WorldWideScience

Sample records for temperature time series

  1. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  2. factor high order fuzzy time series with applications to temperature

    African Journals Online (AJOL)

    HOD

    In this paper, a novel two – factor high – order fuzzy time series forecasting method based on .... to balance between local and global exploitations of the swarms. While, .... Although, there were a number of outliers but, the spread at the spot in ...

  3. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  4. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  5. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  6. Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature.

    Science.gov (United States)

    Bhandari, Siddhartha; Bergmann, Neil; Jurdak, Raja; Kusy, Branislav

    2017-05-26

    Wireless sensor networks have gained significant traction in environmental signal monitoring and analysis. The cost or lifetime of the system typically depends on the frequency at which environmental phenomena are monitored. If sampling rates are reduced, energy is saved. Using empirical datasets collected from environmental monitoring sensor networks, this work performs time series analyses of measured temperature time series. Unlike previous works which have concentrated on suppressing the transmission of some data samples by time-series analysis but still maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor wake up rate) and looks at the effects on accuracy. Results show that the sampling period of the sensor can be increased up to one hour while still allowing intermediate and future states to be estimated with interpolation RMSE less than 0.2 °C and forecasting RMSE less than 1 °C.

  7. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  8. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  9. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  10. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  11. Long time series

    DEFF Research Database (Denmark)

    Hisdal, H.; Holmqvist, E.; Hyvärinen, V.

    Awareness that emission of greenhouse gases will raise the global temperature and change the climate has led to studies trying to identify such changes in long-term climate and hydrologic time series. This report, written by the......Awareness that emission of greenhouse gases will raise the global temperature and change the climate has led to studies trying to identify such changes in long-term climate and hydrologic time series. This report, written by the...

  12. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    Science.gov (United States)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  13. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  14. New insights into soil temperature time series modeling: linear or nonlinear?

    Science.gov (United States)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and

  15. Time series modelling of global mean temperature for managerial decision-making.

    Science.gov (United States)

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  16. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  17. Hybrid analysis for indicating patients with breast cancer using temperature time series.

    Science.gov (United States)

    Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura

    2016-07-01

    Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an

  18. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  19. A Time Series of Mean Global Sea Surface Temperature from the Along-Track Scanning Radiometers

    Science.gov (United States)

    Veal, Karen L.; Corlett, Gary; Remedios, John; Llewellyn-Jones, David

    2010-12-01

    A climate data set requires a long time series of consistently processed data with suitably long periods of overlap of different instruments which allows characterization of any inter-instrument biases. The data obtained from ESA's three Along-Track Scanning Radiometers (ATSRs) together comprise an 18 year record of SST with overlap periods of at least 6 months. The data from all three ATSRs has been consistently processed. These factors together with the stability of the instruments and the precision of the derived SST makes this data set eminently suitable for the construction of a time series of SST that complies with many of the GCOS requirements for a climate data set. A time series of global and regional average SST anomalies has been constructed from the ATSR version 2 data set. An analysis of the overlap periods of successive instruments was used to remove intra-series biases and align the series to a common reference. An ATSR climatology has been developed and has been used to calculate the SST anomalies. The ATSR-1 time series and the AATSR time series have been aligned to ATSR-2. The largest adjustment is ~0.2 K between ATSR-2 and AATSR which is suspected to be due to a shift of the 12 μm filter function for AATSR. An uncertainty of 0.06 K is assigned to the relative anomaly record that is derived from the dual three-channel night-time data. A relative uncertainty of 0.07 K is assigned to the dual night-time two-channel record, except in the ATSR-1 period (1994-1996) where it is larger.

  20. Analysis of rainfall and temperature time series to detect long-term ...

    Indian Academy of Sciences (India)

    67

    ABSTRACT. Arid and semiarid environments have been identified with locations prone to impacts of climate variability and change. Investigating long term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible ...

  1. Correlation between the time-series of air temperature and incident solar radiation at Port Harcourt, Nigeria

    International Nuclear Information System (INIS)

    Adjepong, S.K.; Okujagu, C.

    1987-12-01

    We present the preliminary results of an investigation of the correlation between the temporal variations of the time-series of ground air temperature and incident solar radiation recorded at Port Harcourt (lat. 4 deg. 51' N, long. 7 deg. 01' E), Nigeria, during a five-year period (1981 through 1985). Computed cross-correlation functions of the daily time-series reveal correlation at time lags which are approximate harmonics of the 27-day solar rotation cycle. The cross-correlation function of the mean monthly series shows correlation at a time lag of 12 months implying a dominant annual-cycle component in the variation of either series. (author). 12 refs, 2 figs

  2. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  3. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSR-E Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, S.; Peterson, C. A.

    2006-12-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: `Is The Number of Antarctic Icebergs Really Increasing?' [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, AGU Transactions 83(42):469&474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E's 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I's comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with near-global coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC (Rapid Prototyping Capability

  4. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  5. Global Sea Surface Temperature: A Harmonized Multi-sensor Time-series from Satellite Observations

    Science.gov (United States)

    Merchant, C. J.

    2017-12-01

    This paper presents the methods used to obtain a new global sea surface temperature (SST) dataset spanning the early 1980s to the present, intended for use as a climate data record (CDR). The dataset provides skin SST (the fundamental measurement) and an estimate of the daily mean SST at depths compatible with drifting buoys (adjusting for skin and diurnal variability). The depth SST provided enables the CDR to be used with in situ records and centennial-scale SST reconstructions. The new SST timeseries is as independent as possible from in situ observations, and from 1995 onwards is harmonized to an independent satellite reference (namely, SSTs from the Advanced Along Track Scanning Radiometer (Advanced ATSR)). This maximizes the utility of our new estimates of variability and long-term trends in interrogating previous datasets tied to in situ observations. The new SSTs include full resolution (swath, level 2) data, single-sensor gridded data (level 3, 0.05 degree latitude-longitude grid) and a multi-sensor optimal analysis (level 4, same grid). All product levels are consistent. All SSTs have validated uncertainty estimates attached. The sensors used include all Advanced Very High Resolution Radiometers from NOAA-6 onwards and the ATSR series. AVHRR brightness temperatures (BTs) are calculated from counts using a new in-flight re-calibration for each sensor, ultimately linked through to the AATSR BT calibration by a new harmonization technique. Artefacts in AVHRR BTs linked to varying instrument temperature, orbital regime and solar contamination are significantly reduced. These improvements in the AVHRR BTs (level 1) translate into improved cloud detection and SST (level 2). For cloud detection, we use a Bayesian approach for all sensors. For the ATSRs, SSTs are derived with sufficient accuracy and sensitivity using dual-view coefficients. This is not the case for single-view AVHRR observations, for which a physically based retrieval is employed, using a hybrid

  6. Multi-scale approach to Euro-Atlantic climatic cycles based on phenological time series, air temperatures and circulation indexes.

    Science.gov (United States)

    Mariani, Luigi; Zavatti, Franco

    2017-09-01

    The spectral periods in North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) were analyzed and has been verified how they imprint a time series of European temperature anomalies (ETA), two European temperature time series and some phenological series (dates of cherry flowering and grapevine harvest). Such work had as reference scenario the linear causal chain MCTP (Macroscale Circulation→Temperature→Phenology of crops) that links oceanic and atmospheric circulation to surface air temperature which in its turn determines the earliness of appearance of phenological phases of plants. Results show that in the three segments of the MCTP causal chain are present cycles with the following central period in years (the % of the 12 analyzed time series interested by these cycles are in brackets): 65 (58%), 24 (58%), 20.5 (58%), 13.5 (50%), 11.5 (58%), 7.7 (75%), 5.5 (58%), 4.1 (58%), 3 (50%), 2.4 (67%). A comparison with short term spectral peaks of the four El Niño regions (nino1+2, nino3, nino3.4 and nino4) show that 10 of the 12 series are imprinted by periods around 2.3-2.4yr while 50-58% of the series are imprinted by El Niño periods of 4-4.2, 3.8-3.9, 3-3.1years. The analysis highlights the links among physical and biological variables of the climate system at scales that range from macro to microscale whose knowledge is crucial to reach a suitable understanding of the ecosystem behavior. The spectral analysis was also applied to a time series of spring - summer precipitation in order to evaluate the presence of peaks common with other 12 selected series with result substantially negative which brings us to rule out the existence of a linear causal chain MCPP (Macroscale Circulation→Precipitation→Phenology). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    Science.gov (United States)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  8. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Science.gov (United States)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  9. The association of season and temperature with adverse pregnancy outcome in two German states, a time-series analysis.

    Directory of Open Access Journals (Sweden)

    Jennyfer Wolf

    Full Text Available A seasonality of low birth weight (LBW and preterm birth (PTB has been described for most regions and there is evidence that this pattern is caused by ambient outdoor temperature. However, the association as such, the direction of effect and the critical time of exposure remain controversial.Logistic, time-series regression was performed on nearly 300,000 births from two German states to study the association between season and daily mean temperature and changes in daily proportions of term LBW (tLBW or PTB. Analyses were adjusted for time-varying factors. Temperature exposures were examined during different periods of pregnancy.Weak evidence for an association between season of conception, season of birth or ambient outdoor temperature and tLBW or PTB was found. Results of analyses of temperature were not consistent between the two states. Different sources of bias which would have artificially led to stronger findings were detected and are described.No clear evidence for an association between season of conception, season of birth or temperature and tLBW or PTB was found. In the study of pregnancy outcome different sources of bias can be identified which can potentially explain heterogeneous findings of the past.

  10. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China

    Science.gov (United States)

    Zhang, Xian-Jing; Ma, Wei-Ping; Zhao, Nai-Qing; Wang, Xi-Ling

    2016-01-01

    Research on the association between ambient temperature and cerebrovascular morbidity is scarce in China. In this study, we applied mixed generalized additive model (MGAM) to daily counts of cerebrovascular disease of Shanghai residents aged 65 years or older from 2007-2011, stratified by gender. Weighted daily mean temperature up to lags of one week was smoothed by natural cubic spline, and was added into the model to assess both linear and nonlinear effects of temperature. We found that when the mean temperature increased by 1 °C, the male cases of cerebrovascular disease reduced by 0.95% (95% Confidence Interval (CI): 0.80%, 1.10%) or reduced by 0.34% (95% CI: -0.68, 1.36%) in conditions of temperature was below or above 27 °C. However, for every 1 °C increase in temperature, the female cases of cerebrovascular disease increased by 0.34% (95% CI: -0.26%, 0.94%) or decreased by 0.92% (95% CI: 0.72, 1.11%) in conditions of temperature was below or above 8 °C, respectively. Temperature and cerebrovascular morbidity is negatively associated in Shanghai. MGAM is recommended in assessing the association between environmental hazards and health outcomes in time series studies.

  11. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    Science.gov (United States)

    Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee

    2013-01-01

    Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...

  12. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study.

    Science.gov (United States)

    Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing

    2014-11-25

    Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.

  13. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  14. Multivariate Time Series Search

    Data.gov (United States)

    National Aeronautics and Space Administration — Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical...

  15. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...

  16. Outdoor air temperature and mortality in The Netherlands: a time-series analysis

    NARCIS (Netherlands)

    Kunst, A. E.; Looman, C. W.; Mackenbach, J. P.

    1993-01-01

    Death rates become progressively higher when outdoor air temperature rises above or falls below 20-25 degrees C. This study addresses the question of whether this relation is largely attributable to the direct effects of exposure to heat and cold on the human body in general, and on the circulatory

  17. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    Science.gov (United States)

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  18. Visual time series analysis

    DEFF Research Database (Denmark)

    Fischer, Paul; Hilbert, Astrid

    2012-01-01

    We introduce a platform which supplies an easy-to-handle, interactive, extendable, and fast analysis tool for time series analysis. In contrast to other software suits like Maple, Matlab, or R, which use a command-line-like interface and where the user has to memorize/look-up the appropriate...... commands, our application is select-and-click-driven. It allows to derive many different sequences of deviations for a given time series and to visualize them in different ways in order to judge their expressive power and to reuse the procedure found. For many transformations or model-ts, the user may...... choose between manual and automated parameter selection. The user can dene new transformations and add them to the system. The application contains efficient implementations of advanced and recent techniques for time series analysis including techniques related to extreme value analysis and filtering...

  19. Time Series Momentum

    DEFF Research Database (Denmark)

    Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse

    2012-01-01

    We document significant “time series momentum” in equity index, currency, commodity, and bond futures for each of the 58 liquid instruments we consider. We find persistence in returns for one to 12 months that partially reverses over longer horizons, consistent with sentiment theories of initial...... under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...

  20. Applied time series analysis

    CERN Document Server

    Woodward, Wayne A; Elliott, Alan C

    2011-01-01

    ""There is scarcely a standard technique that the reader will find left out … this book is highly recommended for those requiring a ready introduction to applicable methods in time series and serves as a useful resource for pedagogical purposes.""-International Statistical Review (2014), 82""Current time series theory for practice is well summarized in this book.""-Emmanuel Parzen, Texas A&M University""What an extraordinary range of topics covered, all very insightfully. I like [the authors'] innovations very much, such as the AR factor table.""-David Findley, U.S. Census Bureau (retired)""…

  1. Predicting chaotic time series

    International Nuclear Information System (INIS)

    Farmer, J.D.; Sidorowich, J.J.

    1987-01-01

    We present a forecasting technique for chaotic data. After embedding a time series in a state space using delay coordinates, we ''learn'' the induced nonlinear mapping using local approximation. This allows us to make short-term predictions of the future behavior of a time series, using information based only on past values. We present an error estimate for this technique, and demonstrate its effectiveness by applying it to several examples, including data from the Mackey-Glass delay differential equation, Rayleigh-Benard convection, and Taylor-Couette flow

  2. MODIS Land Surface Temperature time series reconstruction with Open Source GIS: A new quality of temperature based ecological indicators in complex terrain (Invited)

    Science.gov (United States)

    Neteler, M.

    2009-12-01

    In complex terrain like the Central European Alps, meteorological stations and ground surveys are usually sparsely and/or irregularly distributed and often favor agricultural areas. The application of traditional geospatial interpolation methods in complex terrain remains challenging and difficult to optimize. An alternative data source is remote sensing: high temporal resolution satellite data are continuously gaining interest since these data are intrinsically spatialized: continuous field of observations is obtained with this tool instead of point data. The increasing data availability suggests using these time series as surrogate to certain measures from meteorological stations, especially for temperature and related derivatives. The Terra and Aqua satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS) provide four Earth coverages per day at various resolutions. We analyzed 8 years (2000 to 2008) of daily land surface temperature (LST) data from MODIS in an area located in the Southern European Alps. A method was developed to reconstruct incomplete maps (cloud coverage, invalid pixels) based on image statistics and on a model that includes additional GIS layers. The original LST map resolution of 1000m could be improved to 200m in this process which renders the resulting LST maps applicable at regional scales. We propose the use of these reconstructed daily LST time series as surrogate to meteorological observations especially in the area of epidemiological modeling where data are typically aggregated to decadal indicators. From these daily LST map series, derivable indicators include: 1) temperatures minima, means and maxima for annual/monthly/decadal periods; 2) unusual hot summers;3) the calculation of growing degree days, and 4) spring temperature increase or autumnal temperature decrease. Since more than 8 years of MODIS LST data are available today, even preliminary gradients can be extracted to assess multi-annual temperature trends

  3. The forecasting of menstruation based on a state-space modeling of basal body temperature time series.

    Science.gov (United States)

    Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio

    2017-09-20

    Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  4. Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time-series and ARIMAX analyses.

    Science.gov (United States)

    Chadsuthi, Sudarat; Modchang, Charin; Lenbury, Yongwimon; Iamsirithaworn, Sopon; Triampo, Wannapong

    2012-07-01

    To study the number of leptospirosis cases in relations to the seasonal pattern, and its association with climate factors. Time series analysis was used to study the time variations in the number of leptospirosis cases. The Autoregressive Integrated Moving Average (ARIMA) model was used in data curve fitting and predicting the next leptospirosis cases. We found that the amount of rainfall was correlated to leptospirosis cases in both regions of interest, namely the northern and northeastern region of Thailand, while the temperature played a role in the northeastern region only. The use of multivariate ARIMA (ARIMAX) model showed that factoring in rainfall (with an 8 months lag) yields the best model for the northern region while the model, which factors in rainfall (with a 10 months lag) and temperature (with an 8 months lag) was the best for the northeastern region. The models are able to show the trend in leptospirosis cases and closely fit the recorded data in both regions. The models can also be used to predict the next seasonal peak quite accurately. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis.

    Science.gov (United States)

    Ding, Zan; Guo, Pi; Xie, Fang; Chu, Huifang; Li, Kun; Pu, Jingbo; Pang, Shaojie; Dong, Hongli; Liu, Yahui; Pi, Fuhua; Zhang, Qingying

    2015-09-01

    Diurnal temperature range (DTR) is an important meteorological indicator that reflects weather stability and is associated with global climate change and urbanization. Previous studies have explored the effect of DTR on human health in coastal cities with small daily temperature variations, but we have little evidence for high plateau regions where large DTRs usually occur. Using daily mortality data (2007-2013), we conducted a time-series analysis to assess the effect of DTR on daily mortality in Yuxi, a high plateau city in southwest China. Poisson regression with distributed lag non-linear model was used to estimate DTR effects on daily mortality, controlling for daily mean temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, day of the week, and seasonal and long-term trends. The cumulative effects of DTR were J-shaped curves for non-accidental, cardiorespiratory and cardiovascular mortality, with a U-shaped curve for respiratory mortality. Risk assessments showed strong monotonic increases in mortality starting at a DTR of approximately 16 °C. The relative risk of non-accidental morality with extreme high DTR at lag 0 and 0-21 days was 1.03 (95% confidence interval: 0.95-1.11) and 1.33 (0.94-1.89), respectively. The risk of mortality with extreme high DTR was greater for males and age <75 years than females and age ≥75 years. The effect of DTR on mortality was non-linear, with high DTR associated with increased mortality. A DTR of 16 °C may be a cut-off point for mortality prognosis and has implications for developing intervention strategies to address high DTR exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Analysis of trend in temperature and rainfall time series of an Indian arid region: comparative evaluation of salient techniques

    Science.gov (United States)

    Machiwal, Deepesh; Gupta, Ankit; Jha, Madan Kumar; Kamble, Trupti

    2018-04-01

    This study investigated trends in 35 years (1979-2013) temperature (maximum, Tmax and minimum, Tmin) and rainfall at annual and seasonal (pre-monsoon, monsoon, post-monsoon, and winter) scales for 31 grid points in a coastal arid region of India. Box-whisker plots of annual temperature and rainfall time series depict systematic spatial gradients. Trends were examined by applying eight tests, such as Kendall rank correlation (KRC), Spearman rank order correlation (SROC), Mann-Kendall (MK), four modified MK tests, and innovative trend analysis (ITA). Trend magnitudes were quantified by Sen's slope estimator, and a new method was adopted to assess the significance of linear trends in MK-test statistics. It was found that the significant serial correlation is prominent in the annual and post-monsoon Tmax and Tmin, and pre-monsoon Tmin. The KRC and MK tests yielded similar results in close resemblance with the SROC test. The performance of two modified MK tests considering variance-correction approaches was found superior to the KRC, MK, modified MK with pre-whitening, and ITA tests. The performance of original MK test is poor due to the presence of serial correlation, whereas the ITA method is over-sensitive in identifying trends. Significantly increasing trends are more prominent in Tmin than Tmax. Further, both the annual and monsoon rainfall time series have a significantly increasing trend of 9 mm year-1. The sequential significance of linear trend in MK test-statistics is very strong (R 2 ≥ 0.90) in the annual and pre-monsoon Tmin (90% grid points), and strong (R 2 ≥ 0.75) in monsoon Tmax (68% grid points), monsoon, post-monsoon, and winter Tmin (respectively 65, 55, and 48% grid points), as well as in the annual and monsoon rainfalls (respectively 68 and 61% grid points). Finally, this study recommends use of variance-corrected MK test for the precise identification of trends. It is emphasized that the rising Tmax may hamper crop growth due to enhanced

  7. Modelling bursty time series

    International Nuclear Information System (INIS)

    Vajna, Szabolcs; Kertész, János; Tóth, Bálint

    2013-01-01

    Many human-related activities show power-law decaying interevent time distribution with exponents usually varying between 1 and 2. We study a simple task-queuing model, which produces bursty time series due to the non-trivial dynamics of the task list. The model is characterized by a priority distribution as an input parameter, which describes the choice procedure from the list. We give exact results on the asymptotic behaviour of the model and we show that the interevent time distribution is power-law decaying for any kind of input distributions that remain normalizable in the infinite list limit, with exponents tunable between 1 and 2. The model satisfies a scaling law between the exponents of interevent time distribution (β) and autocorrelation function (α): α + β = 2. This law is general for renewal processes with power-law decaying interevent time distribution. We conclude that slowly decaying autocorrelation function indicates long-range dependence only if the scaling law is violated. (paper)

  8. [Relationship between daily mean temperature and emergency department visits for respiratory diseases: a time-series analysis].

    Science.gov (United States)

    Mo, Yun-zheng; Zheng, Ya-an; Tao, Hui; Xu, Mei-mei; Li, Guo-xing; Dong, Feng-ming; Liu, Jun-han; Pan, Xiao-chuan

    2012-06-18

    To quantitatively evaluate the influences of daily mean air temperature (DMT) on Emergency Department Visits (EDVs) for the respiratory diseases. The EDV data from medical records for respiratory diseases in Peking University Third Hospital between January 2004 and June 2009 were collected. The data of the air pollutants (SO(2), NO(2) and PM(10)) and meteorological factors at the same time periods were also collected from the local authorities of Beijing. Time-series analysis and generalized additive models (GAM) were used to explore the exposurrre-response relationship between DMT and EDVs for respiratory diseases. A total of 35 073 patients [males 14 707(41.93%,14 707/35 073), females 19 122(54.52%,19 122/35 073) and gender missing 1 244(3.55%, 1 244/35 073)] EDVs for respiratory diseases were included. The relationship between DMT and EDVs for the respiratory diseases was mainly of "V" shape, the optimum temperature(OT) was about 4 °C and the effect of DMT was significant with a 0-3 day lag structure for most of the models. When DMT≤OT, each 1°C decrease in DMT corresponded to 3.75% (95% CI of RR: 0.938 3-0.965 3), 3.10% (95% CI of RR:0.949 2-0.989 1), 4.09% (95% CI of RR:0.940 7-0.977 8) increase of EDVs for the overall, male, and female, respectively. When DMT>OT, the value caused by each increase in 1°C in DMT was 1.54% (95% CI of RR:1.006 6-1.024 3), 1.80% (95% CI of RR:1.005 3-1.030 9), and 1.51 (95% CI of RR:1.003 2- 1.027 2), respectively. The effect was statistically significant within the 0-3 day lag. When DMT≤OT, the effect was stronger for the older people, while the effect was strongest for the 45-59 years old people. The relationship between DMT and EDVs for respiratory diseases is mainly of "V" type, with an optimum temperature of 4 °C.Both DMT decrease when DMT≤OT and increase when DMT>OT correspond to different increase of EDVs for respiratory diseases. Low DMT has stronger effect than high DMT. Different age group and gender have

  9. Introduction to Time Series Modeling

    CERN Document Server

    Kitagawa, Genshiro

    2010-01-01

    In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, "Introduction to Time Series Modeling" covers numerous time series models and the various tools f

  10. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  11. The impact of traffic-related pollution and temperature on adverse birth outcomes in Madrid. An analysis of time series

    Directory of Open Access Journals (Sweden)

    Julio Díaz

    2016-12-01

    Full Text Available Preterm birth (< 37 weeks, low birth weight (< 2500 g and fetal mortality are perinatal morbi-mortality causes impacting public health, society and the economy. Their etiology is multifaceted. There is scientific evidence pointing to environmental variables being risk factors. The purpose of this study was to analyze and quantify the impact on a daily and a weekly basis of PM2.5, NO2 and O3 (μg/m3, noise levels (Leq, and temperature (°C on variables detrimental to health in Madrid from 2001 till 2009. Poisson regression models were prepared from an ecological study of time series, and the results were expressed in terms of the Relative Risk (RR. The environmental variables were included in previously identified explanatory delays. 298,705 births were analyzed: the average weekly prematurity was 7.5, the average low weight 6.9, and the average fetal mortality 3.7. In the case of preterm births, a relation with PM2.5 during the 2nd quarter of pregnancy [RR: 1.026 (1.018-1.034] and with Leq in the week prior to childbirth [RR: 1.020 (1.012-1.028] was detected. This impact was also noticeable in the daily results. In addition, heat waves also affect prematurity. With regard to low birth weight, noise levels had an impact throughout the pregnancy and the effect of NO2 during the 2nd quarter thereof. As for fetal mortality, the most significant effects were those of the three analyzed pollutants during the 2nd and 3rd quarters. The gestating population is a group that is particularly vulnerable to the analyzed environmental factors, so it should be taken into account in the existing prevention plans.

