WorldWideScience

Sample records for temperature thermomechanical treatment

  1. Effect of low-temperature thermomechanical treatment on mechanical properties of low-alloying molybdenum alloys with carbide hardening

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Veller, M.V.

    1978-01-01

    Presented are results of testing low-temperature thermomechanical treatment of low-alloying molybdenum alloys, including quenching from 2100 deg C, 40% deformation by hydroextrusion and aging at the temperature of 1200-1400 deg C. Tensile tests at room temperature with the following processing of results have shown that low-temperature thermomechanical treatment of low-alloying molybdenum alloys of Mo-Zr-C and Mo-Zr-Nb-C systems leads to a significant increase in low-temperature mechanical properties (strength properties - by 30-35%, ductility - by 30-40%) as compared with conventional heat treatment (aging after quenching). The treatment proposed increases resistance to small, as well as large plastic deformations, and leads to a simultaneous rise of strength and plastic properties at all stages of tensile test. Alloying of the Mo-Zr-C system with niobium increases both strength and plastic characteristics as compared with alloys without niobium when testing samples, subjected to low temperature thermomechanical treatment and conventional heat treatment at room temperature

  2. Nitrogen-containing steels and thermomechanical treatment

    International Nuclear Information System (INIS)

    Kaputkina, L.; Prokoshkina, V.G.; Svyazhin, G.

    2004-01-01

    The strengthening of nitrogen-containing corrosion-resistant steels resulting from alloying and thermomechanical treatment have been investigated using X-ray diffraction analysis, light microscopy, hardness measurements and tensile testing. Combined data have been obtained for nitrogen interaction with alloying elements , peculiarities of deformed structure and short-range of nitrogen-containing steels of various structural classes. The higher nitrogen and total alloying element contents, the higher deformation strengthening. Prospects of use the steels with not high nitrogen content and methods of their thermomechanical strengthening are shown. High temperature thermomechanical treatment (HTMT) is very effective for obtaining high and thermally stable constructional strength of nitrogen-containing steels of all classes. The HTMT is most effective if used in a combination with dispersion hardening for aging steels or in the case of mechanically unstable austenitic steels. (author)

  3. Strengthening of stable Cr-Ni austenitic stainless steel under thermomechanical treatments

    Science.gov (United States)

    Akkuzin, S. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.

    2017-12-01

    The features of microstructure and mechanical properties of stable austenitic steel after thermomechanical treatment consisted of low-temperature deformation, deformation in the temperature range T = 273-873 K, and subsequent annealing were investigated. It is shown that under such treatment direct (γ → α')- and reverse (α'→γ)-martensitic transformations occur in the steel. As a result of the thermomechanical treatment submicrocrystalline structural states with high density of micro- and nanotwins and localized deformation bands are formed. The strength of the steel in these structural states is several times higher than that in the initial state.

  4. Structural mechanisms of high-temperature shape changes in titanium-nickel alloys after low-temperature thermomechanical treatment

    International Nuclear Information System (INIS)

    Prokoshkin, S.D.; Turenne, S.; Khmelevskaya, I.Yu.; Brailovski, V.; Trochu, F.

    2000-01-01

    High-Temperature Shape Memory Effect (HTSME) in Ti-Ni alloys and corresponding structural and internal stress changes were studied using dilatometry, in situ electron microscope and X-ray diffractometry. The HTSME induced by the Low Temperature Thermomechanical Treatment (LTMT) consists of two stages. The temperature range of the first stage is limited to 250 o C, while the second stage extends to 400-500 o C. The first stage is caused by the oriented reverse martensite transformation. The heterogeneous residual stress field causes a different thermal stability for the different martensite orientations. During the reverse transformation an anisotropic shift of martensite and austenite X-ray lines is observed that can be due to a relaxation of the orientated stresses and to changes in the martensite lattice. The second stage of HTSME is caused by internal stress relaxation during recovery and polygonization of austenite that are not typical shape memory mechanisms. The possible reasons for the martensite stabilization induced by LTMT will be discussed. (author)

  5. Thermomechanical treatment of titanium alloys

    International Nuclear Information System (INIS)

    Khorev, A.K.

    1979-01-01

    The problems of the theory and practical application of thermomechanical treatment of titanium alloys are presented. On the basis of the systematic investigations developed are the methods of thermomechanical treatment of titanium alloys, established are the optimum procedures and produced are the bases of their industrial application with an account of alloy technological peculiarities and the procedure efficiency. It is found that those strengthening methods are more efficient at which the contribution of dispersion hardening prevails over the strengthening by phase hardening

  6. Effect of High-Temperature Thermomechanical Treatment on the Brittle Fracture of Low-Carbon Steel

    Science.gov (United States)

    Smirnov, M. A.; Pyshmintsev, I. Yu.; Varnak, O. V.; Mal'tseva, A. N.

    2018-02-01

    The effect of high-temperature thermomechanical treatment (HTMT) on the brittleness connected with deformation-induced aging and on the reversible temper brittleness of a low-carbon tube steel with a ferrite-bainite structure has been studied. When conducting an HTMT of a low-alloy steel, changes should be taken into account in the amount of ferrite in its structure and relationships between the volume fractions of the lath and the acicular bainite. It has been established that steel subjected to HTMT undergoes transcrystalline embrittlement upon deformation aging. At the same time, HTMT, which suppresses intercrystalline fracture, leads to a weakening of the development of reversible temper brittleness.

  7. Improvement of high-temperature thermomechanical treatment of the rolled section made of VT3-1 alloy

    International Nuclear Information System (INIS)

    Gavze, A.L.; Korostelev, Yu.P.

    2002-01-01

    Changes in mechanical properties and structure are investigated in alloy VT3-1 rods produced with the use of high temperature thermomechanical treatment (HTMT) on their heating and deformation during straightening as well as during preliminary hot deformation of the billets on a helical rolling mill (HRM). It is stated that the straightening at 550-700 deg C with elongation of ∼ 2% results in some decrease of ultimate strength and in essential enhancement of plasticity and impact strength. In a similar manner, preliminary rolling on HRM affects the properties of rods after final heat treatment. It is shown that rod production according to the experimental processing procedure increases the quality of the rods and can be realized when manufacturing rolled products of alloy VT3-1 with the use of HTMT [ru

  8. Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings

    Science.gov (United States)

    Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.

    2018-05-01

    Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.

  9. On-chip detection of gel transition temperature using a novel micro-thermomechanical method.

    Directory of Open Access Journals (Sweden)

    Tsenguun Byambadorj

    Full Text Available We present a new thermomechanical method and a platform to measure the phase transition temperature at microscale. A thin film metal sensor on a membrane simultaneously measures both temperature and mechanical strain of the sample during heating and cooling cycles. This thermomechanical principle of operation is described in detail. Physical hydrogel samples are prepared as a disc-shaped gels (200 μm thick and 1 mm diameter and placed between an on-chip heater and sensor devices. The sol-gel transition temperature of gelatin solution at various concentrations, used as a model physical hydrogel, shows less than 3% deviation from in-depth rheological results. The developed thermomechanical methodology is promising for precise characterization of phase transition temperature of thermogels at microscale.

  10. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  11. Influence of isothermal thermomechanical treatment on structure and properties of structural steels

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Kaletin, A.Yu.; Schastlivthev, V.M.; Kaletina, Yu.V.

    1997-01-01

    A study is made into the structure and mechanical properties of steel 35KhGSA and 37KhN3A after isothermal hardening resulting in bainitic structure formation as well as after low-temperature thermomechanical treatment (LTTMT) combining the plastic deformation at the temperature of bainitic transformation and subsequent isothermal hardening. It is shown that LTTMT permits and essential enhancement of strength properties in steel 35KhGSA, high plasticity and impact strength being reserved. This is associated with bainitic structure refinement. In steel 37KhN3A the process of carbide formation takes place along with bainitic transformation, and LTTMT results in lesser strengthening. LTTMT is fount to not practically affect the tendency of structural steels to bainitic brittleness. This treatment promotes some shift of brittleness manifestation to lower temperatures

  12. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    International Nuclear Information System (INIS)

    Nicholson, D E; Vaidyanathan, R; Padula II, S A; Noebe, R D; Benafan, O

    2014-01-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni 19.5 Ti 50.5 Pd 25 Pt 5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance. (paper)

  13. Research and Progress of Thermomechanical Treatment of Al-Li Alloys

    Directory of Open Access Journals (Sweden)

    WU Xiuliang

    2016-10-01

    Full Text Available The strengthening and toughening mechanism of aluminum lithium alloy treated by thermo-mechanical processing have been summarized, and the effect on the evolution of microstructures, grain structure and precipitation, were discussed and analysed deeply. The precipitation sequence and behavior of the main precipitation phase were modified by the thermo-mechanical processing, stimulating the forming of fine dispersion combined particles of δ',θ"/θ', T1, and S"/S' phases, uniformly distributed in the matrix, which significantly improved the relationships of strength and the plastic toughness, with the inhibiting of broadening of precipitate free zones, and of the precipitation and coarsening of strengthening particles at the grain boundary.The density of solute atom and vacancies significantly raised up after solution treating, and retained as supersaturated solid solution after water quenching, which acted as the driving force for the precipitation during subsequent aging. Pre-deformation and pre-aging significantly increased the density of fine dispersion strengthening particles of δ' and G.P. zones,which uniformly nucleated in the matrix, and the combined strengthening phases of δ',θ"/θ', and T1 were obtained after high temperature second aging, controlling the size and volume fraction of these particles.Refined grain and optimal grain structure were achieved by new and typical thermo-mechanical processing, and the proportion, size, and oriented relationship of main strengthening particles of δ',θ"/θ', and T1 phases were optimized.At last, the research direction of new thermo-mechanical treatment on the large scale rolled plates and hot worked forgings is pointed out, such as age forming, to meet the need of light high performance of new aluminum lithium alloys used for the large aircrafs and heavy lift launch vehicles.

  14. Influence of thermo-mechanical treatment on the tensile properties of a modified 14Cr–15Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Vijayanand, V.D., E-mail: vdvijayanand@igcar.gov.in; Laha, K.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.

    2014-10-15

    The titanium modified 14Cr–15Ni austenitic stainless steel is used as clad and wrapper material for fast breeder nuclear reactor. Thermo-mechanical treatments consisting of solution annealing at two different temperatures of 1273 and 1373 K followed by cold-work and thermal ageing have been imparted to the steel to tailor its microstructure for enhancing strength. Tensile tests have been carried out on the thermo-mechanically treated steel at nominal strain rate of 1.6 × 10{sup −4} s{sup −1} over a temperature range of 298–1073 K. The yield stress and the ultimate tensile strength of the steel increased with increase in solution treatment temperature and this has been attributed to the fine and higher density of Ti(C,N) precipitate. Tensile flow behaviour of the steel has been analysed using Ludwigson and Voce constitutive equations. The steel heat treated at higher solution temperature exhibited earlier onset of cross slip during tensile deformation. The rate of recovery at higher test temperatures was also influenced by variations in solution heat treatment temperature. In addition, dynamic recrystallization during tensile deformation at higher temperatures was profound for steel solution heat-treated at lower temperature. The differences in flow behaviour and softening mechanisms during tensile testing of the steel after different heat treated conditions have been attributed to the nature of Ti(C,N) precipitation.

  15. Influence of thermo-mechanical treatment on the tensile properties of a modified 14Cr–15Ni stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Laha, K.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.

    2014-01-01

    The titanium modified 14Cr–15Ni austenitic stainless steel is used as clad and wrapper material for fast breeder nuclear reactor. Thermo-mechanical treatments consisting of solution annealing at two different temperatures of 1273 and 1373 K followed by cold-work and thermal ageing have been imparted to the steel to tailor its microstructure for enhancing strength. Tensile tests have been carried out on the thermo-mechanically treated steel at nominal strain rate of 1.6 × 10 −4 s −1 over a temperature range of 298–1073 K. The yield stress and the ultimate tensile strength of the steel increased with increase in solution treatment temperature and this has been attributed to the fine and higher density of Ti(C,N) precipitate. Tensile flow behaviour of the steel has been analysed using Ludwigson and Voce constitutive equations. The steel heat treated at higher solution temperature exhibited earlier onset of cross slip during tensile deformation. The rate of recovery at higher test temperatures was also influenced by variations in solution heat treatment temperature. In addition, dynamic recrystallization during tensile deformation at higher temperatures was profound for steel solution heat-treated at lower temperature. The differences in flow behaviour and softening mechanisms during tensile testing of the steel after different heat treated conditions have been attributed to the nature of Ti(C,N) precipitation

  16. Dual-phase ULCB steels thermomechanically processed

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.

    2001-01-01

    The design philosophy of the processing of dual-phase (D-P) ultra low carbon steels (ULCB) by thermomechanical treatment has been briefly discussed. Modelling of the structure evolution during thermomechanical rolling of ULCB steel was based upon the established empirical equations for yield flow at different conditions of: deformation temperatures, strain rates and stresses for applied amount of deformation during hot deformation compression tests. The critical amount of deformation needed for the occurrence of dynamic or static recrystallization was determined. The dependence of grain refinement of the acicular bainitic and polygonal ferrite of the accelerated cooling and amount of stored energy of deformation in steel has been evaluated. Effect of the decreasing of the finishing temperature of thermomechanical processing on the increase of the impact toughness of dual-phase microstructure consisted of the bainitie-martensite islands in the ferrite matrix has been shown. The effect of ageing process after thermomechanical rolling of heavy plates on fracture toughness values of J 0.2 for ULCB-Ni steels has been established from cod tests measurements. New low cost technology of rolling of ULCB steels dual-phase is proposed. (author)

  17. Thermal and thermo-mechanical behavior of butyl based rubber exposed to silicon oil at elevated temperature

    International Nuclear Information System (INIS)

    Ali, S.; Ramzan, S.; Raza, R.; Ahmed, F.; Hussain, R.; Ullah, S.; Ali, S.

    2013-01-01

    Silica reinforced rubbers are used as chemical resistant seals at high temperature. In this study the effect of alkali and silicon oil on the thermal and thermo-mechanical properties of the silica reinforced butyl rubber exposed as an interface between two liquid media at elevated temperature is investigated. Rubber bladder containing alkaline solution was immersed in silicon oil at 195+-5 degree C for multiple cycles and loss in its thermal, thermo-mechanical and mechanical properties were studied by TGA, DMA and Tinius Olsen Testing Machine supported by FTIR and Optical microscopy. It was observed that the thermal and thermo-mechanical properties of butyl rubber were negatively affected due to leaching out of silica filler embedded in an organic matrix at elevated temperature. The thermal stability of exposed rubber was decreased around 200 degree C and the loss of storage modulus was observed up to 99.5% at -59 degree C. (author)

  18. Effect of thermo-mechanical treatments on creep and fatigue properties of 9% Cr martensitic steels

    International Nuclear Information System (INIS)

    Hollner, S.; Fournier, B.; Le Pendu, J.; Caes, C.; Tournie, I.; Pineau, A.

