01

    The analysis of boron dilution accidents in pressurised water reactors has traditionally assumed that mixing is instantaneous and complete everywhere, eliminating in this way the possibility of concentration inhomogeneities. Situations can nevertheless arise where a volume of coolant with a low boron concentration may eventually enter the core and generate a severe reactivity transient. The work presented in this paper deals with a category of Rapid Boron Dilution Events characterised by a rapid start of a Reactor Coolant Pump (RCP) with a plug of relatively unborated water present in the RCS pipe. Model tests have been made at Vattenfall Utveckling AB in a simplified 1:5 scale model of a Westinghouse PWR. Conductivity measurements are used to determine dimensionless boron concentration. The main purpose of this experimental work is to define an experimental benchmark against which a mathematical model can be tested. The final goal is to be able to numerically predict Boron Dilution Transients. This work has been performed as a part of a Co-operative Agreement with Electricite` de France (EDF).

  15. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  16. Modular simulation of the dynamics of a 925 MWe PWR electronuclear type reactor and design of a multivariable control algorithm

    International Nuclear Information System (INIS)

    Mansouri, S.

    1985-06-01

    This work has been consecrated to the modular simulation of a PWR 925 MWe power plant's dynamic and to the design of a multivariable algorithm control: a mathematical model of a plant type was developed. The programs were written on a structured manner in order to maximize flexibility. A multivariable control algorithm based on pole placement with output feedback was elaborated together with its correspondent program. The simulation results for different normal transients were shown and the capabilities of the new method of multivariable control are illustrated through many examples

  17. Sextant: an expert system for transient analysis of nuclear reactors and integral test facilities

    International Nuclear Information System (INIS)

    Barbet, N.; Dumas, M.; Mihelich, G.

    1987-01-01

    Expert systems provide a new way of dealing with the computer-aided management of nuclear plants by combining several knowledge bases and reasoning modes together with a set of numerical models for real-time analysis of transients. New development tools are required together with metaknowledge bases handling temporal hypothetical reasoning and planning. They have to be efficient and robust because during a transient, neither measurements nor models, nor scenarios are hold as absolute references. SEXTANT is a general purpose physical analyzer intended to provide a pattern and avoid duplication of general tools and knowledge bases for similar applications. It combines several knowledge bases concerning measurements, models and qualitative behavior of PWR with a mechanism of conjecture-refutation and a set of simplified models matching the current physical state. A prototype is under assessment by dealing with integral test facility transients. For its development, SEXTANT requires a powerful shell. SPIRAL is such a toolkit, oriented towards online analysis of complex processes and already used in several applications

  18. Radiation embrittlement of PWR vessel supports

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Robinson, G.C.; Pennell, W.E.; Nanstad, R.K.

    1989-01-01

    Several studies pertaining to radiation damage of PWR vessel supports were conducted between 1978 and 1987. During this period, apparently there was no reason to believe that low-temperature (<100 degree C) MTR embrittlement data were not appropriate for evaluating embrittlement of PWR vessel supports. However, late in 1986, data from the High Flux Isotope Reactor (HFIR) vessel surveillance program indicated that the embrittlement rates of the several HFIR vessel materials (A212-B, A350-LF3, A105-II) were substantially greater than anticipated on the basis of MTR data. Further evaluation of the HFIR data suggested that a fluence-rate effect was responsible for the apparent discrepancy, and shortly thereafter it became apparent that this rate effect was applicable to the evaluation of LWR vessel supports. As a result, the Nuclear Regulatory Commission (NRC) requested that the Oak Ridge National Laboratory (ORNL) evaluate the impact of the apparent embrittlement rate effect on the integrity of light-water-reactor (LWR) vessel supports. The purpose of the study was to provide an indication of whether the integrity of reactor vessel supports is likely to be challenged by radiation-induced embrittlement. The scope of the evaluation included correlation of the HFIR data for application to the evaluation of LWR vessel supports; a survey and cursory evaluation of all US LWR vessel support designs, selection of two plants for specific-plant evaluation, and a specific-plant evaluation of both plants to determine critical flaw sizes for their vessel supports. 19 refs., 8 figs., 2 tabs

  19. Basic information about development and construction of a PWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1977-01-01

    1.0) Plant layout of a PWR; 2.0) principle design of a PWR and the reactor coolant system; 3.0) reactor auxiliary and ancillary systems; 3.1) volume control system; 3.2) boric acid control and chemical feeding system; 3.3) coolant purification and degassing system; 3.4) coolant storage and treatment system; 3.5) nuclear component cooling system; 3.6) liquid waste processing system; 3.7) gaseous waste processing system; 4.0) residual heat removal system; 5.0) emergency feedwater system; 6.0) containment design; 7.0) fuel handling, storage and transport system in a PWR. (orig.) [de

  20. TRANP - a computer code for digital simulation of steady - state and transient behavior of a pressurizer water reactor primary circuit

    International Nuclear Information System (INIS)

    Chalhoub, E.S.

    1980-09-01

    A digital computer code TRANP was developed to simulate the steady-state and transient behavior of a pressurizer water reactor primary circuit. The development of this code was based on the combining of three codes already developed for the simulation of a PWR core, a pressurizer, a steam generator and a main coolant pump, representing the primary circuit components. (Author) [pt

  1. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  2. Swing-Down of 21-PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) swinging down from a horizontally suspended height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 13). AP-3.12Q, ''Calculations'' (Ref. 18) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 21-PWR WP design considered in this calculation and provides the potential dimensions and materials for the 21-PWR WP design

  3. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Numerical simulation of the accurate RCP start-up flow rate

    International Nuclear Information System (INIS)

    Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S.

    1997-06-01

    This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author)

  4. PWR fuel performance and future trend in Japan

    International Nuclear Information System (INIS)

    Kondo, Y.

    1987-01-01

    Since the first PWR power plant Mihama Unit 1 initiated its commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts to improve PWR technology. The results are already seen in significantly improved performance of 16 PWR plants now in operation. Mitsubishi Heavy Industries Ltd. (MHI) has been supplying them with nuclear fuel assemblies, which are over 5700. As the reliability of the current design fuel has been achieved, the direction of R and D on nuclear fuel has changed to make nuclear power more competitive to the other power generation methods. The most important R and D targets are the burnup extension, Gd contained fuel, Pu utilizatoin and the load follow capacility. (author)

  5. Effect of aging on the PWR Chemical and Volume Control System

    International Nuclear Information System (INIS)

    Grove, E.J.; Travis, R.J.; Aggarwal, S.K.

    1995-06-01

    The PWR Chemical and Volume Control System (CVCS) is designed to provide both safety and non-safety related functions. During normal plant operation it is used to control reactor coolant chemistry, and letdown and charging flow. In many plants, the charging pumps also provide high pressure injection, emergency boration, and RCP seal injection in emergency situations. This study examines the design, materials, maintenance, operation and actual degradation experiences of the system and main sub-components to assess the potential for age degradation. A detailed review of the Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Report (LER) databases for the 1988--1991 time period, together with a review of industry and NRC experience and research, indicate that age-related degradations and failures have occurred. These failures had significant effects on plant operation, including reactivity excursions, and pressurizer level transients. The majority of these component failures resulted in leakage of reactor coolant outside the containment. A representative plant of each PWR design (W, CE, and B and W) was visited to obtain specific information on system inspection, surveillance, monitoring, and inspection practices. The results of these visits indicate that adequate system maintenance and inspection is being performed. In some instances, the frequencies of inspection were increase in response to repeated failure events. A parametric study was performed to assess the effect of system aging on Core Damage Frequency (CDF). This study showed that as motor-operated valve (MOV) operating failures increased, the contribution of the High Pressure Injection to CDF also increased

  6. A COMETHE version with transient capability

    International Nuclear Information System (INIS)

    Vliet, J. van; Lebon, G.; Mathieu, P.

    1980-01-01

    A version of the COMETHE code is under development to simulate transient situations. This paper focuses on some aspects of the transient heat transfer models. Initially the coupling between transient heat transfer and other thermomechanical models is discussed. An estimation of the thermal characteristic times shows that the cladding temperatures are often in quasi-steady state. In order to reduce the computing time, calculations are therefore switched from a transient to a quasi-static numerical procedure as soon as such a quasi-equilibrium is detected. The temperature calculation is performed by use of the Lebon-Lambermont restricted variational principle, with piecewise polynoms as trial functions. The method has been checked by comparison with some exact results and yields good agreement for transient as well as for quasi-static situations. This method therefore provides a valuable tool for the simulation of the transient behaviour of nuclear reactor fuel rods. (orig.)

  7. The design of a compact integral medium size PWR

    International Nuclear Information System (INIS)

    Shirvan, Koroush; Hejzlar, Pavel; Kazimi, Mujid S.

    2012-01-01

    Highlights: ► We model the IRIS reactor in RELAP5 and VIPRE codes. ► We use Printed Circuit Heat Exchangers and internally and externally cooled fuel pins in IRIS. ► We increase the IRIS power by 50% and demonstrate adequate safety performance. ► We show significant potential gain in economics for any integral PWR reactor design. - Abstract: Integral reactors have been proposed in recent years as a means to eliminate loss of coolant events, and reduce the number of large vessels of a nuclear power plant. In this paper the focus on how to further increase the power that can be derived from a given vessel volume. The example is applied to the International Reactor Innovative and Secure (IRIS), a medium size, light water reactor rated at 1000 MWt. The IRIS is an integral design containing all pumps and steam generators along with a traditional PWR core inside the reactor vessel. IRIS was designed with 8 Once-Through Helically Coiled Steam Generators (OTHSG), located above the core, in an annular region between the riser and the pressure vessel wall. This work examines ideas to increase its power output in the same vessel size while maintaining or improving the safety margins. The combination of Printed Circuit Heat Exchangers (PCHE) and Internally and EXternally cooled Annular Fuel (IXAF) is proposed to implement such improvement in otherwise the reference IRIS design. Safety implications of such steam generator and fuel design changes for the same reactor size are examined, under both steady state and transients, using the RELAP5 and VIPRE codes. It is found that the IRIS reactor power can be increased by 50% by using the PCHE and IXAF. The proposed design is found to be less expensive per unit electric power produced, these improvements and analyses can be applied to any integral reactor design.