  12. The Threshold Temperature and Lag Effects on Daily Excess Mortality in Harbin, China: A Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hanlu Gao

    2017-04-01

    Full Text Available Background: A large number of studies have reported the relationship between ambient temperature and mortality. However, few studies have focused on the effects of high temperatures on cardio-cerebrovascular diseases mortality (CCVDM and their acute events (ACCVDM. Objective: To assess the threshold temperature and time lag effects on daily excess mortality in Harbin, China. Methods: A generalized additive model (GAM with a Poisson distribution was used to investigate the relative risk of mortality for each 1 °C increase above the threshold temperature and their time lag effects in Harbin, China. Results: High temperature threshold was 26 °C in Harbin. Heat effects were immediate and lasted for 0–6 and 0–4 days for CCVDM and ACCVDM, respectively. The acute cardiovascular disease mortality (ACVDM seemed to be more sensitive to temperature than cardiovascular disease mortality (CVDM with higher death risk and shorter time lag effects. The lag effects lasted longer for cerebrovascular disease mortality (CBDM than CVDM; so did ACBDM compared to ACVDM. Conclusion: Hot temperatures increased CCVDM and ACCVDM in Harbin, China. Public health intervention strategies for hot temperatures adaptation should be concerned.

  13. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  14. From Networks to Time Series

    Science.gov (United States)

    Shimada, Yutaka; Ikeguchi, Tohru; Shigehara, Takaomi

    2012-10-01

    In this Letter, we propose a framework to transform a complex network to a time series. The transformation from complex networks to time series is realized by the classical multidimensional scaling. Applying the transformation method to a model proposed by Watts and Strogatz [Nature (London) 393, 440 (1998)], we show that ring lattices are transformed to periodic time series, small-world networks to noisy periodic time series, and random networks to random time series. We also show that these relationships are analytically held by using the circulant-matrix theory and the perturbation theory of linear operators. The results are generalized to several high-dimensional lattices.

  15. Time Series with Long Memory

    OpenAIRE

    西埜, 晴久

    2004-01-01

    The paper investigates an application of long-memory processes to economic time series. We show properties of long-memory processes, which are motivated to model a long-memory phenomenon in economic time series. An FARIMA model is described as an example of long-memory model in statistical terms. The paper explains basic limit theorems and estimation methods for long-memory processes in order to apply long-memory models to economic time series.

  16. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    Science.gov (United States)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  17. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  18. Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities.

    Science.gov (United States)

    Rodopoulou, Sophia; Samoli, Evangelia; Analitis, Antonis; Atkinson, Richard W; de'Donato, Francesca K; Katsouyanni, Klea

    2015-11-01

    Epidemiological time series studies suggest daily temperature and humidity are associated with adverse health effects including increased mortality and hospital admissions. However, there is no consensus over which metric or lag best describes the relationships. We investigated which temperature and humidity model specification most adequately predicted mortality in three large European cities. Daily counts of all-cause mortality, minimum, maximum and mean temperature and relative humidity and apparent temperature (a composite measure of ambient and dew point temperature) were assembled for Athens, London, and Rome for 6 years between 1999 and 2005. City-specific Poisson regression models were fitted separately for warm (April-September) and cold (October-March) periods adjusting for seasonality, air pollution, and public holidays. We investigated goodness of model fit for each metric for delayed effects up to 13 days using three model fit criteria: sum of the partial autocorrelation function, AIC, and GCV. No uniformly best index for all cities and seasonal periods was observed. The effects of temperature were uniformly shown to be more prolonged during cold periods and the majority of models suggested separate temperature and humidity variables performed better than apparent temperature in predicting mortality. Our study suggests that the nature of the effects of temperature and humidity on mortality vary between cities for unknown reasons which require further investigation but may relate to city-specific population, socioeconomic, and environmental characteristics. This may have consequences on epidemiological studies and local temperature-related warning systems.

  19. Forecasting Cryptocurrencies Financial Time Series

    DEFF Research Database (Denmark)

    Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco

    2018-01-01

    This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely...

  20. Time series with tailored nonlinearities

    Science.gov (United States)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  1. Models for dependent time series

    CERN Document Server

    Tunnicliffe Wilson, Granville; Haywood, John

    2015-01-01

    Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater

  2. An Examination of the Hadley Sea-Surface Temperature Time Series for the Nino 3.4 Region

    Science.gov (United States)

    Wilson, Robert M.

    2010-01-01

    The Hadley sea-surface temperature (HadSST) dataset is investigated for the interval 1871-2008. The purpose of this investigation is to determine the degree of success in identifying and characterizing El Nino (EN) southern (ENSO) extreme events, both EN and La Nina (LN) events. Comparisons are made against both the Southern Oscillation Index for the same time interval and with published values of the Oceanic Nino Index for the interval since 1950. Some 60 ENSO extreme events are identified in the HadSST dataset, consisting of 33 EN and 27 LN events. Also, preferential associations are found to exist between the duration of ENSO extreme events and their maximum anomalous excursion temperatures and between the recurrence rate for an EN event and the duration of the last known EN event. Because the present ongoing EN is a strong event, it should persist 11 months or longer, inferring that the next EN event should not be expected until June 2012 or later. Furthermore, the decadal sum of EN-related months is found to have increased somewhat steadily since the decade of 1920-1929, suggesting that the present decade (2010-2019) possibly will see about 3-4 EN events, totaling about 37 +/- 3 EN-related months (i.e., months that meet the definition for the occurrence of an EN event).

  3. Clustering of financial time series

    Science.gov (United States)

    D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo

    2013-05-01

    This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.

  4. Time series analysis time series analysis methods and applications

    CERN Document Server

    Rao, Tata Subba; Rao, C R

    2012-01-01

    The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respect...

  5. Forecasting Cryptocurrencies Financial Time Series

    OpenAIRE

    Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco

    2018-01-01

    This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely on Dynamic Model Averaging to combine a large set of univariate Dynamic Linear Models and several multivariate Vector Autoregressive models with different forms of time variation. We find statistical si...

  6. Correlation and multifractality in climatological time series

    International Nuclear Information System (INIS)

    Pedron, I T

    2010-01-01

    Climate can be described by statistical analysis of mean values of atmospheric variables over a period. It is possible to detect correlations in climatological time series and to classify its behavior. In this work the Hurst exponent, which can characterize correlation and persistence in time series, is obtained by using the Detrended Fluctuation Analysis (DFA) method. Data series of temperature, precipitation, humidity, solar radiation, wind speed, maximum squall, atmospheric pressure and randomic series are studied. Furthermore, the multifractality of such series is analyzed applying the Multifractal Detrended Fluctuation Analysis (MF-DFA) method. The results indicate presence of correlation (persistent character) in all climatological series and multifractality as well. A larger set of data, and longer, could provide better results indicating the universality of the exponents.

  7. Stochastic models for time series

    CERN Document Server

    Doukhan, Paul

    2018-01-01

    This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit ...

  8. The hydraulic connectivity, perennial warming and relationship to seismicity of the Davis-Schrimpf Seep Field, Salton Trough, California from new and recent temperature time-series

    Science.gov (United States)

    Rao, Amar P.

    The Davis-Schrimpf Seep Field is a cluster of about 50 transtension-related geothermal seeps in the Imperial Valley, southeastern California. Five temperature time-series were collected from four features and compared to one another, against prior time-series, and to local seismicity. Loggers placed in separate vents within one seep returned moderate anti-correlation. Vents may selectively clog and unclog. Clogging frequencies explaining the observed level of negative correlation were given. Loggers placed in the same vent produced 87-92% positive correlation. It is therefore likely that the vast majority of temperature data measured with loggers possesses meaningful accuracy. Loggers placed in separate seeps exhibited correlation close to or greater than the statistically significant 60% threshold. I propose two lineaments provide a hydraulic connection between these seeps. Two Mw>3.0 earthquake swarms, including one Mw>4.0 event, within 24 kilometers showed possible linkage with >5 degree Celsius temperature perturbations. Seepage warmed 14.5-36.8 degrees Celsius over 5-7 years.

  9. Integer-valued time series

    NARCIS (Netherlands)

    van den Akker, R.

    2007-01-01

    This thesis adresses statistical problems in econometrics. The first part contributes statistical methodology for nonnegative integer-valued time series. The second part of this thesis discusses semiparametric estimation in copula models and develops semiparametric lower bounds for a large class of

  10. Effects of temperature variation between neighbouring days on daily hospital visits for childhood asthma: a time-series analysis.

    Science.gov (United States)

    Li, K; Ni, H; Yang, Z; Wang, Y; Ding, S; Wen, L; Yang, H; Cheng, J; Su, H

    2016-07-01

    To identify the relationship between temperature variation between neighbouring days (TVN) and hospital visits for childhood asthma in age- and sex-specific groups. An ecological design was used to explore the effect of TVN on hospital visits for childhood asthma. A Poisson generalised linear regression model combined with a distributed lag non-linear model was used to analyse the association between TVN and hospital visits for childhood asthma. All hospital visits for childhood asthma from June 2010 to July 2013 were included (n = 17,022). Daily climate data were obtained from Hefei Meteorological Bureau. A significant correlation was found between TVN and hospital visits for childhood asthma in age- and sex-specific groups. For different gender groups, the effect of TVN on childhood asthma was the greatest at 3 and 5 days lag for males and females. For different age groups, the effect of TVN on childhood asthma was the greatest at 1 and 5 days lag for 0-4 years and 5-14 years children, respectively. A 1 °C increase in TVN was associated with a 4.2% (95% confidence interval 0.9-7.6%) increase in hospital visits for childhood asthma. TVN is associated with hospital visits for childhood asthma. Once the temperature change rapidly, guardians will be urged to pay more attention to their children's health, which may reduce the morbidity of childhood asthma. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  11. Characterizing the Spatio-Temporal Pattern of Land Surface Temperature through Time Series Clustering: Based on the Latent Pattern and Morphology

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2018-04-01

    Full Text Available Land Surface Temperature (LST is a critical component to understand the impact of urbanization on the urban thermal environment. Previous studies were inclined to apply only one snapshot to analyze the pattern and dynamics of LST without considering the non-stationarity in the temporal domain, or focus on the diurnal, seasonal, and annual pattern analysis of LST which has limited support for the understanding of how LST varies with the advancing of urbanization. This paper presents a workflow to extract the spatio-temporal pattern of LST through time series clustering by focusing on the LST of Wuhan, China, from 2002 to 2017 with a 3-year time interval with 8-day MODerate-resolution Imaging Spectroradiometer (MODIS satellite image products. The Latent pattern of LST (LLST generated by non-parametric Multi-Task Gaussian Process Modeling (MTGP and the Multi-Scale Shape Index (MSSI which characterizes the morphology of LLST are coupled for pattern recognition. Specifically, spatio-temporal patterns are discovered after the extraction of spatial patterns conducted by the incorporation of k -means and the Back-Propagation neural networks (BP-Net. The spatial patterns of the 6 years form a basic understanding about the corresponding temporal variances. For spatio-temporal pattern recognition, LLSTs and MSSIs of the 6 years are regarded as geo-referenced time series. Multiple algorithms including traditional k -means with Euclidean Distance (ED, shape-based k -means with the constrained Dynamic Time Warping ( c DTW distance measure, and the Dynamic Time Warping Barycenter Averaging (DBA centroid computation method ( k - c DBA and k -shape are applied. Ten external indexes are employed to evaluate the performance of the three algorithms and reveal k - c DBA as the optimal time series clustering algorithm for our study. The study area is divided into 17 geographical time series clusters which respectively illustrate heterogeneous temporal dynamics of LST

  12. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    Science.gov (United States)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  13. Time-series current measurements, temperature, and salinity data from CTD, moored buoy, and current meter casts from the Norton Sound Alaska from 14 July 1985 to 22 July 1985 (NODC Accession 0000368)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Time-series current measurements, temperature, and salinity data were collected from fixed platforms at the Bering Sea - Norton Sound from July 14, 1985 to July 22,...

  14. Ground-air temperature tracking and multi-year cycles in the subsurface temperature time series at geothermal climat e-change observatory

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.; Šafanda, Jan; Krešl, Milan; Dědeček, Petr

    2014-01-01

    Roč. 58, č. 3 (2014), s. 406-424 ISSN 0039-3169 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA AV ČR KSK3046108 Institutional support: RVO:67985530 Keywords : borehole observatory * temperature monitoring * climate change * subsurface temperature Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.806, year: 2014

  15. A Time Series Forecasting Method

    Directory of Open Access Journals (Sweden)

    Wang Zhao-Yu

    2017-01-01

    Full Text Available This paper proposes a novel time series forecasting method based on a weighted self-constructing clustering technique. The weighted self-constructing clustering processes all the data patterns incrementally. If a data pattern is not similar enough to an existing cluster, it forms a new cluster of its own. However, if a data pattern is similar enough to an existing cluster, it is removed from the cluster it currently belongs to and added to the most similar cluster. During the clustering process, weights are learned for each cluster. Given a series of time-stamped data up to time t, we divide it into a set of training patterns. By using the weighted self-constructing clustering, the training patterns are grouped into a set of clusters. To estimate the value at time t + 1, we find the k nearest neighbors of the input pattern and use these k neighbors to decide the estimation. Experimental results are shown to demonstrate the effectiveness of the proposed approach.

  16. International Work-Conference on Time Series

    CERN Document Server

    Pomares, Héctor; Valenzuela, Olga

    2017-01-01

    This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting.  It focuses on interdisciplinary and multidisciplinary rese arch encompassing the disciplines of comput...

  17. Multiple Indicator Stationary Time Series Models.

    Science.gov (United States)

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  18. A Course in Time Series Analysis

    CERN Document Server

    Peña, Daniel; Tsay, Ruey S

    2011-01-01

    New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, a

  19. Time-Series Analysis: A Cautionary Tale

    Science.gov (United States)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  20. Radiation Resistance and Life Time Estimates at Cryogenic Temperatures of Series Produced By-Pass Diodes for the LHC Magnet Protection

    Science.gov (United States)

    Denz, R.; Gharib, A.; Hagedorn, D.

    2004-06-01

    For the protection of the LHC superconducting magnets about 2100 specially developed by-pass diodes have been manufactured in industry and more than one thousand of these diodes have been mounted into stacks and tested in liquid helium. By-pass diode samples, taken from the series production, have been submitted to irradiation tests at cryogenic temperatures together with some prototype diodes up to an accumulated dose of about 2 kGy and neutron fluences up to about 3.0 1013 n cm-2 with and without intermediate warm up to 300 K. The device characteristics of the diodes under forward bias and reverse bias have been measured at 77 K and ambient versus dose and the results are presented. Using a thermo-electrical model and new estimates for the expected dose in the LHC, the expected lifetime of the by-pass diodes has been estimated for various positions in the LHC arcs. It turns out that for all of the by-pass diodes across the arc elements the radiation resistance is largely sufficient. In the dispersion suppresser regions of the LHC, on a few diodes annual annealing during the shut down of the LHC must be applied or those diodes may need to be replaced after some time.

  1. User's Guide, software for reduction and analysis of daily weather and surface-water data: Tools for time series analysis of precipitation, temperature, and streamflow data

    Science.gov (United States)

    Hereford, Richard

    2006-01-01

    The software described here is used to process and analyze daily weather and surface-water data. The programs are refinements of earlier versions that include minor corrections and routines to calculate frequencies above a threshold on an annual or seasonal basis. Earlier versions of this software were used successfully to analyze historical precipitation patterns of the Mojave Desert and the southern Colorado Plateau regions, ecosystem response to climate variation, and variation of sediment-runoff frequency related to climate (Hereford and others, 2003; 2004; in press; Griffiths and others, 2006). The main program described here (Day_Cli_Ann_v5.3) uses daily data to develop a time series of various statistics for a user specified accounting period such as a year or season. The statistics include averages and totals, but the emphasis is on the frequency of occurrence in days of relatively rare weather or runoff events. These statistics are indices of climate variation; for a discussion of climate indices, see the Climate Research Unit website of the University of East Anglia (http://www.cru.uea.ac.uk/projects/stardex/) and the Climate Change Indices web site (http://cccma.seos.uvic.ca/ETCCDMI/indices.html). Specifically, the indices computed with this software are the frequency of high intensity 24-hour rainfall, unusually warm temperature, and unusually high runoff. These rare, or extreme events, are those greater than the 90th percentile of precipitation, streamflow, or temperature computed for the period of record of weather or gaging stations. If they cluster in time over several decades, extreme events may produce detectable change in the physical landscape and ecosystem of a given region. Although the software has been tested on a variety of data, as with any software, the user should carefully evaluate the results with their data. The programs were designed for the range of precipitation, temperature, and streamflow measurements expected in the semiarid

  2. The analysis of time series: an introduction

    National Research Council Canada - National Science Library

    Chatfield, Christopher

    1989-01-01

    .... A variety of practical examples are given to support the theory. The book covers a wide range of time-series topics, including probability models for time series, Box-Jenkins forecasting, spectral analysis, linear systems and system identification...

  3. Prediction and Geometry of Chaotic Time Series

    National Research Council Canada - National Science Library

    Leonardi, Mary

    1997-01-01

    This thesis examines the topic of chaotic time series. An overview of chaos, dynamical systems, and traditional approaches to time series analysis is provided, followed by an examination of state space reconstruction...

  4. Global Population Density Grid Time Series Estimates

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's...

  5. Kolmogorov Space in Time Series Data

    OpenAIRE

    Kanjamapornkul, K.; Pinčák, R.

    2016-01-01

    We provide the proof that the space of time series data is a Kolmogorov space with $T_{0}$-separation axiom using the loop space of time series data. In our approach we define a cyclic coordinate of intrinsic time scale of time series data after empirical mode decomposition. A spinor field of time series data comes from the rotation of data around price and time axis by defining a new extradimension to time series data. We show that there exist hidden eight dimensions in Kolmogorov space for ...

  6. Effective Feature Preprocessing for Time Series Forecasting

    DEFF Research Database (Denmark)

    Zhao, Junhua; Dong, Zhaoyang; Xu, Zhao

    2006-01-01

    Time series forecasting is an important area in data mining research. Feature preprocessing techniques have significant influence on forecasting accuracy, therefore are essential in a forecasting model. Although several feature preprocessing techniques have been applied in time series forecasting...... performance in time series forecasting. It is demonstrated in our experiment that, effective feature preprocessing can significantly enhance forecasting accuracy. This research can be a useful guidance for researchers on effectively selecting feature preprocessing techniques and integrating them with time...... series forecasting models....

  7. Time Series Analysis and Forecasting by Example

    CERN Document Server

    Bisgaard, Soren

    2011-01-01

    An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in

  8. Duality between Time Series and Networks

    Science.gov (United States)

    Campanharo, Andriana S. L. O.; Sirer, M. Irmak; Malmgren, R. Dean; Ramos, Fernando M.; Amaral, Luís A. Nunes.

    2011-01-01

    Studying the interaction between a system's components and the temporal evolution of the system are two common ways to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that different time series result in networks with distinct topological properties, it remains unclear how these topological properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate inverse operation, making it possible to use network statistics to characterize time series and time series statistics to characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and confirm that application of the proposed map retains much of the information encoded in the original time series (or networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways. PMID:21858093

  9. Evaluation of the Performance of ClimGen and LARS-WG models in generating rainfall and temperature time series in rainfed research station of Sisab, Northern Khorasan

    Directory of Open Access Journals (Sweden)

    najmeh khalili

    2016-10-01

    Full Text Available Introduction:Many existing results on water and agriculture researches require long-term statistical climate data, while practically; the available collected data in synoptic stations are quite short. Therefore, the required daily climate data should be generated based on the limited available data. For this purpose, weather generators can be used to enlarge the data length. Among the common weather generators, two models are more common: LARS-WG and ClimGen. Different studies have shown that these two models have different results in different regions and climates. Therefore, the output results of these two methods should be validated based on the climate and weather conditions of the study region. Materials and Methods:The Sisab station is 35 KM away from Bojnord city in Northern Khorasan. This station was established in 1366 and afterwards, the meteorological data including precipitation data are regularly collected. Geographical coordination of this station is 37º 25׳ N and 57º 38׳ E, and the elevation is 1359 meter. The climate in this region is dry and cold under Emberge and semi-dry under Demarton Methods. In this research, LARG-WG model, version 5.5, and ClimGen model, version 4.4, were used to generate 500 data sample for precipitation and temperature time series. The performance of these two models, were evaluated using RMSE, MAE, and CD over the 30 years collected data and their corresponding generated data. Also, to compare the statistical similarity of the generated data with the collected data, t-student, F, and X2 tests were used. With these tests, the similarity of 16 statistical characteristics of the generated data and the collected data has been investigated in the level of confidence 95%. Results and Discussion:This study showed that LARS-WG model can better generate precipitation data in terms of statistical error criteria. RMSE and MAE for the generated data by LAR-WG were less than ClimGen model while the CD value of

  10. A Review of Subsequence Time Series Clustering

    Directory of Open Access Journals (Sweden)

    Seyedjamal Zolhavarieh

    2014-01-01

    Full Text Available Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

  11. A review of subsequence time series clustering.

    Science.gov (United States)

    Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

  12. A Review of Subsequence Time Series Clustering

    Science.gov (United States)

    Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332

  13. Data mining in time series databases

    CERN Document Server

    Kandel, Abraham; Bunke, Horst

    2004-01-01

    Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.

  14. International Work-Conference on Time Series

    CERN Document Server

    Pomares, Héctor

    2016-01-01

    This volume presents selected peer-reviewed contributions from The International Work-Conference on Time Series, ITISE 2015, held in Granada, Spain, July 1-3, 2015. It discusses topics in time series analysis and forecasting, advanced methods and online learning in time series, high-dimensional and complex/big data time series as well as forecasting in real problems. The International Work-Conferences on Time Series (ITISE) provide a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.

  15. BRITS: Bidirectional Recurrent Imputation for Time Series

    OpenAIRE

    Cao, Wei; Wang, Dong; Li, Jian; Zhou, Hao; Li, Lei; Li, Yitan

    2018-01-01

    Time series are widely used as signals in many classification/regression tasks. It is ubiquitous that time series contains many missing values. Given multiple correlated time series data, how to fill in missing values and to predict their class labels? Existing imputation methods often impose strong assumptions of the underlying data generating process, such as linear dynamics in the state space. In this paper, we propose BRITS, a novel method based on recurrent neural networks for missing va...

  16. Geometric noise reduction for multivariate time series.

    Science.gov (United States)

    Mera, M Eugenia; Morán, Manuel

    2006-03-01

    We propose an algorithm for the reduction of observational noise in chaotic multivariate time series. The algorithm is based on a maximum likelihood criterion, and its goal is to reduce the mean distance of the points of the cleaned time series to the attractor. We give evidence of the convergence of the empirical measure associated with the cleaned time series to the underlying invariant measure, implying the possibility to predict the long run behavior of the true dynamics.

  17. Frontiers in Time Series and Financial Econometrics

    OpenAIRE

    Ling, S.; McAleer, M.J.; Tong, H.

    2015-01-01

    __Abstract__ Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highlight several areas of research by leading academics in which novel methods have contrib...

  18. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  19. Forecasting Enrollments with Fuzzy Time Series.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  20. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis.