    2011-01-01

    In the framework of the development of Generation IV nuclear reactors and fusion nuclear reactors, materials with high mechanical properties up to 550 C are required. In service the materials will be subjected to high-temperature creep and cyclic loadings. 9-12%Cr martensitic steels are candidate materials for these applications; however, they show a pronounced cyclic softening effect under cyclic loadings. This softening effect is linked to the coarsening of the martensitic microstructure. In order to refine its microstructure and its precipitation state, the commercial P91 steel has been submitted to a thermo-mechanical treatment including warm-rolling at 600 C and a tempering stage at 700 C. Microstructural observations confirm that this thermo-mechanical treatment led to a finer martensite with smaller MX-type precipitates. This evolution has an effect on the high-temperature mechanical properties: the optimized P91 steel is 100 Hv harder than the as-received P91, and its yield strength is 430 MPa higher at 20 C and 220 MPa higher at 550 C. Its lifetime under creep (at 650 C under 120 MPa) is at least 14 times longer; and the fatigue test at 650 C under 0.7% strain shows a slightly slower cyclic softening effect for the optimized P91. (authors)

  19. Thermomechanical Treatments on High Strength Al-Zn-Mg(-Cu) Alloys

    National Research Council Canada - National Science Library

    Di Russo, E; Conserva, M; Gatto, F

    1974-01-01

    An investigation was carried out to determine the metallurgical properties of Al-Zn-Mg and Al-Zn-Mg-Cu alloy products processed according to newly developed Final Thermomechanical Treatments (FTMT) of T-AHA type...

  20. Model of mechanical properties change of steel during rolling with use of hightemperature thermomechanical treatment

    International Nuclear Information System (INIS)

    Zhadan, V.T.; Gubenko, V.T.; Bernshtejn, M.L.; Binarskij, M.S.

    1975-01-01

    A mathematical model is proposed of changes in the mechanical properties of the steel-50KHGA in the process of rolling with application of a high-temperature thermomechanical treatment (HTTMT). The model accounts for all the main particularities of the structure formation processes during a high temperature deformation of metals and alloys. The nonmonotonic dependence of the steel mechanical properties on the deformation velocity can be presented as a result of a summary effect of three parallel processes on the formation of these properties: hot working, softening and substructural hardening. The mathematical model has been constructed by the iteration method

  1. Microstructure development during thermomechanical treatment of Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    Martinova Z.

    2002-01-01

    Full Text Available The effect of natural aging and 95% cold deformation on the microstructure evolution and aging characteristics in commercial Al - 1 mass % Mg2Si alloy subjected to thermomechanical treatment (TMT was examined. Transmission electron microscopy observations, tensile tests and electrical conductivity measurements were carried out in order to correlate microstructural features to properties on each TMT step. It was established that pre-aging at room temperature affected the morphology of dislocation structure induced by next cold deformation. The observed transition from cellular to homogenous dislocation distribution was explained by the different stability of zones produced by pre-aging of different duration. Natural aging suppressed recovery processes during post-deformation artificial aging, especially after prolonged storage after quenching and at lower aging temperature. It influenced the morphology of precipitates produced by post deformation artificial aging also. The overall effect of TMT involving prior-deformation natural aging in the scheme, on hardness, tensile properties and electrical conductivity is discussed based on experimental microstruture observations.

  2. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  3. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  4. Improvement of the shape memory effect of a Fe-Mn-Cr-Si-Ni by original thermomechanical treatments

    International Nuclear Information System (INIS)

    Federzoni, L.; Guenin, G.; Mantel, M.

    1993-01-01

    Among the shape memory alloys, Fe-based have real perspectives of industrial development. However, to acquire a good shape memory effect, these alloys must undergo a thermomechanical treatment. For applcation perspective this treatment must be the simpliest as possible. In this paper, two types of treatment have been performed, based of the fact that : - the formation of the martensite ε, responsible for the shape memory effect, is sensitive to the microstructure - its reversibility is the best as possible if the austenite is previously hardened by a deformation at high temperature. (orig.)

  5. Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

    Science.gov (United States)

    Malikov, A. G.

    2017-12-01

    At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.

  6. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Mueller, P.; Spaetig, P.; Baluc, N.

    2011-01-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  7. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Mueller, P.; Spaetig, P.; Baluc, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-05-15

    The Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  8. Role of grain refinement in hardening of structural steels at preliminary thermomechanical treatment

    International Nuclear Information System (INIS)

    Bukhvalov, A.B.; Grigor'eva, E.V.; Davydova, L.S.; Degtyarev, M.V.; Levit, V.I.; Smirnova, N.A.; Smirnov, L.V.

    1981-01-01

    The hardening mechanism during preliminary thermomechanical treatment with deformation by cold rolling or hydroextrusion is studied on structural 37KhN3M1 and 38KhN3MFA steels. Specimens have been tested on static tension, impact strength and fracture toughness. It is shown that hydroextrusion application instead of rolling does not change the hardening effect of preliminary thermomechanical treatment (PTMT). It is established that the increase of preliminary deformation degree and the use of accelerated short term hardening heating provides a bett er grain refinement and the increase of PTMT hardening effect [ru

  9. EFFECT OF THERMO-MECHANICAL TREATMENT ON PROPERTIES OF PARICA PLYWOODS (Schizolobium amazonicum Huber ex Ducke

    Directory of Open Access Journals (Sweden)

    Mírian de Almeida Costa

    Full Text Available ABSTRACT Thermo-mechanical treatment is a technique for wood modification in which samples are densified by means of heat and mechanical compression, applied perpendicularly to fibers, which under different combinations of time, temperature, and pressure increases wood density and thus improve some of its properties. This study aimed to treat thermo-mechanically parica plywood and observe the effects on its physical and mechanical properties. Specimens were submitted to two treatments, 120 and 150 ºC, remaining under pressure for seven minutes and, subsequently, under zero pressure for 15 minutes. Results showed a significant increase in specific mass from 0.48 g cm-3 to an average of 0.56 g cm-3, and a compression ratio of about 31.7% on average. Physical properties also varied significantly and results showed that treated samples swelled and absorbed more water than those untreated, leading to a greater thickness non-return rate. This indicates the proposed thermal treatments did not release the internal compressive stress generated during panel pressing, not improving its dimensional stability as a result. On the other hand, mechanical properties were positively affected, leading to an increase of 27.5% and 51.8% in modulus of rupture after treatments at 120 and 150 ºC, respectively. Modulus of elasticity and glue-line shear strength did not vary statistically and Janka hardness was 29.7% higher after treatment at 150 ºC.

  10. Thermomechanical processing of Nb-1Zr-0.1C alloy for use in compact high temperature reactors: a first report

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Kapoor, R.; Suri, A.K.

    2011-08-01

    Nb-1Zr-0.1C is a potential material for use in high temperature nuclear reactors. Use of this alloy in components requires appropriate thermomechanical processing to break the cast microstructure and to obtain uniformly distributed fine stable precipitates so as to produce the desired mechanical properties at the high operating temperatures. This report reviews the thermomechanical processing of Nb-1Zr-0.1C alloy carried out over the years by other researchers and the high temperature creep behavior of the alloy. The hot deformation of Nb-1Zr-0.1C alloy carried out at Mechanical Metallurgy Division is also presented here. From this review it is evident that most primary hot working studies were carried out between 1500 to 1700 degC. The subsequent annealing treatments, which require holding at lower temperatures of about 1100 to 1300 degC for very long times help further transform the precipitates from coarse orthorhombic to very fine cubic. Our studies on Nb-1Zr-0.1C alloy also confirm that optimum hot working lies at temperatures beyond 1500 degC where dynamic recrystallization initiates, and optimally around 1700 degC where dynamic recrystallization transforms the microstructure. Working at temperatures lower than 1000 degC may lead to the undesirable effect of both micro as well as macro strain localization, and should be avoided. (author)

  11. Thermo-mechanical treatment of the Cr-Mo constructional steel plates with Nb, Ti and B additions

    International Nuclear Information System (INIS)

    Adamczyk, J.; Opiela, M.

    2002-01-01

    Results of investigations of the influence of parameters of thermomechanical treatment, carried out by rolling with controlled recrystallization, on the microstructure and mechanical properties of Cr-Mo constructional steel with Nb, Ti and B microadditions, destined for the manufacturing of weldable heavy plates, are presented. These plates show a yield point of over 960 MPa after heat treatment. Two variants of thermomechanical treatment were worked out, based on the obtained results of investigations, when rolling a plate 40 mm thick in several passes to a plate 15 mm thick in a temperature range from 1100 to 900 o C. It was found that the lack of complete recrystallization of the austenite in the first rolling variant, leads to localization of plastic deformation in form of shear bands. There exists a segregation of MC-type carbides and alloying elements in these bands, causing a distinctive reduction of the crack resistance of the steel, as also a disadvantageous anisotropy of plastic properties of plate after tempering. For plates rolled under the same conditions, using a retention shield, a nearly three times higher impact energy in - 40 o C was obtained, as also only a slight anisotropy of plastic properties, saving the required mechanical properties. (author)

  12. Thermomechanical treatment of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    A. A. Nofal

    2007-11-01

    Full Text Available The production of lightweight ferrous castings with increased strength properties became unavoidable facing the serious challenge of lighter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new route for production of thin-wall products. This work aims at studying the influence of thermomechanical treatment, either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after austempering. In the first part of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate of ausferrite formation and leading to a much finer and more homogeneous ausferrite product. The kinetics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on the strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively. A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel is added to ADI to increase hardenability of thick section castings, while ausforming to higher degrees of deformation is necessary to alleviate the deleterious effect of alloy segregation on ductility. In the second part of this work, the influence of cold rolling (CR on the mechanical properties and structural characteristics of ADI was investigated. The variation in properties was related to the amount of retained austenite (γr and its mechanically induced ransformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with tensile strain. The amount of retained austenite was found to

  13. Thermo-mechanical process for treatment of welds

    International Nuclear Information System (INIS)

    Malik, R.K.

    1980-03-01

    Benefits from thermo-mechanical processing (TMP) of austenitic stainless steel weldments, analogous to hot isostatic pressing (HIP) of castings, most likely result from compressive plastic deformation, enhanced diffusion, and/or increased dislocation density. TMP improves ultrasonic inspectability of austenitic stainless steel welds owing to: conversion of cast dendrites into equiaxed austenitic grains, reduction in size and number of stringers and inclusions, and reduction of delta ferrite content. TMP induces structural homogenization and healing of void-type defects and thus contributes to an increase in elongation, impact strength, and fracture toughness as well as a significant reduction in data scatter for these properties. An optimum temperature for TMP or HIP of welds is one which causes negligible grain growth and an acceptable reduction in yield strength, and permits healing of porosity

  14. Influence of initial thermomechanical treatment on high temperature properties of laves phase strengthened ferritic steels

    International Nuclear Information System (INIS)

    Talik, Michal

    2016-01-01

    The aim of this work was to design 17 wt%Cr Laves phase strengthened HiperFer (High performance Ferrite) steels and evaluate their properties. This class of steel is supposed to be used in Advanced Ultra Super Critical power plants. Such cycles exhibit higher efficiency and are environmentally friendly, but improved materials with high resistance to reside/steam oxidation and sufficient creep strength are required. The work focused on the characterization of creep properties of 17Cr2.5W0.5Nb0.25Si heat resistant steel. Small batches of steels with nominal compositions of 17Cr3W0.5Nb0.25Si and 17Cr3W0.9Nb0.25Si were used to analyze the influence of chemical composition on the precipitation behaviour in comparison to 17Cr2.5W0.5Nb0.25Si steel. Creep strength of HiperFer steels is ensured by ne dispersion of thermodynamically stable Laves phase particles, while maintaining high corrosion resistance by a relatively high chromium content. Design of HiperFer steels was accomplished by thermodynamic modeling (Thermocalc) with the main tasks of elimination of the unwelcome brittle (Fe,Cr)-σ phase and maximization of the content of the strengthening C14 Fe_2Nb type Laves phase particles. Long term annealing experiments of all HiperFer steels were performed at 650 C in order to evaluate the role of chemical composition and initial thermo-mechanical treatment state on precipitation behaviour. Laves phase particles formed quickly after few hours and the size of precipitates did not change significantly within 1,000 hours. The observed development of Laves phase particles was compared with thermodynamical calculations (TC-Prisma). The creep properties of 17Cr2.5W0.5Nb0.25Si steel in different initial thermo-mechanical treatment states were tested at 650 C. The influence of different cold rolling procedures, and heat treatments was investigated. Increased cold rolling deformation had a positive effect resulting not only from work hardening, but from the acceleration of Laves

  15. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    International Nuclear Information System (INIS)

    Williamson, R.L.; Knoll, D.A.

    2009-01-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  16. Thermomechanical Modelling of Friction Stir Welding

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Schmidt, Henrik Nikolaj Blicher; Tutum, Cem Celal

    2009-01-01

    Friction Stir Welding (FSW) is a fully coupled thermomechanical process and should in general be modelled as such. Basically, there are two major application areas of thermomechanical models in the investigation of the FSW process: i) Analysis of the thermomechanical conditions such as e.g. heat...... generation and local material deformation (often referred to as flow) during the welding process itself. ii) Prediction of the residual stresses that will be present in the joint structure post to welding. While the former in general will call for a fully-coupled thermomechanical procedure, however...... for the FSW process at hand, the heat generation must either be prescribed analytically or based on a fully coupled analysis of the welding process itself. Along this line, a recently proposed thermal-pseudo-mechanical model is presented in which the temperature dependent yield stress of the weld material...

  17. Structure of maraging steel after thermomechanical treatment at high temperature

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Mozzhukhin, V.E.

    1981-01-01

    Developed polygonized substructure is formed in austenite of maraging Cr-Ni steels under the selected conditions of hot deformation during high temperature mechanical treatment (HTMT). Substructure of hot deformed austenite is inherited by packet martensite during cooling. Presence of developed polygonized substructure in austenite results in grinding and high uniformity of packet sizes of martensite crystals. Substructure of α-phase of the investigated steels after HTMT, as well as the one inherited from hot deformed austenite, is inherited at α→γ-transformation in the process of repetitive austenization, and it can be preserved within a limited temperature-time range of heating in γ-region [ru

  18. Study of cast and thermo-mechanically strengthened chromium-nickel nitrogen-containing steel

    International Nuclear Information System (INIS)

    Prokoshkina, V.G.; Kaputkina, L.M.; Svyazhin, A.G.

    2000-01-01

    The effect of nitrogen on the structure and strength of corrosion-resistant chromium-nickel steels after thermal and thermomechanical treatment is studied. The 06Kh15N7AD and 07Kh15N7DAMB steels alloying by nitrogen was accomplished through the basic composition steels remelting in the molecular nitrogen atmosphere under the pressure of 0.1-2.5 MPa. The 02Kh15N5DAF and 05Kh15N5DAM steels ingots were obtained through melting in a plasma furnace under the nitrogen pressure of 0.4MPA. The high-temperature thermomechanical treatment (HTMT) was performed by rolling with preliminary blanks heating up to 1050 deg C and the rolling end temperature not below 950 deg C. It is shown, that the HTMT of the nitrogen-containing steels makes it possible to obtain strength characteristics by 1.5 times exceeding the properties of traditionally applicable corrosion-resistant steels, whereby sufficiently high plasticity of the nitrogen-containing steel is retained [ru

  19. Effect of thermomechanical treatments on phase distribution and microstructure evolution of a Ti-48Al-2Mn-2Nb alloy

    International Nuclear Information System (INIS)

    Morris, M.A.; Leboeuf, M.