  8. An extension of a high temperature creep model to account for fuel sheath oxidation

    International Nuclear Information System (INIS)

    Boccolini, G.; Valli, G.

    1983-01-01

    Starting from the high-temperature creep model for Zircaloy fuel sheathing, the NIRVANA (developed by AECL), a multilayer model, is proposed in this paper: it includes the outer oxide plus alpha retained layers, and the inner core of beta or alpha plus beta material, all constrained to deform with the same creep rate. The model has been incorporated into the SPARA fuel computer code developed for the transient analysis of fuel rod behaviour in the CIRENE prototype reactor, but it is in principle valid for all Zircaloy fuel sheathings. Its predictions are compared with experimental results from burst tests on BWR and PWR type sheaths; the tests were carried out at CNEN under two research contracts with Ansaldo Meccanico Nucleare and Sigen-Sopren, respectively

  9. Vertical Drop Of 21-PWR Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-01

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only

  10. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating

    International Nuclear Information System (INIS)

    Kolios, M.C.; Worthington, A.E.; Hunt, J.W.; Holdsworth, D.W.; Sherar, M.D.

    1999-01-01

    Temperature distributions measured during thermal therapy are a major prognostic factor of the efficacy and success of the procedure. Thermal models are used to predict the temperature elevation of tissues during heating. Theoretical work has shown that blood flow through large blood vessels plays an important role in determining temperature profiles of heated tissues. In this paper, an experimental investigation of the effects of large vessels on the temperature distribution of heated tissue is performed. The blood flow dependence of steady state and transient temperature profiles created by a cylindrical conductive heat source and an ultrasound transducer were examined using a fixed porcine kidney as a flow model. In the transient experiments, a 20 s pulse of hot water, 30 deg. C above ambient, heated the tissues. Temperatures were measured at selected locations in steps of 0.1 mm. It was observed that vessels could either heat or cool tissues depending on the orientation of the vascular geometry with respect to the heat source and that these effects are a function of flow rate through the vessels. Temperature gradients of 6 deg. C mm -1 close to large vessels were routinely measured. Furthermore, it was observed that the temperature gradients caused by large vessels depended on whether the heating source was highly localized (i.e. a hot needle) or more distributed (i.e. external ultrasound). The gradients measured near large vessels during localized heating were between two and three times greater than the gradients measured during ultrasound heating at the same location, for comparable flows. Moreover, these gradients were more sensitive to flow variations for the localized needle heating. X-ray computed tomography data of the kidney vasculature were in good spatial agreement with the locations of all of the temperature variations measured. The three-dimensional vessel path observed could account for the complex features of the temperature profiles. The flow

  11. Additional 5 kWe thermoelectric system temperature transients

    International Nuclear Information System (INIS)

    Halfen, F.J.

    1972-01-01

    Several additional system transients have been calculated for the 5 kW(e) TE system and are reported in this document. They include a startup transient with a reactivity rate of 0.005 cents/sec, several startup accidents, a step reactivity insertion at full power and a loss of electrical load. These data are intended for input to system design analyses and for possible use in the protected accident section of the safety report. (U.S.)

  12. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  13. Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2014-01-01

    The assessment of the uncertainties of COBRA-IIIC thermal-hydraulic analyses of rod bundles is performed for a 5-by-5 bundle representing a PWR fuel assembly. In the first part of the paper the modeling uncertainties are evaluated in the term of the uncertainty of the turbulent mixing factor using the OECD NEA/NRC PSBT benchmark data. After that the uncertainties of the COBRA calculations are discussed performing Monte-Carlo type statistical analyses taking into account the modeling uncertainties and other uncertainties prescribed in the OECD NEA UAM benchmark specification. Both steady-state and transient cases are investigated. The target quantities are the uncertainties of the void distribution, the moderator density, the moderator temperature and the DNBR. We will see that - beyond the uncertainties of the geometry and the boundary conditions - it is very important to take into account the modeling uncertainties in case of bundle or sub-channel thermo-hydraulic calculations.

  14. A genetic algorithm applied to a PWR turbine extraction optimization to increase cycle efficiency

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Schirru, Roberto

    2002-01-01

    In nuclear power plants feedwater heaters are used to heat feedwater from its temperature leaving the condenser to final feedwater temperature using steam extracted from various stages of the turbines. The purpose of this process is to increase cycle efficiency. The determination of the optimal fraction of mass flow rate to be extracted from each stage of the turbines is a complex optimization problem. This kind of problem has been efficiently solved by means of evolutionary computation techniques, such as Genetic Algorithms (GAs). GAs, which are systems based upon principles from biological genetics, have been successfully applied to several combinatorial optimization problems in nuclear engineering, as the nuclear fuel reload optimization problem. We introduce the use of GAs in cycle efficiency optimization by finding an optimal combination of turbine extractions. In order to demonstrate the effectiveness of our approach, we have chosen a typical PWR as case study. The secondary side of the PWR was simulated using PEPSE, which is a modeling tool used to perform integrated heat balances for power plants. The results indicate that the GA is a quite promising tool for cycle efficiency optimization. (author)

  15. Transient Temperature Distribution in a Reactor Core with Cylindrical Fuel Rods and Compressible Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    Applying linearization and Laplace transformation the transient temperature distribution and weighted temperatures in fuel, canning and coolant are calculated analytically in two-dimensional cylindrical geometry for constant material properties in fuel and canning. The model to be presented includes previous models as special cases and has the following novel features: compressibility of the coolant is accounted for. The material properties of the coolant are variable. All quantities determining the temperature field are taken into account. It is shown that the solution for fuel and canning temperature may be given by the aid of 4 basic transfer functions depending on only two variables. These functions are calculated for all relevant rod geometries and material constants. The integrals involved in transfer functions determining coolant temperatures are solved for the most part generally by application of coordinate and Laplace transformation. The model was originally developed for use in steam cooled fast reactor analysis where the coolant temperature rise and compressibility are considerable. It may be applied to other fast or thermal systems after suitable simplifications.

  16. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    International Nuclear Information System (INIS)

    Massoud, M.

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients

  17. Calculations concerning the capability of passive recombiners to control hydrogen concentration in the containment of an advanced PWR

    International Nuclear Information System (INIS)

    Fineschi, F.; Vanini, P.

    1997-01-01

    The Department of Mechanical and Nuclear Constructions of the University of Pisa has developed a computer code, HOCRA, which is able to make an initial evaluation of the capability of catalytic recombiners to remove hydrogen from the atmosphere of the safety containments of nuclear reactors in accident conditions. The code allows the analysis of the average concentration transient of hydrogen in a generic compartment of a safety containment in a nuclear reactor. The software is structured into two groups. The first, mode-1, analyses the average concentration in all the free volume of the containment before a possible venting., whereas the second, mode-2, analyses the average concentration transient in a containment compartment, assuming input and output flow rates into and from the compartment itself The first part of this paper outlines the physical and mathematical model of the code, the second part reports calculations made for an advanced PWR in cooperation with ENEL. (author)

  18. Results of LWR core transient benchmarks

    International Nuclear Information System (INIS)

    Finnemann, H.; Bauer, H.; Galati, A.; Martinelli, R.

    1993-10-01

    LWR core transient (LWRCT) benchmarks, based on well defined problems with a complete set of input data, are used to assess the discrepancies between three-dimensional space-time kinetics codes in transient calculations. The PWR problem chosen is the ejection of a control assembly from an initially critical core at hot zero power or at full power, each for three different geometrical configurations. The set of problems offers a variety of reactivity excursions which efficiently test the coupled neutronic/thermal - hydraulic models of the codes. The 63 sets of submitted solutions are analyzed by comparison with a nodal reference solution defined by using a finer spatial and temporal resolution than in standard calculations. The BWR problems considered are reactivity excursions caused by cold water injection and pressurization events. In the present paper, only the cold water injection event is discussed and evaluated in some detail. Lacking a reference solution the evaluation of the 8 sets of BWR contributions relies on a synthetic comparative discussion. The results of this first phase of LWRCT benchmark calculations are quite satisfactory, though there remain some unresolved issues. It is therefore concluded that even more challenging problems can be successfully tackled in a suggested second test phase. (authors). 46 figs., 21 tabs., 3 refs

  19. Instrumentation of fuel safety test rods of the PWR system in the Phebus reactor

    International Nuclear Information System (INIS)

    Schley, Robert; Leveque, J.P.; Aujollet, J.M.; Dutraive, Pierre; Colome, Jean; Bouly, J.C.

    1979-01-01

    The tests were performed in an experimental cell centred in the core of the PHEBUS water reactor of 50 MW. The CEA make two types of apparatus for testing the safety of PWR fuel. One is for testing a single fuel stick and the other a bunch of 25 sticks. The instrumentation described enables the main parameters of the test to be known: temperatures of the fuel - central temperature of the UO 2 - cladding surface temperatures; temperature of the cooling circuits - thermal balance - temperatures of the structures, etc.; coolant pressure; internal pressure of the fuel sticks; direction and flow rate of the fluid. This instrumentation and the technological problems to be overcome are described and the results of the first tests carried out are given [fr

  20. Sizewell: proposed site for Britain's first PWR power station

    International Nuclear Information System (INIS)

    1980-10-01

    The pamphlet covers the following points, very briefly: nuclear power - a success story; the Government's nuclear programme; why Sizewell; the PWR (with diagram); the PWR at Sizewell (with aerial view) (location; size; cooling water; road access; fuel transport; construction; employment; environment; screening; the next steps (licensing procedures, etc.); safety; further information). (U.K.)