    Science.gov (United States)

    Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra

    2011-05-25

    Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of

  1. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    Directory of Open Access Journals (Sweden)

    Wiedensohler Alfred

    2011-05-01

    Full Text Available Abstract Background Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years, meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September and cold periods (October to March separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL models. Results We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI: 1.057-1.140 for cardiovascular and 1.134 (95%CI: 1.050-1.224 for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093 for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224 for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094 for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions Both increases and decreases in air temperature are associated with an

  2. Analysis of Heavy-Tailed Time Series

    DEFF Research Database (Denmark)

    Xie, Xiaolei

    This thesis is about analysis of heavy-tailed time series. We discuss tail properties of real-world equity return series and investigate the possibility that a single tail index is shared by all return series of actively traded equities in a market. Conditions for this hypothesis to be true...... are identified. We study the eigenvalues and eigenvectors of sample covariance and sample auto-covariance matrices of multivariate heavy-tailed time series, and particularly for time series with very high dimensions. Asymptotic approximations of the eigenvalues and eigenvectors of such matrices are found...... and expressed in terms of the parameters of the dependence structure, among others. Furthermore, we study an importance sampling method for estimating rare-event probabilities of multivariate heavy-tailed time series generated by matrix recursion. We show that the proposed algorithm is efficient in the sense...

  3. Statistical criteria for characterizing irradiance time series.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  4. The foundations of modern time series analysis

    CERN Document Server

    Mills, Terence C

    2011-01-01

    This book develops the analysis of Time Series from its formal beginnings in the 1890s through to the publication of Box and Jenkins' watershed publication in 1970, showing how these methods laid the foundations for the modern techniques of Time Series analysis that are in use today.

  5. Lag space estimation in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...

  6. Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: a time-series study.

    Science.gov (United States)

    Li, Yonghong; Cheng, Yibin; Cui, Guoquan; Peng, Chaoqiong; Xu, Yan; Wang, Yulin; Liu, Yingchun; Liu, Jingyi; Li, Chengcheng; Wu, Zhen; Bi, Peng; Jin, Yinlong

    2014-08-07

    Numerous studies have reported on the associations between ambient temperatures and mortality. However, few multi-city studies have been conducted in developing countries including China. This study aimed to examine the association between high temperature and mortality outcomes in four cities with different climatic characteristics in China to identify the most vulnerable population, detect the threshold temperatures, and provide scientific evidence for public health policy implementations to respond to challenges from extreme heat. A semi-parametric generalized additive model (GAM) with a Poisson distribution was used to analyze the impacts of the daily maximum temperature over the threshold on mortality after controlling for covariates including time trends, day of the week (DOW), humidity, daily temperature range, and outdoor air pollution. The temperature thresholds for all-cause mortality were 29°C, 35°C, 33°C and 34°C for Harbin, Nanjing, Shenzhen and Chongqing, respectively. After adjusting for potential confounders including air pollution, strong associations between daily maximum temperature and daily mortality from all-cause, cardiovascular, endocrine and metabolic outcomes, and particularly diabetes, were observed in different geographical cities, with increases of 3.2-5.5%, 4.6-7.5% and 12.5-31.9% (with 14.7-29.2% in diabetes), respectively, with each 1°C increment in the daily maximum temperature over the threshold. A stronger temperature-associated mortality was detected in females compared to males. Additionally, both the population over 55 years and younger adults aged 30 to 54 years reported significant heat-mortality associations. Extreme heat is becoming a huge threat to public health and human welfare due to the strong temperature-mortality associations in China. Climate change with increasing temperatures may make the situation worse. Relevant public health strategies and an early extreme weather and health warning system should be

  7. Entropic Analysis of Electromyography Time Series

    Science.gov (United States)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  8. Homogenising time series: beliefs, dogmas and facts

    Science.gov (United States)

    Domonkos, P.

    2011-06-01

    In the recent decades various homogenisation methods have been developed, but the real effects of their application on time series are still not known sufficiently. The ongoing COST action HOME (COST ES0601) is devoted to reveal the real impacts of homogenisation methods more detailed and with higher confidence than earlier. As a part of the COST activity, a benchmark dataset was built whose characteristics approach well the characteristics of real networks of observed time series. This dataset offers much better opportunity than ever before to test the wide variety of homogenisation methods, and analyse the real effects of selected theoretical recommendations. Empirical results show that real observed time series usually include several inhomogeneities of different sizes. Small inhomogeneities often have similar statistical characteristics than natural changes caused by climatic variability, thus the pure application of the classic theory that change-points of observed time series can be found and corrected one-by-one is impossible. However, after homogenisation the linear trends, seasonal changes and long-term fluctuations of time series are usually much closer to the reality than in raw time series. Some problems around detecting multiple structures of inhomogeneities, as well as that of time series comparisons within homogenisation procedures are discussed briefly in the study.

  9. Network structure of multivariate time series.

    Science.gov (United States)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  10. Modeling Time Series Data for Supervised Learning

    Science.gov (United States)

    Baydogan, Mustafa Gokce

    2012-01-01

    Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…

  11. Time series modeling, computation, and inference

    CERN Document Server

    Prado, Raquel

    2010-01-01

    The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit

  12. Time Series Analysis Forecasting and Control

    CERN Document Server

    Box, George E P; Reinsel, Gregory C

    2011-01-01

    A modernized new edition of one of the most trusted books on time series analysis. Since publication of the first edition in 1970, Time Series Analysis has served as one of the most influential and prominent works on the subject. This new edition maintains its balanced presentation of the tools for modeling and analyzing time series and also introduces the latest developments that have occurred n the field over the past decade through applications from areas such as business, finance, and engineering. The Fourth Edition provides a clearly written exploration of the key methods for building, cl

  13. Visibility Graph Based Time Series Analysis.

    Science.gov (United States)

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  14. Visibility Graph Based Time Series Analysis.

    Directory of Open Access Journals (Sweden)

    Mutua Stephen

    Full Text Available Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  15. Data Mining Smart Energy Time Series

    Directory of Open Access Journals (Sweden)

    Janina POPEANGA

    2015-07-01

    Full Text Available With the advent of smart metering technology the amount of energy data will increase significantly and utilities industry will have to face another big challenge - to find relationships within time-series data and even more - to analyze such huge numbers of time series to find useful patterns and trends with fast or even real-time response. This study makes a small review of the literature in the field, trying to demonstrate how essential is the application of data mining techniques in the time series to make the best use of this large quantity of data, despite all the difficulties. Also, the most important Time Series Data Mining techniques are presented, highlighting their applicability in the energy domain.

  16. Time series prediction: statistical and neural techniques

    Science.gov (United States)

    Zahirniak, Daniel R.; DeSimio, Martin P.

    1996-03-01

    In this paper we compare the performance of nonlinear neural network techniques to those of linear filtering techniques in the prediction of time series. Specifically, we compare the results of using the nonlinear systems, known as multilayer perceptron and radial basis function neural networks, with the results obtained using the conventional linear Wiener filter, Kalman filter and Widrow-Hoff adaptive filter in predicting future values of stationary and non- stationary time series. Our results indicate the performance of each type of system is heavily dependent upon the form of the time series being predicted and the size of the system used. In particular, the linear filters perform adequately for linear or near linear processes while the nonlinear systems perform better for nonlinear processes. Since the linear systems take much less time to be developed, they should be tried prior to using the nonlinear systems when the linearity properties of the time series process are unknown.

  17. Variable Selection in Time Series Forecasting Using Random Forests

    Directory of Open Access Journals (Sweden)

    Hristos Tyralis

    2017-10-01

    Full Text Available Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy.

  18. Univaried models in the series of temperature of the air

    International Nuclear Information System (INIS)

    Leon Aristizabal Gloria esperanza

    2000-01-01

    The theoretical framework for the study of the air's temperature time series is the theory of stochastic processes, particularly those known as ARIMA, that make it possible to carry out a univaried analysis. ARIMA models are built in order to explain the structure of the monthly temperatures corresponding to the mean, the absolute maximum, absolute minimum, maximum mean and minimum mean temperatures, for four stations in Colombia. By means of those models, the possible evolution of the latter variables is estimated with predictive aims in mind. The application and utility of the models is discussed

  19. Detecting nonlinear structure in time series

    International Nuclear Information System (INIS)

    Theiler, J.

    1991-01-01

    We describe an approach for evaluating the statistical significance of evidence for nonlinearity in a time series. The formal application of our method requires the careful statement of a null hypothesis which characterizes a candidate linear process, the generation of an ensemble of ''surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against the null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. While some data sets very cleanly exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. We hope to provide a framework within which such claims of nonlinearity can be evaluated. 5 refs., 4 figs

  20. Nonparametric factor analysis of time series

    OpenAIRE

    Rodríguez-Poo, Juan M.; Linton, Oliver Bruce

    1998-01-01

    We introduce a nonparametric smoothing procedure for nonparametric factor analaysis of multivariate time series. The asymptotic properties of the proposed procedures are derived. We present an application based on the residuals from the Fair macromodel.

  1. Applied time series analysis and innovative computing

    CERN Document Server

    Ao, Sio-Iong

    2010-01-01

    This text is a systematic, state-of-the-art introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis. It includes frontier case studies based on recent research.

  2. Measuring multiscaling in financial time-series

    International Nuclear Information System (INIS)

    Buonocore, R.J.; Aste, T.; Di Matteo, T.

    2016-01-01

    We discuss the origin of multiscaling in financial time-series and investigate how to best quantify it. Our methodology consists in separating the different sources of measured multifractality by analyzing the multi/uni-scaling behavior of synthetic time-series with known properties. We use the results from the synthetic time-series to interpret the measure of multifractality of real log-returns time-series. The main finding is that the aggregation horizon of the returns can introduce a strong bias effect on the measure of multifractality. This effect can become especially important when returns distributions have power law tails with exponents in the range (2, 5). We discuss the right aggregation horizon to mitigate this bias.

  3. Complex network approach to fractional time series

    Energy Technology Data Exchange (ETDEWEB)

    Manshour, Pouya [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  4. Forecasting daily meteorological time series using ARIMA and regression models

    Science.gov (United States)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  5. Multivariate Time Series Decomposition into Oscillation Components.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  6. Analysis of time series and size of equivalent sample

    International Nuclear Information System (INIS)

    Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge

    2004-01-01

    In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions

  7. Measurements of spatial population synchrony: influence of time series transformations.

    Science.gov (United States)

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  8. Introduction to time series analysis and forecasting

    CERN Document Server

    Montgomery, Douglas C; Kulahci, Murat

    2008-01-01

    An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.

  9. Detecting chaos in irregularly sampled time series.

    Science.gov (United States)

    Kulp, C W

    2013-09-01

    Recently, Wiebe and Virgin [Chaos 22, 013136 (2012)] developed an algorithm which detects chaos by analyzing a time series' power spectrum which is computed using the Discrete Fourier Transform (DFT). Their algorithm, like other time series characterization algorithms, requires that the time series be regularly sampled. Real-world data, however, are often irregularly sampled, thus, making the detection of chaotic behavior difficult or impossible with those methods. In this paper, a characterization algorithm is presented, which effectively detects chaos in irregularly sampled time series. The work presented here is a modification of Wiebe and Virgin's algorithm and uses the Lomb-Scargle Periodogram (LSP) to compute a series' power spectrum instead of the DFT. The DFT is not appropriate for irregularly sampled time series. However, the LSP is capable of computing the frequency content of irregularly sampled data. Furthermore, a new method of analyzing the power spectrum is developed, which can be useful for differentiating between chaotic and non-chaotic behavior. The new characterization algorithm is successfully applied to irregularly sampled data generated by a model as well as data consisting of observations of variable stars.

  10. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    International Nuclear Information System (INIS)

    Dutrieux, L P; Bartholomeus, H; Herold, M; Verbesselt, J

    2012-01-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000–11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr −1 ) and warming (+0.27% yr −1 ) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting

  11. Clinical and epidemiological rounds. Time series

    Directory of Open Access Journals (Sweden)

    León-Álvarez, Alba Luz

    2016-07-01

    Full Text Available Analysis of time series is a technique that implicates the study of individuals or groups observed in successive moments in time. This type of analysis allows the study of potential causal relationships between different variables that change over time and relate to each other. It is the most important technique to make inferences about the future, predicting, on the basis or what has happened in the past and it is applied in different disciplines of knowledge. Here we discuss different components of time series, the analysis technique and specific examples in health research.

  12. Time Series Forecasting with Missing Values

    Directory of Open Access Journals (Sweden)

    Shin-Fu Wu

    2015-11-01

    Full Text Available Time series prediction has become more popular in various kinds of applications such as weather prediction, control engineering, financial analysis, industrial monitoring, etc. To deal with real-world problems, we are often faced with missing values in the data due to sensor malfunctions or human errors. Traditionally, the missing values are simply omitted or replaced by means of imputation methods. However, omitting those missing values may cause temporal discontinuity. Imputation methods, on the other hand, may alter the original time series. In this study, we propose a novel forecasting method based on least squares support vector machine (LSSVM. We employ the input patterns with the temporal information which is defined as local time index (LTI. Time series data as well as local time indexes are fed to LSSVM for doing forecasting without imputation. We compare the forecasting performance of our method with other imputation methods. Experimental results show that the proposed method is promising and is worth further investigations.

  13. Efficient Approximate OLAP Querying Over Time Series

    DEFF Research Database (Denmark)

    Perera, Kasun Baruhupolage Don Kasun Sanjeewa; Hahmann, Martin; Lehner, Wolfgang

    2016-01-01

    The ongoing trend for data gathering not only produces larger volumes of data, but also increases the variety of recorded data types. Out of these, especially time series, e.g. various sensor readings, have attracted attention in the domains of business intelligence and decision making. As OLAP...... queries play a major role in these domains, it is desirable to also execute them on time series data. While this is not a problem on the conceptual level, it can become a bottleneck with regards to query run-time. In general, processing OLAP queries gets more computationally intensive as the volume...... of data grows. This is a particular problem when querying time series data, which generally contains multiple measures recorded at fine time granularities. Usually, this issue is addressed either by scaling up hardware or by employing workload based query optimization techniques. However, these solutions...

  14. Time averaging, ageing and delay analysis of financial time series

    Science.gov (United States)

    Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf

    2017-06-01

    We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

  15. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    Science.gov (United States)

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  16. Turbulencelike Behavior of Seismic Time Series

    International Nuclear Information System (INIS)

    Manshour, P.; Saberi, S.; Sahimi, Muhammad; Peinke, J.; Pacheco, Amalio F.; Rahimi Tabar, M. Reza

    2009-01-01

    We report on a stochastic analysis of Earth's vertical velocity time series by using methods originally developed for complex hierarchical systems and, in particular, for turbulent flows. Analysis of the fluctuations of the detrended increments of the series reveals a pronounced transition in their probability density function from Gaussian to non-Gaussian. The transition occurs 5-10 hours prior to a moderate or large earthquake, hence representing a new and reliable precursor for detecting such earthquakes

  17. Introduction to time series analysis and forecasting

    CERN Document Server

    Montgomery, Douglas C; Kulahci, Murat

    2015-01-01

    Praise for the First Edition ""…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics."" -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts.    Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both

  18. Time series modeling in traffic safety research.

    Science.gov (United States)

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Forecasting autoregressive time series under changing persistence

    DEFF Research Database (Denmark)

    Kruse, Robinson

    Changing persistence in time series models means that a structural change from nonstationarity to stationarity or vice versa occurs over time. Such a change has important implications for forecasting, as negligence may lead to inaccurate model predictions. This paper derives generally applicable...

  20. The association between diurnal temperature range and emergency room admissions for cardiovascular, respiratory, digestive and genitourinary disease among the elderly: a time series study.

    Science.gov (United States)

    Wang, Min-zhen; Zheng, Shan; He, Shi-lin; Li, Bei; Teng, Huai-jin; Wang, Shi-gong; Yin, Ling; Shang, Ke-zheng; Li, Tan-shi

    2013-07-01

    To evaluate the short-term effect of diurnal temperature range (DTR) on emergency room (ER) admissions among elderly adults in Beijing. After controlling the long-time and seasonal trend, weather, air pollution and other confounding factors, a semi-parametric generalized additive model (GAM) was used to analyze the exposure-effect relationship between DTR and daily ER admissions among elderly adults with different lag structures from 2009 to 2011 in Beijing. We examined the effects of DTR for stratified groups by age and gender, and conducted the modifying effect of season on DTR to test the possible interaction. Significant associations were found between DTR and four major causes of daily ER admissions among elderly adults in Beijing. A 1 °C increase in the 8-day moving average of DTR (lag 07) corresponded to an increase of 2.08% (95% CI: 0.88%-3.29%) in respiratory ER admissions and 2.14% (95% CI: 0.71%-3.59%) in digestive ER admissions. A 1 °C increase in the 3-day and 6-day moving average of DTR (lag 02 and lag 05) corresponded to a 0.76% (95% CI: 0.07%-1.46%) increase in cardiovascular ER admissions, and 1.81% (95% CI: 0.21%-3.45%) increase in genitourinary ER admissions, respectively. The people aged 75 years and older were associated more strongly with DTR than the 65-74 age group. The modifying effect of season on DTR was observed and it was various in four causes. This study strengthens the evidence that DTR is an independent risk factor for ER admissions among elderly persons. Some prevention programs that target the elderly and other high risk subgroups for impending large temperature changes may reduce the impact of DTR on people's health. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Building Chaotic Model From Incomplete Time Series

    Science.gov (United States)

    Siek, Michael; Solomatine, Dimitri

    2010-05-01

    This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual

  2. Layered Ensemble Architecture for Time Series Forecasting.

    Science.gov (United States)

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  3. Time series clustering in large data sets

    Directory of Open Access Journals (Sweden)

    Jiří Fejfar

    2011-01-01

    Full Text Available The clustering of time series is a widely researched area. There are many methods for dealing with this task. We are actually using the Self-organizing map (SOM with the unsupervised learning algorithm for clustering of time series. After the first experiment (Fejfar, Weinlichová, Šťastný, 2009 it seems that the whole concept of the clustering algorithm is correct but that we have to perform time series clustering on much larger dataset to obtain more accurate results and to find the correlation between configured parameters and results more precisely. The second requirement arose in a need for a well-defined evaluation of results. It seems useful to use sound recordings as instances of time series again. There are many recordings to use in digital libraries, many interesting features and patterns can be found in this area. We are searching for recordings with the similar development of information density in this experiment. It can be used for musical form investigation, cover songs detection and many others applications.The objective of the presented paper is to compare clustering results made with different parameters of feature vectors and the SOM itself. We are describing time series in a simplistic way evaluating standard deviations for separated parts of recordings. The resulting feature vectors are clustered with the SOM in batch training mode with different topologies varying from few neurons to large maps.There are other algorithms discussed, usable for finding similarities between time series and finally conclusions for further research are presented. We also present an overview of the related actual literature and projects.

  4. Introduction to time series and forecasting

    CERN Document Server

    Brockwell, Peter J

    2016-01-01

    This book is aimed at the reader who wishes to gain a working knowledge of time series and forecasting methods as applied to economics, engineering and the natural and social sciences. It assumes knowledge only of basic calculus, matrix algebra and elementary statistics. This third edition contains detailed instructions for the use of the professional version of the Windows-based computer package ITSM2000, now available as a free download from the Springer Extras website. The logic and tools of time series model-building are developed in detail. Numerous exercises are included and the software can be used to analyze and forecast data sets of the user's own choosing. The book can also be used in conjunction with other time series packages such as those included in R. The programs in ITSM2000 however are menu-driven and can be used with minimal investment of time in the computational details. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space mod...

  5. Complex dynamic in ecological time series

    Science.gov (United States)

    Peter Turchin; Andrew D. Taylor

    1992-01-01

    Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting...

  6. Inferring interdependencies from short time series

    Indian Academy of Sciences (India)

    Abstract. Complex networks provide an invaluable framework for the study of interlinked dynamical systems. In many cases, such networks are constructed from observed time series by first estimating the ...... does not quantify causal relations (unlike IOTA, or .... Africa_map_regions.svg, which is under public domain.

  7. On modeling panels of time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    2002-01-01

    textabstractThis paper reviews research issues in modeling panels of time series. Examples of this type of data are annually observed macroeconomic indicators for all countries in the world, daily returns on the individual stocks listed in the S&P500, and the sales records of all items in a

  8. 25 years of time series forecasting

    NARCIS (Netherlands)

    de Gooijer, J.G.; Hyndman, R.J.

    2006-01-01

    We review the past 25 years of research into time series forecasting. In this silver jubilee issue, we naturally highlight results published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985 and International Journal of Forecasting 1985-2005). During

  9. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  10. Markov Trends in Macroeconomic Time Series

    NARCIS (Netherlands)

    R. Paap (Richard)

    1997-01-01

    textabstractMany macroeconomic time series are characterised by long periods of positive growth, expansion periods, and short periods of negative growth, recessions. A popular model to describe this phenomenon is the Markov trend, which is a stochastic segmented trend where the slope depends on the

  11. Modeling vector nonlinear time series using POLYMARS

    NARCIS (Netherlands)

    de Gooijer, J.G.; Ray, B.K.

    2003-01-01

    A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector

  12. Modeling seasonality in bimonthly time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1992-01-01

    textabstractA recurring issue in modeling seasonal time series variables is the choice of the most adequate model for the seasonal movements. One selection method for quarterly data is proposed in Hylleberg et al. (1990). Market response models are often constructed for bimonthly variables, and

  13. Time Series Modelling using Proc Varmax

    DEFF Research Database (Denmark)

    Milhøj, Anders

    2007-01-01

    In this paper it will be demonstrated how various time series problems could be met using Proc Varmax. The procedure is rather new and hence new features like cointegration, testing for Granger causality are included, but it also means that more traditional ARIMA modelling as outlined by Box...

  14. On clustering fMRI time series

    DEFF Research Database (Denmark)

    Goutte, Cyril; Toft, Peter Aundal; Rostrup, E.

    1999-01-01

    Analysis of fMRI time series is often performed by extracting one or more parameters for the individual voxels. Methods based, e.g., on various statistical tests are then used to yield parameters corresponding to probability of activation or activation strength. However, these methods do...

  15. Robust Control Charts for Time Series Data

    NARCIS (Netherlands)

    Croux, C.; Gelper, S.; Mahieu, K.

    2010-01-01

    This article presents a control chart for time series data, based on the one-step- ahead forecast errors of the Holt-Winters forecasting method. We use robust techniques to prevent that outliers affect the estimation of the control limits of the chart. Moreover, robustness is important to maintain

  16. Optimal transformations for categorical autoregressive time series

    NARCIS (Netherlands)

    Buuren, S. van

    1996-01-01

    This paper describes a method for finding optimal transformations for analyzing time series by autoregressive models. 'Optimal' implies that the agreement between the autoregressive model and the transformed data is maximal. Such transformations help 1) to increase the model fit, and 2) to analyze

  17. Lecture notes for Advanced Time Series Analysis

    DEFF Research Database (Denmark)

    Madsen, Henrik; Holst, Jan

    1997-01-01

    A first version of this notes was used at the lectures in Grenoble, and they are now extended and improved (together with Jan Holst), and used in Ph.D. courses on Advanced Time Series Analysis at IMM and at the Department of Mathematical Statistics, University of Lund, 1994, 1997, ...

  18. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  19. Association between Ambient Temperatures and Mental Disorder Hospitalizations in a Subtropical City: A Time-Series Study of Hong Kong Special Administrative Region.

    Science.gov (United States)

    Chan, Emily Y Y; Lam, Holly C Y; So, Suzanne H W; Goggins, William B; Ho, Janice Y; Liu, Sida; Chung, Phoebe P W

    2018-04-14

    Background : Mental disorders have been found to be positively associated with temperature in cool to cold climatic regions but the association in warmer regions is unclear. This study presented the short-term association between temperatures and mental disorder hospitalizations in a subtropical city with a mean annual temperature over 21 °C. Methods : Using Poisson-generalized additive models and distributed-lagged nonlinear models, daily mental disorder hospitalizations between 2002 and 2011 in Hong Kong were regressed on daily mean temperature, relative humidity, and air pollutants, adjusted for seasonal trend, long-term trend, day-of-week, and holiday. Analyses were stratified by disease class, gender and age-group. Results : 44,600 admissions were included in the analysis. Temperature was positively associated with overall mental-disorder hospitalizations (cumulative relative risk at 28 °C vs. 19.4 °C (interquartile range, lag 0-2 days) = 1.09 (95% confidence interval 1.03, 1.15)), with the strongest effect among the elderly (≥75 years old). Transient mental disorders due to conditions classified elsewhere and episodic mood disorders also showed strong positive associations with temperature. Conclusion : This study found a positive temperature-mental-disorder admissions association in a warm subtropical region and the association was most prominent among older people. With the dual effect of global warming and an aging population, targeted strategies should be designed to lower the disease burden.