    1995-01-01

    Titanium aluminide alloys based on TiAl offer potential benefits as intermetallics for structural applications due to their low density and attractive properties at high temperature. However, their strength and ductility are very dependent on microstructural morphologies and much research is being devoted to obtaining optimal properties. The large grain sizes and solute segregations associated with conventional castings have forced much of the work to be focused on obtaining finer microstructures, both in terms of grain sizes as well as lamellar spacings. Thermomechanical treatments have been used to produce a large variety of structural morphologies ranging from fully lamellar to duplex and equiaxed and in which the proportion of each phase is also variable. By choosing the correct temperature and strain rate parameters, it may be possible to modify the microstructure by dynamic recrystallization, if during the mechanical process the lamellae of the α 2 phase can be broken down and be used to accelerate the kinetics of nucleation of the new γ grains. The present study has been carried out in order to examine this process and the authors have compared the different refined microstructures that can be obtained by a new thermomechanical process (ELIT pack-rolling) of a Ti-48Al-2Mn-2Nb alloy with respect to those obtained by heat treatments only

  20. Thermo-mechanical treatment for improvement of superplasticity of SUS304; SUS304 no chososei kyodo kaizen no tame no kako netsu shori

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Torisaka, Y. [Mechanical Engineering Lab., Tokyo (Japan)

    1998-01-25

    Thermo-mechanical treatment was given to improve further the superplastic behavior of SUS 304 stainless steel. In the SUS 304, martensite phase produced by the processing induced transformation may be reversely transformed to the primary austenite phase by high-temperature heating. Crystal grain size is micronized to 1 {mu} m by combining this reverse transformation and recrystallization of the austenite phase. However, the straining rate at that time is as extremely low as 1 times 10 {sup -4}/s or lower, which is insufficient for an industrial material. Therefore, the SUS 304 processed as described above was given again a series of thermo-mechanical treatment of the similar forced cold processing and annealing to ultra-micronize the crystalline particles. Majority of the crystalline particles have come to have a grain size of several hundred nm. This test piece showed a total elongation of 400% or more at a test temperature of 973 K and a straining rate of 1.8 times 10 {sup -3}/s or lower. In addition, the straining rate sensitivity index `m` at that time was 0.45 or higher. The superplastic deformation of the SUS 304 has a high possibility of being governed by dynamic recrystallization. 4 refs., 7 figs., 1 tab.

  1. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  2. Thermomechanical behavior of an Fe-based shape memory alloy: transformation conditions and hystereses

    International Nuclear Information System (INIS)

    Tanaka, K.; Nishimura, F.; Tobushi, H.; Oberaigner, E.R.; Fischer, F.D.

    1995-01-01

    Transformation/thermomechanical behavior in an Fe-9%Cr-5%Ni-14%Mn-6%Si polycrystalline shape memory alloy during thermomechanical loading is investigated. The transformation lines in the stress-temperature plane are strongly influenced by the parameters characterizing the thermomechanical loading. The transformation start condition, the martensite start stress and the austenite start temperature, is carefully measured to compare the results with the other experimental and theoretical observations. The stress-strain-temperature hysteresis loops, full and sub, are determined during cyclic loading. (orig.)

  3. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu–Cr–Zr alloy

    International Nuclear Information System (INIS)

    Kermajani, M.; Raygan, Sh.; Hanayi, K.; Ghaffari, H.

    2013-01-01

    Highlights: • Effect of ESR process on microstructure of Cu–Cr–Zr alloy was investigated. • The hardness, strength and electrical conductivity are sensitive to thermomechanical treatment. • The microstructure of the alloy can be optimized for obtaining the best combination of mechanical and electrical properties. - Abstract: Effect of thermomechanical treatment (TMT) on aging behavior of electroslag remelted Cu–Cr–Zr alloy was investigated. The relationship between microstructure, mechanical and electrical properties was clarified using hardness, tensile and electrical conductivity testing methods and optical and scanning electron microscopy techniques. The results showed that an appropriate processing and aging treatment may improve the properties of the alloy due to the formation of fine, dispersive and coherent precipitates within the matrix. Indeed, the optimum condition for electrical conductivity and mechanical properties was obtained after cold working of 40% followed by aging at 500 °C for 150 min

  4. Thermal stress analysis and thermo-mechanical fatigue for gas turbine blade

    International Nuclear Information System (INIS)

    Hyun, J. S.; Kim, B. S.; Kang, M. S.; Ha, J. S.; Lee, Y. S.

    2002-01-01

    The numerical analysis for gas turbine blades were carried out under several conditions by compounding temperature field, velocity field, thermal conduction of blade, and cooling heat transfer. The three types of 1,100 deg. C class 1st-stage gas turbine blades were analyzed. The analysis results are applied to the study on evaluating the remaining life for thermo-mechanical fatigue life. The thermo-mechanical fatigue experiments under out-of-phase and in-phase have been performed. The physical-based life prediction models which considered the contribution of different damage mechanisms have been applied. These models were applied to the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives

  5. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    Science.gov (United States)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  6. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  7. High strength and high electrical conductivity Cu–Cr system alloys manufactured by hot rolling–quenching process and thermomechanical treatments

    International Nuclear Information System (INIS)

    Xia Chengdong; Zhang Wan; Kang Zhanyuan; Jia Yanlin; Wu Yifeng; Zhang Rui; Xu Genying; Wang Mingpu

    2012-01-01

    Highlights: ► HR–Q and thermomechanical treatments are successfully developed to manufacture Cu–Cr system alloys. ► Ordered fcc structure Cr precipitates are considered to be precursors of equilibrium bcc Cr precipitates. ► The Cr precipitates are responsible for the improvement of properties. ► Additions of Zr, Mg and Si bring about significant improvement in properties of Cu–Cr alloy. ► Good properties are ascribed to grain boundary strengthening, strain hardening and precipitation hardening. - Abstract: Cu–Cr system alloy strips were manufactured by an online hot rolling–quenching (HR–Q) process and subsequent thermomechanical treatments. The microstructure and properties of the alloys were investigated by observations of optical microscopy and transmission electron microscopy, and measurements of microhardness and electrical conductivity. The results show that the HR–Q process and thermomechanical treatments are successfully developed to manufacture Cu–Cr system alloy strips with good combinations of strength, conductivity and softening resistance. Ordered fcc structure Cr precipitates, which are decomposed from the thermomechanical treated alloys, are considered to be precursors to the formation of equilibrium bcc Cr precipitates and responsible for the improvement of properties during near peak aging. Small additions of Zr, Mg and Si effectively improve the hardness and softening resistance of Cu–Cr alloy, and slightly reduce the electrical conductivity. The achievement of high strength and high electrical conductivity in the alloys is ascribed to the interactions of grain boundary strengthening, strain hardening and precipitation hardening.

  8. PRELIMINARY STUDY OF PLYWOOD PRODUCED WITH PARICÁ (Schizolobium amazonicum Huber ex Ducke VENEERS MODIFIED BY THERMO-MECHANICAL TREATMENT

    Directory of Open Access Journals (Sweden)

    Larissa Medeiros Arruda

    2011-05-01

    Full Text Available The objective of this preliminary research was to study the effects of thermo-mechanical modification in veneers of Paricá (Schizolobium amazonicum Huber ex Ducke to improve plywood hygroscopicity and mechanical properties. The amount of 24 veneers was used with the dimensions 25 x 25 cm, that were compressed under different times (5, 10 and 15 minutes at 150°C and pressure at 1 N.mm-2, constituting three treatments and one untreated. Plywood were bonded with resorcinol-formaldehyde, glue consumption of 360 g.m-2 at ambient temperature and pressure of 1 N.mm-2 for 10 hours. The samples were evaluated by colorimetric analysis and physical and mechanical properties. Colorimetric analysis showed that there was a darkening of the wood toward the increase of treatment time. The treatment was not efficient in reducing swelling, only reducing absorption of water. The mechanical properties were not significantly affected by the treatment.

  9. Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni{sub 24.3}Ti{sub 49.7}Pd{sub 26} high temperature shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Garg, A. [University of Toledo, Toledo, OH 43606 (United States); NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Noebe, R.D.; Bigelow, G.S.; Padula, S.A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Gaydosh, D.J. [Ohio Aerospace Institute, Cleveland, OH 44142 (United States); NASA Glenn Research Center, Structures and Materials Division, Cleveland, OH 44135 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B.; Vogel, S.C. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-09-15

    Highlights: • A Ni(Pd)-rich Ni{sub 24.3}Ti{sub 49.7}Pd{sub 26} high temperature shape memory alloy was characterized. • Aging resulted in fine dispersion of nano-sized precipitates. • Thermomechanical cycling resulted in dimensional instabilities due to lattice defects. • A two-way shape memory effect strain of 2% strain was obtained after cycling. - Abstract: The effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni{sub 24.3}Ti{sub 49.7}Pd{sub 26} (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy was investigated. Aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed to insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. Texture developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in

  10. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    International Nuclear Information System (INIS)

    Shi, H.J.; Niu, L.S.; Korn, C.; Pluvinage, G.

    2000-01-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data

  11. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    Science.gov (United States)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Véronique; Tazibt, Abdel

    2011-01-01

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  12. Coupled thermomechanical behavior of graphene using the spring-based finite element approach

    Energy Technology Data Exchange (ETDEWEB)

    Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr [Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Rio, 26500 Patras (Greece); Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr [Materials Science Laboratory, Department of Mechanical Engineering, Technological Educational Institute of Western Greece, 1 Megalou Alexandrou Street, 26334 Patras (Greece)

    2016-07-07

    The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations are analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.

  13. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    Science.gov (United States)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  14. Thermomechanical behavior of mica layers with lenticular fissures

    Science.gov (United States)

    Yang, Michael Xinyi

    The thermomechanical behavior of natural phlogopite mica specimens from seven different origins is characterized. An initial heat treatment, to a temperature between 300°C and 400°C, is found to form fissures that stabilize in the material. Following the initial heat treatment, all the phlogopite specimens, regardless of their origin and polytype, exhibit the extraordinarily large thermal expansion (intumescence), more than 200% at 600°C, in the direction perpendicular to the basal planes. This phenomenon is strictly reproducible when tested under a range of thermal conditions including thermal shock, multiple thermal fatigue cycles, varying heating or cooling rates and isothermal heating over an extensive period of time at different temperatures up to 585°C. The hysteresis, associated with the thermal cycle, is increased when the specimen is heated or cooled at a faster rate. The maximum coefficient of linear thermal expansion, approximately 10 -2°C-1, is observed over the temperature range 100--120°C. This is due to the non-structural water, entrapped within the layer structure, which undergoes a phase transition and causes the mica layers to expand abruptly. A model of lenticular fissures is developed based on thin-plate mechanics and thermodynamics assumptions. The state of a lenticular fissure with water vapor molecules is determined to correlate the experimental parameters with the material properties. The average density of water vapor molecules within a lenticular fissure is calculated to be ˜1025 m 3 for the temperature interval between 100°C and 275°C. The concentration of non-structure water, based on the model calculation, is less than 0.1% by weight. Acoustic emission (AE) signals have been reported by Pranevicius et al. (1995) to correspond to the microstructure changes as the internal lenticular fissures develop in phlogopite. This technique has also been proven feasible to characterize the thermomechanical behavior of other layer structures

  15. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  16. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.

    Science.gov (United States)

    Solanki, Prem K; Bischof, John C; Rabin, Yoed

    2017-06-01

    Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    Directory of Open Access Journals (Sweden)

    Weihua Xie

    2016-10-01

    Full Text Available This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs, which are equipped with chemical composition gratings sensors (CCGs. The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  18. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    Science.gov (United States)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  19. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  20. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  1. Thermal and thermo-mechanical simulation of laser assisted machining

    International Nuclear Information System (INIS)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-01-01

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece

  2. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Directory of Open Access Journals (Sweden)

    Chrysochoos A.

    2010-06-01

    Full Text Available Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This

  3. Effect of Thermomechanical Treatment on the Environmentally Induced Cracking Behavior of AA7075 Alloy

    Science.gov (United States)

    Ghosh, Rahul; Venugopal, A.; Sankaravelayudham, P.; Panda, Rajiv; Sharma, S. C.; George, Koshy M.; Raja, V. S.

    2015-02-01

    The influence of thermomechanical treatment on the stress corrosion cracking behavior of AA7075 aluminum alloy forgings was examined in 3.5% NaCl solution by varying the extent of thermomechanical working imparted to each of the conditions. The results show that inadequate working during billet processing resulted in inferior corrosion and mechanical properties. However, more working with intermediate pre-heating stages also led to precipitation of coarse particles resulting in lowering of mechanical properties marginally and a significant reduction in the general/pitting corrosion resistance. The results obtained in the present study indicate that optimum working with controlled pre-heating levels is needed during forging to achieve the desired properties. It is also demonstrated that AA7075 in the over aged condition does not show any environmental cracking susceptibility in spite of the microstructural variations in terms of size and volume fraction of the precipitates. However, the above microstructural variations definitely affected the pitting corrosion and mechanical properties significantly and hence a strict control over the working and pre-heating stages during billet processing is suggested.

  4. Microstructures and Properties of 40Cu/Ag(Invar) Composites Fabricated by Powder Metallurgy and Subsequent Thermo-Mechanical Treatment

    Science.gov (United States)

    Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming

    2018-03-01

    Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.

  5. Effect of some thermomechanical variables on plastic flow and creep-rupture of type 304 stainless steel at 5930C

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1977-01-01

    As part of an effort to examine sources of variability in the creep-rupture behavior of type 304 stainless steel, specimens subjected to a variety of prior thermomechanical treatments were tested. Included were different reannealing temperatures, cooling rates, types of prior straining, and a 24-hr age at 816 0 C. Two product forms of a single heat (heat 9T2796) were involved, and most testing was at 593 0 C. For material with coarse grain size, reannealing temperature had no pronounced influence. However, slow cooling rates and the 816 0 C aging significantly extended the rupture life. On the other hand, cold working by an equivalent of 4% tensile strain had very little influence on rupture life. Slow cooling or aging increased rupture life as a result of greatly improved creep ductility. This finding is consistent with similar observations in the literature for this and other stainless steels, and is believed to be due to the development of coarse, beneficial carbides on grain boundaries before stressing. The creep response in the primary and secondary stages was influenced by nearly all the thermomechanical treatments, but the variability in the response at relatively high stresses was scarcely greater than the variability observed in multiple tests on specimens having a common thermomechanical history. 10 figures, 1 table

  6. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    International Nuclear Information System (INIS)

    Liu Fubin; Yao Man

    2012-01-01

    Highlights: ► China Low Activation Martensitic steel (CLAM) as FW the structural material. ► The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. ► The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m 2 . The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  7. Assessment of thermo-mechanical behavior in CLAM steel first wall structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fubin, E-mail: liufubin_1216@126.com [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China); Yao Man, E-mail: yaoman@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer China Low Activation Martensitic steel (CLAM) as FW the structural material. Black-Right-Pointing-Pointer The thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating. Black-Right-Pointing-Pointer The temperature dependence of the material physical properties of CLAM is summarized. - Abstract: The temperature and strain distributions of the mockup with distinct structural material (SS316L or China Low Activation Martensitic steel (CLAM)) in two-dimensional model were calculated and analyzed, based on a high heat flux (HHF) test recently reported with heat flux of 3.2 MW/m{sup 2}. The calculated temperature and strain results in the first wall (FW), in which SS316L is as the structural material, showed good agreement with HHF test. By substituting CLAM steel for SS316L the contrast analysis indicates that the thermo-mechanical property for CLAM steel is better than that of SS316 at the same condition. Furthermore, the thermo-mechanical behavior of the FW was analyzed under the condition of normal ITER operation combined effect of plasma heat flux and neutron heating.