  1. The TE coupled RELAP5/PANTHER/COBRA code package and methodology for integrated PWR accident analysis

    International Nuclear Information System (INIS)

    Schneidesch, Christophe R.; Zhang, Jinzhao; Ammirabile, Luca; Dalleur, Jean-Paul

    2006-01-01

    At Tractebel Engineering (TE), a dynamic coupling has been developed between the best estimate thermal hydraulics system code RELAP5 and the 3-dimensional neutronics code PANTHER via the transient analysis code linkage program TALINK. An interface between PANTHER and the subchannel core thermal-hydraulic analysis code COBRA 3C has been established for on-line calculation of the Departure from Nucleate Boiling Ratio (DNBR). In addition to the standard RELAP5-PANTHER coupling, the fully dynamic coupling of the RELAP5/PANTHER/COBRA3C-TE code package can be activated for evaluation purposes in which the PANTHER close-channel thermal-hydraulics module is replaced by the COBRA3C-TE with cross flow modelling and extended T-H flow conditions capabilities. The qualification of the RELAP5-PANTHER coupling demonstrated the robustness achieved by the combined 3-D neutron kinetics/system T-H code package for transient simulations. The coupled TE code package has been approved by the Belgian Safety Authorities and is used at TE for analyzing asymmetric PWR accidents with strong core-system interactions. In particular, the TE coupled code package was first used to develop a main steam line break in hot shutdown conditions (SLBHZP) accident analysis methodology based on the TE deterministic bounding approach. This methodology has been reviewed and accepted by the Belgian Safety Authorities for specific applications. Those specific applications are related to the power up-rate and steam generator replacement project of the Doel 2 plant or to the Tihange-3 SLB accident re-analysis. A coupled feedwater line break (FLB) accident analysis methodology is currently being reviewed for application approval. The results of coupled thermal-hydraulic and neutronic analysis of SLB and FLB show that there exist important margins in the traditional final safety analysis report (FSAR) accident analysis. Those margins can be used to increase the operational flexibility of the plants. Moreover, the

  2. The TE coupled RELAP5/PANTHER/COBRA code package and methodology for integrated PWR accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneidesch, Christophe R.; Zhang, Jinzhao; Ammirabile, Luca; Dalleur, Jean-Paul [Suez-Tractebel Engineering, Avenue Ariane 7, B-1200 Brussels (Belgium)

    2006-07-01

    At Tractebel Engineering (TE), a dynamic coupling has been developed between the best estimate thermal hydraulics system code RELAP5 and the 3-dimensional neutronics code PANTHER via the transient analysis code linkage program TALINK. An interface between PANTHER and the subchannel core thermal-hydraulic analysis code COBRA 3C has been established for on-line calculation of the Departure from Nucleate Boiling Ratio (DNBR). In addition to the standard RELAP5-PANTHER coupling, the fully dynamic coupling of the RELAP5/PANTHER/COBRA3C-TE code package can be activated for evaluation purposes in which the PANTHER close-channel thermal-hydraulics module is replaced by the COBRA3C-TE with cross flow modelling and extended T-H flow conditions capabilities. The qualification of the RELAP5-PANTHER coupling demonstrated the robustness achieved by the combined 3-D neutron kinetics/system T-H code package for transient simulations. The coupled TE code package has been approved by the Belgian Safety Authorities and is used at TE for analyzing asymmetric PWR accidents with strong core-system interactions. In particular, the TE coupled code package was first used to develop a main steam line break in hot shutdown conditions (SLBHZP) accident analysis methodology based on the TE deterministic bounding approach. This methodology has been reviewed and accepted by the Belgian Safety Authorities for specific applications. Those specific applications are related to the power up-rate and steam generator replacement project of the Doel 2 plant or to the Tihange-3 SLB accident re-analysis. A coupled feedwater line break (FLB) accident analysis methodology is currently being reviewed for application approval. The results of coupled thermal-hydraulic and neutronic analysis of SLB and FLB show that there exist important margins in the traditional final safety analysis report (FSAR) accident analysis. Those margins can be used to increase the operational flexibility of the plants. Moreover, the

  3. Analysis of fission product release from HTGR core during transient temperature excursion

    International Nuclear Information System (INIS)

    Saito, Takao; Yamatoya, Naotoshi; Onuma, Mamoru

    1978-01-01

    The computer program ''FRANC'' was developed to calculate the release activity of fission products from a high-temperature gas cooled reactor (HTGR) core during transient temperature excursions such as a hypothetical loss of forced circulation combined with design basis depressurization. The program utilizes a segmented cylindrical core spatial model with the associated values of the prior fuel irradiation history and temperature conditions. The fission product transport and decay chain behavior is expressed by a set of differential equations. This set of equations describes the entire core inventory of fission products by means of calculated parameters based on the detailed spatial core conditions. The program determines the time-dependent amounts of fission product nuclides escaping from the core into the coolant. Coded in Continuous System Simulation Language (CSSL) with double precision, FRANC showed appropriate results for both short- and long-lived fission product nuclides. The sample calculation conducted by applying the program to a large HTGR indicated that it would take about one hour for noble gases and volatile nuclides to be released to the coolant, and several hours for metalic nuclides. (auth.)

  4. Study of crack propagation velocity in steel tanks of PWR type reactor

    International Nuclear Information System (INIS)

    Amzallac, C.; Bernard, J.L.; Slama, G.

    1983-05-01

    Description and results of a serie of tests carried out on crack propagation velocity of steels in PWR environment (pressurized high temperature water), in order to examine the effects of metallurgical parameters such as chemical composition of steel, especially sulfur and carbon content, and steel type (laminate or forged steels), effects of mechanical parameters such as loading ratio, cycle form, frequency and application mode of loads and of chemical parameters (anodal dissolution or fatigue with hydrogen) [fr

  5. ORINC: a one-dimensional implicit approach to the inverse heat conduction problem. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.J.; Hedrick, R.A.

    1977-10-18

    The report develops an implicit solution technique to determine both the transient surface temperature and the transient surface heat flux of electrically heated rods given the power input and an ''indicated'' internal temperature during a simulated loss-of-coolant accident. A digital computer program ORINC (ORNL Inverse Code) is developed which solves a one-dimensional, transient, lumped parameter, implicit formulation of the conduction equation at each bundle thermocouple position in the Thermal-Hydraulic Test Facility (THTF).

  6. Fission gas behavior during fast thermal transients

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1976-01-01

    The behavior of non-equilibrium fission in fuel elements undergoing fast thermal transients is analyzed. To facilitate the analysis, a new variable, the equilibrium variable (EV) is defined. This variable, together with bubble radius, completely specifies a bubble with respect to its size and equilibrium condition. The analysis is coded using a two-variable (radius and EV) multigroup numerical approximation that accepts as input the time-temperature history, the time-fission rate history, and the time-thermal gradient history of the fuel element. Studies were performed to test the code for convergence with respect to the time interval and the number of groups chosen. For a series of transient simulation studies, the measurements obtained at HEDL (microscopic examination of intragranular porosity in oxide fuel transient-tested in TREAT) are used. Two different transient histories were selected; the first, a high-temperature transient (HTT) with a peak at 2477 0 K and the second, a low-temperature transient (LTT) with a peak-temperature at 2000 0 K. The LTT was simulated for three different conditions: Bubbles were allowed to move via (a) only biased migration, (b) via random migration, and (c) via both mechanisms. The HTT was also run for both mechanisms. The agreement with HEDL microscopic observations was fair for bubbles smaller than 964 A in diameter, and poor for larger bubbles. Bubbles that grew during the heat-up part of the transient were frozen at a larger size during the cool down

  7. Re-irradiation and limit testing of the fuels PWR type reactors

    International Nuclear Information System (INIS)

    Roche, M.; Molvault, M.

    1978-01-01

    In view of investigating the neutron radiation behavior of PWR fuel pins, the S.P.S. (Services des Piles de Saclay) developed a set of experimental means used at OSIRIS in Saclay Nuclear Research Center. Said devices are shown to be able to meet present problems concerning can failures, power and temperature cycling, remote-control studies. These means can also be used either for statistical studies, they can then receive several samples, or for analytical studies in instrumented devices of large capacity and accelerated irradiation rate [fr

  8. An economic analysis code used for PWR fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1989-01-01

    An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost

  9. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  10. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  11. Piping hydrodynamic loads for a PWR power up-rate with steam generator replacement

    International Nuclear Information System (INIS)

    Julie M Jarvis; Allen T Vieira; James M Gilmer

    2005-01-01

    Full text of publication follows: Pipe break hydrodynamic loads are calculated for various systems in a PWR for a Power Up-rate (PUR) with a Steam Generator Replacement (SGR). PUR with SGR can change the system pressures, mass flowrates and pipe routing/configuration. These changes can alter the steam generator piping steam/water hammer loads. This paper discusses the need to benchmark against the original design basis, the use of different modeling techniques, and lessons learned. Benchmarking for licensing in the United States is vital in consideration of 10CFR50.59 and other licensing and safety issues. RELAP5 and its force post-processor R5FORCE are used to model the transient loads for various piping systems such as main feedwater and blowdown systems. Other modeling applications, including the Bechtel GAFT program, are used to evaluate loadings in the main steam piping. Forces are calculated for main steam turbine stop valve closure, feedwater pipe breaks and subsequent check valve slam, and blowdown isolation valve closure. These PUR/SGR forces are compared with the original design basis forces. Modeling techniques discussed include proper valve closure modeling, sonic velocity changes due to pipe material changes, and two phase flow effects. Lessons learned based on analyses done for several PWR PUR with SGR are presented. Lessons learned from these analyses include choosing the optimal replacement piping size and routing to improve system performance without resulting in excessive piping loads. (authors)

  12. MELCOR/VISOR PWR desktop simulator

    International Nuclear Information System (INIS)

    With, Anka de; Wakker, Pieter

    2010-01-01

    Increasingly, there is a need for a learning support and training tool for nuclear engineers, utilities and students in order to broaden their understanding of advanced nuclear plant characteristics, dynamics, transients and safety features. Nuclear system analysis codes like ASTEC, RELAP5, RETRAN and MELCOR provide calculation results of and visualization tools can be used to graphically represent these results. However, for an efficient education and training a more interactive tool such as a simulator is needed. The simulator connects the graphical tool with the calculation tool in an interactive manner. A small number of desktop simulators exist [1-3]. The existing simulators are capable of representing different types of power plants and various accident conditions. However, they were found to be too general to be used as a reliable plant-specific accident analysis or training tool. A desktop simulator of the Pressurized Water Reactor (PWR) has been created under contract of the Dutch nuclear regulatory body (KFD). The desktop simulator is a software package that provides a close to real simulation of the Dutch nuclear power plant Borssele (KCB) and is used for training of the accident response. The simulator includes the majority of the power plant systems, necessary for the successful simulation of the KCB plant during normal operation, malfunctions and accident situations, and it has been successfully validated against the results of the safety evaluations from the KCB safety report. (orig.)