  20. Stochastic nature of series of waiting times

    Science.gov (United States)

    Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi

    2013-06-01

    Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2time distribution. We find that the logarithmic difference of waiting times series has a short-range correlation, and then we study its stochastic nature using the Markovian method and determine the corresponding Kramers-Moyal coefficients. As an example, we analyze the velocity fluctuations in high Reynolds number turbulence and determine the level dependence of Markov time scales, as well as the drift and diffusion coefficients. We show that the waiting time distributions exhibit power law tails, and we were able to model the distribution with a continuous time random walk.

  1. Seawater Temperature and Salinity Moored Time-Series Records, Collected During 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea-Bird SBE37SM MicroCat Conductivity/Temperature (CT) recorders were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound,...

  2. Seawater Temperature and Salinity Moored Time-Series Records, Collected During 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0077910)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea-Bird SBE37SM MicroCat Conductivity/Temperature (CT) recorders were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound,...

  3. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    OpenAIRE

    Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra

    2011-01-01

    Abstract Background Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution...

  4. The Statistical Analysis of Time Series

    CERN Document Server

    Anderson, T W

    2011-01-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George

  5. What marketing scholars should know about time series analysis : time series applications in marketing

    NARCIS (Netherlands)

    Horváth, Csilla; Kornelis, Marcel; Leeflang, Peter S.H.

    2002-01-01

    In this review, we give a comprehensive summary of time series techniques in marketing, and discuss a variety of time series analysis (TSA) techniques and models. We classify them in the sets (i) univariate TSA, (ii) multivariate TSA, and (iii) multiple TSA. We provide relevant marketing

  6. Algorithm for Compressing Time-Series Data

    Science.gov (United States)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  7. Long-term monitoring on a closed-conduit volcano: A 25 year long time-series of temperatures recorded at La Fossa cone (Vulcano Island, Italy), ranging from 250 °C to 520 °C

    Science.gov (United States)

    Diliberto, Iole Serena

    2017-10-01

    The longest record of temperature data from an active volcano in southern Italy is presented. The dataset comes from continuous monitoring of fumarole temperatures from the La Fossa cone of Vulcano (Aeolian Islands) running from 1991 to 2016. The discussion includes an empirical approach, based on a large number of direct measurements. At Vulcano Island, geochemical monitoring of the uprising fluids allows detection of the surface effects of perturbation in the state variables of the buried hydrothermal and magmatic systems. The presented datasets show that fumaroles' changing temperatures, which are related to surface heat flow, are useful indicators. Over the past 25 years, the combined effects of runoff and chemo-physical alterations were negligible on the output temperature of the earliest monitored fumaroles. The maximum recorded variation was 298 °C (measured in the ground very close to the steaming vents, at a depth of 0.5 m). Repetition of output temperature values occurred after 19 years in the same position; the time variations suggest a cyclic characteristic, although more years are needed to register the complete cyclic modulation. A combination of minor cyclical variations has also been registered in the fumarole output. The minor cycles appeared in this long series of data after 1995, and they can be interpreted as one of the surface effects of temporary departures from a stationary state assumed for the system feeding the La Fossa area. In this sector of the Mediterranean area, the steady state pressure field, as well as the steady state temperature gradients, can be perturbed either by magmatism or by seismo-tectonic processes related to regional dynamics. This long-term monitoring allowed comparisons of many temperature subsets with other validated geochemical and geophysical data series and highlighted common source mechanisms accounting for endogenous processes. Changes in the magma source and/or seismo-tectonic activity have been the primary

  8. Inverse statistical approach in heartbeat time series

    International Nuclear Information System (INIS)

    Ebadi, H; Shirazi, A H; Mani, Ali R; Jafari, G R

    2011-01-01

    We present an investigation on heart cycle time series, using inverse statistical analysis, a concept borrowed from studying turbulence. Using this approach, we studied the distribution of the exit times needed to achieve a predefined level of heart rate alteration. Such analysis uncovers the most likely waiting time needed to reach a certain change in the rate of heart beat. This analysis showed a significant difference between the raw data and shuffled data, when the heart rate accelerates or decelerates to a rare event. We also report that inverse statistical analysis can distinguish between the electrocardiograms taken from healthy volunteers and patients with heart failure

  9. The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration with an Application to Annual Mean Temperature and Sea Level

    DEFF Research Database (Denmark)

    Johansen, Søren

    There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference. Finally we analyse some data on annual mean temperature...... and sea level, by applying the cointegrated vector autoregressive model, which explicitly takes into account the nonstationarity of the variables....

  10. The analysis of nonstationary time series using regression, correlation and cointegration – with an application to annual mean temperature and sea level

    DEFF Research Database (Denmark)

    Johansen, Søren

    There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference. Finally we analyse some data on annual mean temperature...... and sea level, by applying the cointegrated vector autoregressive model, which explicitly takes into account the nonstationarity of the variables....

  11. Visibility graphlet approach to chaotic time series

    Energy Technology Data Exchange (ETDEWEB)

    Mutua, Stephen [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega (Kenya); Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn; Yang, Huijie, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-05-15

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.

  12. Time Series Analysis Using Geometric Template Matching.

    Science.gov (United States)

    Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina

    2013-03-01

    We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.

  13. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  14. Nonlinear time series analysis with R

    CERN Document Server

    Huffaker, Ray; Rosa, Rodolfo

    2017-01-01

    In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjec...

  15. Reconstruction of tritium time series in precipitation

    International Nuclear Information System (INIS)

    Celle-Jeanton, H.; Gourcy, L.; Aggarwal, P.K.

    2002-01-01

    Tritium is commonly used in groundwaters studies to calculate the recharge rate and to identify the presence of a modern recharge. The knowledge of 3 H precipitation time series is then very important for the study of groundwater recharge. Rozanski and Araguas provided good information on precipitation tritium content in 180 stations of the GNIP network to the end of 1987, but it shows some lacks of measurements either within one chronicle or within one region (the Southern hemisphere for instance). Therefore, it seems to be essential to find a method to recalculate data for a region where no measurement is available.To solve this problem, we propose another method which is based on triangulation. It needs the knowledge of 3 H time series of 3 stations surrounding geographically the 4-th station for which tritium input curve has to be reconstructed

  16. Time Series Forecasting with Missing Values

    OpenAIRE

    Shin-Fu Wu; Chia-Yung Chang; Shie-Jue Lee

    2015-01-01

    Time series prediction has become more popular in various kinds of applications such as weather prediction, control engineering, financial analysis, industrial monitoring, etc. To deal with real-world problems, we are often faced with missing values in the data due to sensor malfunctions or human errors. Traditionally, the missing values are simply omitted or replaced by means of imputation methods. However, omitting those missing values may cause temporal discontinuity. Imputation methods, o...

  17. Time series analysis of barometric pressure data

    International Nuclear Information System (INIS)

    La Rocca, Paola; Riggi, Francesco; Riggi, Daniele

    2010-01-01

    Time series of atmospheric pressure data, collected over a period of several years, were analysed to provide undergraduate students with educational examples of application of simple statistical methods of analysis. In addition to basic methods for the analysis of periodicities, a comparison of two forecast models, one based on autoregression algorithms, and the other making use of an artificial neural network, was made. Results show that the application of artificial neural networks may give slightly better results compared to traditional methods.

  18. Causal strength induction from time series data.

    Science.gov (United States)

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Interpretable Categorization of Heterogeneous Time Series Data

    Science.gov (United States)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua

    2017-01-01

    We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.

  20. Interpretation of a compositional time series

    Science.gov (United States)

    Tolosana-Delgado, R.; van den Boogaart, K. G.

    2012-04-01

    Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA

  1. Timing calibration and spectral cleaning of LOFAR time series data

    NARCIS (Netherlands)

    Corstanje, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Horandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    We describe a method for spectral cleaning and timing calibration of short time series data of the voltage in individual radio interferometer receivers. It makes use of phase differences in fast Fourier transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are

  2. Outlier Detection in Structural Time Series Models

    DEFF Research Database (Denmark)

    Marczak, Martyna; Proietti, Tommaso

    investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general......–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we...

  3. Analysis of JET ELMy time series

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Kuzovkov, V.N.

    2005-01-01

    Full text: Achievement of the planned operational regime in the next generation tokamaks (such as ITER) still faces principal problems. One of the main challenges is obtaining the control of edge localized modes (ELMs), which should lead to both long plasma pulse times and reasonable divertor life time. In order to control ELMs the hypothesis was proposed by Degeling [1] that ELMs exhibit features of chaotic dynamics and thus a standard chaos control methods might be applicable. However, our findings which are based on the nonlinear autoregressive (NAR) model contradict this hypothesis for JET ELMy time-series. In turn, it means that ELM behavior is of a relaxation or random type. These conclusions coincide with our previous results obtained for ASDEX Upgrade time series [2]. [1] A.W. Degeling, Y.R. Martin, P.E. Bak, J. B.Lister, and X. Llobet, Plasma Phys. Control. Fusion 43, 1671 (2001). [2] G. Zvejnieks, V.N. Kuzovkov, O. Dumbrajs, A.W. Degeling, W. Suttrop, H. Urano, and H. Zohm, Physics of Plasmas 11, 5658 (2004)

  4. Fourier analysis of time series an introduction

    CERN Document Server

    Bloomfield, Peter

    2000-01-01

    A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample

  5. Estimating High-Dimensional Time Series Models

    DEFF Research Database (Denmark)

    Medeiros, Marcelo C.; Mendes, Eduardo F.

    We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly......, larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency), and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. A simulation study shows...

  6. Inferring causality from noisy time series data

    DEFF Research Database (Denmark)

    Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...

  7. Useful Pattern Mining on Time Series

    DEFF Research Database (Denmark)

    Goumatianos, Nikitas; Christou, Ioannis T; Lindgren, Peter

    2013-01-01

    We present the architecture of a “useful pattern” mining system that is capable of detecting thousands of different candlestick sequence patterns at the tick or any higher granularity levels. The system architecture is highly distributed and performs most of its highly compute-intensive aggregation...... calculations as complex but efficient distributed SQL queries on the relational databases that store the time-series. We present initial results from mining all frequent candlestick sequences with the characteristic property that when they occur then, with an average at least 60% probability, they signal a 2...

  8. On the Use of Running Trends as Summary Statistics for Univariate Time Series and Time Series Association

    OpenAIRE

    Trottini, Mario; Vigo, Isabel; Belda, Santiago

    2015-01-01

    Given a time series, running trends analysis (RTA) involves evaluating least squares trends over overlapping time windows of L consecutive time points, with overlap by all but one observation. This produces a new series called the “running trends series,” which is used as summary statistics of the original series for further analysis. In recent years, RTA has been widely used in climate applied research as summary statistics for time series and time series association. There is no doubt that ...

  9. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  10. Anomaly on Superspace of Time Series Data

    Science.gov (United States)

    Capozziello, Salvatore; Pincak, Richard; Kanjamapornkul, Kabin

    2017-11-01

    We apply the G-theory and anomaly of ghost and antighost fields in the theory of supersymmetry to study a superspace over time series data for the detection of hidden general supply and demand equilibrium in the financial market. We provide proof of the existence of a general equilibrium point over 14 extradimensions of the new G-theory compared with the M-theory of the 11 dimensions model of Edward Witten. We found that the process of coupling between nonequilibrium and equilibrium spinor fields of expectation ghost fields in the superspace of time series data induces an infinitely long exact sequence of cohomology from a short exact sequence of moduli state space model. If we assume that the financial market is separated into two topological spaces of supply and demand as the D-brane and anti-D-brane model, then we can use a cohomology group to compute the stability of the market as a stable point of the general equilibrium of the interaction between D-branes of the market. We obtain the result that the general equilibrium will exist if and only if the 14th Batalin-Vilkovisky cohomology group with the negative dimensions underlying 14 major hidden factors influencing the market is zero.

  11. Tool Wear Monitoring Using Time Series Analysis

    Science.gov (United States)

    Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu

    A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.

  12. Time Series Based for Online Signature Verification

    Directory of Open Access Journals (Sweden)

    I Ketut Gede Darma Putra

    2013-11-01

    Full Text Available Signature verification system is to match the tested signature with a claimed signature. This paper proposes time series based for feature extraction method and dynamic time warping for match method. The system made by process of testing 900 signatures belong to 50 participants, 3 signatures for reference and 5 signatures from original user, simple imposters and trained imposters for signatures test. The final result system was tested with 50 participants with 3 references. This test obtained that system accuracy without imposters is 90,44897959% at threshold 44 with rejection errors (FNMR is 5,2% and acceptance errors (FMR is 4,35102%, when with imposters system accuracy is 80,1361% at threshold 27 with error rejection (FNMR is 15,6% and acceptance errors (average FMR is 4,263946%, with details as follows: acceptance errors is 0,391837%, acceptance errors simple imposters is 3,2% and acceptance errors trained imposters is 9,2%.

  13. Temporal changes and variability in temperature series over Peninsular Malaysia

    Science.gov (United States)

    Suhaila, Jamaludin

    2015-02-01

    With the current concern over climate change, the descriptions on how temperature series changed over time are very useful. Annual mean temperature has been analyzed for several stations over Peninsular Malaysia. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for assessing the significance and detection of trends, while a nonparametric Pettitt's test and sequential Mann-Kendall test are adopted to detect any abrupt climate change. Statistically significance increasing trends for annual mean temperature are detected for almost all studied stations with the magnitude of significant trend varied from 0.02°C to 0.05°C per year. The results shows that climate over Peninsular Malaysia is getting warmer than before. In addition, the results of the abrupt changes in temperature using Pettitt's and sequential Mann-Kendall test reveal the beginning of trends which can be related to El Nino episodes that occur in Malaysia. In general, the analysis results can help local stakeholders and water managers to understand the risks and vulnerabilities related to climate change in terms of mean events in the region.

  14. Automated time series forecasting for biosurveillance.

    Science.gov (United States)

    Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit

    2007-09-30

    For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.

  15. On nonstationarity and antipersistency in global temperature series

    Science.gov (United States)

    KäRner, O.

    2002-10-01

    Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.

  16. Palmprint Verification Using Time Series Method

    Directory of Open Access Journals (Sweden)

    A. A. Ketut Agung Cahyawan Wiranatha

    2013-11-01

    Full Text Available The use of biometrics as an automatic recognition system is growing rapidly in solving security problems, palmprint is one of biometric system which often used. This paper used two steps in center of mass moment method for region of interest (ROI segmentation and apply the time series method combined with block window method as feature representation. Normalized Euclidean Distance is used to measure the similarity degrees of two feature vectors of palmprint. System testing is done using 500 samples palms, with 4 samples as the reference image and the 6 samples as test images. Experiment results show that this system can achieve a high performance with success rate about 97.33% (FNMR=1.67%, FMR=1.00 %, T=0.036.

  17. Deconvolution of time series in the laboratory

    Science.gov (United States)

    John, Thomas; Pietschmann, Dirk; Becker, Volker; Wagner, Christian

    2016-10-01

    In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.

  18. Using entropy to cut complex time series

    Science.gov (United States)

    Mertens, David; Poncela Casasnovas, Julia; Spring, Bonnie; Amaral, L. A. N.

    2013-03-01

    Using techniques from statistical physics, physicists have modeled and analyzed human phenomena varying from academic citation rates to disease spreading to vehicular traffic jams. The last decade's explosion of digital information and the growing ubiquity of smartphones has led to a wealth of human self-reported data. This wealth of data comes at a cost, including non-uniform sampling and statistically significant but physically insignificant correlations. In this talk I present our work using entropy to identify stationary sub-sequences of self-reported human weight from a weight management web site. Our entropic approach-inspired by the infomap network community detection algorithm-is far less biased by rare fluctuations than more traditional time series segmentation techniques. Supported by the Howard Hughes Medical Institute

  19. Normalizing the causality between time series

    Science.gov (United States)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  20. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    Science.gov (United States)

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of

  1. Phase correlation of foreign exchange time series

    Science.gov (United States)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  2. Ocean time-series near Bermuda: Hydrostation S and the US JGOFS Bermuda Atlantic time-series study

    Science.gov (United States)

    Michaels, Anthony F.; Knap, Anthony H.

    1992-01-01

    Bermuda is the site of two ocean time-series programs. At Hydrostation S, the ongoing biweekly profiles of temperature, salinity and oxygen now span 37 years. This is one of the longest open-ocean time-series data sets and provides a view of decadal scale variability in ocean processes. In 1988, the U.S. JGOFS Bermuda Atlantic Time-series Study began a wide range of measurements at a frequency of 14-18 cruises each year to understand temporal variability in ocean biogeochemistry. On each cruise, the data range from chemical analyses of discrete water samples to data from electronic packages of hydrographic and optics sensors. In addition, a range of biological and geochemical rate measurements are conducted that integrate over time-periods of minutes to days. This sampling strategy yields a reasonable resolution of the major seasonal patterns and of decadal scale variability. The Sargasso Sea also has a variety of episodic production events on scales of days to weeks and these are only poorly resolved. In addition, there is a substantial amount of mesoscale variability in this region and some of the perceived temporal patterns are caused by the intersection of the biweekly sampling with the natural spatial variability. In the Bermuda time-series programs, we have added a series of additional cruises to begin to assess these other sources of variation and their impacts on the interpretation of the main time-series record. However, the adequate resolution of higher frequency temporal patterns will probably require the introduction of new sampling strategies and some emerging technologies such as biogeochemical moorings and autonomous underwater vehicles.

  3. Costationarity of Locally Stationary Time Series Using costat

    OpenAIRE

    Cardinali, Alessandro; Nason, Guy P.

    2013-01-01

    This article describes the R package costat. This package enables a user to (i) perform a test for time series stationarity; (ii) compute and plot time-localized autocovariances, and (iii) to determine and explore any costationary relationship between two locally stationary time series. Two locally stationary time series are said to be costationary if there exists two time-varying combination functions such that the linear combination of the two series with the functions produces another time...

  4. Fisher information framework for time series modeling

    Science.gov (United States)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  5. Time series modeling for syndromic surveillance

    Directory of Open Access Journals (Sweden)

    Mandl Kenneth D

    2003-01-01

    Full Text Available Abstract Background Emergency department (ED based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. Methods Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. Results Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. Conclusions Time series methods applied to historical ED utilization data are an important tool

  6. Dissolved inorganic carbon, total alkalinity, nitrate, phosphate, temperature and other variables collected from time series observations at Heron Island Reef Flat from 2010-06-01 to 2010-12-13 (NODC Accession 0127256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains carbonate chemistry and environmental parameters data that were collected from a 200-day time series monitoring on the Heron Island...

  7. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from MOORINGS in the North Pacific Ocean from 1998-06-22 to 2004-11-23 (NODC Accession 0100079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100079 includes chemical, time series and underway - surface data collected from MOORINGS in the North Pacific Ocean and South Pacific Ocean from...

  8. Carbon dioxide, temperature, salinity and other variables collected via time series profile monitoring from Kairei, MIRAI and NATSUSHIMA in the North Pacific Ocean from 1999-05-28 to 2008-10-26 (NODC Accession 0100115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100115 includes chemical, discrete bottle, physical and time series profile data collected from Kairei, MIRAI and NATSUSHIMA in the North Pacific...

  9. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from METEOR, POSEIDON and others in the North Atlantic Ocean from 1995-10-02 to 2009-11-25 (NODC Accession 0100064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100064 includes chemical, physical, time series and underway - surface data collected from METEOR, POSEIDON, TALIARTE and VICTOR HENSEN in the North...

  10. Climate Prediction Center (CPC) Global Precipitation Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global precipitation time series provides time series charts showing observations of daily precipitation as well as accumulated precipitation compared to normal...

  11. Diacetylene time-temperature indicators

    International Nuclear Information System (INIS)

    Patel, G.N.; Yee, K.C.

    1980-01-01

    An improved recording device is described, useful for measuring the integrated time-temperature or integrated radiation-dosage history of an article, comprising a substrate onto which an acetylenic compound, containing at least two conjugated c*c groups, in an inactive form, is deposited. The inactive form is capable of being converted by melt or solvent recrystallization to an active form, which undergoes 1,4-addition polymerization resulting in an irreversible, progressive color change. The color change produced at any given point in time represents an integrated time-temperature history of thermal annealing or integrated radiation-dosage history of exposure to actinic radiation to which an article has been exposed. Also described is a process for producing an inactive form of the acetylenic compound. A film and a fiber, made from the inactive form of an acetylenic compound are also described

  12. Foundations of Sequence-to-Sequence Modeling for Time Series

    OpenAIRE

    Kuznetsov, Vitaly; Mariet, Zelda

    2018-01-01

    The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practiti...

  13. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    Science.gov (United States)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  14. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  15. Time Series Observations in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoy, D.M.; Naik, H.; Kurian, S.; Naqvi, S.W.A.; Khare, N.

    Ocean and the ongoing time series study (Candolim Time Series; CaTS) off Goa. In addition, this article also focuses on the new time series initiative in the Arabian Sea and the Bay of Bengal under Sustained Indian Ocean Biogeochemistry and Ecosystem...

  16. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  17. Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of northeastern Brazil

    Science.gov (United States)

    Hänsel, Stephanie; Medeiros, Deusdedit; Matschullat, Jörg; Silva, Isamara; Petta, Reinaldo

    2016-03-01

    A 51-year dataset (1961 to 2011) from nine meteorological stations in the capitals of northeastern Brazil (NEB), with daily data of precipitation totals and of mean, minimum and maximum temperatures, was statistically analyzed for data homogeneity and for signals of climate variability. The hypothesis was explored that a connection exists between inhomogeneities of the time series and the meteorological systems influencing the region. Results of the homogeneity analysis depend on the selected test variable, the test algorithm and the chosen significance level; all more or less subjective choices. Most of the temperature series was classified as "suspect", while most of the precipitation series was categorized as "useful". Displaying and visually checking the time series demonstrates the power of expertise and may allow for a deeper data analysis. Consistent changes in the seasonality of temperature and precipitation emerge over NEB despite manifold breaks in the temperature series. Both series appear to be coupled. The intra-annual temperature and precipitation ranges have increased, along with an intensified seasonal cycle. Temperature mainly increased during DJF, MAM and SON, with decreases in JJA being related to wetter conditions and more frequent heavy precipitation events. Drought conditions mostly increased in SON and DJF, depending on the timing of the local dry season.

  18. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  19. Harmonic Analysis of a Nonstationary Series of Temperature Paleoreconstruction for the Central Part of Greenland

    Directory of Open Access Journals (Sweden)

    T.E. Danova

    2016-06-01

    Full Text Available The results of the investigations of a transformed series of reconstructed air temperature data for the central part of Greenland with an increment of 30 years have been presented. Stationarization of a ~ 50,000-years’ series of the reconstructed air temperature in the central part of Greenland according to ice core data has been performed using mathematical expectation. To obtain mathematical expectation estimation, the smoothing procedure by the methods of moving average and wavelet analysis has been carried out. Fourier’s transformation has been applied repeatedly to the stationarized series with changing the averaging time in the process of smoothing. Three averaging time values have been selected for the investigations: ~ 400–500 years, ~ 2,000 years, and ~ 4,000 years. Stationarization of the reconstructed temperature series with the help of wavelet transformation showed the best results when applying the averaging time of ~ 400 and ~ 2000 years, the trends well characterize the initial temperature series, there-by revealing the main patterns of its dynamics. Using the period with the averaging time of ~ 4,000 years showed the worst result: significant events of the main temperature series were lost in the process of averaging. The obtained results well correspond to cycling known to be inherent to the climatic system of the planet; the detected modes of 1,470 ± 500 years are comparable to the Dansgaard–Oeschger and Bond oscillations.