  8. Thermomechanical modeling and data analysis for heating experiments at Stripa, Sweden

    International Nuclear Information System (INIS)

    Chan, T.; Littlestone, N.; Wan, O.

    1979-11-01

    Comparisons were made between predicted and measured thermomechanical displacements and stresses for in situ heating experiments at a depth of 340 m in a granite body at Stripa, Sweden. We found that taking into account the temperature dependence of the thermal expansion coefficient and the mechanical properties of the rock substantially improves the agreement between theory and experiment. In general, the displacements calculated using laboratory values of rock properties agree better with field data than in the case of stresses. This may be due to the difference between in situ and laboratory rock modulus. The significance of temperature-dependent rock properties and strength to thermomechanical failure is also discussed

  9. Cyclic life of superalloy IN738LC under in-phase and out-of-phase thermo-mechanical fatigue loading

    International Nuclear Information System (INIS)

    Chen Hongjun; Wahi, R.P.; Wever, H.

    1995-01-01

    The cyclic life of IN738LC, a widely used nickel base superalloy for blades in stationary gas turbines, was investigated under thermo-mechanical fatigue loading using a temperature variation range of 1023 to 1223 K, with temperature variation rate in the range of 6 to 15 K/min. Simple thermo-mechanical cycles with linear sequences corresponding to in-phase (IP) and out-of-phase (OP) tests were performed. Both the IP and OP tests were carried out at different constant mechanical strain ranges varied between 0.8 to 2.0% and at a constant mechanical strain rate of 10 -5 s -1 . Thermo-mechanical fatigue lives under both test conditions were compared with each other and with those of isothermal LCF tests at a temperature of 1223 K. The results show that the life under thermo-mechanical fatigue is strongly dependent on the nature of the test, i.e. stress controlled or strain controlled. (orig.)

  10. Thermomechanical fatigue of shape memory alloys

    International Nuclear Information System (INIS)

    Lagoudas, D C; Kumar, P K; Miller, D A; Rong, L

    2009-01-01

    As shape memory alloys (SMAs) gain popularity as high energy density actuators, one characteristic that becomes particularly important is the thermomechanical transformation fatigue life, in addition to maximum transformation strain and stability of actuation cycles. In this paper, a novel test frame design and testing protocol are discussed, for investigating the thermally activated transformation fatigue characteristics of SMAs under various applied loads for both complete and partial phase transformation. A Ni 50 Ti 40 Cu 10 (at.%) SMA was chosen for this investigation and the effects of various heat treatments on the transformation temperatures and the transformation fatigue lives of actuators were studied. For selected heat treatments, the evolution of recoverable and irrecoverable strains up to failure under different applied stress levels was studied in detail. The influence of complete and partial transformation on the fatigue life is also presented. The irrecoverable strain accumulation as a function of the number of cycles to failure for different stress levels is presented by a relationship similar to the Manson–Coffin law for both partial and complete transformations

  11. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Science.gov (United States)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  12. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  13. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  14. Damage evolution of TBC system under in-phase thermo-mechanical tests

    International Nuclear Information System (INIS)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y.; Liu, Y.F.

    2010-01-01

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y 2 O 3 -ZrO 2 thermal barrier coating (TBC) system (8 wt% Y 2 O 3 -ZrO 2 /CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  15. Mechanical properties of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials

    OpenAIRE

    Umezawa, Osamu

    2005-01-01

    Tensile and high-cycle fatigue behavior of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials were studied. Through the repeated thermomechanical treatment (RTMT) which is a repeat of the multi steps cold-working followed by heat treatment, Si crystals and/or intermetallic compounds were broken into some fragments and dispersed in the aluminum matrix. Fine dispersion of the second phase particles exhibited good ductility, since early fracture was overcome. A few large Si cry...

  16. Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic

    Science.gov (United States)

    Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.

    2011-01-01

    The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.

  17. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    Science.gov (United States)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  18. Efficient thermo-mechanical generation of electricity from the heat of radioisotopes

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.; Yeats, F.W.

    1975-01-01

    The thermomechanical generator uses a thermomechanical oscillator to convert heat efficiently into a mechanical oscillation which in turn excites a suitable transducer to generate alternating electricity. The thermomechanical oscillator used is based on the Stirling cycle, but avoids the need for rotary motion and for sliding pistons by having a mechanically-resonant, spring-suspended displacer, and by using an oscillating metal diaphragm to provide the mechanical output. The diaphragm drives an alternator consisting of a spring-suspended permanent magnet oscillating between fixed pole pieces which carry the electrical power output windings. Because a thermomechanical generator is much more efficient than a thermo-electric generator at comparable temperatures, it is particularly suitable for use with a radioisotope heat source. The amounts of radioisotope and of shielding required are both greatly reduced. A machine heated by radioisotopes and delivering 10.7W ac at 80Hz began operating in October, 1974. Operating experience with this machine is reported, and these results, together with those obtained with higher-powered machines heated by other means, are used to calculate characteristics and performance of thermo-mechanical radioisotope generators capable of using heat sources such as the waste-management 90 Sr radioisotope sources becoming available from the US nuclear waste management programme. A design to use one of these heat sources in a 52-W underwater generator is described

  19. Damage evolution of TBC system under in-phase thermo-mechanical tests

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Liu, Y.F., E-mail: yfliu@hyper.rcast.u-tokyo.ac.jp [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2010-10-15

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier coating (TBC) system (8 wt% Y{sub 2}O{sub 3}-ZrO{sub 2}/CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  20. Study on phase transformations in superconducting Ti-50%Nb alloy using temperature-dependent internal friction method

    International Nuclear Information System (INIS)

    Shapoval, B.I.; Tikhinskij, G.F.; Somov, A.I.; Chernyj, O.V.; Rudycheva, T.Yu.; Andrievskaya, N.F.

    1980-01-01

    The internal friction method is used to study phase transformations in the Ti-50%Nb alloy parallel with other methods. The effect of annealing temperature and time, as well as the content of interstitial impurities in the alloy and its thermomechanical treatment (TMT) is studied. In the 250-300 deg C temperature range the complex maximum of internal friction caused by extraction of secondary phases is observed. The latter is confirmed by the measurement data of mechanical properties and electron microscopic analysis. The maximum consists of three overlapping peaks that reflects stepped form of the decomposition process of the metastable solid solution. The preliminary thermo-mechanical alloy treatment consisting of equidirectional plastic deformation with the following recrystallization annealing leads to peak increase. This fact testifies to the stimulating effect of thermo-mechanical treatment on the degree of solid solution decomposition and reveals in the increase of the critical current density of a wire made of the ingot. The increase of the interstitial impurity content in the alloy has the analogous effect. The reduction of the internal friction level during isothermal stand-up at temperatures higher than the third peak temperature proceeds in two stages [ru

  1. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    International Nuclear Information System (INIS)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior

  2. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior.

  3. Thermomechanical interactions of particle bed-structural wall in a layered configuration. Pt. 1. Effect of particle bed thermal expansions

    International Nuclear Information System (INIS)

    Tehranian, F.

    1995-01-01

    Materials in the form of particle beds have been considered for shielding and tritium breeding as well as neutron multiplication in many of the conceptual reactor design studies. As the level of effort of the fusion blanket community in the area of out-of-pile and in-pile (ITER) testing of integrated test modules increases, so does the need for modelling capability for predicting the thermomechanical responses of the test modules under reactor environment.In this study, the thermomechanical responses of a particle bed-structural wall system in a layered configuration, subjected to bed temperature rise and/or external coolant pressure, were considered. Equations were derived which represent the dependence of the particle-to-particle and particle-to-wall contact forces and areas on the structural wall deformations and in turn on the thermomechanical loads. Using the derived equations, parametric analyses were performed to study the variations in the thermomechanical response quantities of a beryllium particle bed-stainless steel structural wall when subjected to thermomechanical loads. The results are presented in two parts. In Part I, presented in this paper, the derivation of the analytical equations and the effects of bed temperature rise are discussed. In Part II of this study, also presented in this symposium, the effects of external coolant pressure as well as the combined effects of bed temperature rise and coolant pressure on the thermomechanical responses are given.It is shown that, depending on the stiffness of the structural walls, uniform bed temperature rises in the range 100-400 C result in non-uniform effective thermal properties through the prticle bed and could increase the bed effective thermal conductivity by a factor of 2-5 and the bed-wall interface thermal conductance by even a larger factor. (orig.)

  4. Finding an Optimal Thermo-Mechanical Processing Scheme for a Gum-Type Ti-Nb-Zr-Fe-O Alloy

    Science.gov (United States)

    Nocivin, Anna; Cojocaru, Vasile Danut; Raducanu, Doina; Cinca, Ion; Angelescu, Maria Lucia; Dan, Ioan; Serban, Nicolae; Cojocaru, Mirela

    2017-09-01

    A gum-type alloy was subjected to a thermo-mechanical processing scheme to establish a suitable process for obtaining superior structural and behavioural characteristics. Three processes were proposed: a homogenization treatment, a cold-rolling process and a solution treatment with three heating temperatures: 1073 K (800 °C), 1173 K (900 °C) and 1273 K (1000 °C). Results of all three proposed processes were analyzed using x-ray diffraction and scanning electron microscopy imaging, to establish and compare the structural modifications. The behavioural status was completed with micro-hardness and tensile strength tests. The optimal results were obtained for solution treatment at 1073 K.

  5. New three-dimensional far-field potential repository thermomechanical calculations

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bai, M.; Goodrich, R.R.; Lin, M.; Carlisle, S.; Bauer, S.J.

    1993-03-01

    The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement

  6. Contribution of Brazil nut shell fiber and electron-beam irradiation in thermomechanical properties of HDPE

    International Nuclear Information System (INIS)

    Polato, Pamella; Lorusso, Leandro Alex; Souza, Clecia de Moura; Moura, Esperidiana Augusta Barretos de; Chinellato, Anne; Rosa, Ricardo de

    2010-01-01

    In the present work, the influence of electron-beam irradiation on thermo-mechanical properties of HDPE and HDPE/Brazil nut shell fiber composite was investigated. The materials were irradiated at radiation dose 50 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated samples were submitted to thermo-mechanical tests and the correlation between their properties was discussed. The results showed that the incorporation of Brazil nut shell fiber represented a significant gain (p < 0,05) in tensile strength at break, flexural strength, flexural module, Vicat softening temperature and heat distortion temperature (HDT) properties of the HDPE. In addition, the irradiated HDPE/Brazil nut shell fiber composite presented a significant increase (p < 0.05) in this properties compared with irradiated HDPE. (author)

  7. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    International Nuclear Information System (INIS)

    Williamson, R.L.

    2011-01-01

    Highlights: → The ABAQUS thermomechanics code is enhanced to enable simulation of nuclear fuel behavior. → Comparisons are made between discrete and smeared fuel pellet analysis. → Multidimensional and multipellet analysis is important for accurate prediction of PCMI. → Fully coupled thermomechanics results in very smooth prediction of fuel-clad gap closure. → A smeared-pellet approximation results in significant underprediction of clad radial displacements and plastic strain. - Abstract: A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO 2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  8. Thermomechanical characterization of thiol-epoxy shape memory thermosets for mechanical actuators design

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-02-01

    In this paper, shape-memory "thiol-epoxy" polymers are synthesized and characterized as potential thermomechanical actuators. Their thermomechanical properties are investigated through dynamo mechanical and tensile analyses and related to their network structural properties by using "thiol" and "epoxy" compounds of different functionality and structure. Their mechanical properties (resistance at break, elongation limits and strain energy) are related to their shape-memory response under free-recovery conditions and partially-constrained conditions, thus, establishing the connection between network relaxation (free-recovery) with the work output capabilities (partially-constrained). Results show high mechanical performance, achieving high elongation at break values (up to 100%) and stress at break values (up to 50 MPa). The shape-memory experiments reveal strong dependence of the programming conditions and network structure on the recovery efficiency at free-conditions, whereas under partially-constrained conditions, the controlling factors are the mechanical limits at high temperature. Moreover, some recommendations to achieve the maximum work output efficiency for a given operational design of a thermomechanical actuator are deduced.

  9. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    International Nuclear Information System (INIS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X.G.

    2016-01-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices. - Highlights: • The thermal properties of black and blue phosphorus are studied. • Black phosphorus shows remarkable anisotropic thermal expansion and thermomechanics properties. • Blue phosphorus shows novel negative thermal expansion. • The thermal expansion properties are well analyzed by grüneisen theory.

  10. Heat treatments and thermomechanical cycling influences on the R-phase in Ti-Ni shape memory alloys

    Directory of Open Access Journals (Sweden)

    Cezar Henrique Gonzalez

    2010-09-01

    Full Text Available This article studies changes observed on the R-phase thermoelastic behavior in a near-equiatomic Ti-Ni shape memory alloy. Three kinds of procedures have been performed: different treatments, thermomechanical cycling under constant loading in shape memory helical springs and thermal cycling in as-treated and trained samples. Several heat treatments were carried out to investigate evolution of the R-phase by differential scanning calorimetry (DSC. A heat treatment was chosen on which R-phase is absent. Shape memory springs were produced and submitted to a training process in an apparatus by tensioning the springs under constant loading. Thermal cycling in DSC was realized in as-treated and trained samples. Several aspects of one-step (B2→B19' and two-steps (B2→R→B19' martensitic transformations and R-phase formation and their evolution during tests were observed and discussed.

  11. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  12. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    Science.gov (United States)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  13. Thermal/thermomechanical analyses for the room region with horizontal and vertial modes of emplacement

    International Nuclear Information System (INIS)

    1988-01-01

    Extensive thermal/thermomechanical analyses of the Site Characterization Plan-Conceptual Design at the Deaf Smith county Site, Texas, have been carried out for the room region with horizontal and vertical modes of emplacement. The main purpose of this study is to make a good comparison between these two modes of emplacement in this region. Homogeneous and nonhomogeneous strata under isothermal or transient temperature conditions cases were considered in the analyses. Furthermore, various pillar widths for the vertical mode emplacement were also taken into consideration. Only spent fuel (SF) waste was considered in this study. Finite element method was used throughout the analyses. The thermal responses were evaluated using SPECTROM-41 while the thermomechanical responses were calculated using SPECTROM-32. Thermal and thermomechanical comparisons between the two modes of emplacement for various cases were presented in this paper

  14. Thermo-Mechanical Fatigue Crack Growth of RR1000

    OpenAIRE

    Christopher John Pretty; Mark Thomas Whitaker; Steve John Williams

    2017-01-01

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechan...

  15. Effect of thermal cycling on the transformation temperature ranges of a Ni-Ti shape memory alloy

    International Nuclear Information System (INIS)

    Paula, A.S.; Canejo, J.P.H.G.; Martins, R.M.S.; Braz Fernandes, F.M.