  13. PWR plant construction in Japan

    International Nuclear Information System (INIS)

    Tamura, Toshifumi

    2002-01-01

    The construction methods based on the experiences on the Nuclear Island, which is a critical path in the total construction schedule, have been studied and reconsidered in order to construct by more reliable and economical method. So various improved construction method are being applied and the duration of construction is being reduced continuously. So various improved construction method are being applied and the duration of construction is being reduced continuously. In this paper, the history of construction of twenty-three (23) PWR Plant, the actual construction methods and schedule of Ohi-3/4, to which the many improved methods were applied during their construction, are introduced mainly with the improved points for previously constructed plants. And also the situation of construction method for the next PWR Plant is simply explained

  14. Simulation of Safety and Transient Analysis of a Pressurized Water Reactor using the Personal Computer Transient Analyzer

    Directory of Open Access Journals (Sweden)

    Sunday J. IBRAHIM

    2013-06-01

    Full Text Available Safety and transient analyses of a pressurised water reactor (PWR using the Personal Computer Transient Analyzer (PCTRAN simulator was carried out. The analyses presented a synergistic integration of a numerical model; a full scope high fidelity simulation system which adopted point reactor neutron kinetics model and movable boundary two phase fluid models to simplify the calculation of the program, so it could achieve real-time simulation on a personal computer. Various scenarios of transients and accidents likely to occur at any nuclear power plant were simulated. The simulations investigated the change of signals and parameters vis a vis loss of coolant accident, scram, turbine trip, inadvertent control rod insertion and withdrawal, containment failure, fuel handling accident in auxiliary building and containment, moderator dilution as well as a combination of these parameters. Furthermore, statistical analyses of the PCTRAN results were carried out. PCTRAN results for the loss of coolant accident (LOCA caused a rapid drop in coolant pressure at the rate of 21.8KN/m2/sec triggering a shutdown of the reactor protection system (RPS, while the turbine trip accident showed a rapid drop in total plant power at the rate of 14.3 MWe/sec causing a downtime in the plant. Fuel handling accidents mimic results showed release of radioactive materials in unacceptable doses. This work shows the potential classes of nuclear accidents likely to occur during operation in proposed reactor sites. The simulations are very appropriate in the light of Nigeria’s plan to generate nuclear energy in the region of 1000 MWe from reactors by 2017.

  15. Improved emergency elevated air release for simplified PWR

    International Nuclear Information System (INIS)

    Naitoh, T.; Bruce, R.A.; Hirota, K.; Tajiri, Y.

    1992-01-01

    In developing the application of the simplified PWR in Japan, one of the most important areas is to limit post-accident site boundary whole body dose. In addressing this, the concept of Emergency Passive Air Filtration System (EPAFS) and it's feasibility is developed. The efficiency of charcoal filtering and the atmospheric diffusion effect of an elevated air release are important for dose reduction. The performance of these functions was evaluated by confirmatory testing. The test results confirmed a 99 percent efficiency of charcoal filter and an atmospheric diffusion effect higher than that of a conventional plant. The Emergency Passive Air Filtration System (EPAFS) and the atmospheric diffusion effect of elevated air release contribute to making the calculated post-accident site boundary whole body dose of simplified PWR as low as that of the conventional Japanese PWR plant. (author)

  16. Analysis of the behaviour of pressure and temperature of the containment of a PWR reactor, submitted to a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Silva, D.E. da; Arrieta, L.A.J.; Costa, J.R.; Camargo, C.; Santos, C.M. dos; Rochedo, E.R.R.

    1979-12-01

    The main purpose of this work is to analyse the pressure and temperature behaviour of the metalic containment of a PWR building, submitted to a postulated loss-of-coolant accident (LOCA) caused by a double-ended rupture in the main line of the primary circuit. The scope of the study was directed to verify the Final Safety Analysis Report (FSAR) results for the integrity of the metalic containment of the Angra I power plant. The highest containment pressure peak for this unit is expected for a break in the suction line of one of the main pumps of the primary coolant. Using the same input data, our results are very similar to those presented in the FSAR which shows a reasonable equivalence between the two analytical models. Using as input data the results of a previous LOCA study at CNEN, which yields to more conservative boundary conditions than those presented by the FSAR, the pressure and temperature peak values determined by our model are quite larger than those presented by the cited Safety Report. (author) [pt

  17. Development of THYDE-HTGR: computer code for transient thermal-hydraulics of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hirano, Masashi; Hada, Kazuhiko

    1990-04-01

    The THYDE-HTGR code has been developed for transient thermal-hydraulic analyses of high-temperature gas-cooled reactors, based on the THYDE-W code. THYDE-W is a code developed at JAERI for the simulation of Light Water Reactor plant dynamics during various types of transients including loss-of-coolant accidents. THYDE-HTGR solves the conservation equations of mass, momentum and energy for compressible gas, or single-phase or two-phase flow. The major code modification from THYDE-W is to treat helium loops as well as water loops. In parallel to this, modification has been made for the neutron kinetics to be applicable to helium-cooled graphite-moderated reactors, for the heat transfer models to be applicable to various types of heat exchangers, and so forth. In order to assess the validity of the modifications, analyses of some of the experiments conducted at the High Temperature Test Loop of ERANS have been performed. In this report, the models applied in THYDE-HTGR are described focusing on the present modifications and the results from the assessment calculations are presented. (author)

  18. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.......Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent...

  19. Power variation and frequency regulation. Adaptation of PWR plant possibilities to the network needs

    International Nuclear Information System (INIS)

    Baboulin, J.P.; Burger, M.

    1980-01-01

    When the PWR are an important part of the power installed on a network, and that will be the case of the EDF network in the coming years, the participation of those plants to the power regulating becomes a necessity for the operating staff. This load regulating includes: daily variations of high amplitude; a permanent frequency - power regulating. The first part of the communication shows the network exploitation principles, and the resulting power variations concerning the existing nuclear power plants. Such transients are leading to stresses on fuel. The second part of the communication reports about the test program engaged by EDF in collaboration with the CEA and FRAMATOME, in order to study the fuel behaviour in real power conditions and power cycles, and that, just to the operational burn up of this fuel. (author)

  20. The simulation research for the dynamic performance of integrated PWR

    International Nuclear Information System (INIS)

    Yuan Jiandong; Xia Guoqing; Fu Mingyu

    2005-01-01

    The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)

  1. Study of the corrosion products in the primary system of PWR plants as the source of radiation fields build-up

    International Nuclear Information System (INIS)

    Brabant, R. van; Regge, P. de.

    1982-01-01

    In the first part the behaviour of the corrosion products in the primary system of PWR plants is depicted on the basis of a literature review of the field. Water chemistry, corrosion processes and activation of corrosion products are the main topics. In the second part the results of the characterization of corrosion particles in the primary coolant circuit of the Doel 1 and 2 reactors are described, during steady state operation and transient phases. In the third part the possibilities for radiation control at nuclear power plants are outlined. The filtration possibilities for the reactor coolant are explored in detail. (author)

  2. Lifetime improvement of sheathed thermocouples for use in high-temperature and thermal transient operations

    International Nuclear Information System (INIS)

    McCulloch, R.W.; Clift, J.H.

    1982-01-01

    Premature failure of small-diameter, magnesium-oxide-insulated sheathed thermocouples occurred when they were placed within nuclear fuel rod simulators (FRSs) to measure high temperatures and to follow severe thermal transients encountered during simulation of nuclear reactor accidents in Oak Ridge National Laboratory (ORNL) thermal-hydraulic test facilities. Investigation of thermally cycled thermocouples yielded three criteria for improvement of thermocouple lifetime: (1) reduction of oxygen impurities prior to and during their fabrication, (2) refinement of thermoelement grain size during their fabrication, and (3) elimination of prestrain prior to use above their recrystallization temperature. The first and third criteria were satisfied by improved techniques of thermocouple assembly and by a recovery anneal prior to thermocouple use

  3. REMIX: a computer program for temperature transients due to high pressure injection after interruption of natural circulation

    International Nuclear Information System (INIS)

    Iyer, K.; Nourbakhsh, H.P.; Theofanous, T.G.

    1986-05-01

    This report describes the features and use of several computer programs developed on the basis of the Regional Mixing Model (RMM). This model provides a phenomenologically-based analytical description of the stratified flow and temperature fields resulting from High Pressure Safety Injection (HPI) in the stagnated loops of a Pressurized Water Reactor (PWR). The basic program is called REMIX and is intended for thermally-induced stratification at low Froude number injections. The REMIX-S version is intended for solute-induced stratification with or without thermal effects as found in several experimental simulations. The NEWMIX program is a derivative of REMIX representing the limit of maximum possible mixing within the cold leg and is intended for high Froude number injections. The NEWMIX-S version accounts for solute effects. Listings of all programs and sample problem input and output files are included. 10 refs

  4. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados

    Science.gov (United States)

    Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world’s coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377

  5. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang, Yan; Zheng, Yanhua; Li, Fu; Shi, Lei

    2014-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor, which will cause a positive reactivity introduction with the increase of steam density in reactor core to enhance neutron slowing-down, also the chemical corrosion of graphite fuel elements and the damage of reflector structure material. The increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The research on water ingress transient is significant for the verification of inherent safety characteristics of high temperature gas-cooled reactor. The 200 MWe high temperature gas-cooled reactor (HTR-PM), designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is exampled to be analyzed in this paper. The design basis accident (DBA) scenarios of double-ended guillotine break of single heat-exchange tube (steam generator heat-exchange tube rupture) are simulated by the thermal-hydraulic analysis code, and some key concerns which are relative to the amount of water into the reactor core during the blow-down transient are analyzed in detail. The results show that both of water mass and steam ratio of the fluid spouting from the broken heat-exchange tube are affected by break location, which will increase obviously with the broken location closing to the outlet of the heat-exchange tube. The double-ended guillotine rupture at the outlet of the heat-exchange will result more steam penetrates into the reactor core in the design basis accident of water ingress. The mass of water ingress will also be affected by the draining system. It is concluded that, with reasonable optimization on design to balance safety and economy, the total mass of water ingress into the primary circuit of reactor could be limited effectively to meet the safety requirements, and the pollution of

  6. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  7. A digital simulation of a pressurizer in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sato, E.F.