  20. Time series regression model for infectious disease and weather.

    Science.gov (United States)

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Hidden Markov Models for Time Series An Introduction Using R

    CERN Document Server

    Zucchini, Walter

    2009-01-01

    Illustrates the flexibility of HMMs as general-purpose models for time series data. This work presents an overview of HMMs for analyzing time series data, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts and categorical observations.

  2. Adaptive time-variant models for fuzzy-time-series forecasting.

    Science.gov (United States)

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  3. High-temperature series expansions for random Potts models

    Directory of Open Access Journals (Sweden)

    M.Hellmund

    2005-01-01

    Full Text Available We discuss recently generated high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices. Using the star-graph expansion technique, quenched disorder averages can be calculated exactly for arbitrary uncorrelated coupling distributions while keeping the disorder strength p as well as the dimension d as symbolic parameters. We present analyses of the new series for the susceptibility of the Ising (q=2 and 4-state Potts model in three dimensions up to the order 19 and 18, respectively, and compare our findings with results from field-theoretical renormalization group studies and Monte Carlo simulations.

  4. Efficient Algorithms for Segmentation of Item-Set Time Series

    Science.gov (United States)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  5. TIME SERIES ANALYSIS USING A UNIQUE MODEL OF TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-12-01

    Full Text Available REFII1 model is an authorial mathematical model for time series data mining. The main purpose of that model is to automate time series analysis, through a unique transformation model of time series. An advantage of this approach of time series analysis is the linkage of different methods for time series analysis, linking traditional data mining tools in time series, and constructing new algorithms for analyzing time series. It is worth mentioning that REFII model is not a closed system, which means that we have a finite set of methods. At first, this is a model for transformation of values of time series, which prepares data used by different sets of methods based on the same model of transformation in a domain of problem space. REFII model gives a new approach in time series analysis based on a unique model of transformation, which is a base for all kind of time series analysis. The advantage of REFII model is its possible application in many different areas such as finance, medicine, voice recognition, face recognition and text mining.

  6. An Energy-Based Similarity Measure for Time Series

    Directory of Open Access Journals (Sweden)

    Pierre Brunagel

    2007-11-01

    Full Text Available A new similarity measure, called SimilB, for time series analysis, based on the cross-ΨB-energy operator (2004, is introduced. ΨB is a nonlinear measure which quantifies the interaction between two time series. Compared to Euclidean distance (ED or the Pearson correlation coefficient (CC, SimilB includes the temporal information and relative changes of the time series using the first and second derivatives of the time series. SimilB is well suited for both nonstationary and stationary time series and particularly those presenting discontinuities. Some new properties of ΨB are presented. Particularly, we show that ΨB as similarity measure is robust to both scale and time shift. SimilB is illustrated with synthetic time series and an artificial dataset and compared to the CC and the ED measures.

  7. Time-series prediction and applications a machine intelligence approach

    CERN Document Server

    Konar, Amit

    2017-01-01

    This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications. It also proposes new uncertainty management techniques in an economic time-series using type-2 fuzzy sets for prediction of the time-series at a given time point from its preceding value in fluctuating business environments. It employs machine learning to determine repetitively occurring similar structural patterns in the time-series and uses stochastic automaton to predict the most probabilistic structure at a given partition of the time-series. Such predictions help in determining probabilistic moves in a stock index time-series Primarily written for graduate students and researchers in computer science, the book is equally useful for researchers/professionals in business intelligence and stock index prediction. A background of undergraduate level mathematics is presumed, although not mandatory, for most of the sections. Exercises with tips are provided at...

  8. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  9. Complex networks from multivariate time series

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Vejmelka, Martin

    2010-01-01

    Roč. 12, - (2010), A-14382 ISSN 1607-7962. [General Asembly of the European Geophysical Society. 02.05.2010-07.05.2010, Vienna] R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex network * surface air temperature * reanalysis data * global change Subject RIV: BB - Applied Statistics, Operational Research

  10. Vector bilinear autoregressive time series model and its superiority ...

    African Journals Online (AJOL)

    In this research, a vector bilinear autoregressive time series model was proposed and used to model three revenue series (X1, X2, X3) . The “orders” of the three series were identified on the basis of the distribution of autocorrelation and partial autocorrelation functions and were used to construct the vector bilinear models.

  11. A novel weight determination method for time series data aggregation

    Science.gov (United States)

    Xu, Paiheng; Zhang, Rong; Deng, Yong

    2017-09-01

    Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.

  12. Capturing Structure Implicitly from Time-Series having Limited Data

    OpenAIRE

    Emaasit, Daniel; Johnson, Matthew

    2018-01-01

    Scientific fields such as insider-threat detection and highway-safety planning often lack sufficient amounts of time-series data to estimate statistical models for the purpose of scientific discovery. Moreover, the available limited data are quite noisy. This presents a major challenge when estimating time-series models that are robust to overfitting and have well-calibrated uncertainty estimates. Most of the current literature in these fields involve visualizing the time-series for noticeabl...

  13. Mathematical foundations of time series analysis a concise introduction

    CERN Document Server

    Beran, Jan

    2017-01-01

    This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.

  14. Trend time-series modeling and forecasting with neural networks.

    Science.gov (United States)

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  15. Time series analysis in the social sciences the fundamentals

    CERN Document Server

    Shin, Youseop

    2017-01-01

    Times Series Analysis in the Social Sciences is a practical and highly readable introduction written exclusively for students and researchers whose mathematical background is limited to basic algebra. The book focuses on fundamental elements of time series analysis that social scientists need to understand so they can employ time series analysis for their research and practice. Through step-by-step explanations and using monthly violent crime rates as case studies, this book explains univariate time series from the preliminary visual analysis through the modeling of seasonality, trends, and re

  16. Stochastic time series analysis of hydrology data for water resources

    Science.gov (United States)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    The prediction to current publication of stochastic time series analysis in hydrology and seasonal stage. The different statistical tests for predicting the hydrology time series on Thomas-Fiering model. The hydrology time series of flood flow have accept a great deal of consideration worldwide. The concentration of stochastic process areas of time series analysis method are expanding with develop concerns about seasonal periods and global warming. The recent trend by the researchers for testing seasonal periods in the hydrologic flowseries using stochastic process on Thomas-Fiering model. The present article proposed to predict the seasonal periods in hydrology using Thomas-Fiering model.

  17. Interpretable Early Classification of Multivariate Time Series

    Science.gov (United States)

    Ghalwash, Mohamed F.

    2013-01-01

    Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems,…

  18. Theta, time reversal and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Davide [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Kapustin, Anton [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-05-17

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  19. Theta, time reversal and temperature

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Komargodski, Zohar; Seiberg, Nathan

    2017-01-01

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  20. Studies on time series applications in environmental sciences

    CERN Document Server

    Bărbulescu, Alina

    2016-01-01

    Time series analysis and modelling represent a large study field, implying the approach from the perspective of the time and frequency, with applications in different domains. Modelling hydro-meteorological time series is difficult due to the characteristics of these series, as long range dependence, spatial dependence, the correlation with other series. Continuous spatial data plays an important role in planning, risk assessment and decision making in environmental management. In this context, in this book we present various statistical tests and modelling techniques used for time series analysis, as well as applications to hydro-meteorological series from Dobrogea, a region situated in the south-eastern part of Romania, less studied till now. Part of the results are accompanied by their R code. .

  1. Predicting physical time series using dynamic ridge polynomial neural networks.

    Directory of Open Access Journals (Sweden)

    Dhiya Al-Jumeily

    Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.

  2. DTW-APPROACH FOR UNCORRELATED MULTIVARIATE TIME SERIES IMPUTATION

    OpenAIRE

    Phan , Thi-Thu-Hong; Poisson Caillault , Emilie; Bigand , André; Lefebvre , Alain

    2017-01-01

    International audience; Missing data are inevitable in almost domains of applied sciences. Data analysis with missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Some well-known methods for multivariate time series imputation require high correlations between series or their features. In this paper , we propose an approach based on the shape-behaviour relation in low/un-correlated multivariate time series under an assumption of...

  3. Two-fractal overlap time series: Earthquakes and market crashes

    Indian Academy of Sciences (India)

    velocity over the other and time series of stock prices. An anticipation method for some of the crashes have been proposed here, based on these observations. Keywords. Cantor set; time series; earthquake; market crash. PACS Nos 05.00; 02.50.-r; 64.60; 89.65.Gh; 95.75.Wx. 1. Introduction. Capturing dynamical patterns of ...

  4. Metagenomics meets time series analysis: unraveling microbial community dynamics

    NARCIS (Netherlands)

    Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.

    2015-01-01

    The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic

  5. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  6. Critical values for unit root tests in seasonal time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); B. Hobijn (Bart)

    1997-01-01

    textabstractIn this paper, we present tables with critical values for a variety of tests for seasonal and non-seasonal unit roots in seasonal time series. We consider (extensions of) the Hylleberg et al. and Osborn et al. test procedures. These extensions concern time series with increasing seasonal

  7. Transition Icons for Time-Series Visualization and Exploratory Analysis.

    Science.gov (United States)

    Nickerson, Paul V; Baharloo, Raheleh; Wanigatunga, Amal A; Manini, Todd M; Tighe, Patrick J; Rashidi, Parisa

    2018-03-01

    The modern healthcare landscape has seen the rapid emergence of techniques and devices that temporally monitor and record physiological signals. The prevalence of time-series data within the healthcare field necessitates the development of methods that can analyze the data in order to draw meaningful conclusions. Time-series behavior is notoriously difficult to intuitively understand due to its intrinsic high-dimensionality, which is compounded in the case of analyzing groups of time series collected from different patients. Our framework, which we call transition icons, renders common patterns in a visual format useful for understanding the shared behavior within groups of time series. Transition icons are adept at detecting and displaying subtle differences and similarities, e.g., between measurements taken from patients receiving different treatment strategies or stratified by demographics. We introduce various methods that collectively allow for exploratory analysis of groups of time series, while being free of distribution assumptions and including simple heuristics for parameter determination. Our technique extracts discrete transition patterns from symbolic aggregate approXimation representations, and compiles transition frequencies into a bag of patterns constructed for each group. These transition frequencies are normalized and aligned in icon form to intuitively display the underlying patterns. We demonstrate the transition icon technique for two time-series datasets-postoperative pain scores, and hip-worn accelerometer activity counts. We believe transition icons can be an important tool for researchers approaching time-series data, as they give rich and intuitive information about collective time-series behaviors.

  8. Time Series Econometrics for the 21st Century

    Science.gov (United States)

    Hansen, Bruce E.

    2017-01-01

    The field of econometrics largely started with time series analysis because many early datasets were time-series macroeconomic data. As the field developed, more cross-sectional and longitudinal datasets were collected, which today dominate the majority of academic empirical research. In nonacademic (private sector, central bank, and governmental)…

  9. The Prediction of Teacher Turnover Employing Time Series Analysis.

    Science.gov (United States)

    Costa, Crist H.

    The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…

  10. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    Science.gov (United States)

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  11. Time series forecasting based on deep extreme learning machine

    NARCIS (Netherlands)

    Guo, Xuqi; Pang, Y.; Yan, Gaowei; Qiao, Tiezhu; Yang, Guang-Hong; Yang, Dan

    2017-01-01

    Multi-layer Artificial Neural Networks (ANN) has caught widespread attention as a new method for time series forecasting due to the ability of approximating any nonlinear function. In this paper, a new local time series prediction model is established with the nearest neighbor domain theory, in

  12. Parameterizing unconditional skewness in models for financial time series

    DEFF Research Database (Denmark)

    He, Changli; Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate...

  13. Robust Forecasting of Non-Stationary Time Series

    NARCIS (Netherlands)

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable

  14. Efficient use of correlation entropy for analysing time series data

    Indian Academy of Sciences (India)

    Abstract. The correlation dimension D2 and correlation entropy K2 are both important quantifiers in nonlinear time series analysis. However, use of D2 has been more common compared to K2 as a discriminating measure. One reason for this is that D2 is a static measure and can be easily evaluated from a time series.

  15. Time series prediction of apple scab using meteorological ...

    African Journals Online (AJOL)

    A new prediction model for the early warning of apple scab is proposed in this study. The method is based on artificial intelligence and time series prediction. The infection period of apple scab was evaluated as the time series prediction model instead of summation of wetness duration. Also, the relations of different ...

  16. Trend analysis using non-stationary time series clustering based on the finite element method

    Science.gov (United States)

    Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.

    2014-05-01

    In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.

  17. A Dynamic Fuzzy Cluster Algorithm for Time Series

    Directory of Open Access Journals (Sweden)

    Min Ji

    2013-01-01

    clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.

  18. Frontiers in Time Series and Financial Econometrics : An overview

    NARCIS (Netherlands)

    S. Ling (Shiqing); M.J. McAleer (Michael); H. Tong (Howell)

    2015-01-01

    markdownabstract__Abstract__ Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time

  19. Frontiers in Time Series and Financial Econometrics: An Overview

    NARCIS (Netherlands)

    S. Ling (Shiqing); M.J. McAleer (Michael); H. Tong (Howell)

    2015-01-01

    markdownabstract__Abstract__ Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time

  20. vector bilinear autoregressive time series model and its superiority

    African Journals Online (AJOL)

    KEYWORDS: Linear time series, Autoregressive process, Autocorrelation function, Partial autocorrelation function,. Vector time .... important result on matrix algebra with respect to the spectral ..... application to covariance analysis of super-.

  1. Effectiveness of Multivariate Time Series Classification Using Shapelets

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2015-01-01

    Full Text Available Typically, time series classifiers require signal pre-processing (filtering signals from noise and artifact removal, etc., enhancement of signal features (amplitude, frequency, spectrum, etc., classification of signal features in space using the classical techniques and classification algorithms of multivariate data. We consider a method of classifying time series, which does not require enhancement of the signal features. The method uses the shapelets of time series (time series shapelets i.e. small fragments of this series, which reflect properties of one of its classes most of all.Despite the significant number of publications on the theory and shapelet applications for classification of time series, the task to evaluate the effectiveness of this technique remains relevant. An objective of this publication is to study the effectiveness of a number of modifications of the original shapelet method as applied to the multivariate series classification that is a littlestudied problem. The paper presents the problem statement of multivariate time series classification using the shapelets and describes the shapelet–based basic method of binary classification, as well as various generalizations and proposed modification of the method. It also offers the software that implements a modified method and results of computational experiments confirming the effectiveness of the algorithmic and software solutions.The paper shows that the modified method and the software to use it allow us to reach the classification accuracy of about 85%, at best. The shapelet search time increases in proportion to input data dimension.

  2. Pseudo-random bit generator based on lag time series

    Science.gov (United States)

    García-Martínez, M.; Campos-Cantón, E.

    2014-12-01

    In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.

  3. Submarine ground water discharge and fate along the coast of Kaloko-Honokohau National Historical Park, Hawai‘i: Part I: time-series measurements of currents, waves, salinity and temperature: November, 2005-July, 2007

    Science.gov (United States)

    Presto, M. Katherine; Storlazzi, Curt D.; Logan, Joshua B.; Grossman, Eric E.

    2007-01-01

    The impending development for the west Hawai‘i coastline adjacent to Kaloko-Honokōhau National Historical Park (KAHO) may potentially alter coastal hydrology and water quality in the marine waters of the park. Water resources are perhaps the most significant natural and cultural resource component in the park, and are critical to the health and well being of six federally listed species. KAHO contains ecosystems of brackish anchialine pools, two 11-acre fishponds, and 596 acres of coral reef habitats, all fed by groundwater originating upslope. The steep gradients on high islands, combined with typically porous substrates and high rainfall levels at upper elevations, make these settings especially vulnerable to shifts in submarine groundwater discharge (SGD) and its entrained nutrients and pollutants. Little is known about the magnitude, rate, frequency, and variability of SGD and its influence on contaminant loading to Hawaiian coastal environments. Recent studies show that groundwater flux through the park is vital to many ecosystem components including anchialine ponds and wetland biota. The function of these ecosystems may be vulnerable to changes in groundwater flow stemming from natural changes (climate and sea level) and land use (groundwater pumping and contamination). Oki and others (1999) showed that increased groundwater withdrawals for urban development since 1978 likely decreased groundwater flux to the coast by 50%. During this same time, the quality of groundwater has been vulnerable to increases in contaminant and nutrient/fertilizer additions associated with industrial, commercial and residential use upslope from KAHO (Oki and others, 1999). High-resolution measurements of waves, currents, water levels, temperature and salinity were collected in the marine portion of the park from November, 2005, through July, 2006, to establish baseline information on the magnitude, rate, frequency, and variability of SGD. These data are intended to help

  4. Characterizing time series: when Granger causality triggers complex networks

    International Nuclear Information System (INIS)

    Ge Tian; Cui Yindong; Lin Wei; Liu Chong; Kurths, Jürgen

    2012-01-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length. (paper)

  5. Characterizing time series: when Granger causality triggers complex networks

    Science.gov (United States)

    Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong

    2012-08-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.

  6. Sensor-Generated Time Series Events: A Definition Language

    Science.gov (United States)

    Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan

    2012-01-01

    There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.

  7. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia

    Science.gov (United States)

    Suhaila, Jamaludin; Yusop, Zulkifli

    2017-06-01

    Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.

  8. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  9. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  10. Signal Processing for Time-Series Functions on a Graph

    Science.gov (United States)

    2018-02-01

    Figures Fig. 1 Time -series function on a fixed graph.............................................2 iv Approved for public release; distribution is...φi〉`2(V)φi (39) 6= f̄ (40) Instead, we simply recover the average of f over time . 13 Approved for public release; distribution is unlimited. This...ARL-TR-8276• FEB 2018 US Army Research Laboratory Signal Processing for Time -Series Functions on a Graph by Humberto Muñoz-Barona, Jean Vettel, and

  11. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  13. Conditional time series forecasting with convolutional neural networks

    NARCIS (Netherlands)

    A. Borovykh (Anastasia); S.M. Bohte (Sander); C.W. Oosterlee (Cornelis)

    2017-01-01

    textabstractForecasting financial time series using past observations has been a significant topic of interest. While temporal relationships in the data exist, they are difficult to analyze and predict accurately due to the non-linear trends and noise present in the series. We propose to learn these

  14. Analysis of complex time series using refined composite multiscale entropy

    International Nuclear Information System (INIS)

    Wu, Shuen-De; Wu, Chiu-Wen; Lin, Shiou-Gwo; Lee, Kung-Yen; Peng, Chung-Kang

    2014-01-01

    Multiscale entropy (MSE) is an effective algorithm for measuring the complexity of a time series that has been applied in many fields successfully. However, MSE may yield an inaccurate estimation of entropy or induce undefined entropy because the coarse-graining procedure reduces the length of a time series considerably at large scales. Composite multiscale entropy (CMSE) was recently proposed to improve the accuracy of MSE, but it does not resolve undefined entropy. Here we propose a refined composite multiscale entropy (RCMSE) to improve CMSE. For short time series analyses, we demonstrate that RCMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy.

  15. Segmentation of Nonstationary Time Series with Geometric Clustering

    DEFF Research Database (Denmark)

    Bocharov, Alexei; Thiesson, Bo

    2013-01-01

    We introduce a non-parametric method for segmentation in regimeswitching time-series models. The approach is based on spectral clustering of target-regressor tuples and derives a switching regression tree, where regime switches are modeled by oblique splits. Such models can be learned efficiently...... from data, where clustering is used to propose one single split candidate at each split level. We use the class of ART time series models to serve as illustration, but because of the non-parametric nature of our segmentation approach, it readily generalizes to a wide range of time-series models that go...

  16. Modelling road accidents: An approach using structural time series

    Science.gov (United States)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-09-01

    In this paper, the trend of road accidents in Malaysia for the years 2001 until 2012 was modelled using a structural time series approach. The structural time series model was identified using a stepwise method, and the residuals for each model were tested. The best-fitted model was chosen based on the smallest Akaike Information Criterion (AIC) and prediction error variance. In order to check the quality of the model, a data validation procedure was performed by predicting the monthly number of road accidents for the year 2012. Results indicate that the best specification of the structural time series model to represent road accidents is the local level with a seasonal model.

  17. Multivariate time series analysis with R and financial applications

    CERN Document Server

    Tsay, Ruey S

    2013-01-01

    Since the publication of his first book, Analysis of Financial Time Series, Ruey Tsay has become one of the most influential and prominent experts on the topic of time series. Different from the traditional and oftentimes complex approach to multivariate (MV) time series, this sequel book emphasizes structural specification, which results in simplified parsimonious VARMA modeling and, hence, eases comprehension. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-worl

  18. Scalable Prediction of Energy Consumption using Incremental Time Series Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Noor, Muhammad Usman

    2013-10-09

    Time series datasets are a canonical form of high velocity Big Data, and often generated by pervasive sensors, such as found in smart infrastructure. Performing predictive analytics on time series data can be computationally complex, and requires approximation techniques. In this paper, we motivate this problem using a real application from the smart grid domain. We propose an incremental clustering technique, along with a novel affinity score for determining cluster similarity, which help reduce the prediction error for cumulative time series within a cluster. We evaluate this technique, along with optimizations, using real datasets from smart meters, totaling ~700,000 data points, and show the efficacy of our techniques in improving the prediction error of time series data within polynomial time.

  19. Characterizing interdependencies of multiple time series theory and applications

    CERN Document Server

    Hosoya, Yuzo; Takimoto, Taro; Kinoshita, Ryo

    2017-01-01

    This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement. Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case. Chapters 2 and 3 of the book introduce an i...

  20. Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction

    Science.gov (United States)

    Moeeni, Hamid; Bonakdari, Hossein; Fatemi, Seyed Ehsan

    2017-04-01

    Because time series stationarization has a key role in stochastic modeling results, three methods are analyzed in this study. The methods are seasonal differencing, seasonal standardization and spectral analysis to eliminate the periodic effect on time series stationarity. First, six time series including 4 streamflow series and 2 water temperature series are stationarized. The stochastic term for these series obtained with ARIMA is subsequently modeled. For the analysis, 9228 models are introduced. It is observed that seasonal standardization and spectral analysis eliminate the periodic term completely, while seasonal differencing maintains seasonal correlation structures. The obtained results indicate that all three methods present acceptable performance overall. However, model accuracy in monthly streamflow prediction is higher with seasonal differencing than with the other two methods. Another advantage of seasonal differencing over the other methods is that the monthly streamflow is never estimated as negative. Standardization is the best method for predicting monthly water temperature although it is quite similar to seasonal differencing, while spectral analysis performed the weakest in all cases. It is concluded that for each monthly seasonal series, seasonal differencing is the best stationarization method in terms of periodic effect elimination. Moreover, the monthly water temperature is predicted with more accuracy than monthly streamflow. The criteria of the average stochastic term divided by the amplitude of the periodic term obtained for monthly streamflow and monthly water temperature were 0.19 and 0.30, 0.21 and 0.13, and 0.07 and 0.04 respectively. As a result, the periodic term is more dominant than the stochastic term for water temperature in the monthly water temperature series compared to streamflow series.

  1. Scale-dependent intrinsic entropies of complex time series.

    Science.gov (United States)

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  2. Quantifying memory in complex physiological time-series.

    Science.gov (United States)

    Shirazi, Amir H; Raoufy, Mohammad R; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R; Amodio, Piero; Jafari, G Reza; Montagnese, Sara; Mani, Ali R

    2013-01-01

    In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of "memory length" was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are 'forgotten' quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.

  3. Elements of nonlinear time series analysis and forecasting

    CERN Document Server

    De Gooijer, Jan G

    2017-01-01

    This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible...

  4. Interglacial climate dynamics and advanced time series analysis

    Science.gov (United States)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit

    2013-04-01

    Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R

  5. Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs.

    Science.gov (United States)

    Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew

    2014-01-01

    Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.

  6. Growth And Export Expansion In Mauritius - A Time Series Analysis ...

    African Journals Online (AJOL)

    Growth And Export Expansion In Mauritius - A Time Series Analysis. ... RV Sannassee, R Pearce ... Using Granger Causality tests, the short-run analysis results revealed that there is significant reciprocal causality between real export earnings ...