    2003-01-01

    Shape memory alloys (SMA) represents a class of metallic materials that has the capability of recovering a previously defined initial shape when subject to an adequate thermomechanical treatment. The present work aims to study the influence of thermal cycles on the transition temperatures of a Ni-Ti alloy. In this system, small variations around the equiatomic composition give rise to significant transformation temperature variations ranging from 173 to 373 K. SMA usually presents the shape memory effect after an annealing treatment at ca. 973 K. The optimisation of the thermomechanical treatment will allow to 'tune' the material to different transformation temperature ranges from the same starting material, just by changing the processing conditions. Differential scanning calorimeter (DSC) and in situ high-temperature X-ray diffraction (XRD) have been used to identify the transformation temperatures and the phases that are present after different thermal cycles. The results concerning a series of thermal cycles with different heating and cooling rates (from 1.67x10 -2 to 1.25x10 -1 K/s) and different holding temperatures (from 473 to 1033 K) are presented

  16. Thermomechanical behavior of different Ni-base superalloys during cyclic loading at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Huber Daniel

    2014-01-01

    Full Text Available The material behavior of three Ni-base superalloys (Inconel® 718, Allvac® 718PlusTM and Haynes® 282® during in-phase cyclic mechanical and thermal loading was investigated. Stress controlled thermo-mechanical tests were carried out at temperatures above 700 ∘C and different levels of maximum compressive stress using a Gleeble® 3800 testing system. Microstructure investigations via light optical microscopy (LOM and field emission gun scanning electron microscopy (FEG-SEM as well as numerical precipitation kinetics simulations were performed to interpret the obtained results. For all alloys, the predominant deformation mechanism during deformation up to low plastic strains was identified as dislocation creep. The main softening mechanism causing progressive increase of plastic strain after preceding linear behavior is suggested to be recrystallization facilitated by coarsening of grain boundary precipitates. Furthermore, coarsening and partial transformation of strengthening phases was observed. At all stress levels, Haynes® 282® showed best performance which is attributable to its stable microstructure containing a high phase fraction of small, intermetallic precipitates inside grains and different carbides evenly distributed along grain boundaries.

  17. Modelling the Thermo-Mechanical Behavior of Magnesium Alloys during Indirect Extrusion

    International Nuclear Information System (INIS)

    Steglich, D.; Ertuerk, S.; Bohlen, J.; Letzig, D.; Brocks, W.

    2010-01-01

    One of the basic metal forming process for semi-finished products is extrusion. Since extrusion involves complex thermo-mechanical and multiaxial loading conditions resulting in large strains, high strain rates and an increase in temperature due to deformation, a proper yield criterion and hardening law should be used in the numerical modelling of the process. A phenomenological model based on a plastic potential has been proposed that takes strain, strain rate and temperature dependency on flow behaviour into consideration. A hybrid methodology of experiment and finite element simulation has been adopted in order to obtain necessary model parameters. The anisotropy/asymmetry in yielding was quantified by tensile and compression tests of specimens prepared from different directions. The identification of the corresponding model parameters was performed by a genetic algorithm. A fully coupled thermo-mechanical analysis has been used in extrusion simulations for calculation of the temperature field by considering heat fluxes and heat generated due to plastic deformation. The results of the approach adopted in this study appeared to be successful showing promising predictions of the experiments and thus may be extended to be applicable to other magnesium alloys or even other hcp metals.

  18. Thermomechanical cycling and two-way memory effect induced in Cu-Zn-Al

    International Nuclear Information System (INIS)

    Pons, J.

    1999-01-01

    The two-way shape memory effect (TWME) has been induced by thermomechanical cycling in Cu-Zn-Al alloys using a dedicated hydraulic mechanical testing soft machine with complete computer control of force, elongation and temperature. The results concerning single crystals (composition Cu-16.9 wt.% Zn-7.7 wt.% Al, nominal M s of 273 K) and polycrystals (Cu-15.8 wt.% Zn-8.3 wt.% Al, nominal M s of 230 K, mean grain size of 1 mm) are reported for two training protocols (sequence of one thermomechanical cycle of education followed by one stress free thermal cycle to check the TWME or twenty consecutive thermomechanical cycles followed by one or two checking thermal cycles). The capacity of the trained specimen for producing work under an antagonist compressive stress is also studied and the behaviour of the deformation of the specimen under such a condition at different temperatures is analysed in terms of a competition between the contributions of the different variants: trained variants with an intrinsic deformation in the direction of the tensile stress of the training process, trained variants with an intrinsic deformation which is not well orientated with respect to this direction (in the polycrystal) and new variants with an intrinsic deformation in the direction of the compressive stress which can replace the educated variants. (orig.)

  19. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    Science.gov (United States)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  20. Nuclear, thermo-mechanical and tritium release analysis of ITER breeding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Miki, Nobuharu; Akiba, Masato

    2003-06-01

    The design of the breeding blanket in ITER applies pebble bed breeder in tube (BIT) surrounded by multiplier pebble bed. It is assumed to use the same module support mechanism and coolant manifolds and coolant system as the shielding blankets. This work focuses on the verification of the design of the breeding blanket, from the viewpoints which is especially unique to the pebble bed type breeding blanket, such as, tritium breeding performance, tritium inventory and release behavior and thermo-mechanical performance of the ITER breeding blanket. With respect to the neutronics analysis, the detailed analyses of the distribution of the nuclear heating rate and TBR have been performed in 2D model using MCNP to clarify the input data for the tritium inventory and release rate analyses and thermo-mechanical analyses. With respect to the tritium inventory and release behavior analysis, the parametric analyses for selection of purge gas flow rate were carried out from the view point of pressure drop and the tritium inventory/release performance for Li 2 TiO 3 breeder. The analysis result concluded that purge gas flow rate can be set to conventional flow rate setting (88 l/min per module) to 1/10 of that to save the purge gas flow and minimize the size of purge gas pipe. However, it is necessary to note that more tritium is transformed to HTO (chemical form of water) in case of Li 2 TiO 3 compared to other breeder materials. With respect to the thermo-mechanical analyses of the pebble bed blanket structure, the analyses have been performed by ABAQUS with 2D model derived from one of eight facets of a blanket module, based on the reference design. Analyses were performed to identify the temperature distribution incorporating the pebble bed mechanical simulation and influence of mechanical behavior to the thermal behavior. The result showed that the maximum temperature in the breeding material was 617degC in the first row of breeding rods and the minimum temperature was 328

  1. Thermomechanical behavior modeling and experimental validation of polymer-wound composite multi-layers. Hydrogen storage application

    International Nuclear Information System (INIS)

    Gentilleau, Benoit

    2012-01-01

    The purpose of this research is to study the thermomechanical behavior of the constituent materials of a type IV hydrogen storage tank: a composite, ensuring the strength, is wound around the polyurethane liner that ensures sealing of the tank and thermal insulation; at the extremities, stainless steel parts are used to allow the process connection. In this type of tank, during filling, there is a significant increase in hydrogen temperature, resulting in a gradual heating of the structure and the presence of temperature gradients. The purpose of this study is primarily to characterize the behavior of such a structure when subjects to complex thermomechanical loading. Initially, mechanical and thermal characterization tests have been made over the service life range of temperature of the tank to obtain the necessary data for the realization of a thermomechanical numerical model. Then, a behavior law of the composite, easily transferable to a complex structure such as the whole tank and taking into account the non-linearity, the matrix damage, the progressive loss of shear modulus, and the thermo-dependence of the materials parameters, is developed. The tests on technological representative specimens have been performed to better understand the mechanisms that can appear in the tank and to validate the model. Finally, a numerical study of a tank was performed. The coupled influence of temperature and damage matrix on the behavior of this structure is analyzed. (author)

  2. Thermo-mechanical properties of mixed ion-electron conducting membrane materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bingxin

    2011-07-01

    The thesis presents thermo-mechanical properties of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) perovskite materials, which are considered as oxygen transport membranes (OTM) for gas separation units. Ring-on-ring bending test with disk-shaped samples and depth-sensitive micro-indentation have been used as macroscopic and microscopic tests, respectively. In addition, the thermo-mechanical properties of a third OTM candidate material La{sub 2}NiO{sub 4+{delta}} (LNO) were investigated. The results of the thermo-mechanical measurements with the BSCF revealed an anomaly between 200 C and 400 C. In particular, the temperature dependence of Young's modulus shows a minimum at {proportional_to} 200 C. Fracture stress and toughness exhibit a qualitatively similar behavior with a minimum between 200 C and 400 C, before recovering between 500 C and 800 C. X-ray diffraction analyses verified that BSCF remains cubic in the relevant temperature range. Hence the anomalies were assumed to be related to the transition of Co{sup 3+} spin states reported for other Co-containing perovskites. This assumption could be experimentally confirmed by magnetic susceptibility measurements. The fracture surfaces of the specimens are not affected by the mechanical anomalies at intermediate temperatures, since only a transgranular fracture mode has been observed. Complementary to the mechanical characterization of BSCF, also the temperature dependency of fracture stress and elastic behavior of LSCF have been determined. Phase compositions of LSCF have been studied by in-situ high temperature XRD. Changes in phase composition with temperature are observed. At ambient temperature the LSCF perovskite material comprises two phases: rhombohedral and cubic symmetry. The ratio of the two phases depends on both cooling rate and atmosphere. The transition of rhombohedral to cubic occurs between 700 C and

  3. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB injectors

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)], E-mail: piero.agostinetti@igi.cnr.it; Dal Bello, S.; Dalla Palma, M.; Zaccaria, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)

    2007-10-15

    The SINGle Aperture-SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi-Aperture Multi-Grid (MAMuG) reference configuration. The grids have to fulfil specific requirements coming from ion extraction, beam optics and thermo-mechanical issues. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with sensitivity analyses in order to satisfy the grid functional requirements (temperatures, stresses, in plane and out of plane deformations). The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models.

  4. Application of a new thermo-mechanical model for the study of the nuclear waste disposal in clay rocks

    International Nuclear Information System (INIS)

    Dizier, A.; Li, X.L.; Francois, B.; Collin, F.; Charlier, R.

    2012-01-01

    Document available in extended abstract form only. One of the cornerstones of the nuclear waste disposal researches concerns the evolution of the damaged zone which can offer a preferential path for migration of radionuclide through modifications of its mechanical and hydraulic properties. Even if the thermo-mechanical behaviour of clays is well documented in the literature, the development of the damaged zone induced by an excavation with temperature is not well known. To investigate this problem, a new thermo-mechanical constitutive law has been implemented in the non-linear finite element code LAGAMINE developed at ULg (Universite de Liege) and has been used to model the PRACLAY experiment (Preliminary demonstration test for clay disposal of vitrified high level radioactive waste) at Mol URL (Underground Research Laboratory). Though several models are being to reproduce the different phenomena met when a thermal loading is applied to a clay specimen, the applications of such thermo-mechanical models to simulate large scale in-situ experiment are rare. Based on the work of Sultan a new thermo-mechanical constitutive law has been implemented in combination with a Cap model in the code LAGAMINE. The Cap model is a combination of a frictional criterion, a Cam-Clay model and a traction criterion. The influence of the temperature is considered through the thermo-mechanical law developed by Cui et al. (2000). This law permits to reproduce common features of the thermo-mechanical behaviour of clay, such as the decrease of the pre-consolidation pressure with temperature, the volume change, the thermal hardening, the transition between thermal dilation and thermal contraction for over-consolidated clays. These aspects are modelled with two curves in the (p',T) plane. The first one is related to the generation of the thermal volumetric plastic strains (TY curve (Thermal Yield)). The second one reproduces the decrease of the pre-consolidation pressure with the temperature

  5. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.

    2015-09-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  6. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.; Garcí a, M.; Santamarina, Carlos

    2015-01-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  7. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  8. Thermal and thermomechanical effects on the Al-Ca-Zn superplastic alloy studied on the positrons annihilation

    International Nuclear Information System (INIS)

    Romero, R.; Somoza, A.; Silvetti, S.P.

    1990-01-01

    Superplastic metallic materials are characterized by the presence of an unusual plastic behaviour, within a certain temperature range, with high ductility and low flow stress. This makes them suitable for their shaping with compressed air, for instance. On the other hand they behave similarly to any other metallic alloy at room temperature. One of the main problems found in superplastic alloys during deformation is the formation of cavities that may deteriorate the properties of a piece which was manufactured with this method. As an attempt to understand the origin of the cavitation, the effect of thermal and thermo-mechanical treatments was studied on superplastic alloy Al-5%wtCa-5%wtZn using a measurement technique based on positron annihilation. (Author). 3 refs., 5 figs

  9. Thermomechanical studies in granite at Stripa, Sweden

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Myer, L.R.

    1981-01-01

    Media other than rock salt are being considered for the deep, geologic disposal of nuclear wastes. The disposal of high-level nuclear waste in a deep, underground repository will subject the rock to a thermal pulse that will induce displacements, strains, and stresses in the rock. Thermomechanical experiments, with electrical heaters simulating the thermal output of waste canisters, were carried out in granite at a depth of 340 m below surface adjacent to a defunct iron ore mine at Stripa, Sweden. Changes in temperature, displacement, and stress in the rock around these heaters were measured, and the measurements were compared with predictions calculated from the theory of linear thermoelasticity. Measured temperature changes agreed well with predictions, but measured displacements and stresses were consistently less than those predicted with constant values for the coefficient of thermal expansion and elastic properties of the rock. A laboratory test program to measure these coefficients over ranges of stress and temperature representing those in the field experiment has been initiated. Test specimens were taken from cores recovered from the instrumentation holes in the Stripa experiments. Preliminary results from laboratory tests on specimens free of joints indicate that the values of Young's modulus and Poisson's ratio increase from about 60 to 80 MPa and from 0.15 to 0.22, respectively, as the confining stress is increased from 2 to 55 MPa; these values decrease with increasing temperature, more so at 2 MPa than at 55 MPa. The linear coefficient of thermal expansion at a confining stress of 30 MPa increases from about 10 x 10 - 6 / 0 C at 40 0 C to about 14 x 10 - 6 / 0 C. The magnitudes of these changes are not sufficient to resolve the disparity between measured and predicted results. Perhaps the properties of test specimens containing joints will show greater variations in the values of the thermomechanical coefficients with temperature and pressure

  10. Wood-plastic composites using thermomechanical pulp made from oxalic acid-pretreated red pine chips

    Science.gov (United States)

    J.E. Winandy; N.M. Stark; E. Horn

    2008-01-01

    The characteristics and properties of wood fiber is one of many factors of critical importance to the performance of wood-plastic composites. In commercial thermo-mechanical pulping (TMP) of wood chips to produce fibers, high temperatures (>100°C) are used to separate the fibers during TMP refining. These mechanical pressures and temperatures are usually modulated...

  11. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-01-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  12. Thermomechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Sultan, N.; Delage, P.; Cui, Y.J.