    1980-11-01

    A model for pressurizer digital simulation of a PWR nuclear power plant during transients, considering all pressurizer control features, is presented. The pressurizer is divided into two regions separated by a water-vapor interface and non-equilibrium conditions are considered. The particular thermodynamic process followed during insurge and outsurges is determined at each instant of analysis without any previous assumption. The pressure behavior is defined by an explicit equation in any of four possible pressurizer thermodynamic conditions. Thermodynamic properties of steam and water are computed by ASME subroutines and the mathematical formulation presented in this study was programed in FORTRAN IV for a Burroughs-6700 digital computer system. This program was employed to simulate the Shippingport Atomic Power Station and Almirante Alvaro Alberto Nuclear Power Plant - Unit 1 pressurizers. The test results compared with experimental or vendor data show the validity of this analysis method. (Author) [pt

  8. Road-map design for thorium-uranium breeding recycle in PWR - 031

    International Nuclear Information System (INIS)

    Shengyi, Si

    2010-01-01

    The paper was focused on designing a road-map to finally approach sustainable Thorium-Uranium ( 232 Th- 233 U) Breeding Recycle in current PWR, without any other change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. At first, the paper presented some insights to the inherence of Thorium-Uranium fuel conversion or breeding in PWR based on the neutronics theory and revealed the prerequisites for Thorium-Uranium fuel in PWR to achieve sustainable Breeding Recycle; And then, various Thorium-based fuels were designed and examined, and the calculation results further validated the above theoretical deductions; Based on the above theoretical analysis and calculation results, a road-map for sustainable Thorium-Uranium breeding recycle in PWR was outlined finally. (authors)

  9. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  10. Simulation of steady states of an integral PWR and power change transients using RELAP5 MOD3

    International Nuclear Information System (INIS)

    Aronne, Ivan Dionysio Aronne; Palmieri, Elcio Tadeu; Azwvedo, Carlos Vicente Goulart de; Baptista Filho, Benedito Dias; Barroso, Antonio Carlos de Oliveira

    2005-01-01

    An integral pressurized water reactor presents several differences in relation to conventional PWRs. The metal and cooling fluid masses of integral reactors are larger than those of a conventional reactor and, on the other hand, bombs tend to be smaller and the pressurizer should present characteristics proper of that arrangement. These characteristics, representing inertias different from the usual ones, makes obtaining the stationary state of the integral reactor a task with particularities that demand strategies different from the usually employed. This paper presents, initially, the main physical characteristics of the reactor in study and then the options adopted in developing the model and that were used to obtain the simulation of stationary states with the code RELAP5-MOD3. The results of the simulation of the steady state show the effects of the fore mentioned differences, where the times lags are significantly larger, as well as the suitability and efficiency of the defined approach. Two transients were simulated for changing the reactor power from steady state power of 100% to steady state power of 90%. The power change of these transients were one in step and the other in ramp with a rate of 5%/min. These calculations represent a first step for the definition and tests of parts of a preliminary control system for this reactor. The two transient simulated were based on plausible control hypotheses whose results are presented and commented. The final objective of this study is the use of results of simulations of steady states as much as of transients in support to the development of a transient identification and classification system, based on a neural network using self organizing maps whose basic proposition is presented in this paper. (author)

  11. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  12. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    Lee, G.S.; Suh, K.S.; Chang, H.I.; Chung, S.H.

    1980-01-01

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  13. Stress corrosion cracking in the vessel closure head penetrations of French PWR's

    International Nuclear Information System (INIS)

    Buisine, D.; Cattant, F.; Champredonde, J.; Pichon, C.; Benhamou, C.; Gelpi, A.; Vaindirlis, M.

    1994-01-01

    During a hydrotest in September 1991, part of the statutory decennial in-service inspection, a leak was detected on the vessel head of Bugey 3, which is one of the first 900 MW 3-loop PWR's in France. This leak was due to a cracked penetration used for a control rod drive mechanism. The investigations performed identified Primary Stress Corrosion Cracking of Alloy 600 as being the origin of this degradation. So a lot of the same design PWR's are a concern due to this generic problem. In this case, PWSCC was linked to: - hot temperature of the vessel head; - high residual stresses due to the welding process between peripherical penetrations and the vessel head; - sensitivity of forged Alloy 600 used for penetration manufacturing. This following paper will present the cracked analysis based, in particular, on the main results obtained in France on each of these items. These results come from the operating experience, the destructive examinations and the programs which are running on stress analysis and metallurgical characterizations. (authors). 9 figs., 2 tabs

  14. Metallurgical and mechanical parameters controlling alloy 718 stress corrosion cracking resistance in PWR primary water

    International Nuclear Information System (INIS)

    Deleume, J.

    2007-11-01

    Improving the performance and reliability of the fuel assemblies of the pressurized water reactors requires having a perfect knowledge of the operating margins of both the components and the materials. The choice of alloy 718 as reference material for this study is justified by the industrial will to identify the first order parameters controlling the excellent resistance of this alloy to Stress Corrosion Cracking (SCC). For this purpose, a specific slow strain rate (SSR) crack initiation test using tensile specimen with a V-shaped hump in the middle of the gauge length was developed and modeled. The selectivity of such SSR tests in simulated PWR primary water at 350 C was clearly established by characterizing the SCC resistance of nine alloy 718 thin strip heats. Regardless of their origin and in spite of a similar thermo-mechanical history, they did not exhibit the same susceptibility to SCC crack initiation. All the characterized alloy 718 heats develop oxide scale of similar nature for various exposure times to PWR primary medium in the temperature range [320 C - 360 C]. δ phase precipitation has no impact on alloy 718 SCC initiation behavior when exposed to PWR primary water, contrary to interstitial contents and the triggering of plastic instabilities (PLC phenomenon). (author)

  15. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  16. An integrated PWR for marine propulsion

    International Nuclear Information System (INIS)

    Letouze, A.; Marecaux, A.; Rollason, J.; Heap, S.; Foster, A.; Jewer, S.; Thompson, A. C.; Williams, A. M.; Beeley, P. A.

    2008-01-01

    Results from a design study for a nuclear propulsion plant utilising a small integrated PWR using many of the inherent safety features of the IRIS design. The design consists of a single pass, low enrichment core housed, together with all associated primary circuit components, within a reactor pressure vessel 10.3 m high and 4.1 m in diameter. Reactor physics calculations were conducted with the codes WIMS9a and MONK8b. The core design contains 21 fuel assemblies each containing 264 UO 2 fuel pins. Each fuel module has a cluster of 24 boron carbide control rods and a central instrumentation channel. The fuel enrichment was 9% in order to achieve the core lifetime requirement of 3000 EFPD at a reactor power of 120 MWth. This gives a discharge burnup of 51,000 MWd/t. To control excess reactivity, two forms of burnable poison are employed: a zirconium dibromide (ZrB 2 ) coating on the fuel compacts, and gadolinium oxide homogeneously mixed in the fuel. Thermal hydraulic calculations were performed using TRAC-P(ND) for steady-state operation and for a number of fault transients. The helical once through steam generators were modelled using heat structure and pipe components and their performance compared to independent calculations including heat transfer correlations for the helical coiled geometry. Intact circuit calculations for steady state were followed by a small break LOCA calculation including the effect of a containment volume which reproduced the gain of coolant effect reported for IRIS. It was demonstrated that the thermal limits were not exceeded for the identified key transients. The dynamic response of the reactor plant to typical power demands was modelled using AcslXtreme software. Several schemes for limiting the power overshoot that was found on rapid increase to full power were examined. It was concluded that the SG must be operated with variable secondary pressure and the best means of reducing power overshoot is to step back the throttle opening

  17. Effect of Ni and Cr on IGSCC growth rate of Ni-Cr-Fe alloys in PWR primary water

    International Nuclear Information System (INIS)

    Arioka, K.; Yamada, T.; Aoki, M.; Miyamoto, T.

    2015-01-01

    The purpose of this research is to examine the dependence of SCC (Stress Corrosion Crack) growth on nickel and chromium in PWR primary water; the objective is to obtain the basic knowledge to understand SCC behavior of steam generator tubing materials. The second objective is to understand whether accelerated testing at higher temperatures is appropriate for predicting SCC initiation and growth at lower temperatures. For these objectives, SCC growth was measured in PWR primary water at 290, 320, 330, 340, and 360 C. degrees under static load conditions. Tests were performed using 0.5 T compact tension type specimen using 20%CW X%Ni-16%Cr-Fe alloys in the range of nickel concentration between 16 to 60% and laboratory melted nuclear grade 20% cold worked Alloy 800 (USN N08800, CW800NG). Four important patterns were observed. First, significant effect of nickel on IGSCC resistance was observed at 340 and 360 C. degrees. The rate of IGSCC growth decreases with increasing nickel concentration in the range of nickel concentration between 10% to 25% nickel; and then, the rate of IGSCC increases with increasing nickel concentration in the range of Ni content between 50% and 76%. This trend is quite similar to the results reported by Coriou and Staehle tested in deaerated pure water at 350 C. degrees. However, no significant dependence of Ni content on IGSCC in PWR water at 320 and 290 C. degrees was observed. The change in SCC growth dependence on nickel concentration suggested that the main rate limiting processes on IGSCC growth seems to change between 320 and 340 C. degrees. Secondly, significant beneficial effects of chromium in alloys were observed at 320 C. degrees. However, no beneficial effect of chromium addition in alloys was observed at 360 C. degrees. Thirdly, peak temperatures in growth rate of IGSCC were observed in almost all test materials except for 20%CW Alloy 600. Finally, intergranular attack was observed in some alloys at lower temperature, and the

  18. The deformation of zircaloy PWR cladding with low internal pressures, under mainly convective cooling by steam

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.; Reynolds, A.E.

    1981-01-01

    The deformation behaviour is reported of specimens of Zircaloy PWR fuel cladding when directly heated in flowing steam. The range of internal pressures studied was 0.69-2.07 MPa; this extended earlier studies using higher pressures. The specimens were ramped and then held at a steady test temperature until rupture or until 600 seconds had elapsed. Under these conditions it was found that extended deformation occurred with pressures down to 1 MPa at temperatures up to 900 deg C. At lower pressures and higher temperatures there was no large extended deformation; this is believed to result from the effects of oxidation

  19. Irradiation creep transients in Ni-4 at.% Si

    International Nuclear Information System (INIS)

    Nagakawa, J.