  7. On robust forecasting of autoregressive time series under censoring

    OpenAIRE

    Kharin, Y.; Badziahin, I.

    2009-01-01

    Problems of robust statistical forecasting are considered for autoregressive time series observed under distortions generated by interval censoring. Three types of robust forecasting statistics are developed; meansquare risk is evaluated for the developed forecasting statistics. Numerical results are given.

  8. AFSC/ABL: Ugashik sockeye salmon scale time series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...

  9. Unsupervised land cover change detection: meaningful sequential time series analysis

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-06-01

    Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...

  10. Fast and Flexible Multivariate Time Series Subsequence Search

    Data.gov (United States)

    National Aeronautics and Space Administration — Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical...

  11. AFSC/ABL: Naknek sockeye salmon scale time series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....

  12. Constructing ordinal partition transition networks from multivariate time series.

    Science.gov (United States)

    Zhang, Jiayang; Zhou, Jie; Tang, Ming; Guo, Heng; Small, Michael; Zou, Yong

    2017-08-10

    A growing number of algorithms have been proposed to map a scalar time series into ordinal partition transition networks. However, most observable phenomena in the empirical sciences are of a multivariate nature. We construct ordinal partition transition networks for multivariate time series. This approach yields weighted directed networks representing the pattern transition properties of time series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, we propose a measure of entropy to characterize ordinal partition transition dynamics, which is sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate the applicability of pattern transition networks to capture phase coherence to non-coherence transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the ordinal partition transition network approach provides complementary insight to the traditional symbolic analysis of nonlinear multivariate time series.

  13. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.

  14. Trend Analysis of Monthly and Annual Temperature Series of Quetta, Pakistan

    Directory of Open Access Journals (Sweden)

    Farhat Iqbal

    2014-12-01

    Full Text Available The monthly average temperature series of Quetta – Pakistan from 1950 – 2000 is examined. A straight line is fitted to the data and seasonal variation and trend in temperature for each month of the year were obtained. An overall model is constructed as large variations in the monthly slopes were observed. In order to describe the seasonal pattern and trend in temperature, corresponding to the different months, both sine/cosine waves and sine/cosine waves multiplied by the time were included in the model as independent variables. The lag-1 autocorrelation was found in the residual of the model and hence another model was fitted to the pre-whiten series that shows a good fit ( and is free from correlated residuals. Both parametric and non-parametric tests applied to each month temperature show significant trend in all months except February and March.

  15. Chaotic time series prediction: From one to another

    International Nuclear Information System (INIS)

    Zhao Pengfei; Xing Lei; Yu Jun

    2009-01-01

    In this Letter, a new local linear prediction model is proposed to predict a chaotic time series of a component x(t) by using the chaotic time series of another component y(t) in the same system with x(t). Our approach is based on the phase space reconstruction coming from the Takens embedding theorem. To illustrate our results, we present an example of Lorenz system and compare with the performance of the original local linear prediction model.

  16. The use of synthetic input sequences in time series modeling

    International Nuclear Information System (INIS)

    Oliveira, Dair Jose de; Letellier, Christophe; Gomes, Murilo E.D.; Aguirre, Luis A.

    2008-01-01

    In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure

  17. Advances in Antithetic Time Series Analysis : Separating Fact from Artifact

    Directory of Open Access Journals (Sweden)

    Dennis Ridley

    2016-01-01

    Full Text Available The problem of biased time series mathematical model parameter estimates is well known to be insurmountable. When used to predict future values by extrapolation, even a de minimis bias will eventually grow into a large bias, with misleading results. This paper elucidates how combining antithetic time series' solves this baffling problem of bias in the fitted and forecast values by dynamic bias cancellation. Instead of growing to infinity, the average error can converge to a constant. (original abstract

  18. Multiple Time Series Ising Model for Financial Market Simulations

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated

  19. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  20. Robust Forecasting of Non-Stationary Time Series

    OpenAIRE

    Croux, C.; Fried, R.; Gijbels, I.; Mahieu, K.

    2010-01-01

    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estima...

  1. Automated Feature Design for Time Series Classification by Genetic Programming

    OpenAIRE

    Harvey, Dustin Yewell

    2014-01-01

    Time series classification (TSC) methods discover and exploit patterns in time series and other one-dimensional signals. Although many accurate, robust classifiers exist for multivariate feature sets, general approaches are needed to extend machine learning techniques to make use of signal inputs. Numerous applications of TSC can be found in structural engineering, especially in the areas of structural health monitoring and non-destructive evaluation. Additionally, the fields of process contr...

  2. Geomechanical time series and its singularity spectrum analysis

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta

    2012-01-01

    Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf

  3. Time Series Analysis of Insar Data: Methods and Trends

    Science.gov (United States)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  4. Similarity estimators for irregular and age uncertain time series

    Science.gov (United States)

    Rehfeld, K.; Kurths, J.

    2013-09-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many datasets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age uncertain time series. We compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  5. Similarity estimators for irregular and age-uncertain time series

    Science.gov (United States)

    Rehfeld, K.; Kurths, J.

    2014-01-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  6. Data imputation analysis for Cosmic Rays time series

    Science.gov (United States)

    Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.

    2017-05-01

    The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.

  7. Correlation measure to detect time series distances, whence economy globalization

    Science.gov (United States)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  8. Multiresolution analysis of Bursa Malaysia KLCI time series

    Science.gov (United States)

    Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed

    2017-05-01

    In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.

  9. Time domain series system definition and gear set reliability modeling

    International Nuclear Information System (INIS)

    Xie, Liyang; Wu, Ningxiang; Qian, Wenxue

    2016-01-01

    Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.

  10. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  11. Evaluation of scaling invariance embedded in short time series.

    Science.gov (United States)

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  12. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    Science.gov (United States)

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  13. Drunk driving detection based on classification of multivariate time series.

    Science.gov (United States)

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  14. Recurrent Neural Networks for Multivariate Time Series with Missing Values.

    Science.gov (United States)

    Che, Zhengping; Purushotham, Sanjay; Cho, Kyunghyun; Sontag, David; Liu, Yan

    2018-04-17

    Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provide useful insights for better understanding and utilization of missing values in time series analysis.

  15. Self-affinity in the dengue fever time series

    Science.gov (United States)

    Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.

    2016-06-01

    Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.

  16. Stochastic modeling of hourly rainfall times series in Campania (Italy)

    Science.gov (United States)

    Giorgio, M.; Greco, R.

    2009-04-01

    Occurrence of flowslides and floods in small catchments is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Consequently, landslide risk assessment procedures and early warning systems still rely on simple empirical models based on correlation between recorded rainfall data and observed landslides and/or river discharges. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction, which can allow gaining larger lead-times. Analysis of on-site recorded rainfall height time series represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR, ARMA, ARX, ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted, in which the sequence of rain storms and dry intervals constituting the structure of rainfall time series is modeled as an alternating renewal process. Final aim of the study is to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil

  17. Arbitrage, market definition and monitoring a time series approach

    OpenAIRE

    Burke, S; Hunter, J

    2012-01-01

    This article considers the application to regional price data of time series methods to test stationarity, multivariate cointegration and exogeneity. The discovery of stationary price differentials in a bivariate setting implies that the series are rendered stationary by capturing a common trend and we observe through this mechanism long-run arbitrage. This is indicative of a broader market definition and efficiency. The problem is considered in relation to more than 700 weekly data points on...

  18. Time Series Analysis of Wheat Futures Reward in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Different from the fact that the main researches are focused on single futures contract and lack of the comparison of different periods, this paper described the statistical characteristics of wheat futures reward time series of Zhengzhou Commodity Exchange in recent three years. Besides the basic statistic analysis, the paper used the GARCH and EGARCH model to describe the time series which had the ARCH effect and analyzed the persistence of volatility shocks and the leverage effect. The results showed that compared with that of normal one,wheat futures reward series were abnormality, leptokurtic and thick tail distribution. The study also found that two-part of the reward series had no autocorrelation. Among the six correlative series, three ones presented the ARCH effect. By using of the Auto-regressive Distributed Lag Model, GARCH model and EGARCH model, the paper demonstrates the persistence of volatility shocks and the leverage effect on the wheat futures reward time series. The results reveal that on the one hand, the statistical characteristics of the wheat futures reward are similar to the aboard mature futures market as a whole. But on the other hand, the results reflect some shortages such as the immatureness and the over-control by the government in the Chinese future market.

  19. Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series

    International Nuclear Information System (INIS)

    Zoldi, S.M.

    1998-01-01

    Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society

  20. Minimum entropy density method for the time series analysis

    Science.gov (United States)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  1. Multi-Scale Dissemination of Time Series Data

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan; Su, Li

    2013-01-01

    In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...

  2. Compounding approach for univariate time series with nonstationary variances

    Science.gov (United States)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  3. Characterizing time series via complexity-entropy curves

    Science.gov (United States)

    Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.

    2017-06-01

    The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.

  4. Recurrent Neural Network Applications for Astronomical Time Series

    Science.gov (United States)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  5. Multi-granular trend detection for time-series analysis

    NARCIS (Netherlands)

    van Goethem, A.I.; Staals, F.; Löffler, M.; Dykes, J.; Speckmann, B.

    2017-01-01

    Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data

  6. Time Series Analysis Based on Running Mann Whitney Z Statistics

    Science.gov (United States)

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  7. The Photoplethismographic Signal Processed with Nonlinear Time Series Analysis Tools

    International Nuclear Information System (INIS)

    Hernandez Caceres, Jose Luis; Hong, Rolando; Garcia Lanz, Abel; Garcia Dominguez, Luis; Cabannas, Karelia

    2001-01-01

    Finger photoplethismography (PPG) signals were submitted to nonlinear time series analysis. The applied analytical techniques were: (i) High degree polynomial fitting for baseline estimation; (ii) FFT analysis for estimating power spectra; (iii) fractal dimension estimation via the Higuchi's time-domain method, and (iv) kernel nonparametric estimation for reconstructing noise free-attractors and also for estimating signal's stochastic components

  8. Time Series Outlier Detection Based on Sliding Window Prediction

    Directory of Open Access Journals (Sweden)

    Yufeng Yu

    2014-01-01

    Full Text Available In order to detect outliers in hydrological time series data for improving data quality and decision-making quality related to design, operation, and management of water resources, this research develops a time series outlier detection method for hydrologic data that can be used to identify data that deviate from historical patterns. The method first built a forecasting model on the history data and then used it to predict future values. Anomalies are assumed to take place if the observed values fall outside a given prediction confidence interval (PCI, which can be calculated by the predicted value and confidence coefficient. The use of PCI as threshold is mainly on the fact that it considers the uncertainty in the data series parameters in the forecasting model to address the suitable threshold selection problem. The method performs fast, incremental evaluation of data as it becomes available, scales to large quantities of data, and requires no preclassification of anomalies. Experiments with different hydrologic real-world time series showed that the proposed methods are fast and correctly identify abnormal data and can be used for hydrologic time series analysis.

  9. Grammar-based feature generation for time-series prediction

    CERN Document Server

    De Silva, Anthony Mihirana

    2015-01-01

    This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method ...

  10. Learning of time series through neuron-to-neuron instruction

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Y [Department of Physics, Kyoto University, Kyoto 606-8502, (Japan); Kinzel, W [Institut fuer Theoretische Physik, Universitaet Wurzburg, 97074 Wurzburg (Germany); Shinomoto, S [Department of Physics, Kyoto University, Kyoto (Japan)

    2003-02-07

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space.

  11. Learning of time series through neuron-to-neuron instruction

    International Nuclear Information System (INIS)

    Miyazaki, Y; Kinzel, W; Shinomoto, S

    2003-01-01

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space

  12. Time series analysis and its applications with R examples

    CERN Document Server

    Shumway, Robert H

    2017-01-01

    The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonli...

  13. Nonlinear time series analysis of the human electrocardiogram

    International Nuclear Information System (INIS)

    Perc, Matjaz

    2005-01-01

    We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method

  14. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  15. Track Irregularity Time Series Analysis and Trend Forecasting

    Directory of Open Access Journals (Sweden)

    Jia Chaolong

    2012-01-01

    Full Text Available The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM (1,1 is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.

  16. Mackenzie River Delta morphological change based on Landsat time series

    Science.gov (United States)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied

  17. A multidisciplinary database for geophysical time series management

    Science.gov (United States)

    Montalto, P.; Aliotta, M.; Cassisi, C.; Prestifilippo, M.; Cannata, A.

    2013-12-01

    The variables collected by a sensor network constitute a heterogeneous data source that needs to be properly organized in order to be used in research and geophysical monitoring. With the time series term we refer to a set of observations of a given phenomenon acquired sequentially in time. When the time intervals are equally spaced one speaks of period or sampling frequency. Our work describes in detail a possible methodology for storage and management of time series using a specific data structure. We designed a framework, hereinafter called TSDSystem (Time Series Database System), in order to acquire time series from different data sources and standardize them within a relational database. The operation of standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common time scale. The proposed architecture follows a multiple layer paradigm (Loaders layer, Database layer and Business Logic layer). Each layer is specialized in performing particular operations for the reorganization and archiving of data from different sources such as ASCII, Excel, ODBC (Open DataBase Connectivity), file accessible from the Internet (web pages, XML). In particular, the loader layer performs a security check of the working status of each running software through an heartbeat system, in order to automate the discovery of acquisition issues and other warning conditions. Although our system has to manage huge amounts of data, performance is guaranteed by using a smart partitioning table strategy, that keeps balanced the percentage of data stored in each database table. TSDSystem also contains modules for the visualization of acquired data, that provide the possibility to query different time series on a specified time range, or follow the realtime signal acquisition, according to a data access policy from the users.

  18. A novel time series link prediction method: Learning automata approach

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2017-09-01

    Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.

  19. Time series patterns and language support in DBMS

    Science.gov (United States)

    Telnarova, Zdenka

    2017-07-01

    This contribution is focused on pattern type Time Series as a rich in semantics representation of data. Some example of implementation of this pattern type in traditional Data Base Management Systems is briefly presented. There are many approaches how to manipulate with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns. Query language SQL-TS for manipulating with patterns is shown on Time Series data.

  20. Testing for intracycle determinism in pseudoperiodic time series.

    Science.gov (United States)

    Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A

    2008-06-01

    A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.

  1. Bootstrap Power of Time Series Goodness of fit tests

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2013-10-01

    Full Text Available In this article, we looked at power of various versions of Box and Pierce statistic and Cramer von Mises test. An extensive simulation study has been conducted to compare the power of these tests. Algorithms have been provided for the power calculations and comparison has also been made between the semi parametric bootstrap methods used for time series. Results show that Box-Pierce statistic and its various versions have good power against linear time series models but poor power against non linear models while situation reverses for Cramer von Mises test. Moreover, we found that dynamic bootstrap method is better than xed design bootstrap method.

  2. Handbook of Time Series Analysis Recent Theoretical Developments and Applications

    CERN Document Server

    Schelter, Björn; Timmer, Jens

    2006-01-01

    This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest de

  3. Managing Perishables with Time and temperature History

    NARCIS (Netherlands)

    Ketzenberg, M.; Bloemhof, J.M.; Gaukler, G.

    2015-01-01

    We address the use and value of time and temperature information to manage perishables in the contextof a retailer that sells a random lifetime product subject to stochastic demand and lost sales. The product’s lifetime is largely determined by the temperature history and the flow time through the

  4. Quantifying Selection with Pool-Seq Time Series Data.

    Science.gov (United States)

    Taus, Thomas; Futschik, Andreas; Schlötterer, Christian

    2017-11-01

    Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. A window-based time series feature extraction method.

    Science.gov (United States)

    Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife

    2017-10-01

    This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.

    2006-01-01

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  7. Segmentation of time series with long-range fractal correlations

    Science.gov (United States)

    Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.

    2012-01-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997

  8. Segmentation of time series with long-range fractal correlations.

    Science.gov (United States)

    Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P

    2012-06-01

    Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.

  9. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    International Nuclear Information System (INIS)

    Sai Venkata Ramana, A.

    2014-01-01

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids

  10. Homogenization of long instrumental temperature and precipitation series over the Spanish Northern Coast

    Science.gov (United States)

    Sigro, J.; Brunet, M.; Aguilar, E.; Stoll, H.; Jimenez, M.

    2009-04-01

    The Spanish-funded research project Rapid Climate Changes in the Iberian Peninsula (IP) Based on Proxy Calibration, Long Term Instrumental Series and High Resolution Analyses of Terrestrial and Marine Records (CALIBRE: ref. CGL2006-13327-C04/CLI) has as main objective to analyse climate dynamics during periods of rapid climate change by means of developing high-resolution paleoclimate proxy records from marine and terrestrial (lakes and caves) deposits over the IP and calibrating them with long-term and high-quality instrumental climate time series. Under CALIBRE, the coordinated project Developing and Enhancing a Climate Instrumental Dataset for Calibrating Climate Proxy Data and Analysing Low-Frequency Climate Variability over the Iberian Peninsula (CLICAL: CGL2006-13327-C04-03/CLI) is devoted to the development of homogenised climate records and sub-regional time series which can be confidently used in the calibration of the lacustrine, marine and speleothem time series generated under CALIBRE. Here we present the procedures followed in order to homogenise a dataset of maximum and minimum temperature and precipitation data on a monthly basis over the Spanish northern coast. The dataset is composed of thirty (twenty) precipitation (temperature) long monthly records. The data are quality controlled following the procedures recommended by Aguilar et al. (2003) and tested for homogeneity and adjusted by following the approach adopted by Brunet et al. (2008). Sub-regional time series of precipitation, maximum and minimum temperatures for the period 1853-2007 have been generated by averaging monthly anomalies and then adding back the base-period mean, according to the method of Jones and Hulme (1996). Also, a method to adjust the variance bias present in regional time series associated over time with varying sample size has been applied (Osborn et al., 1997). The results of this homogenisation exercise and the development of the associated sub-regional time series

  11. Complexity analysis of the turbulent environmental fluid flow time series

    Science.gov (United States)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  12. Outlier detection algorithms for least squares time series regression

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Sat...

  13. Tempered fractional time series model for turbulence in geophysical flows

    Science.gov (United States)

    Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu

    2014-09-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.

  14. Tempered fractional time series model for turbulence in geophysical flows

    International Nuclear Information System (INIS)

    Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu

    2014-01-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)

  15. Classical pooling of cross-section and time series data

    International Nuclear Information System (INIS)

    Nuamah, N.N.N.N.

    2000-04-01

    This paper discusses the classical pooling of cross-section and time series data. The re-expressions of the normal equations of this model are given to indicate the source of the paradox that arises in the estimation of the regression coefficient. (author)

  16. Time series analysis in chaotic diode resonator circuit

    Energy Technology Data Exchange (ETDEWEB)

    Hanias, M.P. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)] e-mail: mhanias@teihal.gr; Giannaris, G. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Spyridakis, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Rigas, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)

    2006-01-01

    A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension {nu} and m {sub min}, respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated.

  17. Time series analysis in chaotic diode resonator circuit

    International Nuclear Information System (INIS)

    Hanias, M.P.; Giannaris, G.; Spyridakis, A.; Rigas, A.

    2006-01-01

    A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension ν and m min , respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated

  18. Time Series Factor Analysis with an Application to Measuring Money

    NARCIS (Netherlands)

    Gilbert, Paul D.; Meijer, Erik

    2005-01-01

    Time series factor analysis (TSFA) and its associated statistical theory is developed. Unlike dynamic factor analysis (DFA), TSFA obviates the need for explicitly modeling the process dynamics of the underlying phenomena. It also differs from standard factor analysis (FA) in important respects: the

  19. Time series analysis of monthly pulpwood use in the Northeast

    Science.gov (United States)

    James T. Bones

    1980-01-01

    Time series analysis was used to develop a model that depicts pulpwood use in the Northeast. The model is useful in forecasting future pulpwood requirements (short term) or monitoring pulpwood-use activity in relation to past use patterns. The model predicted a downturn in use during 1980.

  20. Time series prediction with simple recurrent neural networks ...

    African Journals Online (AJOL)

    A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used. In this study, we evaluated the performance of these neural networks on three established bench mark time series prediction problems. Results from the experiments showed that Jordan neural network performed significantly ...

  1. Dynamic Factor Analysis of Nonstationary Multivariate Time Series.

    Science.gov (United States)

    Molenaar, Peter C. M.; And Others

    1992-01-01

    The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)

  2. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository

    LI, YEHUA; GENTON, MARC G.

    2009-01-01

    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided

  3. Daily time series evapotranspiration maps for Oklahoma and Texas panhandle

    Science.gov (United States)

    Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...

  4. United States forest disturbance trends observed with landsat time series

    Science.gov (United States)

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan. Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  5. Koopman Operator Framework for Time Series Modeling and Analysis

    Science.gov (United States)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  6. Time series analysis in astronomy: Limits and potentialities

    DEFF Research Database (Denmark)

    Vio, R.; Kristensen, N.R.; Madsen, Henrik

    2005-01-01

    In this paper we consider the problem of the limits concerning the physical information that can be extracted from the analysis of one or more time series ( light curves) typical of astrophysical objects. On the basis of theoretical considerations and numerical simulations, we show that with no a...

  7. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NARCIS (Netherlands)

    Velsink, H.

    2016-01-01

    Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on

  8. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NARCIS (Netherlands)

    Hiddo Velsink

    2016-01-01

    From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to

  9. A Hybrid Joint Moment Ratio Test for Financial Time Series

    NARCIS (Netherlands)

    P.A. Groenendijk (Patrick); A. Lucas (André); C.G. de Vries (Casper)

    1998-01-01

    textabstractWe advocate the use of absolute moment ratio statistics in conjunction with standard variance ratio statistics in order to disentangle linear dependence, non-linear dependence, and leptokurtosis in financial time series. Both statistics are computed for multiple return horizons

  10. Time Series, Stochastic Processes and Completeness of Quantum Theory

    International Nuclear Information System (INIS)

    Kupczynski, Marian

    2011-01-01

    Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.

  11. RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.

    Science.gov (United States)

    Stránský, V; Thinová, L

    2017-11-01

    In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Identification of human operator performance models utilizing time series analysis

    Science.gov (United States)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  13. Notes on economic time series analysis system theoretic perspectives

    CERN Document Server

    Aoki, Masanao

    1983-01-01

    In seminars and graduate level courses I have had several opportunities to discuss modeling and analysis of time series with economists and economic graduate students during the past several years. These experiences made me aware of a gap between what economic graduate students are taught about vector-valued time series and what is available in recent system literature. Wishing to fill or narrow the gap that I suspect is more widely spread than my personal experiences indicate, I have written these notes to augment and reor­ ganize materials I have given in these courses and seminars. I have endeavored to present, in as much a self-contained way as practicable, a body of results and techniques in system theory that I judge to be relevant and useful to economists interested in using time series in their research. I have essentially acted as an intermediary and interpreter of system theoretic results and perspectives in time series by filtering out non-essential details, and presenting coherent accounts of wha...

  14. Book Review: "Hidden Markov Models for Time Series: An ...

    African Journals Online (AJOL)

    Hidden Markov Models for Time Series: An Introduction using R. by Walter Zucchini and Iain L. MacDonald. Chapman & Hall (CRC Press), 2009. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/saaj.v10i1.61717 · AJOL African Journals Online.

  15. Long-memory time series theory and methods

    CERN Document Server

    Palma, Wilfredo

    2007-01-01

    Wilfredo Palma, PhD, is Chairman and Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. Dr. Palma has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics.

  16. ISO 9000 Series Certification Over Time: what have we learnt?

    NARCIS (Netherlands)

    A. van der Wiele (Ton); A.M. Brown (Alan)

    2002-01-01

    textabstractThe ISO 9000 experiences of the same sample of organisations over a five year time period is examined in this paper. The responses to a questionnaire sent out at the end of 1999 to companies which had a reasonably long term experience with the ISO 9000 series quality system are analysed.

  17. Detection of "noisy" chaos in a time series

    DEFF Research Database (Denmark)

    Chon, K H; Kanters, J K; Cohen, R J

    1997-01-01

    Time series from biological system often displays fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". The output from most biological systems is probably the result of both...