    2000-01-01

    Special attention has been recently paid on temperature effects on the behaviour of deep saturated clays, in relation with nuclear deep waste storage. However, few experimental data are presently available, and existing constitutive models need to be completed. This note is aimed at completing, both experimentally and theoretically, the understanding of the effects of the over-consolidation ration on the thermal volume changes of Boom clay (Belgium). The experimental data obtained here are in a good agreement with existing data. As a complement to existing data, they are used to develop a new elastoplastic model. The adoption of a second coupled plastic mechanism provides good simulations on a complex thermo-mechanical path. (authors)

  13. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    International Nuclear Information System (INIS)

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  14. Thermo-mechanical tests on W7-X current lead flanges

    International Nuclear Information System (INIS)

    Dhard, Chandra Prakash; Rummel, Thomas; Zacharias, Daniel; Bykov, Victor; Moennich, Thomas; Buscher, Klaus-Peter

    2013-01-01

    Highlights: • There are significant mechanical loads on the cryostat and radial flanges for W7-X current leads. • These are due to evacuation of W7-X cryostat, cool-down of cold mass, electro-magnetic forces and self weight of leads. • The actual mechanical loads were reduced to simplify the experimental set-up. • The tests were carried out on mock-up flanges test assembly at ambient temperature and at 77 K. • The thermo-mechanical tests on W7-X current lead flanges validate the design and joints of these flanges to the leads. -- Abstract: Fourteen pieces of high temperature superconducting current leads (CL) arranged in seven pairs, will be installed on the outer vessel of Wendelstein 7-X (W7-X) stellarator. In order to support the CL, it is provided with two glass fiber reinforce plastic (GFRP) flanges, namely, the lower cryostat flange (CF) remaining at room temperature and upper radial flange (RF) at about 5 K. Both the flanges i.e. CF and RF experience high mechanical loads with respect to the CL, due to the evacuation of W7-X cryostat, cool-down of cold mass including the CL, electro-magnetic forces due to current and plasma operations and self weight of CL. In order to check the integrity of these flanges for such mechanical loads, thermo-mechanical tests were carried out on these flanges at room temperatures and at liquid nitrogen (LN2) temperatures. The details of test set-up, results and modeling are described in the paper

  15. On the thermomechanical deformation of silver shape memory nanowires

    International Nuclear Information System (INIS)

    Park, Harold S.; Ji, Changjiang

    2006-01-01

    We present an analysis of the uniaxial thermomechanical deformation of single-crystal silver shape memory nanowires using atomistic simulations. We first demonstrate that silver nanowires can show both shape memory and pseudoelastic behavior, then perform uniaxial tensile loading of the shape memory nanowires at various deformation temperatures, strain rates and heat transfer conditions. The simulations show that the resulting mechanical response of the shape memory nanowires depends strongly upon the temperature during deformation, and can be fundamentally different from that observed in bulk polycrystalline shape memory alloys. The energy and temperature signatures of uniaxially loaded silver shape memory nanowires are correlated to the observed nanowire deformation, and are further discussed in comparison to bulk polycrystalline shape memory alloy behavior

  16. The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy

    International Nuclear Information System (INIS)

    Han Yuanfei; Zeng Weidong; Qi Yunlian; Zhao Yongqing

    2011-01-01

    Highlights: → Temperature and strain rate have great influence on the microstructure features. → The formation of sub-grain and dislocation wall is the typically microstructure features observed in the β single-phase. → The elongated lamellar α platelets kinked increasingly and break up under the α + β processing conditions. → The softening mechanisms of the Ti600 alloy hot compressed at 1000-1100 deg. C are mainly dynamic recovery. - Abstract: The influences of thermomechanical processing on microstructural evolution of Ti600 alloy were studied in the temperature range of 800-1100 deg. C, and at the strain rate of 0.001-10 s -1 . During the isothermal compression experiment, the flow stress-strain curves are examined in the β single-phase and in the α + β two-phase regions. The results show that the thermomechanical processing parameters have significant influences on the microstructure of Ti600 alloy, especially on the grain size, morphologies of α phase. Moreover, the microstructural evolution was analyzed by optical microstructure (OM) and transmission electron microscopy (TEM). It was found that typical of dynamic recovery and dynamic recrystallization phenomenon occurring in the thermomechanical processing. These results will optimize the microstructural control for hot working of Ti600 alloy and deepen the understanding of the flow softening mechanism of near-α titanium alloy.

  17. Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Mohammad, E-mail: Mohammad@alu.ufc.br; Herculano, Luis Flavio Gaspar; Ferreira Gomes de Abreu, Hamilton

    2015-07-15

    This work studies the influence of different thermomechanical paths on the microstructure and crystallographic texture across the thickness of API 5L X70 pipeline steel manufactured via hot rolling using X-ray diffraction (XRD), scanning electron microscope (SEM), and electron backscattered diffraction (EBSD). The starting materials were controlled hot-rolled at 1000 °C to 44% and 67% reductions and subsequently heat treated with such processes as annealing, water quenching and quench tempering at three different temperatures to evaluate the microstructure and crystallographic texture changes across the thickness. The banded ferrite-pearlite microstructure of the initial material was changed to acicular ferrite, quasi-polygonal ferrite, granular bainite, martensite and retained austenite via different heat treatments. Moreover, different thermomechanical paths induced crystallographic texture variations across the thickness, e.g., {112}//ND, {111}//ND (γ fibre), and {011}//ND fibres dominated on the surface plane in contact with the rolls, whereas {001}//ND and particularly the (001)[1 1 0] texture component developed in the centre plane on which shear deformation has a zero value in this region. In this study, a simple interpretation of texture evolution was analyzed by comparison with the orientation changes that occurred during different rolling schedules and post-treatment processes.

  18. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    International Nuclear Information System (INIS)

    Roth, M; Biermann, H

    2010-01-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400 0 C to 800 0 C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P SWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750 0 C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P SWT cannot be applied for the live prediction.

  19. Thermomechanical modelling of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  20. The influence of thermomechanical treatment on the creep behaviour of DIN 1.4970 austenitic stainless steel at 973 K

    International Nuclear Information System (INIS)

    Zahra, A.A.A.; Schroeder, H.

    1981-04-01

    The creep-rupture behaviour of a Type DIN 1.4970 austenitic stainless steel has been investigated at 973 K (700 0 C) in a high vacuum for three conditions of thermomechanical treatment and a wide range of applied stresses. This type of steel is a candidate for use in the German SNR-300 Fast Breeder Reactor where it shall be used after a 13% cold-working treatment and subsequent aging at 1073 K (800 0 C) for 24 hours ( standard condition ). As an alternative, two other conditions were also investigated, namely aged at 1073 K (800 0 C) for 24 hours before the cold-working (condition 2) and cold worked only (condition 1). Because of various experimental efforts in this laboratory and elsewhere to study helium induced embrittlement effects in α-implanted foil specimens, all tests were performed using foil specimens of 105 μm thickness which were solution annealed at 1373 K (1100 0 C) before the above thermomechanical treatments were applied. The rupture lives and the minimum creep rates were found to be highly dependent on the applied stresses. The treatment of condition 1 material yielded a product as strong as the standard condition 3, while the condition 2 material was less creep resistant. Structural changes as well as fractography were followed using metallographic, transmission and scanning electron microscope techniques. Transgranular ductile fracture was clearly observed in all three conditions. TEM investigations showed that dispersive TiC precipitates were present in the matrix of condition 3 material before creep testing contrary to condition 1 and 2 material. In condition 1 the TiC dispersion was already found after short creep times, while no dispersive TiC precipitates were found in condition 2 material in every test condition. (orig.) [de

  1. Pilot trials of hemicelluloses extraction prior to thermomechanical pulp production: Part 1

    Science.gov (United States)

    Carl Houtman; Eric Horn

    2011-01-01

    Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no...

  2. Instrumentation requirements for the ESF thermomechanical experiments

    International Nuclear Information System (INIS)

    Pott, J.; Brechtel, C.E.

    1992-01-01

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery

  3. 3-D electromagnetic and thermo-mechanical simulation of a RF cavity

    CERN Document Server

    Launay, F

    2003-01-01

    A 3-D thermo-mechanical study of the edge of entrance blade of IPHI's RFQ was conducted by means of I-DEAS code. The aim is to compare the temperatures reached, the constraints, and the deformations calculated on the basis of RF power density stored on the blade obtained by means of two different electromagnetic computational codes, SOPRANO and MAFIA.

  4. Effect of thermo-mechanical loading histories on fatigue crack growth behavior and the threshold in SUS 316 and SCM 440 steels. For prevention of high cycle thermal fatigue failures

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Muzvidziwa, Milton; Iwasaki, Akira; Kasahara, Naoto

    2014-01-01

    High cycle thermal fatigue failure of pipes induced by fluid temperature change is one of the interdisciplinary issues to be concerned for long term structural reliability of high temperature components in energy systems. In order to explore advanced life assessment methods to prevent the failure, fatigue crack propagation tests were carried out in a low alloy steel and an austenitic stainless steel under typical thermal and thermo-mechanical histories. Special attention was paid to both the effect of thermo-mechanical loading history on the fatigue crack threshold, as well as to the applicability of continuum fracture mechanics treatment to small or short cracks. It was shown experimentally that the crack-based remaining fatigue life evaluation provided more reasonable assessment than the traditional method based on the semi-empirical law in terms of 'usage factor' for high cycle thermal fatigue failure that is employed in JSME Standard, S017. The crack propagation analysis based on continuum fracture mechanics was almost successfully applied to the small fatigue cracks of which size was comparable to a few times of material grain size. It was also shown the thermo-mechanical histories introduced unique effects to the prior fatigue crack wake, resulting in occasional change in the fatigue crack threshold. (author)

  5. Thermo-mechanical design and testing of a microbalance for space applications

    Science.gov (United States)

    Scaccabarozzi, Diego; Saggin, Bortolino; Tarabini, Marco; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2014-12-01

    This work focuses on the thermo-mechanical design of the microbalance used for the VISTA (Volatile In Situ Thermogravimetry Analyzer) sensor. VISTA has been designed to operate in situ in different space environments (asteroids, Mars, icy satellites). In this paper we focus on its application on Mars, where the expected environmental conditions are the most challenging for the thermo-mechanical design. The microbalance holding system has been designed to ensure piezoelectric crystal integrity against the high vibration levels during launch and landing and to cope with the unavoidable thermo-elastic differential displacements due to CTE and temperature differences between the microbalance elements. The crystal holding system, based on three symmetrical titanium supports, provides also the electrical connections needed for crystal actuation, microbalance heating and temperature measurement on the electrode area. On the microbalance crystal surfaces the electrodes, a micro film heater (optimized to perform thermo-gravimetric analysis up to 400 °C) and a resistive thermometer are deposited through a vacuum sputtering process. A mockup of the system has been manufactured and tested at the expected vibration levels and the thermal control effectiveness has been verified in thermo-vacuum environment.

  6. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [now at IAV GmbH, Kauffahrtei 25, D-09120 Chemnitz (Germany); Biermann, H, E-mail: marcel.roth@iav.d [TU Bergakademie Freiberg, Institute for Materials Engineering, Gustav-Zeuner-Strasse 5, D-09599 Freiberg (Germany)

    2010-07-01

    The cyclic deformation and fatigue behavior of the {gamma}-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400{sup 0}C to 800{sup 0}C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P{sub SWT} is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750{sup 0}C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P{sub SWT} cannot be applied for the live prediction.

  7. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  8. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  9. Mechanical and Tribological Characteristics of the AMC, Prepared by P/M Route along with Thermo-Mechanical Treatment

    Science.gov (United States)

    Mohapatra, Sambit Kumar; Maity, Kalipada; Bhuyan, Subrat Kumar; Prasad Satpathy, Mantra

    2018-03-01

    Thermo mechanical treatments have the ameliorated impacts on the mechanical and tribological properties of powder metallurgy components. In this investigation an aluminium matrix composite (AMC) {Al (92) + Mg (5) + Gr (1) + Ti (2)} has been prepared by following powder metallurgy technique, with double axial compaction and ulterior sintering. Secondary thermo-mechanical treatment i.e. hot extrusion through mathematical contoured cosine profiled die was considered. The die causes minimum velocity relative differences across the extrusion exit cross-section, which provides smooth material flow. Comparative result analysis for the mechanical and tribological characteristics of the specimen before and after extrusion was concentrated. Extrusion engenders significant amount of improvements of the properties those are attributed to excellent bond strength and uniform density distribution due to high compressive stress. Oxidative and delaminated wear mechanisms were found predominating type. To furnish the suitable explanation scanning electron microscopies have been performed for the wear surfaces.

  10. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  11. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    Science.gov (United States)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  12. Theoretical approach to the WWER core thermomechanical modelling

    International Nuclear Information System (INIS)

    Likhatchev, Y.; Troyanov, V.; Folomeev, V.; Demishonkov, A.

    2003-01-01

    The paper presents studies on the analysis of root causes of fuel assembly bowing under operating conditions; developing of a methodology for fuel assemblies thermomechanical simulation; developing of a calculation technique for thermomechanical modelling of the fuel assemblies bowing in operational conditions. Some examples of calculation results are given

  13. Thermo-mechanical Modelling of Pebble Beds in Fusion Blankets and its Implementation by a Return-Mapping Algorithm

    International Nuclear Information System (INIS)

    Gan, Yixiang; Kamlah, Marc

    2008-01-01

    In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)

  14. Standard practice for strain controlled thermomechanical fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers the determination of thermomechanical fatigue (TMF) properties of materials under uniaxially loaded strain-controlled conditions. A “thermomechanical” fatigue cycle is here defined as a condition where uniform temperature and strain fields over the specimen gage section are simultaneously varied and independently controlled. This practice is intended to address TMF testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is specific to strain-controlled testing, many sections will provide useful information for force-controlled or stress-controlled TMF testing. 1.2 This practice allows for any maximum and minimum values of temperature and mechanical strain, and temperature-mechanical strain phasing, with the restriction being that such parameters remain cyclically constant throughout the duration of the test. No restrictions are placed on en...

  15. Thermo-mechanical behavior of bituminous mixtures at low temperatures. Links between the binder characteristics and the mix properties; Comportement thermomecanique des enrobes bitumeux a basses temperatures: relations entre les proprietes du liant et de l'enrobe

    Energy Technology Data Exchange (ETDEWEB)

    Olard, F.

    2003-10-01

    This thesis has been realized within the framework of a partnership between the Ecole Nationale des TPE, APPIA and EUROVIA. The company Total has also been associated to this project. The study deals with the thermo-mechanical behavior of bituminous materials at low temperatures. The aim is to establish the links between the characteristics of the binder and the properties of bituminous mixes at low temperatures, and to better understand the existing low-temperature parameters and criteria for binders (or to propose new ones), related to the in-situ behavior of bituminous mixtures. A large experimental campaign has been carried out so as to fulfill this goal. After a bibliographical study on the rheology and the thermo-mechanical properties of (pure or modified) binders, putties and mixes, the experimental campaign carried out both in the small strain domain and in the large strain domain, is presented. The low temperature behavior of binders has been evaluated with three common fundamental tests: i)the complex modulus determination, ii)the Bending Beam Rheometer and iii)the tensile strength at a constant strain rate and constant temperatures. A new three point bending test on pre-notched bitumen beams has also been developed at the ENTPE. The low-temperature fracture properties of bitumens were studied at constant temperatures and cross-head speeds considering the Linear Elastic Fracture Mechanics (LEFM) assumptions. The thermo-mechanical behavior of bituminous mixtures has been studied by performing i)complex modulus tests, ii)measurements of the coefficient of thermal dilatation and contraction, iii)tensile tests at constant temperatures and strain rates, and iv)Thermal Stress Restrained Specimen Tests. Apart from the determination of some pertinent links between binder and mix properties and discriminating characteristics with regard to the thermal cracking of bituminous mixes at low temperatures, the analysis has also consisted in modeling the behavior of

  16. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB Injectors

    International Nuclear Information System (INIS)

    Agostinetti, P.; Dal Bello, S.; Palma, M.D.; Zaccaria, P.

    2006-01-01

    The SINGle Aperture - SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi Aperture Multi Grid (MAMuG) reference configuration. Optimized geometry of the SINGAP grids (plasma, extraction, pre-acceleration, and grounded grid) was identified by CEA Association considering specific requirements for ions extraction and beam generation referring to experimental data and code simulations. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB Injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with thermo-hydraulic and thermo-mechanical sensitivity analyses in order to satisfy the grid functional requirements (temperatures, in plane and out of plane deformations). A complete and detailed thermo-structural design assessment of the SINGAP grids was accomplished applying the structural design rules for ITER in-vessel components and considering both the reference load conditions and the maximum load provided by the power supplies. The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models. The grids were finally integrated with the support and cooling systems inside the beam source vessel. The main results of the thermo-hydraulic and thermo-mechanical analyses are presented. The open issues are then reported, mainly regarding the material properties characterization (static and fatigue tests) and the qualification of technologies for OFHC copper electro-deposition, brazing, and welding of heterogeneous materials. (author)

  17. Effect of oxygen on the thermomechanical behavior of tantalum thin films during the β-α phase transformation

    International Nuclear Information System (INIS)

    Knepper, Robert; Stevens, Blake; Baker, Shefford P.