    1983-01-01

    In the course of irradiation creep experiments on Ni-4 at.% Si alloy, two types of creep transients were observed on the termination of irradiation. The short term transient was completed within one minute while the long term transient persisted for nearly ten hours. A change in the temperature distribution was excluded from the possible causes, partly because the stress dependence of the observed transient strains was not linear, and partly because the strain increase expected from the temperature change was much smaller than the observed value. Transient behavior of point defects was examined in conjunction with the climb-glide mechanism and the steady-state irradiation creep data. Calculated creep transient due to excess vacancy flux to dislocations was in good agreement with the observed short term transient. The long term transient appears to be a result of dislocation microstructure change. The present results suggest an enhanced irradiation creep under cyclic irradiation conditions which will be encountered in the early generations of fusion reactors. (orig.)

  20. Analysis of mechanisms induced by sliding and corrosion: dedicated apparatus for PWR environments

    International Nuclear Information System (INIS)

    Vernot, JPh

    2004-01-01

    In pressurized water reactors (PWR), some components are submitted to relative motions due to necessary operational processes (localisation and positioning adjustment) or by not wished effects (flow induced vibration). Thus, components and associated supports are typically excited by a large range of kinematics so than complex combinations of wear can occur. Those excitations can lead to sliding, fretting, impact, etc. Furthermore, typical environment in PWR coupling of temperature (320 deg. C), pressure (154 bars) and chemistry solution (deaerated, low conductivity water) involve specific corrosion processes. Apparently, research performed to date did not deal with all the specific parameters involved at PWR conditions. For this purpose, a specific apparatus has been developed in Framatome Technical Center for a better understanding of this complex degradation mechanism where mechanical and corrosion effects are occurring at the same time. Thanks to electromagnets excitation, mechanical investigations can be proposed with the following combined contact type: pure impact, pure sliding and impact plus sliding for several kinds of sample as rod in a ring, rod against a guide. Motion can be induced on a local area or for the total length (orbital excitation). The relative displacement and the contact force are acquired continuously and permit to establish normal and tangential forces, angular position, sliding distance. On the other hand, electrochemistry measurements have been adapted to the specific apparatus and work in the high temperature water environment. The standard mounting with three electrodes has been qualified so that it is possible to adjust or measure current and potential. All the system is computer controlled and with the present apparatus relationship between mechanical parameters and re-passivation can be studied for specific environments, materials and solicitations. In a first step, potential dynamic polarization curves have been established for

  1. Failure of PWR-RHRS under cold shutdown conditions: Experimental results from the PKL test facility

    International Nuclear Information System (INIS)

    Mandl, R.M.; Umminger, K.J.; Logt, J.V.D.

    1991-01-01

    The Residual Heat Removal System (RHRS) of a PWR is designed to transfer thermal energy from the core after plant shutdown and maintain the plant in cold shutdown or refuelling conditions for extended periods of time. Initial reactor cooling after shutdown is achieved by dissipating heat through the steam generators (SGs) and discharging steam to the condenser by means of the Turbine Bypass System (TBS). When the reactor coolant temperature has dropped to about 160C and pressure has been reduced to 30 bar the RHRS is placed into operation. it reduces the coolant temperature to 50C within 20 hours after shutdown. The time margin for establishing alternate methods of heat removal following a failure of the RHRS depends on the Reactor Coolant System (RCS) temperature, the decay heat rate and the amount of RCS inventory. During some shutdown operations the RCS may be partially drained (e. g. to perform SG inspections). Decreased primary system inventory can significantly reduce the time available to recover the RHRS's function prior to bulk boiling and possible core uncovery. In the PKL test facility, which simulates a 1,300 MWe 4-loop PWR on a scale 1:145, a failure of RHRS under cold shutdown conditions was performed. This presentation gives a brief description of the test facility followed by the test objectives and results of this experiment

  2. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  3. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  4. Development of Cost Estimation Methodology of Decommissioning for PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Lim, Yong Kyu; Chang, Hyeon Sik; Song, Geun Ho

    2013-01-01

    The permanent closure of nuclear power plant should be conducted with the strict laws and the profound planning including the cost and schedule estimation because the plant is very contaminated with the radioactivity. In Korea, there are two types of the nuclear power plant. One is the pressurized light water reactor (PWR) and the other is the pressurized heavy water reactor (PHWR) called as CANDU reactor. Also, the 50% of the operating nuclear power plant in Korea is the PWRs which were originally designed by CE (Combustion Engineering). There have been experiences about the decommissioning of Westinghouse type PWR, but are few experiences on that of CE type PWR. Therefore, the purpose of this paper is to develop the cost estimation methodology and evaluate technical level of decommissioning for the application to CE type PWR based on the system engineering technology. The aim of present study is to develop the cost estimation methodology of decommissioning for application to PWR. Through the study, the following conclusions are obtained: · Based on the system engineering, the decommissioning work can be classified as Set, Subset, Task, Subtask and Work cost units. · The Set and Task structure are grouped as 29 Sets and 15 Task s, respectively. · The final result shows the cost and project schedule for the project control and risk management. · The present results are preliminary and should be refined and improved based on the modeling and cost data reflecting available technology and current costs like labor and waste data

  5. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: 13110290008@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Shen, Xiangying, E-mail: 13110190068@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Huang, Jiping, E-mail: jphuang@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Ni, Yushan, E-mail: niyushan@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2016-04-22

    For manipulating heat flow efficiently, recently we established a theory of temperature-dependent transformation thermotics which holds for steady-state cases. Here, we develop the theory to unsteady-state cases by considering the generalized Fourier's law for transient thermal conduction. As a result, we are allowed to propose a new class of intelligent thermal metamaterial — switchable concentrator, which is made of inhomogeneous anisotropic materials. When environmental temperature is below or above a critical value, the concentrator is automatically switched on, namely, it helps to focus heat flux in a specific region. However, the focusing does not affect the distribution pattern of temperature outside the concentrator. We also perform finite-element simulations to confirm the switching effect according to the effective medium theory by assembling homogeneous isotropic materials, which bring more convenience for experimental fabrication than inhomogeneous anisotropic materials. This work may help to figure out new intelligent thermal devices, which provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect. - Highlights: • Established the unsteady-state temperature dependent transformation thermotics. • A thermal concentrator with switchable functionality. • An effective-medium design for experimental realization.

  6. Radioprotection and safety for a dry storage module for bare PWR fuel elements

    International Nuclear Information System (INIS)

    Tzontlimatzin, E.

    1983-01-01

    A module for dry storage of spent fuel from PWR, after a previous cooling time of 2 years, is examined. Biological protection is obtained by 185 cm of concrete. The safety study shows the impossibility of a fast increase in temperature in case of cooling system failure because in this case the module will be cooled by natural convection or thermosiphon. A project for a storage installation consisting of 5 modules for 1500 irradiated fuel assemblies is described [fr

  7. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  8. The research on burnup characteristic of doping burnable poison in PWR

    International Nuclear Information System (INIS)

    Qiang Shenglong; Qin Dong; Chai Xiaoming; Yao Dong

    2014-01-01

    In PWR core design, burnable poisons are usually used for reactive compensation and power flatten. The choice of burnable poisons and how to match burnup would be the key-points for a long-life core design. We study the burnup character of doping burnable poisons (such as natural element, manual nuclide and soluble boron) in the PWR by the core burnup code MOI based on Monte Carlo method. The results show that Hf, Er and Eu doping burnable poison would be applicable for the nuclear design research on the long-life PWR core. (authors)

  9. Qualitative diagnosis for transients analysis on nuclear reactors

    International Nuclear Information System (INIS)

    Lorre, J.P.; Dorlet, E.; Evrard, J.M.

    1995-01-01

    One of the major aims of an intelligent monitoring system, is the supervision task which assist the operator in understanding what occurs on a process. Failures hypotheses must be located and the inferring process must be explained. This paper demonstrate a second generation expert system (SEXTANT) decided to the transients analysis on PWR nuclear reactors. This system detects failures by simulating the process with a numerical model. A diagnosis module uses an even graph built from a causal graph model of the plant to generate hypotheses, and a numerical model to validate these hypotheses. Hypotheses are stored into scenarios which are concurrent possible interpretations of the process evolution. The approach is illustrated by an application for the analysis of the house load operation on a pressurized water reactor. (authors). 9 refs., 10 figs

  10. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  11. ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

    1977-01-01

    ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core

  12. Study on entry criteria for severe accident management during hot leg LBLOCAs in a PWR

    International Nuclear Information System (INIS)

    Zhang, Longfei; Zhang, Dafa; Wang, Shaoming

    2007-01-01

    The risk of Large Break Loss of Coolant Accidents (LBLOCA) has been considered an important safety issue since the beginning of the nuclear power industry. The rapid depressurization occurs in the primary coolant circuit when a large break appears in a Pressurized Water Reactors (PWR).Then the coolant temperature reaches saturation at a very low pressure. The core outlet fluid temperatures maybe not reliable indicators of the core damage states at a such lower pressure. The problem is how to decide the time for water injection in the SAM (Severe Accident Management). An alternative entry criterion is the fluid temperature just above the hot channel in which the fluid temperature showed maximum among all the channels. For that reason, a systematic study of entry criterion of SAM for different hot leg break sizes in a 3-loop PWR has been started using the detailed system thermal hydraulic and severe accident analysis code package, RELAP/SCDAPSIM. Best estimate calculations of the large break LOCA of 15 cm, 20 cm and 25 cm without accident managements and in the case of high-pressure safety injection as the accident management were performed in this paper. The analysis results showed that the core exit temperatures are not reliable indicators of the peak core temperatures and core damage states once peak core temperatures reach 1500 K, and the proposed entry criteria for SAM at the time when the core outlet temperature reaches 900 K is not effective to prevent core melt. Then other analyses were performed with a parameter of fluid temperature just above the hot channel. The latter analysis showed that earlier water injection when the fluid temperature just above the hot channel reaches 900 K is effective to prevent further core melt. Since fuel surface and hot channel have spatial distribution and depend on a period of cycle operation, a series of thermocouples are required to install just above the fuel assembly. The maximum exit temperature of 900 K that captured by

  13. Potential change in flaw geometry of an initially shallow finite-length surface flaw during a pressurized-thermal-shock transient

    International Nuclear Information System (INIS)

    Shum, D.K.; Bryson, J.W.; Merkle, J.G.