  18. Conditional mode regression: Application to functional time series prediction

    OpenAIRE

    Dabo-Niang, Sophie; Laksaci, Ali

    2008-01-01

    We consider $\\alpha$-mixing observations and deal with the estimation of the conditional mode of a scalar response variable $Y$ given a random variable $X$ taking values in a semi-metric space. We provide a convergence rate in $L^p$ norm of the estimator. A useful and typical application to functional times series prediction is given.

  19. Tests for nonlinearity in short stationary time series

    International Nuclear Information System (INIS)

    Chang, T.; Sauer, T.; Schiff, S.J.

    1995-01-01

    To compare direct tests for detecting determinism in chaotic time series, data from Henon, Lorenz, and Mackey--Glass equations were contaminated with various levels of additive colored noise. These data were analyzed with a variety of recently developed tests for determinism, and the results compared

  20. Seasonal time series forecasting: a comparative study of arima and ...

    African Journals Online (AJOL)

    This paper addresses the concerns of Faraway and Chatfield (1998) who questioned the forecasting ability of Artificial Neural Networks (ANN). In particular the paper compares the performance of Artificial Neural Networks (ANN) and ARIMA models in forecasting of seasonal (monthly) Time series. Using the Airline data ...

  1. Multivariate time series modeling of selected childhood diseases in ...

    African Journals Online (AJOL)

    This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI), Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in ...

  2. multivariate time series modeling of selected childhood diseases

    African Journals Online (AJOL)

    2016-06-17

    Jun 17, 2016 ... KEYWORDS: Multivariate Approach, Pre-whitening, Vector Time Series, .... Alternatively, the process may be written in mean adjusted form as .... The AIC criterion asymptotically over estimates the order with positive probability, whereas the BIC and HQC criteria ... has the same asymptotic distribution as Ǫ.

  3. Modeling activity patterns of wildlife using time-series analysis.

    Science.gov (United States)

    Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo

    2017-04-01

    The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.

  4. Classification of time series patterns from complex dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.

  5. Normalization methods in time series of platelet function assays

    Science.gov (United States)

    Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham

    2016-01-01

    Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217

  6. Wavelet transform approach for fitting financial time series data

    Science.gov (United States)

    Ahmed, Amel Abdoullah; Ismail, Mohd Tahir

    2015-10-01

    This study investigates a newly developed technique; a combined wavelet filtering and VEC model, to study the dynamic relationship among financial time series. Wavelet filter has been used to annihilate noise data in daily data set of NASDAQ stock market of US, and three stock markets of Middle East and North Africa (MENA) region, namely, Egypt, Jordan, and Istanbul. The data covered is from 6/29/2001 to 5/5/2009. After that, the returns of generated series by wavelet filter and original series are analyzed by cointegration test and VEC model. The results show that the cointegration test affirms the existence of cointegration between the studied series, and there is a long-term relationship between the US, stock markets and MENA stock markets. A comparison between the proposed model and traditional model demonstrates that, the proposed model (DWT with VEC model) outperforms traditional model (VEC model) to fit the financial stock markets series well, and shows real information about these relationships among the stock markets.

  7. Optimization of recurrent neural networks for time series modeling

    DEFF Research Database (Denmark)

    Pedersen, Morten With

    1997-01-01

    The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...

  8. Recursive Bayesian recurrent neural networks for time-series modeling.

    Science.gov (United States)

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  9. On the plurality of times: disunified time and the A-series | Nefdt ...

    African Journals Online (AJOL)

    Then, I attempt to show that disunified time is a problem for a semantics based on the A-series since A-truthmakers are hard to come by in a universe of temporally disconnected time-series. Finally, I provide a novel argument showing that presentists should be particularly fearful of such a universe. South African Journal of ...

  10. The application of complex network time series analysis in turbulent heated jets

    International Nuclear Information System (INIS)

    Charakopoulos, A. K.; Karakasidis, T. E.; Liakopoulos, A.; Papanicolaou, P. N.

    2014-01-01

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics

  11. Recurrence and symmetry of time series: Application to transition detection

    International Nuclear Information System (INIS)

    Girault, Jean-Marc

    2015-01-01

    Highlights: •A new theoretical framework based on the symmetry concept is proposed. •Four types of symmetry present in any time series were analyzed. •New descriptors make possible the analysis of regime changes in logistic systems. •Chaos–chaos, chaos–periodic, symmetry-breaking, symmetry-increasing bifurcations can be detected. -- Abstract: The study of transitions in low dimensional, nonlinear dynamical systems is a complex problem for which there is not yet a simple, global numerical method able to detect chaos–chaos, chaos–periodic bifurcations and symmetry-breaking, symmetry-increasing bifurcations. We present here for the first time a general framework focusing on the symmetry concept of time series that at the same time reveals new kinds of recurrence. We propose several numerical tools based on the symmetry concept allowing both the qualification and quantification of different kinds of possible symmetry. By using several examples based on periodic symmetrical time series and on logistic and cubic maps, we show that it is possible with simple numerical tools to detect a large number of bifurcations of chaos–chaos, chaos–periodic, broken symmetry and increased symmetry types

  12. Time-temperature superposition in viscous liquids

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    2001-01-01

    with a reduced time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  13. Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-03-01

    Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the

  14. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lutaif, N.A. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Palazzo, R. Jr [Departamento de Telemática, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, Campinas, SP (Brazil); Gontijo, J.A.R. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2014-01-17

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.

  15. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    International Nuclear Information System (INIS)

    Lutaif, N.A.; Palazzo, R. Jr; Gontijo, J.A.R.

    2014-01-01

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile

  16. Reconstruction of ensembles of coupled time-delay systems from time series.

    Science.gov (United States)

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  17. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    Science.gov (United States)

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  18. Topological data analysis of financial time series: Landscapes of crashes

    Science.gov (United States)

    Gidea, Marian; Katz, Yuri

    2018-02-01

    We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their Lp-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the Lp-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of Lp-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which complements the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.

  19. FTSPlot: fast time series visualization for large datasets.

    Directory of Open Access Journals (Sweden)

    Michael Riss

    Full Text Available The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of O(n x log(N; the visualization itself can be done with a complexity of O(1 and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with < 20 ms ms. The current 64-bit implementation theoretically supports datasets with up to 2(64 bytes, on the x86_64 architecture currently up to 2(48 bytes are supported, and benchmarks have been conducted with 2(40 bytes/1 TiB or 1.3 x 10(11 double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments.

  20. Dynamical analysis and visualization of tornadoes time series.

    Directory of Open Access Journals (Sweden)

    António M Lopes

    Full Text Available In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

  1. Dynamical analysis and visualization of tornadoes time series.

    Science.gov (United States)

    Lopes, António M; Tenreiro Machado, J A

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

  2. Financial time series analysis based on information categorization method

    Science.gov (United States)

    Tian, Qiang; Shang, Pengjian; Feng, Guochen

    2014-12-01

    The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.

  3. "Observation Obscurer" - Time Series Viewer, Editor and Processor

    Science.gov (United States)

    Andronov, I. L.

    The program is described, which contains a set of subroutines suitable for East viewing and interactive filtering and processing of regularly and irregularly spaced time series. Being a 32-bit DOS application, it may be used as a default fast viewer/editor of time series in any compute shell ("commander") or in Windows. It allows to view the data in the "time" or "phase" mode, to remove ("obscure") or filter outstanding bad points; to make scale transformations and smoothing using few methods (e.g. mean with phase binning, determination of the statistically opti- mal number of phase bins; "running parabola" (Andronov, 1997, As. Ap. Suppl, 125, 207) fit and to make time series analysis using some methods, e.g. correlation, autocorrelation and histogram analysis: determination of extrema etc. Some features have been developed specially for variable star observers, e.g. the barycentric correction, the creation and fast analysis of "OC" diagrams etc. The manual for "hot keys" is presented. The computer code was compiled with a 32-bit Free Pascal (www.freepascal.org).

  4. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

  5. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance

    Science.gov (United States)

    Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600

  6. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.

    Science.gov (United States)

    Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.

  7. A Non-standard Empirical Likelihood for Time Series

    DEFF Research Database (Denmark)

    Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.

    Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...

  8. Models for Pooled Time-Series Cross-Section Data

    Directory of Open Access Journals (Sweden)

    Lawrence E Raffalovich

    2015-07-01

    Full Text Available Several models are available for the analysis of pooled time-series cross-section (TSCS data, defined as “repeated observations on fixed units” (Beck and Katz 1995. In this paper, we run the following models: (1 a completely pooled model, (2 fixed effects models, and (3 multi-level/hierarchical linear models. To illustrate these models, we use a Generalized Least Squares (GLS estimator with cross-section weights and panel-corrected standard errors (with EViews 8 on the cross-national homicide trends data of forty countries from 1950 to 2005, which we source from published research (Messner et al. 2011. We describe and discuss the similarities and differences between the models, and what information each can contribute to help answer substantive research questions. We conclude with a discussion of how the models we present may help to mitigate validity threats inherent in pooled time-series cross-section data analysis.

  9. Time Series Analysis, Modeling and Applications A Computational Intelligence Perspective

    CERN Document Server

    Chen, Shyi-Ming

    2013-01-01

    Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological a...

  10. Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis

    Science.gov (United States)

    Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.

    We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.

  11. Time series prediction by feedforward neural networks - is it difficult?

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang

    2003-01-01

    The difficulties that a neural network faces when trying to learn from a quasi-periodic time series are studied analytically using a teacher-student scenario where the random input is divided into two macroscopic regions with different variances, 1 and 1/γ 2 (γ >> 1). The generalization error is found to decrease as ε g ∝ exp(-α/γ 2 ), where α is the number of examples per input dimension. In contradiction to this very slow vanishing generalization error, the next output prediction is found to be almost free of mistakes. This picture is consistent with learning quasi-periodic time series produced by feedforward neural networks, which is dominated by enhanced components of the Fourier spectrum of the input. Simulation results are in good agreement with the analytical results

  12. Time series analysis methods and applications for flight data

    CERN Document Server

    Zhang, Jianye

    2017-01-01

    This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

  13. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    Science.gov (United States)

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  14. Deviations from uniform power law scaling in nonstationary time series

    Science.gov (United States)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  15. An integral time series on simulated labeling using fractal structure

    International Nuclear Information System (INIS)

    Djainal, D.D.

    1997-01-01

    This research deals with the detection of time series of vertical two-phase flow, in attempt to developed an objective indicator of time series flow patterns. One of new method is fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. in the present work, fractal analysis applied to analyze simulated boiling coolant signal. this simulated signals built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both modes are characterized by their void fractions. in the case of unimodal-PDF signals, the difference between these modes is relative small. on other hand, bimodal-PDF signals have relative large range. in this research, fractal dimension can indicate the characters of that signals simulation

  16. Chaotic time series. Part II. System Identification and Prediction

    Directory of Open Access Journals (Sweden)

    Bjørn Lillekjendlie

    1994-10-01

    Full Text Available This paper is the second in a series of two, and describes the current state of the art in modeling and prediction of chaotic time series. Sample data from deterministic non-linear systems may look stochastic when analysed with linear methods. However, the deterministic structure may be uncovered and non-linear models constructed that allow improved prediction. We give the background for such methods from a geometrical point of view, and briefly describe the following types of methods: global polynomials, local polynomials, multilayer perceptrons and semi-local methods including radial basis functions. Some illustrative examples from known chaotic systems are presented, emphasising the increase in prediction error with time. We compare some of the algorithms with respect to prediction accuracy and storage requirements, and list applications of these methods to real data from widely different areas.

  17. Time series analysis of ozone data in Isfahan

    Science.gov (United States)

    Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.

    2008-07-01

    Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.

  18. Detecting structural breaks in time series via genetic algorithms

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Fischer, Paul; Hilbert, Astrid

    2016-01-01

    of the time series under consideration is available. Therefore, a black-box optimization approach is our method of choice for detecting structural breaks. We describe a genetic algorithm framework which easily adapts to a large number of statistical settings. To evaluate the usefulness of different crossover...... and mutation operations for this problem, we conduct extensive experiments to determine good choices for the parameters and operators of the genetic algorithm. One surprising observation is that use of uniform and one-point crossover together gave significantly better results than using either crossover...... operator alone. Moreover, we present a specific fitness function which exploits the sparse structure of the break points and which can be evaluated particularly efficiently. The experiments on artificial and real-world time series show that the resulting algorithm detects break points with high precision...

  19. Time series analysis of nuclear instrumentation in EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.

    1996-01-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals

  20. Mathematical methods in time series analysis and digital image processing

    CERN Document Server

    Kurths, J; Maass, P; Timmer, J

    2008-01-01

    The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.

  1. Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis

    Science.gov (United States)

    Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.

    2015-06-01

    This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.

  2. Sensor response monitoring in pressurized water reactors using time series modeling

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Kerlin, T.W.

    1978-01-01

    Random data analysis in nuclear power reactors for purposes of process surveillance, pattern recognition and monitoring of temperature, pressure, flow and neutron sensors has gained increasing attention in view of their potential for helping to ensure safe plant operation. In this study, application of autoregressive moving-average (ARMA) time series modeling for monitoring temperature sensor response characteristrics is presented. The ARMA model is used to estimate the step and ramp response of the sensors and the related time constant and ramp delay time. The ARMA parameters are estimated by a two-stage algorithm in the spectral domain. Results of sensor testing for an operating pressurized water reactor are presented. 16 refs

  3. Quality Control Procedure Based on Partitioning of NMR Time Series

    Directory of Open Access Journals (Sweden)

    Michał Staniszewski

    2018-03-01

    Full Text Available The quality of the magnetic resonance spectroscopy (MRS depends on the stability of magnetic resonance (MR system performance and optimal hardware functioning, which ensure adequate levels of signal-to-noise ratios (SNR as well as good spectral resolution and minimal artifacts in the spectral data. MRS quality control (QC protocols and methodologies are based on phantom measurements that are repeated regularly. In this work, a signal partitioning algorithm based on a dynamic programming (DP method for QC assessment of the spectral data is described. The proposed algorithm allows detection of the change points—the abrupt variations in the time series data. The proposed QC method was tested using the simulated and real phantom data. Simulated data were randomly generated time series distorted by white noise. The real data were taken from the phantom quality control studies of the MRS scanner collected for four and a half years and analyzed by LCModel software. Along with the proposed algorithm, performance of various literature methods was evaluated for the predefined number of change points based on the error values calculated by subtracting the mean values calculated for the periods between the change-points from the original data points. The time series were checked using external software, a set of external methods and the proposed tool, and the obtained results were comparable. The application of dynamic programming in the analysis of the phantom MRS data is a novel approach to QC. The obtained results confirm that the presented change-point-detection tool can be used either for independent analysis of MRS time series (or any other or as a part of quality control.

  4. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2016-01-01

    (ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  5. Appropriate use of the increment entropy for electrophysiological time series.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xue; Zhou, Xu; Jiang, Aimin

    2018-04-01

    The increment entropy (IncrEn) is a new measure for quantifying the complexity of a time series. There are three critical parameters in the IncrEn calculation: N (length of the time series), m (dimensionality), and q (quantifying precision). However, the question of how to choose the most appropriate combination of IncrEn parameters for short datasets has not been extensively explored. The purpose of this research was to provide guidance on choosing suitable IncrEn parameters for short datasets by exploring the effects of varying the parameter values. We used simulated data, epileptic EEG data and cardiac interbeat (RR) data to investigate the effects of the parameters on the calculated IncrEn values. The results reveal that IncrEn is sensitive to changes in m, q and N for short datasets (N≤500). However, IncrEn reaches stability at a data length of N=1000 with m=2 and q=2, and for short datasets (N=100), it shows better relative consistency with 2≤m≤6 and 2≤q≤8 We suggest that the value of N should be no less than 100. To enable a clear distinction between different classes based on IncrEn, we recommend that m and q should take values between 2 and 4. With appropriate parameters, IncrEn enables the effective detection of complexity variations in physiological time series, suggesting that IncrEn should be useful for the analysis of physiological time series in clinical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Which DTW Method Applied to Marine Univariate Time Series Imputation

    OpenAIRE

    Phan , Thi-Thu-Hong; Caillault , Émilie; Lefebvre , Alain; Bigand , André

    2017-01-01

    International audience; Missing data are ubiquitous in any domains of applied sciences. Processing datasets containing missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Therefore, the aim of this paper is to build a framework for filling missing values in univariate time series and to perform a comparison of different similarity metrics used for the imputation task. This allows to suggest the most suitable methods for the imp...

  7. Analyses of GIMMS NDVI Time Series in Kogi State, Nigeria

    Science.gov (United States)

    Palka, Jessica; Wessollek, Christine; Karrasch, Pierre

    2017-10-01

    The value of remote sensing data is particularly evident where an areal monitoring is needed to provide information on the earth's surface development. The use of temporal high resolution time series data allows for detecting short-term changes. In Kogi State in Nigeria different vegetation types can be found. As the major population in this region is living in rural communities with crop farming the existing vegetation is slowly being altered. The expansion of agricultural land causes loss of natural vegetation, especially in the regions close to the rivers which are suitable for crop production. With regard to these facts, two questions can be dealt with covering different aspects of the development of vegetation in the Kogi state, the determination and evaluation of the general development of the vegetation in the study area (trend estimation) and analyses on a short-term behavior of vegetation conditions, which can provide information about seasonal effects in vegetation development. For this purpose, the GIMMS-NDVI data set, provided by the NOAA, provides information on the normalized difference vegetation index (NDVI) in a geometric resolution of approx. 8 km. The temporal resolution of 15 days allows the already described analyses. For the presented analysis data for the period 1981-2012 (31 years) were used. The implemented workflow mainly applies methods of time series analysis. The results show that in addition to the classical seasonal development, artefacts of different vegetation periods (several NDVI maxima) can be found in the data. The trend component of the time series shows a consistently positive development in the entire study area considering the full investigation period of 31 years. However, the results also show that this development has not been continuous and a simple linear modeling of the NDVI increase is only possible to a limited extent. For this reason, the trend modeling was extended by procedures for detecting structural breaks in

  8. Identification of neutral biochemical network models from time series data

    Directory of Open Access Journals (Sweden)

    Maia Marco

    2009-05-01

    Full Text Available Abstract Background The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. Results In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. Conclusion The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.

  9. Identification of neutral biochemical network models from time series data.

    Science.gov (United States)

    Vilela, Marco; Vinga, Susana; Maia, Marco A Grivet Mattoso; Voit, Eberhard O; Almeida, Jonas S

    2009-05-05

    The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.

  10. Generation and prediction of time series by a neural network

    International Nuclear Information System (INIS)

    Eisenstein, E.; Kanter, I.; Kessler, D.A.; Kinzel, W.

    1995-01-01

    Generation and prediction of time series are analyzed for the case of a bit generator: a perceptron where in each time step the input units are shifted one bit to the right with the state of the leftmost input unit set equal to the output unit in the previous time step. The long-time dynamical behavior of the bit generator consists of cycles whose typical period scales polynomially with the size of the network and whose spatial structure is periodic with a typical finite wavelength. The generalization error on a cycle is zero for a finite training set, and global dynamical behaviors can also be learned in a finite time. Hence, a projection of a rule can be learned in a finite time

  11. Comparison of correlation analysis techniques for irregularly sampled time series

    Directory of Open Access Journals (Sweden)

    K. Rehfeld

    2011-06-01

    Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.

    All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.

    We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.

  12. Acute ischaemic stroke prediction from physiological time series patterns

    Directory of Open Access Journals (Sweden)

    Qing Zhang,

    2013-05-01

    Full Text Available BackgroundStroke is one of the major diseases with human mortality. Recent clinical research has indicated that early changes in common physiological variables represent a potential therapeutic target, thus the manipulation of these variables may eventually yield an effective way to optimise stroke recovery.AimsWe examined correlations between physiological parameters of patients during the first 48 hours after a stroke, and their stroke outcomes after 3 months. We wanted to discover physiological determinants that could be used to improve health outcomes by supporting the medical decisions that need to be made early on a patient’s stroke experience.Method We applied regression-based machine learning techniques to build a prediction algorithm that can forecast 3-month outcomes from initial physiological time series data during the first 48 hours after stroke. In our method, not only did we use statistical characteristics as traditional prediction features, but also we adopted trend patterns of time series data as new key features.ResultsWe tested our prediction method on a real physiological data set of stroke patients. The experiment results revealed an average high precision rate: 90%. We also tested prediction methods only considering statistical characteristics of physiological data, and concluded an average precision rate: 71%.ConclusionWe demonstrated that using trend pattern features in prediction methods improved the accuracy of stroke outcome prediction. Therefore, trend patterns of physiological time series data have an important role in the early treatment of patients with acute ischaemic stroke.

  13. Time series analysis for psychological research: examining and forecasting change.

    Science.gov (United States)

    Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials.

  14. Toward automatic time-series forecasting using neural networks.

    Science.gov (United States)

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  15. Modeling financial time series with S-plus

    CERN Document Server

    Zivot, Eric

    2003-01-01

    The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics This is the first book to show the power of S-PLUS for the analysis of time series data It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department at the University of Washington, and is co-director of the nascent Professional Master's Program in Computational Finance He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the He...

  16. Time series analysis for psychological research: examining and forecasting change

    Science.gov (United States)

    Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341

  17. Reconstruction of network topology using status-time-series data

    Science.gov (United States)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  18. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    Science.gov (United States)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  19. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  20. Cross-sample entropy of foreign exchange time series

    Science.gov (United States)

    Liu, Li-Zhi; Qian, Xi-Yuan; Lu, Heng-Yao

    2010-11-01

    The correlation of foreign exchange rates in currency markets is investigated based on the empirical data of DKK/USD, NOK/USD, CAD/USD, JPY/USD, KRW/USD, SGD/USD, THB/USD and TWD/USD for a period from 1995 to 2002. Cross-SampEn (cross-sample entropy) method is used to compare the returns of every two exchange rate time series to assess their degree of asynchrony. The calculation method of confidence interval of SampEn is extended and applied to cross-SampEn. The cross-SampEn and its confidence interval for every two of the exchange rate time series in periods 1995-1998 (before the Asian currency crisis) and 1999-2002 (after the Asian currency crisis) are calculated. The results show that the cross-SampEn of every two of these exchange rates becomes higher after the Asian currency crisis, indicating a higher asynchrony between the exchange rates. Especially for Singapore, Thailand and Taiwan, the cross-SampEn values after the Asian currency crisis are significantly higher than those before the Asian currency crisis. Comparison with the correlation coefficient shows that cross-SampEn is superior to describe the correlation between time series.

  1. Water temperature forecasting and estimation using fourier series and communication theory techniques

    International Nuclear Information System (INIS)

    Long, L.L.

    1976-01-01

    Fourier series and statistical communication theory techniques are utilized in the estimation of river water temperature increases caused by external thermal inputs. An example estimate assuming a constant thermal input is demonstrated. A regression fit of the Fourier series approximation of temperature is then used to forecast daily average water temperatures. Also, a 60-day prediction of daily average water temperature is made with the aid of the Fourier regression fit by using significant Fourier components

  2. Earthquake forecasting studies using radon time series data in Taiwan

    Science.gov (United States)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  3. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  4. Forecasting long memory time series under a break in persistence

    DEFF Research Database (Denmark)

    Heinen, Florian; Sibbertsen, Philipp; Kruse, Robinson

    We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength...... of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines...

  5. Extracting the relevant delays in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    selection, and more precisely stepwise forward selection. The method is compared to other forward selection schemes, as well as to a nonparametric tests aimed at estimating the embedding dimension of time series. The final application extends these results to the efficient estimation of FIR filters on some......In this contribution, we suggest a convenient way to use generalisation error to extract the relevant delays from a time-varying process, i.e. the delays that lead to the best prediction performance. We design a generalisation-based algorithm that takes its inspiration from traditional variable...

  6. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  7. Deriving crop calendar using NDVI time-series

    Science.gov (United States)

    Patel, J. H.; Oza, M. P.