    2006-01-01

    Tantalum thin films were prepared in the metastable β phase, and their thermomechanical behaviors were investigated in situ in an ultrahigh vacuum environment. Controlled levels of oxygen were incorporated into the films either during deposition, by surface oxidation after deposition, or during thermomechanical testing. The transformation from the β phase to the stable α phase takes place in conjunction with a distinct increase in tensile stress. The thermomechanical behavior is strongly affected by the amount of oxygen to which the film is exposed and the method of exposure. Increasing oxygen content inhibits the phase transformation, requiring higher temperatures to reach completion. It is shown that the phase transformation takes place by a nucleation and growth process that is limited by growth. Changes in the activation energy for the phase transformation due to solute drag are estimated as a function of oxygen content and the mechanisms behind the stress evolution are elucidated

  18. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  19. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  20. Thermomechanical damage of nucleosome by the shock wave initiated by ion passing through liquid water

    International Nuclear Information System (INIS)

    Yakubovich, Alexander V.; Surdutovich, Eugene; Solov’yov, Andrey V.

    2012-01-01

    We report on the results of full-atom molecular dynamics simulations of the heat spike in the water medium caused by the propagation of the heavy ion in the vicinity of its Bragg peak. High rate of energy transfer from an ion to the molecules of surrounding water environment leads to the rapid increase of the temperature of the molecules in the vicinity of ions trajectory. As a result of an abrupt increase of the temperature we observe the formation of the nanoscale shock wave propagating through the medium. We investigate the thermomechanical damage caused by the shock wave to the nucleosome located in the vicinity of heavy ion trajectory. We observe the substantial deformation of the DNA secondary structure. We show that the produced shock wave can lead to the thermomechanical breakage of the DNA backbone covalent bonds and present estimates for the number of such strand brakes per one cell nucleus.

  1. Low temperature radiation embrittlement for reactor vessel steels

    International Nuclear Information System (INIS)

    Ginding, I.A.; Chirkina, L.A.

    1978-01-01

    General conceptions of cold brittleness of bcc metals are in a review. Considered are experimental data and theoretical representations about the effect of irradiation conditions, chemical composition, phase and structural constitutions, grain size, mechanical and thermomechanical treatments on low-temperature irradiation embrittlement of reactor vessel steels. Presented are the methods for increasing radiation stability of metals (carbon and Cr-Mo steels) used in manufacturing reactor vessels

  2. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail: kfliuhust@hust.edu.cn; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi

    2017-01-15

    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  3. Ash fusion and thermo-mechanical (TMA) analyses

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-10-01

    Various tests and analytical techniques are used to evaluate the potential of coals to foul and slag furnace surfaces. This paper compares three thermo-mechanical analyses (TMA) techniques, the Australian Coal Industry Research Laboratories (ACIRL) `Improved Ash Fusion` test, the HRL Technologies Pty Ltd test, and the Commonwealth Scientific and Industrial Research Organisation test. The ACIRL test appears to the contender for becoming a standard test that will replace the ash fusibility temperatures test (AFT). The series of events which produce a fused mass is outlined from observations in the course of an experiment conducted by ACARP. The paper concludes that results from tests based on TMA quantify the extent of shrinkage and indicate temperatures at which rapid shrinkage occurs and which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. Temperatures corresponding to particular extents of shrinkage and the existence and extent of formation of these phases, as quantified by the magnitude of `peaks` in the TMA test, provide an alternative basis for defining ash fusibility temperatures. Shrinkage procedures provide alternatives to existing AFTs, as well as techniques for trouble-shooting problems in existing plant. (author). 1 fig., 10 refs.

  4. Description of the shape memory effect of radiation-modified polymers under thermomechanical action

    International Nuclear Information System (INIS)

    Chernous, D.A.; Shil'ko, S.V.; Pleskachevskij, Yu.M.

    2004-01-01

    The 'shape memory' effect of crystallizing polymer materials is simulated. The polymer is considered to be an inhomogeneous medium with a moving boundary (temperature-dependent phase composition). Using a model based on the 'frozen strain' hypothesis, the temperature dependences of stresses under isometric heating and cooling have been obtained. On the basis of the known data on the influence of gamma-irradiation on the thermomechanical characteristics the dependences of thermorelaxation and thermoshrinkage stresses on the absorbed dose for high-density polyethylene have been found. (Authors)

  5. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  6. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution

    Science.gov (United States)

    Ghadiri, Majid; Jafari, Ali

    2016-12-01

    Present disquisition proposes an analytical solution method for exploring the vibration characteristics of a cantilever functionally graded nanobeam with a concentrated mass exposed to thermal loading for the first time. Thermo-mechanical properties of FGM nanobeam are supposed to change through the thickness direction of beam based on the rule of power-law (P-FGM). The small-scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Linear temperature rise (LTR) through thickness direction is studied. Existence of centralized mass in the free end of nanobeam influences the mechanical and physical properties. Timoshenko beam theory is employed to derive the nonlocal governing equations and boundary conditions of FGM beam attached with a tip mass under temperature field via Hamilton's principle. An exact solution procedure is exploited to achieve the non-dimensional frequency of FG nanobeam exposed to temperature field with a tip mass. A parametric study is led to assess the efficacy of temperature changes, tip mass, small scale, beam thickness, power-law exponent, slenderness and thermal loading on the natural frequencies of FG cantilever nanobeam with a point mass at the free end. It is concluded that these parameters play remarkable roles on the dynamic behavior of FG nanobeam subjected to LTR with a tip mass. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future thermo-mechanical analyses of FG nanobeam with tip mass.

  7. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the

  8. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  9. Thermomechanical CSM analysis of a superheater tube in transient state

    Science.gov (United States)

    Taler, Dawid; Madejski, Paweł

    2011-12-01

    The paper presents a thermomechanical computational solid mechanics analysis (CSM) of a pipe "double omega", used in the steam superheaters in circulating fluidized bed (CFB) boilers. The complex cross-section shape of the "double omega" tubes requires more precise analysis in order to prevent from failure as a result of the excessive temperature and thermal stresses. The results have been obtained using the finite volume method for transient state of superheater. The calculation was carried out for the section of pipe made of low-alloy steel.

  10. Thermomechanical Modelling of Direct-Drive Friction Welding Applying a Thermal Pseudo Mechanical Model for the Generation of Heat

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Hattel, Jesper Henri

    2018-01-01

    In the present work a 2D a xisymmetric thermomechanical model of the direct-drive friction welding process is developed, taking the temperature dependent shear yield stress into account in the description of the heat generation, utilizing a recent thermal pseudo mechanical model originally...... developed for the friction stir welding (FSW) process. The model is implemented in ABAQUS/Explicit via a subroutine. The application in this case is joining of austenitic stainless steel rods with an outer diameter of 112 mm, used for manufacturing of exhaust gas valves for large two stroke marine engines....... The material properties in terms of the temperature dependent flowstress curves used both in the thermal and the mechanical constitutive description are extracted from compression tests performed between 20 °C and 1200 °C on a Gleeble 1500 thermomechanical simulator. Comparison between measured and simulated...

  11. Development of ultrafine ferritic sheaves/plates in SAE 52100 steel for enhancement of strength by controlled thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, J. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, W.B. 721 302 (India); Scientific Services and Research and Development, Tata Steel, Jamshedpur 831 001, Jharkhand (India); Manna, I., E-mail: imanna@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, W.B. 721 302 (India); Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), 196 Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Ultrafine bainite + martensite duplex microstructure developed in SAE 52100 steel. Black-Right-Pointing-Pointer Thermomechanical processing modifies size + morphology of bainitic ferrite. Black-Right-Pointing-Pointer Processing involves hot deformation prior to/during/after austenitizing. Black-Right-Pointing-Pointer Significant improvement in mechanical strength achieved. Black-Right-Pointing-Pointer Similar study on high carbon, low alloy steel not reported in the literature. - Abstract: The present study attempts to tailor the size, morphology and distribution of the ferrite needles/sheaves by thermomechanical processing and develop an ultrafine ferrite + martensite duplex microstructure for enhancement of strength and toughness in SAE 52100 steel. The thermo-mechanical routine included 5% hot deformation before, during or after austenitizing at 950 Degree-Sign C for 15 min followed by austempering at 270 Degree-Sign C for 30 min and subsequent water quenching to room temperature. Optical/electron microscopy along with X-ray diffraction was used to quantitatively monitor the size, morphology and distribution of the phase or phase aggregate. Significant improvement in nanohardness, wear resistance and elastic modulus and was observed in samples subjected to thermomechanical processing, as compared to that following the same austenitizing and austempering routine without hot deformation at any stage. However, improvement in the bulk mechanical property due to the present thermo-mechanical is lower than that obtained in our earlier study comprising cold deformation prior to austenitizing and austempering.

  12. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  13. PWR fuel thermomechanics

    International Nuclear Information System (INIS)

    Traccucci, R.; Leclercq, J.

    1986-01-01

    Fuel thermo-mechanics means the studies of mechanical and thermal effects, and more generally, the studies of the behavior of the fuel assembly under stresses including thermal and mechanical loads, hydraulic effects and phenomena induced by materials irradiation. This paper describes the studies dealing with the fuel assembly behavior, first in normal operating conditions, and then in accidental conditions. 43 refs [fr

  14. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process

    International Nuclear Information System (INIS)

    Robert, Y.

    2007-09-01

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  15. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    Science.gov (United States)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  16. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Vasilescu, Ecaterina; Drob, Paula [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cinca, Ion, E-mail: ion_cinca@hotmail.com [Faculty of Material Science and Engineering, Politehnica University, Spl. Independentei 313, 060042 Bucharest (Romania); Vasilescu, Cora; Anastasescu, Mihai [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, Valentina [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Drob, Silviu Iulian [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2014-05-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances.

  17. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-01-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances

  18. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  19. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL

    OpenAIRE

    V. A. Lutsenko

    2012-01-01

    There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  20. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  1. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  2. Thermo-mechanical behavior of power electronic packaging assemblies: From characterization to predictive simulation of lifetimes

    Science.gov (United States)

    Dalverny, O.; Alexis, J.

    2018-02-01

    This article deals with thermo-mechanical behavior of power electronic modules used in several transportation applications as railway, aeronautic or automotive systems. Due to a multi-layered structures, involving different materials with a large variation of coefficient of thermal expansion, temperature variations originated from active or passive cycling (respectively from die dissipation or environmental constraint) induces strain and stresses field variations, giving fatigue phenomenon of the system. The analysis of the behavior of these systems and their dimensioning require the implementation of complex modeling strategies by both the multi-physical and the multi-scale character of the power modules. In this paper we present some solutions for studying the thermomechanical behavior of brazed assemblies as well as taking into account the interfaces represented by the numerous metallizations involved in the process assembly.

  3. Thermo-mechanical Densification of Populus tomentosa var. tomentosa with Low Moisture Content

    Directory of Open Access Journals (Sweden)

    Dengyun Tu

    2014-05-01

    Full Text Available This study used thermo-mechanical densification technology to compress low-moisture content (3~5% rapid-growth Populus tomentosa var. tomentosa trees to produce specimens with a low-compression ratio (small volume loss and a uniform density profile and desirable properties. Furthermore, the densified specimens were subjected to post-heat treatment at 180, 190, and 200 °C for 2, 3, and 4 h, respectively. Microscopic examination was performed to observe the changes that occurred in the wood vessels after densification. To determine the influence of post-heat treatment on the set recovery, the specimens were subjected to eight cycles of soaking and drying in 20 °C water and two cycles in boiling water. The density profile tendencies of the densified specimens were in accord with undensified specimens. Microscopic observation revealed that the deformations present in the densified wood resulted from the viscous buckling of cell walls without fracture. The volume of the void areas in the specimens decreased uniformly. Post-heat treatment can decrease compressive deformation, especially when applied at 200 °C for 4 h. After two boiling water cycles of soaking and drying, the densified wood still had a certain set recovery. Therefore, densified wood should be used sparingly in high temperature and high humidity environments.

  4. Inorganic fullerene-like IF-WS_2/PVB nanocomposites of improved thermo-mechanical and tribological properties

    International Nuclear Information System (INIS)

    Simić, Danica; Stojanović, Dušica B.; Kojović, Aleksandar; Dimić, Mirjana; Totovski, Ljubica; Uskoković, Petar S.; Aleksić, Radoslav

    2016-01-01

    The subject of this research is to explore the possibility of preparation of nanocomposite material of improved thermo-mechanical and tribological properties, using inorganic fullerene-like tungsten disulfide nanostructures (IF-WS_2) as reinforcement in poly(vinyl butyral) (PVB). This paper also reports investigation of the effects of using different solvents in preparation of PVB/IF-WS_2 nanocomposite on the thermo-mechanical behavior of the resulting material. PVB was dissolved in ethanol, isopropanol, n-butanol and ethyl acetate. IF-WS_2 nanoparticles were added to these PVB solutions and dispersed by different deagglomeration techniques. Samples were dried and thin films were obtained. Their microstructure and the quality of IF-WS_2 dispersion and deagglomeration in PVB matrix was analyzed by scanning electron microscope (SEM). The reinforcing effect of IF-WS_2 is examined by determining hardness, reduced modulus of elasticity and coefficient of friction, by nanoindentation and nanoscratch test, in terms of the different solvents applied in preparation of the samples, mode of stirring and different contents of IF-WS_2. The glass transition temperature (T_g) was determined for the prepared samples using differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMA). Storage modulus and mechanical loss factor were observed in a defined temperature range using DMA. - Highlights: • Poly(vinyl butyral)/tungsten disulfide nanocomposites were examined. • Different solvents and deagglomeration methods affect the properties of composites. • Nanoindentation and scratch test, PSD, SEM, DSC and DMTA were analyzed. • Thermo-mechanical and antifriction properties of composite material are improved.

  5. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    Science.gov (United States)

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  6. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  7. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  8. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2012-01-01

    Full Text Available There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  9. Adjoint sensitivity analysis of the thermomechanical behavior of repositories

    International Nuclear Information System (INIS)

    Wilson, J.L.; Thompson, B.M.

    1984-01-01

    The adjoint sensitivity method is applied to thermomechanical models for the first time. The method provides an efficient and inexpensive answer to the question: how sensitive are thermomechanical predictions to assumed parameters. The answer is exact, in the sense that it yields exact derivatives of response measures to parameters, and approximate, in the sense that projections of the response fo other parameter assumptions are only first order correct. The method is applied to linear finite element models of thermomechanical behavior. Extensions to more complicated models are straight-forward but often laborious. An illustration of the method with a two-dimensional repository corridor model reveals that the chosen stress response measure was most sensitive to Poisson's ratio for the rock matrix

  10. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships

    International Nuclear Information System (INIS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2016-01-01

    Dislocation mobility in a solid solution was studied using atomistic simulations of an Mg/Al system. The critical resolved shear stress (CRSS) for the dislocations on the basal plane was calculated at temperatures from 0 K to 500 K with solute concentrations from 0 to 7 at%, and with four different strain rates. Solute hardening of the CRSS is decomposed into two contributions: one scales with c 2/3 , where c is the solute concentration, and the other scales with c 1 . The former was consistent with the Labusch model for local solute obstacles, and the latter was related to the athermal plateau stress due to the long range solute effect. A thermo-mechanical model was then used to analyze the temperature and strain rate dependences of the CRSS, and it yielded self-consistent and realistic results. The scaling laws were confirmed and the thermo-mechanical model was successfully parameterized using experimental measurements of the CRSS for Mg/Al alloys under quasi-static conditions. The predicted strain rate sensitivity from the experimental measurements of the CRSS is in reasonable agreement with separate mechanical tests. The concentration scaling and the thermo-mechanical relationships provide a potential tool to analytically relate the structural and thermodynamic parameters on the microscopic level with the macroscopic mechanical properties arising from dislocation mediated deformation.