    1993-09-01

    This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions

  14. Knowledge of ageing phenomenons of materials used in the PWR power plants

    International Nuclear Information System (INIS)

    Vancon, D.; Meyzaud, Y.; Soulat, P.

    1996-01-01

    The nuclear power plants with PWR type reactors are planned to work during forty years and are the subject of studies aiming to check their integrity during all their life. The materials used to the fabrication of the components can be submitted different stress. The temperature, the mechanical constraints, the irradiation are examples of stress which can make the materials getting old. This text presents three themes: the ageing by irradiation, the thermal ageing and the corrosion, and their principle industrial consequences. (N.C.)

  15. Analysis, by Relap5 code, of boron dilution phenomena in a Small Break Loca Transient, performed in PKL III E 2.2 test

    International Nuclear Information System (INIS)

    Rizzo, G.; Vella, G.

    2007-01-01

    The present work is finalized to investigate the E2.2 thermal-hydraulics transient of the PKL III facility, which is a scaled reproduction of a typical German PWR, operated by FRAMATOME-ANP in Erlangen, Germany, within the framework of an international cooperation (OECD/SETH project). The main purpose of the project is to study boron dilution events in Pressurized Water Reactors and to contribute to the assessment of thermal-hydraulic system codes like Relap5. The experimental test PKL III E2.2 investigates the behavior of a typical PWR after a Small Break Loss Of Coolant Accident (SB-LOCA) in a cold leg and an immediate injection of borated water in two cold legs. The main purpose of this work is to simulate the PKL III test facility and particularly its experimental transient by Relap5 system code. The adopted nodalization, already available at Department of Nuclear Engineering (DIN), has been reviewed and applied with an accurate analysis of the experimental test parameters. The main result relies in a good agreement of calculated data with experimental measures for a number of main important variables. (author)

  16. Cylindrization of a PWR core for neutronic calculations

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos

    2005-01-01

    In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)

  17. Thermo-physical properties and transient heat transfer of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Shin, Ki-Yeol; Kim, Sang-Baik; Kim, Jong-Hwan; Chung, Mo; Jung, Pyung-Suk

    2002-01-01

    The objective of this study is to produce our own experimental data of physical properties of domestic concrete used in Korean NPPs, and to study on the thermal behavior of concrete exposed to high temperature conditions. The compressive strength and chemical composition of the concrete used in the Yonggwang NPP units 3 and 4 were analyzed. The chemical composition of Korean concrete is similar to that of US basaltic concrete. The thermal properties of the concrete, such as density, conductivity, diffusivity, and specific heat were also measured with a wide temperature range of 20-1100 deg. C. Most thermo-physical properties of concrete decrease with an increase in temperature except for the specific heat, and particularly the conductivity and the diffusivity are a 50% lower at 900 deg. C as compared with the values at room temperature. The specific heat increases until 500 deg. C, decreases from 700 to 900 deg. C, and then increases again when temperature is above 900 deg. C. In this work, we also have performed CORCON analysis and MCCI experiments to simulate a transient thermal behavior of concrete exposed to high temperature conditions. The measured maximum downward heat flux to the concrete specimen was estimated to be about 2.1 MW m -2 and the maximum erosion rate of the concrete to be 175 cm h -1 with maximum erosion depth of about 2 cm. In the CORCON analysis, it is found that the concrete compositions have an important effect upon concrete erosion

  18. Reduction of residual stresses in internal skin of transient zones of PWR steam generator expanded tubes: tests with a ''rotating brush''

    International Nuclear Information System (INIS)

    Vidal, P.

    1984-04-01

    A process aiming at preventing or suppressing cracks under stress corrosion on the primary side in the expanded zones of PWR steam generator tubes has been studied; it consists in hammering the internal skin of tubes in these zones what reduces the level of residual expanding stresses to lower values around 100-150 MPa without modifying the stress level in external skin. Tests in magnesium chloride to estimate the residual stresses of tubes in low carbon stainless austenitic steel 18% Cr-12% Ni with molybdene [fr

  19. Fission gas behaviour modelling in plate fuel during a power transient

    International Nuclear Information System (INIS)

    Portier, S.

    2003-01-01

    This thesis is dedicated to the identification and modelization of the phenomena which are at the origin of the release of the fission gas formed in UO 2 plate fuels during the irradiation in a power transient. In the first experimental part, samples of plate fuels, irradiated at 36 GWj/tU, have been annealed to temperatures from 1100 C to 1500 C in a device that enabled the measurement of gas release in real time. At 1300 C, post-annealing observations demonstrated a link between the measured gas releases to a rapid formation of labyrinths at the grain surface. These labyrinths, which were formed by intergranular bubble interconnection, create release paths for the gas atoms which reach the grain surface. At this stage, the available experimental results (annealing and observations) were interpreted considering that it is the spreading of the gas atoms from the grains to the grain boundaries that is at the origin of the observed releases. This interpretation generates the hypothesis that a) at the end of the basic irradiation, the gas is at the atomic state and b) during the annealing, the spreading is reduced by the intragranular bubbles of the gas atoms. The last part of the work is dedicated to the modelization of the main phenomena at the origin of the gas release. The model developed, based on the model of the gas behaviour in MARGARET PWR, highlighted the great influence of the irradiation conditions on the gas distribution at the end of the irradiation and also its influence on the fission gas release during the power transient. (author) [fr

  20. Safety aspects of the using Gd as burnable poison in PWR's

    International Nuclear Information System (INIS)

    Vandenberg, C.; Bonet, H.; Charlier, A.

    1978-01-01

    The experience of BELGONUCLEAIRE in using Gd in LWR's has indicated the safety related advantages of this burnable poison. The successfully operation of the BR3 PWR power plant with 5% of Gd rods is presented and extrapolated to large PWR's. (authro)

  1. The time-dependent 3D discrete ordinates code TORT-TD with thermal-hydraulic feedback by ATHLET models

    International Nuclear Information System (INIS)

    Seubert, A.; Velkov, K.; Langenbuch, S.

    2008-01-01

    This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)

  2. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  3. On-line thermal margin estimation of a PWR core using a neural network approach

    International Nuclear Information System (INIS)

    Park, Soon Ok; Kim, Hyun Koon; Lee, Seung Hynk; Chang, Soon Heung

    1992-01-01

    A new approach for on-line thermal margin monitoring of a PWR Core is proposed in this paper, where a neural network model is introduced to predict the DNBR values at the given reactor operating conditions. The neural network is learned by the Back Propagation algorithm with the optimized random training data and is tested to investigate the generalized performance for the steady state operating region as well as for the transient situations where DNB is of the primary concern. The test results show that the high level of accuracy in predicting the DNBR can be achieved by the neural network model compared to the detailed code results. An insight has been gained from this study that the neural network model for estimating DNB performance can be a viable tool for on-line thermal margin monitoring of a nuclear power plant

  4. Transient stratification modelling of a corium pool in a LWR vessel lower head

    International Nuclear Information System (INIS)

    Le Tellier, R.; Saas, L.; Bajard, S.

    2015-01-01

    Highlights: • A kinetic stratification model is proposed for the simulation of the in-vessel corium behaviour during a LWR severe accident. • The different associated “modes” of vessel failure by thermal focusing effect are highlighted and discussed. • A sensitivity study for a 1650 MWe GenIII PWR is presented with this model in order to illustrate the associated R&D issues. - Abstract: In the context of light water reactor severe accidents analysis, this paper is focused on one key parameter of in-vessel corium phenomenology: the immiscible phases stratification and its impact on the heat flux distribution at the corium pool lateral boundary with the so-called focusing effect related to a “thin” top metal phase and the potential vessel failure at that point. More particularly, based on the limited knowledge of the stratification transient phenomenon derived from the MASCA-RCW experiment, a basic model is proposed that can be used for corium in lower head sensitivity analyses. It has been implemented in the PROCOR platform developed at CEA Cadarache. A short parametric study on a simple hypothetical transient is presented in order to highlight the different focusing effect “modes” that can be encountered based on this in-vessel corium pool model. An early mode may occur during the formation of the top metal layer while two other modes may appear later during the thinning of this top metal layer because of thermochemically induced mass transfers. Some associated relevant parameters (model or scenario-dependent) and modelling issues are mentioned and illustrated with some results of a Monte-Carlo based sensitivity calculation on the transient behaviour of the corium in the lower head of a 1650 MWe GenIII PWR. Within the limiting modelling hypotheses, the thermal modelling of the steel layer for small (centimetre) heights and the mass diffusivity (limited in this case to the uranium diffusivity in the oxidic layer) are main sensitive parameters

  5. On site PWR fuel inspection measurements for operational and design verification

    International Nuclear Information System (INIS)

    1996-01-01

    The on-site inspection of irradiated Pressurized Water Reactor (PWR) fuel and Non-Fuel Bearing Components (NFBC) is typically limited to visual inspections during refuelings using underwater TV cameras and is intended primarily to confirm whether the components will continue in operation. These inspections do not normally provide data for design verification nor information to benefit future fuel designs. Japanese PWR utilities and Nuclear Fuel Industries Ltd. designed, built, and performed demonstration tests of on-site inspection equipment that confirms operational readiness of PWR fuel and NFBC and also gathers data for design verification of these components. 4 figs, 3 tabs

  6. Issues regarding transient analysis examined by the Sizewell B Public Inquiry

    International Nuclear Information System (INIS)

    Farmer, P.R.; Dunnicliffe, C.J.

    1988-01-01

    Issues on PWR safety transient analysis that were discussed at the Sizewell B Public Inquiry are presented. The Public Inquiry was set up by the UK Government under an Inspector, Sir Frank Layfield, to examine all aspects of the construction, safety and operation of a 1200 MW(e) PWR on the Sizewell site. The terms of reference were broad ranging, and the constitution of the Inquiry was to make a recommendation under three Acts of Parliament which apply to the construction and operation of nuclear electrical plant. The Inquiry also covered local planning aspects, which are the responsibility of the Local Authority - in this case the Suffolk County Council. The Inspector examined and made recommendations on the safety of the Station, but consideration by Public Inquiry is outside the formal safety and licensing process, which is the business of the Utility (the CEGB) and the Nuclear Installations Inspectorate (the NII). The paper therefore takes a broader look at the question of safety, dealing with the licensing process, the requirements of the safety case and the forward strategies adopted by the CEGB in terms of research and development. This is considered for transient analysis, and the aim is to set the discussions and conclusions of the Public Inquiry into their proper context with regard to nuclear safety in the UK. The Inquiry went into some depth on the topic of LOCA, as an example of safety analysis. In the summary of the evidence and cross-examination the Inspector accepted the adequacy of the LOCA safety case without major reservations, and was satisfied further work in progress would resolve any residual criticisms. In particular support was given for the CEGB commitment to the development and use of more physically realistic calculational methods

  7. Operating function tests of the PWR type RHR pump for engineering safety system under simulated strong ground excitation

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, Kazuhiro; Homma, Toshiaki; Inazuka, Hisashi; Nakajima, Norifumi.