    2014-11-01

    Agricultural intensification is defined in terms as cropping intensity, which is the numbers of crops (single, double and triple) per year in a unit cropland area. Information about crop calendar (i.e. number of crops in a parcel of land and their planting & harvesting dates and date of peak vegetative stage) is essential for proper management of agriculture. Remote sensing sensors provide a regular, consistent and reliable measurement of vegetation response at various growth stages of crop. Therefore it is ideally suited for monitoring purpose. The spectral response of vegetation, as measured by the Normalized Difference Vegetation Index (NDVI) and its profiles, can provide a new dimension for describing vegetation growth cycle. The analysis based on values of NDVI at regular time interval provides useful information about various crop growth stages and performance of crop in a season. However, the NDVI data series has considerable amount of local fluctuation in time domain and needs to be smoothed so that dominant seasonal behavior is enhanced. Based on temporal analysis of smoothed NDVI series, it is possible to extract number of crop cycles per year and their crop calendar. In the present study, a methodology is developed to extract key elements of crop growth cycle (i.e. number of crops per year and their planting - peak - harvesting dates). This is illustrated by analysing MODIS-NDVI data series of one agricultural year (from June 2012 to May 2013) over Gujarat. Such an analysis is very useful for analysing dynamics of kharif and rabi crops.

  8. Linear and nonlinear dynamic systems in financial time series prediction

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  9. STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D. [Space Science and Astrobiology Division, MS 245-3, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Norris, Jay P. [Physics Department, Boise State University, 2110 University Drive, Boise, ID 83725-1570 (United States); Jackson, Brad [The Center for Applied Mathematics and Computer Science, Department of Mathematics, San Jose State University, One Washington Square, MH 308, San Jose, CA 95192-0103 (United States); Chiang, James, E-mail: jeffrey.d.scargle@nasa.gov [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2013-02-20

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.

  10. Assessing Coupling Dynamics from an Ensemble of Time Series

    Directory of Open Access Journals (Sweden)

    Germán Gómez-Herrero

    2015-04-01

    Full Text Available Finding interdependency relations between time series provides valuable knowledge about the processes that generated the signals. Information theory sets a natural framework for important classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be partly alleviated when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy and their conditional counterparts, which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data generated by coupled electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of the coupling between different subsystems.

  11. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    Science.gov (United States)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.

  12. STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS

    International Nuclear Information System (INIS)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it—an improved and generalized version of Bayesian Blocks—that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.

  13. Time-Series Analysis of Supergranule Characterstics at Solar Minimum

    Science.gov (United States)

    Williams, Peter E.; Pesnell, W. Dean

    2013-01-01

    Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.

  14. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  15. Time series analysis of the behavior of brazilian natural rubber

    Directory of Open Access Journals (Sweden)

    Antônio Donizette de Oliveira

    2009-03-01

    Full Text Available The natural rubber is a non-wood product obtained of the coagulation of some lattices of forest species, being Hevea brasiliensis the main one. Native from the Amazon Region, this species was already known by the Indians before the discovery of America. The natural rubber became a product globally valued due to its multiple applications in the economy, being its almost perfect substitute the synthetic rubber derived from the petroleum. Similarly to what happens with other countless products the forecast of future prices of the natural rubber has been object of many studies. The use of models of forecast of univariate timeseries stands out as the more accurate and useful to reduce the uncertainty in the economic decision making process. This studyanalyzed the historical series of prices of the Brazilian natural rubber (R$/kg, in the Jan/99 - Jun/2006 period, in order tocharacterize the rubber price behavior in the domestic market; estimated a model for the time series of monthly natural rubberprices; and foresaw the domestic prices of the natural rubber, in the Jul/2006 - Jun/2007 period, based on the estimated models.The studied models were the ones belonging to the ARIMA family. The main results were: the domestic market of the natural rubberis expanding due to the growth of the world economy; among the adjusted models, the ARIMA (1,1,1 model provided the bestadjustment of the time series of prices of the natural rubber (R$/kg; the prognosis accomplished for the series supplied statistically adequate fittings.

  16. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  17. Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales

    Science.gov (United States)

    Razavi, Saman; Vogel, Richard

    2018-02-01

    Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.

  18. Monitoring Forest Regrowth Using a Multi-Platform Time Series

    Science.gov (United States)

    Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Gillespie, Alan R.; Tucker, Compton J.

    1996-01-01

    Over the past 50 years, the forests of western Washington and Oregon have been extensively harvested for timber. This has resulted in a heterogeneous mosaic of remaining mature forests, clear-cuts, new plantations, and second-growth stands that now occur in areas that formerly were dominated by extensive old-growth forests and younger forests resulting from fire disturbance. Traditionally, determination of seral stage and stand condition have been made using aerial photography and spot field observations, a methodology that is not only time- and resource-intensive, but falls short of providing current information on a regional scale. These limitations may be solved, in part, through the use of multispectral images which can cover large areas at spatial resolutions in the order of tens of meters. The use of multiple images comprising a time series potentially can be used to monitor land use (e.g. cutting and replanting), and to observe natural processes such as regeneration, maturation and phenologic change. These processes are more likely to be spectrally observed in a time series composed of images taken during different seasons over a long period of time. Therefore, for many areas, it may be necessary to use a variety of images taken with different imaging systems. A common framework for interpretation is needed that reduces topographic, atmospheric, instrumental, effects as well as differences in lighting geometry between images. The present state of remote-sensing technology in general use does not realize the full potential of the multispectral data in areas of high topographic relief. For example, the primary method for analyzing images of forested landscapes in the Northwest has been with statistical classifiers (e.g. parallelepiped, nearest-neighbor, maximum likelihood, etc.), often applied to uncalibrated multispectral data. Although this approach has produced useful information from individual images in some areas, landcover classes defined by these

  19. State-space prediction model for chaotic time series

    Science.gov (United States)

    Alparslan, A. K.; Sayar, M.; Atilgan, A. R.

    1998-08-01

    A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.

  20. Discovering significant evolution patterns from satellite image time series.

    Science.gov (United States)

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  1. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  2. Weighted statistical parameters for irregularly sampled time series

    Science.gov (United States)

    Rimoldini, Lorenzo

    2014-01-01

    Unevenly spaced time series are common in astronomy because of the day-night cycle, weather conditions, dependence on the source position in the sky, allocated telescope time and corrupt measurements, for example, or inherent to the scanning law of satellites like Hipparcos and the forthcoming Gaia. Irregular sampling often causes clumps of measurements and gaps with no data which can severely disrupt the values of estimators. This paper aims at improving the accuracy of common statistical parameters when linear interpolation (in time or phase) can be considered an acceptable approximation of a deterministic signal. A pragmatic solution is formulated in terms of a simple weighting scheme, adapting to the sampling density and noise level, applicable to large data volumes at minimal computational cost. Tests on time series from the Hipparcos periodic catalogue led to significant improvements in the overall accuracy and precision of the estimators with respect to the unweighted counterparts and those weighted by inverse-squared uncertainties. Automated classification procedures employing statistical parameters weighted by the suggested scheme confirmed the benefits of the improved input attributes. The classification of eclipsing binaries, Mira, RR Lyrae, Delta Cephei and Alpha2 Canum Venaticorum stars employing exclusively weighted descriptive statistics achieved an overall accuracy of 92 per cent, about 6 per cent higher than with unweighted estimators.

  3. Detecting switching and intermittent causalities in time series

    Science.gov (United States)

    Zanin, Massimiliano; Papo, David

    2017-04-01

    During the last decade, complex network representations have emerged as a powerful instrument for describing the cross-talk between different brain regions both at rest and as subjects are carrying out cognitive tasks, in healthy brains and neurological pathologies. The transient nature of such cross-talk has nevertheless by and large been neglected, mainly due to the inherent limitations of some metrics, e.g., causality ones, which require a long time series in order to yield statistically significant results. Here, we present a methodology to account for intermittent causal coupling in neural activity, based on the identification of non-overlapping windows within the original time series in which the causality is strongest. The result is a less coarse-grained assessment of the time-varying properties of brain interactions, which can be used to create a high temporal resolution time-varying network. We apply the proposed methodology to the analysis of the brain activity of control subjects and alcoholic patients performing an image recognition task. Our results show that short-lived, intermittent, local-scale causality is better at discriminating both groups than global network metrics. These results highlight the importance of the transient nature of brain activity, at least under some pathological conditions.

  4. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  5. A Framework and Algorithms for Multivariate Time Series Analytics (MTSA): Learning, Monitoring, and Recommendation

    Science.gov (United States)

    Ngan, Chun-Kit

    2013-01-01

    Making decisions over multivariate time series is an important topic which has gained significant interest in the past decade. A time series is a sequence of data points which are measured and ordered over uniform time intervals. A multivariate time series is a set of multiple, related time series in a particular domain in which domain experts…

  6. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euá n, Carolina; Ombao, Hernando; Ortega, Joaquí n

    2018-01-01

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms

  7. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  8. Characterizability of metabolic pathway systems from time series data.

    Science.gov (United States)

    Voit, Eberhard O

    2013-12-01

    Over the past decade, the biomathematical community has devoted substantial effort to the complicated challenge of estimating parameter values for biological systems models. An even more difficult issue is the characterization of functional forms for the processes that govern these systems. Most parameter estimation approaches tacitly assume that these forms are known or can be assumed with some validity. However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation (DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically, DFE allows the characterization of fluxes within such systems through an analysis of metabolic time series data. Its main drawback is the fact that DFE can only directly be applied if the pathway system contains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes with independent kinetic information, which however is not always available. Employing Moore-Penrose pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific modeling framework and unaffected by noise in the experimental time series data. The results reveal whether any fluxes may be characterized and, if so, which subset is characterizable. They also help with the identification of fluxes that, if they could be determined independently, would allow the application of DFE. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. JTSA: an open source framework for time series abstractions.

    Science.gov (United States)

    Sacchi, Lucia; Capozzi, Davide; Bellazzi, Riccardo; Larizza, Cristiana

    2015-10-01

    The evaluation of the clinical status of a patient is frequently based on the temporal evolution of some parameters, making the detection of temporal patterns a priority in data analysis. Temporal abstraction (TA) is a methodology widely used in medical reasoning for summarizing and abstracting longitudinal data. This paper describes JTSA (Java Time Series Abstractor), a framework including a library of algorithms for time series preprocessing and abstraction and an engine to execute a workflow for temporal data processing. The JTSA framework is grounded on a comprehensive ontology that models temporal data processing both from the data storage and the abstraction computation perspective. The JTSA framework is designed to allow users to build their own analysis workflows by combining different algorithms. Thanks to the modular structure of a workflow, simple to highly complex patterns can be detected. The JTSA framework has been developed in Java 1.7 and is distributed under GPL as a jar file. JTSA provides: a collection of algorithms to perform temporal abstraction and preprocessing of time series, a framework for defining and executing data analysis workflows based on these algorithms, and a GUI for workflow prototyping and testing. The whole JTSA project relies on a formal model of the data types and of the algorithms included in the library. This model is the basis for the design and implementation of the software application. Taking into account this formalized structure, the user can easily extend the JTSA framework by adding new algorithms. Results are shown in the context of the EU project MOSAIC to extract relevant patterns from data coming related to the long term monitoring of diabetic patients. The proof that JTSA is a versatile tool to be adapted to different needs is given by its possible uses, both as a standalone tool for data summarization and as a module to be embedded into other architectures to select specific phenotypes based on TAs in a large

  10. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    Science.gov (United States)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  11. Time series analysis of brain regional volume by MR image

    International Nuclear Information System (INIS)

    Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)

  12. Artificial neural networks applied to forecasting time series.

    Science.gov (United States)

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  13. On the maximum-entropy/autoregressive modeling of time series

    Science.gov (United States)

    Chao, B. F.

    1984-01-01

    The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.

  14. Quantifying evolutionary dynamics from variant-frequency time series

    Science.gov (United States)

    Khatri, Bhavin S.

    2016-09-01

    From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.

  15. Exploratory joint and separate tracking of geographically related time series

    Science.gov (United States)

    Balasingam, Balakumar; Willett, Peter; Levchuk, Georgiy; Freeman, Jared

    2012-05-01

    Target tracking techniques have usually been applied to physical systems via radar, sonar or imaging modalities. But the same techniques - filtering, association, classification, track management - can be applied to nontraditional data such as one might find in other fields such as economics, business and national defense. In this paper we explore a particular data set. The measurements are time series collected at various sites; but other than that little is known about it. We shall refer to as the data as representing the Megawatt hour (MWH) output of various power plants located in Afghanistan. We pose such questions as: 1. Which power plants seem to have a common model? 2. Do any power plants change their models with time? 3. Can power plant behavior be predicted, and if so, how far to the future? 4. Are some of the power plants stochastically linked? That is, do we observed a lack of power demand at one power plant as implying a surfeit of demand elsewhere? The observations seem well modeled as hidden Markov. This HMM modeling is compared to other approaches; and tests are continued to other (albeit self-generated) data sets with similar characteristics. Keywords: Time-series analysis, hidden Markov models, statistical similarity, clustering weighted

  16. GPS time series at Campi Flegrei caldera (2000-2013

    Directory of Open Access Journals (Sweden)

    Prospero De Martino

    2014-05-01

    Full Text Available The Campi Flegrei caldera is an active volcanic system associated to a high volcanic risk, and represents a well known and peculiar example of ground deformations (bradyseism, characterized by intense uplift periods, followed by subsidence phases with some episodic superimposed mini-uplifts. Ground deformation is an important volcanic precursor, and, its continuous monitoring, is one of the main tool for short time forecast of eruptive activity. This paper provides an overview of the continuous GPS monitoring of the Campi Flegrei caldera from January 2000 to July 2013, including network operations, data recording and processing, and data products. In this period the GPS time series allowed continuous and accurate tracking of ground deformation of the area. Seven main uplift episodes were detected, and during each uplift period, the recurrent horizontal displacement pattern, radial from the “caldera center”, suggests no significant change in deformation source geometry and location occurs. The complete archive of GPS time series at Campi Flegrei area is reported in the Supplementary materials. These data can be usefull for the scientific community in improving the research on Campi Flegrei caldera dynamic and hazard assessment.

  17. Estimation of dynamic flux profiles from metabolic time series data

    Directory of Open Access Journals (Sweden)

    Chou I-Chun

    2012-07-01

    Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of

  18. Chaotic time series analysis in economics: Balance and perspectives

    International Nuclear Information System (INIS)

    Faggini, Marisa

    2014-01-01

    The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area

  19. Ensemble Deep Learning for Biomedical Time Series Classification

    Directory of Open Access Journals (Sweden)

    Lin-peng Jin

    2016-01-01

    Full Text Available Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed for biomedical time series classification. Finally, we validate its effectiveness on the Chinese Cardiovascular Disease Database containing a large number of electrocardiogram recordings. The experimental results show that the proposed method has certain advantages compared to some well-known ensemble methods, such as Bagging and AdaBoost.

  20. ALBEDO PATTERN RECOGNITION AND TIME-SERIES ANALYSES IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    S. A. Salleh

    2012-07-01

    Full Text Available Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000–2009 MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools. There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI and aerosol optical depth (AOD. There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high

  1. Disease management with ARIMA model in time series.

    Science.gov (United States)

    Sato, Renato Cesar

    2013-01-01

    The evaluation of infectious and noninfectious disease management can be done through the use of a time series analysis. In this study, we expect to measure the results and prevent intervention effects on the disease. Clinical studies have benefited from the use of these techniques, particularly for the wide applicability of the ARIMA model. This study briefly presents the process of using the ARIMA model. This analytical tool offers a great contribution for researchers and healthcare managers in the evaluation of healthcare interventions in specific populations.

  2. A Suspicious Action Detection System Considering Time Series

    Science.gov (United States)

    Kozuka, Noriaki; Kimura, Koji; Hagiwara, Masafumi

    The paper proposes a new system that can detect suspicious actions such as a car break-in and surroundings in an open space parking, based on image processing. The proposed system focuses on three points of “order”, “time”, and “location” of human actions. The proposed system has the following features: it 1) deals time series data flow, 2) estimates human actions and the location, 3) extracts suspicious action detection rules automatically, 4) detects suspicious actions using the suspicious score. We carried out experiments using real image sequences. As a result, we obtained about 7.8% higher estimation rate than the conventional system.

  3. Real coded genetic algorithm for fuzzy time series prediction

    Science.gov (United States)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  4. Quality Quandaries- Time Series Model Selection and Parsimony

    DEFF Research Database (Denmark)

    Bisgaard, Søren; Kulahci, Murat

    2009-01-01

    Some of the issues involved in selecting adequate models for time series data are discussed using an example concerning the number of users of an Internet server. The process of selecting an appropriate model is subjective and requires experience and judgment. The authors believe an important...... consideration in model selection should be parameter parsimony. They favor the use of parsimonious mixed ARMA models, noting that research has shown that a model building strategy that considers only autoregressive representations will lead to non-parsimonious models and to loss of forecasting accuracy....

  5. Chaotic time series analysis in economics: Balance and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faggini, Marisa, E-mail: mfaggini@unisa.it [Dipartimento di Scienze Economiche e Statistiche, Università di Salerno, Fisciano 84084 (Italy)

    2014-12-15

    The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area.

  6. SaaS Platform for Time Series Data Handling

    Science.gov (United States)

    Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail

    2018-02-01

    The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.

  7. Time series ARIMA models for daily price of palm oil

    Science.gov (United States)

    Ariff, Noratiqah Mohd; Zamhawari, Nor Hashimah; Bakar, Mohd Aftar Abu

    2015-02-01

    Palm oil is deemed as one of the most important commodity that forms the economic backbone of Malaysia. Modeling and forecasting the daily price of palm oil is of great interest for Malaysia's economic growth. In this study, time series ARIMA models are used to fit the daily price of palm oil. The Akaike Infromation Criterion (AIC), Akaike Infromation Criterion with a correction for finite sample sizes (AICc) and Bayesian Information Criterion (BIC) are used to compare between different ARIMA models being considered. It is found that ARIMA(1,2,1) model is suitable for daily price of crude palm oil in Malaysia for the year 2010 to 2012.

  8. Real Rainfall Time Series for Storm Sewer Design

    DEFF Research Database (Denmark)

    Larsen, Torben

    The paper describes a simulation method for the design of retention storages, overflows etc. in storm sewer systems. The method is based on computer simulation with real rainfall time series as input ans with the aply of a simple transfer model of the ARMA-type (autoregressiv moving average model......) as the model of the storm sewer system. The output of the simulation is the frequency distribution of the peak flow, overflow volume etc. from the overflow or retention storage. The parameters in the transfer model is found either from rainfall/runoff measurements in the catchment or from one or a few...

  9. Detecting and characterising ramp events in wind power time series

    International Nuclear Information System (INIS)

    Gallego, Cristóbal; Cuerva, Álvaro; Costa, Alexandre

    2014-01-01

    In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain

  10. Centrality measures in temporal networks with time series analysis

    Science.gov (United States)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  11. High-resolution (noble) gas time series for aquatic research

    Science.gov (United States)

    Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.

    2017-12-01

    We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b

  12. Application of Time Series Analysis in Determination of Lag Time in Jahanbin Basin

    Directory of Open Access Journals (Sweden)

    Seied Yahya Mirzaee

    2005-11-01

        One of the important issues that have significant role in study of hydrology of basin is determination of lag time. Lag time has significant role in hydrological studies. Quantity of rainfall related lag time depends on several factors, such as permeability, vegetation cover, catchments slope, rainfall intensity, storm duration and type of rain. Determination of lag time is important parameter in many projects such as dam design and also water resource studies. Lag time of basin could be calculated using various methods. One of these methods is time series analysis of spectral density. The analysis is based on fouries series. The time series is approximated with Sinuous and Cosines functions. In this method harmonically significant quantities with individual frequencies are presented. Spectral density under multiple time series could be used to obtain basin lag time for annual runoff and short-term rainfall fluctuation. A long lag time could be due to snowmelt as well as melting ice due to rainfalls in freezing days. In this research the lag time of Jahanbin basin has been determined using spectral density method. The catchments is subjected to both rainfall and snowfall. For short term rainfall fluctuation with a return period  2, 3, 4 months, the lag times were found 0.18, 0.5 and 0.083 month, respectively.

  13. Feasibility of real-time calculation of correlation integral derived statistics applied to EGG time series

    NARCIS (Netherlands)

    van den Broek, PLC; van Egmond, J; van Rijn, CM; Takens, F; Coenen, AML; Booij, LHDJ

    2005-01-01

    Background: This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online

  14. Feasibility of real-time calculation of correlation integral derived statistics applied to EEG time series

    NARCIS (Netherlands)

    Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Takens, F.; Coenen, A.M.L.; Booij, L.H.D.J.

    2005-01-01

    This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)-derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online calculation of

  15. Wavelet based correlation coefficient of time series of Saudi Meteorological Data

    International Nuclear Information System (INIS)

    Rehman, S.; Siddiqi, A.H.

    2009-01-01

    In this paper, wavelet concepts are used to study a correlation between pairs of time series of meteorological parameters such as pressure, temperature, rainfall, relative humidity and wind speed. The study utilized the daily average values of meteorological parameters of nine meteorological stations of Saudi Arabia located at different strategic locations. The data used in this study cover a period of 16 years between 1990 and 2005. Besides obtaining wavelet spectra, we also computed the wavelet correlation coefficients between two same parameters from two different locations and show that strong correlation or strong anti-correlation depends on scale. The cross-correlation coefficients of meteorological parameters between two stations were also calculated using statistical function. For coastal to costal pair of stations, pressure time series was found to be strongly correlated. In general, the temperature data were found to be strongly correlated for all pairs of stations and the rainfall data the least.

  16. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Maturilli

    2013-04-01

    Full Text Available A consistent meteorological dataset of the Arctic site Ny-Ålesund (11.9° E, 78.9° N spanning the 18 yr-period 1 August 1993 to 31 July 2011 is presented. Instrumentation and data handling of temperature, humidity, wind and pressure measurements are described in detail. Monthly mean values are shown for all years to illustrate the interannual variability of the different parameters. Climatological mean values are given for temperature, humidity and pressure. From the climatological dataset, we also present the time series of annual mean temperature and humidity, revealing a temperature increase of +1.35 K per decade and an increase in water vapor mixing ratio of +0.22 g kg−1 per decade for the given time period, respectively. With the continuation of the presented measurements, the Ny-Ålesund high resolution time series will provide a reliable source to monitor Arctic change and retrieve trends in the future. The relevant data are provided in high temporal resolution as averages over 5 (1 min before (after 14 July 1998, respectively, placed on the PANGAEA repository (doi:10.1594/PANGAEA.793046. While 6 hourly synoptic observations in Ny-Ålesund by the Norwegian Meteorological Institute reach back to 1974 (Førland et al., 2011, the meteorological data presented here cover a shorter time period, but their high temporal resolution will be of value for atmospheric process studies on shorter time scales.

  17. Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    We address the challenge of classifying financial time series via a newly proposed multiscale symbolic phase transfer entropy (MSPTE). Using MSPTE method, we succeed to quantify the strength and direction of information flow between financial systems and classify financial time series, which are the stock indices from Europe, America and China during the period from 2006 to 2016 and the stocks of banking, aviation industry and pharmacy during the period from 2007 to 2016, simultaneously. The MSPTE analysis shows that the value of symbolic phase transfer entropy (SPTE) among stocks decreases with the increasing scale factor. It is demonstrated that MSPTE method can well divide stocks into groups by areas and industries. In addition, it can be concluded that the MSPTE analysis quantify the similarity among the stock markets. The symbolic phase transfer entropy (SPTE) between the two stocks from the same area is far less than the SPTE between stocks from different areas. The results also indicate that four stocks from America and Europe have relatively high degree of similarity and the stocks of banking and pharmaceutical industry have higher similarity for CA. It is worth mentioning that the pharmaceutical industry has weaker particular market mechanism than banking and aviation industry.

  18. Hybrid perturbation methods based on statistical time series models

    Science.gov (United States)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  19. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2013-07-01

    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  20. Time series modelling and forecasting of emergency department overcrowding.

    Science.gov (United States)

    Kadri, Farid; Harrou, Fouzi; Chaabane, Sondès; Tahon, Christian

    2014-09-01

    Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.