    1979-08-01

    Results are described of operating function verification tests of a PWR RHR pump during an earthquake. Of the active reactor components, the PWR residual heat removal pump was chosen from view points of aseismic classification, safety function, structural complexity and past aseismic tests. Through survey of the service conditions and structure of this pump, seismic test conditions such as acceleration level, simulated seismic wave form and earthquake duration were decided for seismicity of the operating pump. Then, plans were prepared to evaluate vibration chracteristics of the pump and to estimate its aseismic design margins. Subsequently, test facility and instrumentation system were designed and constructed. Experimental results could thus be acquired on vibration characteristics of the pump and its dynamic behavior during different kinds and levels of simulated earthquake. In conclusion: (1) Stiffeners attached to the auxiliary system piping do improve aseismic performance of the pump. (2) The rotor-shaft-bearing system is secure unless it is subjected to transient disturbunces having high frequency content. (3) The motor and pump casing having resonance frequencies much higher than frequency content of the seismic wave show only small amplifications. (4) The RHR pump possesses an aseismic design margin more than 2.6 times the expected ultimate earthquake on design basis. (author)

  8. A simple analytical scaling method for a scaled-down test facility simulating SB-LOCAs in a passive PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il

    1992-02-01

    A Simple analytical scaling method is developed for a scaled-down test facility simulating SB-LOCAs in a passive PWR. The whole scenario of a SB-LOCA is divided into two phases on the basis of the pressure trend ; depressurization phase and pot-boiling phase. The pressure and the core mixture level are selected as the most critical parameters to be preserved between the prototype and the scaled-down model. In each phase the high important phenomena having the influence on the critical parameters are identified and the scaling parameters governing the high important phenomena are generated by the present method. To validate the model used, Marviken CFT and 336 rod bundle experiment are simulated. The models overpredict both the pressure and two phase mixture level, but it shows agreement at least qualitatively with experimental results. In order to validate whether the scaled-down model well represents the important phenomena, we simulate the nondimensional pressure response of a cold-leg 4-inch break transient for AP-600 and the scaled-down model. The results of the present method are in excellent agreement with those of AP-600. It can be concluded that the present method is suitable for scaling the test facility simulating SB-LOCAs in a passive PWR

  9. Proposal for a advanced PWR core with adequate characteristics for passive safety concept

    International Nuclear Information System (INIS)

    Perrotta, Jose Augusto

    1999-01-01

    This work presents a discussion upon the suitable from an advanced PWR core, classified by the EPRI as 'Passive PWR' (advanced reactor with passive safety concept to power plants with less than 600 MW electrical power). The discussion upon the type of core is based on nuclear fuel engineering concepts. Discussion is made on type of fuel materials, structural materials, geometric shapes and manufacturing process that are suitable to produce fuel assemblies which give good performance for this type of reactors. The analysis is guided by the EPRI requirements for Advanced Light Water Reactor (ALWR). By means of comparison, the analysis were done to Angra 1 (old type of 600 MWe PWR class), and the design of the Westinghouse Advanced PWR-AP600. It was verified as a conclusion of this work that the modern PWR fuels are suitable for advanced PWR's Nevertheless, this work presents a technical alternative to this kind of fuel, still using UO 2 as fuel, but changing its cylindrical form of pellets and pin type fuel element to plane shape pallets and plate type fuel element. This is not a novelty fuel, since it was used in the 50's at Shippingport Reactor and as an advanced version by CEA of France in the 70's. In this work it is proposed a new mechanical assembly design for this fuel, which can give adequate safety and operational performance to the core of a 'Passive PWR'. (author)

  10. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  11. The integrated PWR

    International Nuclear Information System (INIS)

    Gautier, G.M.

    2002-01-01

    This document presents the integrated reactors concepts by a presentation of four reactors: PIUS, SIR, IRIS and CAREM. The core conception, the operating, the safety, the economical aspects and the possible users are detailed. From the performance of the classical integrated PWR, the necessity of new innovative fuels utilization, the research of a simplified design to make easier the safety and the KWh cost decrease, a new integrated reactor is presented: SCAR 600. (A.L.B.)

  12. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  13. The influence of a non-uniform radial temperature distribution in the fuel on the results of calculation of transients

    International Nuclear Information System (INIS)

    Goltsev, A.O.; Davidenko, V.D.; Tsibulsky, V.F.; Lekomtsev, A.A.

    2003-01-01

    The paper is devoted to the discussion of results of computational studies of transients for different ways of accounting the temperature of the fuel in the full-scale comprehensive calculations of neutron physics. The paper demonstrates that in calculation of the neutron physics, it is necessary to use the effective temperature of the fuel in order to provide for correct accounting of the fuel temperature feedback, since the value of volume-averaged temperature being used in calculations of neutron physics with feedbacks would result in underestimation of consequences of accidents, especially accidents involving the dispersion of radiation

  14. Advanced ion exchange resins for PWR condensate polishing

    International Nuclear Information System (INIS)

    Hoffman, B.; Tsuzuki, S.

    2002-01-01

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  15. Two optimal control methods for PWR core control

    International Nuclear Information System (INIS)

    Karppinen, J.; Blomsnes, B.; Versluis, R.M.

    1976-01-01

    The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de

  16. ASCOT-1, Thermohydraulics of Axisymmetric PWR Core with Homogeneous Flow During LOCA

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: ASCOT-1 is used to analyze the thermo-hydraulic behaviour in a PWR core during a loss-of-coolant accident. 2 - Method of solution: The core is assumed to be axisymmetric two-dimensional and the conservation laws are solved by the method of characteristics. For the temperature response of fuel in the annular regions into which the core is divided, the heat conduction equations are solved by an explicit method with averaged flow conditions. 3 - Restrictions on the complexity of the problem: Axisymmetric two-dimensional homogeneous flows

  17. Experimental study on reflooding in advanced tight lattice PWR

    International Nuclear Information System (INIS)

    Hori, K.; Kodama, J.; Teramae, T.

    2000-01-01

    This paper is related to the experimental study on the feasibility of core cooling by re-flooding in a large break loss of coolant accident (LOCA) for the advanced tight lattice pressurized water reactor (PWR). The tight lattice core design should be adopted to improve the conversion ratio. Major one of the key questions of such tight lattice core is the cooling capability under the re-flood condition in a large break LOCA. Forced feed bottom re-flooding experiments have been performed by use of a 4x4 triangular array rod bundle. The rod gap is 0.5 mm, 1.0 mm, or 1.5 mm. The measured peak temperature is below around 1273 K even in case of 1.0/0.5 mm rod gap. And, the evaluation based on the experimental results of rod temperatures and core pressure drop also shows that the core cooling under re-flooding condition is feasible. (author)

  18. Considerations of the manner of accounting for fast fracture risk in the design of PWR vessels

    International Nuclear Information System (INIS)

    Pellissier-Tanon, A.; Grandemange, J.M.

    1986-01-01

    The French approach to the prevention of fast fracture in PWR vessels is to consider it as a whole and to choose the most convenient way to meet this general goal from an economic and technical point of view. According to this approach, there are no specific limits imposed on such factors as end of life RTsub(NDT) or neutron fluence, which are taken as criteria in other countries. The RCCM design and construction code specifications on chemical content and RTsub(NDT) for beltline and non-irradiated parts establish a sound basis for safety. However, for the most critical parts, the existence of large margins with respect to fast fracture is demonstrated by analysis for all second, third and fourth category design transients. To this aim, the RCCM code needs to demonstrate specified safety margins, depending on the transient category, for reference defects defined in kind and size, in order to bound realistically any defects which have a chance of occurring in the part during manufacture. This approach, which enables the disclosure of the influence of all significant design factors on fracture risk, ensures the most consistent way to improve design safety. (author)

  19. Considerations of the manner of accounting for fast fracture risk in the design of PWR vessels

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The French approach to the prevention of fast fracture in PWR vessels is to consider it as a whole and to choose the most convenient way to meet this general goal from an economic and technical point of view. According to this approach, there are no specific limits imposed on such factors as end of life RTsub(NDT) or neutron fluence, which are taken as criteria in other countries. The RCCM design and construction code specifications on chemical content and RTsub(NDT) for beltline and non-irradiated parts establish a sound basis for safety. However, for the most critical parts, the existence of large margins with respect to fast fracture is demonstrated by analysis for all second, third and fourth category design transients. To this aim, the RCCM code needs to demonstrate specified safety margins, depending on the transient category, for reference defects defined in kind and size, in order to bound realistically any defects which have a chance of occurring in the part during manufacture. This approach, which enables the disclosure of the influence of all significant design factors on fracture risk, ensures the most consistent way to improve design safety.

  20. Calculation of the time behavior of a PWR NPP during a loss of feedwater ATWS case

    International Nuclear Information System (INIS)

    Hoeld, A.

    1988-01-01

    Event tree analyses of plant internal accidents play an important role within the safety evaluations of nuclear power reactors. The consequences after normal and abnormal operational perturbations have to be studied with respect to the safety situation of the entire plant and the possibility of additional failures in the reactor scram system be taken into account. In the analysis of anticipated transients with or without reactor scram (non-ATWS or ATWS-cases), it can, according to their initiating events, be distinguished between three important categories, namely - loss of off-site and on-site power (LOOP), - turbine-trip without opening of the bypass station, - loss of main feed water (LOFW). The last case with the additional assumption of a failure in the control rod drive will be subject of this presentation, calculating the dynamic behavior of a PWR NPP (with an end of cycle core, EOC) after such a LOFW/ATWS accident by the transient code combination ALMOD-4/UTSG-2. A short characterization of this combination will be given before consequences of such an accident and the interactions of the different plant parameters are discussed in more detail on basis of the corresponding calculation