  11. Near-field thermal transient and thermomechanical stress analysis of a disposal vault in crystalline hard rock

    International Nuclear Information System (INIS)

    Tsui, K.K.; Tsai, A.; Lee, C.F.

    1981-01-01

    The Canadian Nuclear Fuel Waste Management Program currently focuses on the development of a disposal vault in crystalline hard rock at a reference depth of 1 km below the surface in a suitable pluton in the Canadian Shield. As part of Ontario Hydro's technical assistance to the Atomic Energy of Canada Limited in this program, studies are being carried out to determine the effects of radiogenic heat on the near-field behaviour of a disposal vault. This paper presents the study results obtained to date. Temperature and stress fields were computed and cross-checked by several finite element codes. A comparison between vertical and horizontal borehole emplacement concepts is made. The effects of material non-linearity (temperature dependence) and three-dimensionality on the thermomechanical response are evaluated. Case histories of thermal spalling or fracturing in rock were summarized and discussed to illustrate the possible mechanisms and processes involved in thermal fracturing. An assessment of the thermomechanical stability of the rock mass around a disposal vault under a state of high horizontal in-situ stress is also presented

  12. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  13. Plasmonically enhanced thermomechanical detection of infrared radiation.

    Science.gov (United States)

    Yi, Fei; Zhu, Hai; Reed, Jason C; Cubukcu, Ertugrul

    2013-04-10

    Nanoplasmonics has been an attractive area of research due to its ability to localize and manipulate freely propagating radiation on the nanometer scale for strong light-matter interactions. Meanwhile, nanomechanics has set records in the sensing of mass, force, and displacement. In this work, we report efficient coupling between infrared radiation and nanomechanical resonators through nanoantenna enhanced thermoplasmonic effects. Using efficient conversion of electromagnetic energy to mechanical energy in this plasmo-thermomechanical platform with a nanoslot plasmonic absorber integrated directly on a nanobeam mechanical resonator, we demonstrate room-temperature detection of nanowatt level power fluctuations in infrared radiation. We expect our approach, which combines nanoplasmonics with nanomechanical resonators, to lead to optically controlled nanomechanical systems enabling unprecedented functionality in biomolecular and toxic gas sensing and on-chip mass spectroscopy.

  14. Inorganic fullerene-like IF-WS{sub 2}/PVB nanocomposites of improved thermo-mechanical and tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Simić, Danica [Military Technical Institute, Ratka Resanovića 1, 11132 Belgrade (Serbia); Stojanović, Dušica B., E-mail: duca@tmf.bg.ac.rs [University of Belgrade, Faculty of Technology and Metallurgy, 11120 Belgrade (Serbia); Kojović, Aleksandar [University of Belgrade, Faculty of Technology and Metallurgy, 11120 Belgrade (Serbia); Dimić, Mirjana; Totovski, Ljubica [Military Technical Institute, Ratka Resanovića 1, 11132 Belgrade (Serbia); Uskoković, Petar S.; Aleksić, Radoslav [University of Belgrade, Faculty of Technology and Metallurgy, 11120 Belgrade (Serbia)

    2016-12-01

    The subject of this research is to explore the possibility of preparation of nanocomposite material of improved thermo-mechanical and tribological properties, using inorganic fullerene-like tungsten disulfide nanostructures (IF-WS{sub 2}) as reinforcement in poly(vinyl butyral) (PVB). This paper also reports investigation of the effects of using different solvents in preparation of PVB/IF-WS{sub 2} nanocomposite on the thermo-mechanical behavior of the resulting material. PVB was dissolved in ethanol, isopropanol, n-butanol and ethyl acetate. IF-WS{sub 2} nanoparticles were added to these PVB solutions and dispersed by different deagglomeration techniques. Samples were dried and thin films were obtained. Their microstructure and the quality of IF-WS{sub 2} dispersion and deagglomeration in PVB matrix was analyzed by scanning electron microscope (SEM). The reinforcing effect of IF-WS{sub 2} is examined by determining hardness, reduced modulus of elasticity and coefficient of friction, by nanoindentation and nanoscratch test, in terms of the different solvents applied in preparation of the samples, mode of stirring and different contents of IF-WS{sub 2}. The glass transition temperature (T{sub g}) was determined for the prepared samples using differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMA). Storage modulus and mechanical loss factor were observed in a defined temperature range using DMA. - Highlights: • Poly(vinyl butyral)/tungsten disulfide nanocomposites were examined. • Different solvents and deagglomeration methods affect the properties of composites. • Nanoindentation and scratch test, PSD, SEM, DSC and DMTA were analyzed. • Thermo-mechanical and antifriction properties of composite material are improved.

  15. On phase transformation models for thermo-mechanically coupled response of Nitinol

    KAUST Repository

    Sengupta, Arkaprabha

    2011-03-31

    Fully coupled thermomechanical models for Nitinol at the grain level are developed in this work to capture the inter-dependence between deformation and temperature under non-isothermal conditions. The martensite transformation equations are solved using a novel algorithm which imposes all relevant constraints on the volume fractions. The numerical implementation of the resulting models within the finite element method is effected by the monolithic solution of the momentum and energy equations. Validation of the models is achieved by means of thin-tube experiments at different strain rates. © 2011 Springer-Verlag.

  16. Inline temperature compensation for dimensional metrology of polymer parts in a production environment based on 3D thermomechanical analysis

    DEFF Research Database (Denmark)

    Sonne, M. R.; Gonzalez, D.; Costa, G. Dalla

    2018-01-01

    Abstract In the present work a new method for thermal compensation in dimensional metrology of polymer parts in a production environment based on 3D thermomechanical simulations is developed. A fixture for measuring the length dimension of a classical polymer part is placed in a production enviro...

  17. Thermo-Mechanical Characterisation of In-Plane Properties for CSM E-glass Epoxy Polymer Composite Materials – Part 1

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Jensen, Martin; Andreasen, Jens H.

    2013-01-01

    The in-plane thermo-mechanical properties and residual stresses of a CSM E-glass/Epoxy material are characterised through the use of DSC and TMA. The measured data is used to generate material models which describe the mechanical behaviour as a function of conversion and temperature. The in-plane...

  18. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film.

  19. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  20. Thermo-mechanical properties of SOFC components investigated by a combined method

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ramousse, Severine

    , and differential thermo-mechanical behavior at each layer. The combination of such factors can have a critical effect on the final shape and microstructure, and on the mechanical integrity. Thermo-mechanical properties and sintering mechanisms of important SOFC materials (CGO, YSZ, ScYSZ) were systematically...

  1. Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing

    International Nuclear Information System (INIS)

    Zhang, Guoqing; Yuan, Hua; Jiao, Dongling; Li, Zhou; Zhang, Yong; Liu, Zhongwu

    2012-01-01

    Spray formed T15 high speed steel (HSS) billets were deposited using a state-of-the-art twin-atomiser spray forming facility. The effects of post thermo-mechanical processing (hot isostatic pressing and hot forging) and heat treatment on the microstructure and mechanical properties were investigated. As-deposited billet has a density over 99.3% of the theoretical value and no measurable macro-segregation was observed. The microstructure consists of the equiaxed grains with mean size of ∼18 μm and MC- and M 6 C-type carbides non-uniformly distributed inside the grains and along the grain boundaries. After optimal thermo-mechanical processing and heat treatment, the microstructure was composed of equiaxed fine tempered martensites, and refined M 6 C and MC spherical carbides particles uniformly distributed along the grain boundaries and inside the grains. The hardness reached HRC68 after thermo-mechanical processing, and the corresponding impact toughness and bending strength reached 27 J/cm 2 and 4600 MPa respectively. Although HIP cannot increase the bending strength significantly, it can effectively improve the impact toughness through refining and globurizing carbides.

  2. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  3. PIN99W, Modelling of VVER and PWR Fuel Rod Thermomechanical Behaviour

    International Nuclear Information System (INIS)

    Valach, M.; Strizhov, P.; Svoboda, R.

    2000-01-01

    1 - Description of program or function: The Code is developed to describe fuel rod thermomechanical behaviour in operational conditions. The main goal of this code is to calculate fuel temperature, gap conductivity, fission gas release and inner gas pressure. 2 - Methods: - fuel rod temperature response is solved by using one-dimensional finite element method combined with weighted residuals method; - the code involves models describing physical phenomena typical for the fuel irradiated in Light Water Power Reactors (densification, restructuring, fission gas release, swelling and relocation) ; - this code is updated and improves PIN-micro code. 3 - Restrictions on the complexity of the problem: - simplified mechanistic solution; - only steady-state solution; - no cladding failure criterion; - no model for axial fuel-cladding interaction

  4. Introduction to nonlinear thermomechanics of solids

    CERN Document Server

    Kleiber, Michał

    2016-01-01

    The first part of this textbook presents the mathematical background needed to precisely describe the basic problem of continuum thermomechanics. The book then concentrates on developing governing equations for the problem dealing in turn with the kinematics of material continuum, description of the state of stress, discussion of the fundamental conservation laws of underlying physics, formulation of initial-boundary value problems and presenting weak (variational) formulations. In the final part the crucial issue of developing techniques for solving specific problems of thermomechanics is addressed. To this aim the authors present a discretized formulation of the governing equations, discuss the fundamentals of the finite element method and develop some basic algorithms for solving algebraic and ordinary differential equations typical of problems on hand. Theoretical derivations are followed by carefully prepared computational exercises and solutions.

  5. RODSWELL: a computer code for the thermomechanical analysis of fuel rods under LOCA conditions

    International Nuclear Information System (INIS)

    Casadei, F.; Laval, H.; Donea, J.; Jones, P.M.; Colombo, A.

    1984-01-01

    The present report is the user's manual for the computer code RODSWELL developed at the JRC-Ispra for the thermomechanical analysis of LWR fuel rods under simulated loss-of-coolant accident (LOCA) conditions. The code calculates the variation in space and time of all significant fuel rod variables, including fuel, gap and cladding temperature, fuel and cladding deformation, cladding oxidation and rod internal pressure. The essential characteristics of the code are briefly outlined here. The model is particularly designed to perform a full thermal and mechanical analysis in both the azimuthal and radial directions. Thus, azimuthal temperature gradients arising from pellet eccentricity, flux tilt, arbitrary distribution of heat sources in the fuel and the cladding and azimuthal variation of coolant conditions can be treated. The code combines a transient 2-dimensional heat conduction code and a 1-dimentional mechanical model for the cladding deformation. The fuel rod is divided into a number of axial sections and a detailed thermomechanical analysis is performed within each section in radial and azimuthal directions. In the following sections, instructions are given for the definition of the data files and the semi-variable dimensions. Then follows a complete description of the input data. Finally, the restart option is described

  6. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  7. Optical nonlinearity due to thermomechanical effect in the planar and homeotropic nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Poursamad, J.B. [Physics & Optic Engineering Group, University of Bonab, Bonab (Iran, Islamic Republic of); Phirouznia, A. [Department of Physics, Azerbaijan ShahidMadani University, 53714-161 Tabriz (Iran, Islamic Republic of); Sahrai, M. [Research Institue for Applied Physics and Astronomy, Univerity of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-11-01

    Possibility of observing third thermomechanical (TM) effect in uniform nematic liquid crystals (NLC) with proper selection of boundary conditions on the cell walls is theoretically studied. Absorption of a light wave induces the needed temperature gradient for the TM effect. The molecular director reorientation due to third TM effect and the induced phase shift on the probe beam are calculated. The forth TM coefficient can be measured directly by the method proposed in this work.

  8. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  9. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  10. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  11. Thermo-mechanical actuator-based miniature tagging module for localization in capsule endoscopy

    Science.gov (United States)

    Chandrappan, Jayakrishnan; Ruiqi, Lim; Su, Nandar; Yen Yi, Germaine Hoe; Vaidyanathan, Kripesh

    2011-04-01

    Capsule endoscopy is a frontline medical diagnostic tool for the gastro intestinal tract disorders. During diagnosis, efficient localization techniques are essential to specify a pathological area that may require further diagnosis or treatment. This paper presents the development of a miniature tagging module that relies on a novel concept to label the region of interest and has the potential to integrate with a capsule endoscope. The tagging module is a compact thermo-mechanical actuator loaded with a biocompatible micro tag. A low power microheater attached to the module serves as the thermal igniter for the mechanical actuator. At optimum temperature, the actuator releases the micro tag instantly and penetrates the mucosa layer of a GI tract, region of interest. Ex vivo animal trials are conducted to verify the feasibility of the tagging module concept. X-ray imaging is used to detect the location of the micro tag embedded in the GI tract wall. The method is successful, and radiopaque micro tags can provide valuable pre-operative position information on the infected area to facilitate further clinical procedures.

  12. A Simple FEM Formulation Applied to Nonlinear Problems of Impact with Thermomechanical Coupling

    Directory of Open Access Journals (Sweden)

    João Paulo de Barros Cavalcante

    Full Text Available Abstract The thermal effects of problems involving deformable structures are essential to describe the behavior of materials in feasible terms. Verifying the transformation of mechanical energy into heat it is possible to predict the modifications of mechanical properties of materials due to its temperature changes. The current paper presents the numerical development of a finite element method suitable for nonlinear structures coupled with thermomechanical behavior; including impact problems. A simple and effective alternative formulation is presented, called FEM positional, to deal with the dynamic nonlinear systems. The developed numerical is based on the minimum potential energy written in terms of nodal positions instead of displacements. The effects of geometrical, material and thermal nonlinearities are considered. The thermodynamically consistent formulation is based on the laws of thermodynamics and the Helmholtz free-energy, used to describe the thermoelastic and the thermoplastic behaviors. The coupled thermomechanical model can result in secondary effects that cause redistributions of internal efforts, depending on the history of deformation and material properties. The numerical results of the proposed formulation are compared with examples found in the literature.

  13. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  14. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    International Nuclear Information System (INIS)

    Petersen, C.; Rodrian, D.

    2002-01-01

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 deg. C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials

  15. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    Science.gov (United States)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  16. Simulation of thermo-mechanical effect in bulk-silicon FinFETs

    OpenAIRE

    Burenkov, Alex; Lorenz, Jürgen

    2016-01-01

    The thermo-mechanical effect in bulk-silicon FinFETs of the 14 nm CMOS technology node is studied by means of numerical simulation. The electrical performance of such devices is significantly enhanced by the intentional introduction of mechanical stress during the device processing. The thermo-mechanical effect modifies the mechanical stress distribution in active regions of the transistors when they are heated. This can lead to a modification of the electrical performance. Numerical simulati...

  17. Optimization in Friction Stir Welding - With Emphasis on Thermo-mechanical Aspects

    DEFF Research Database (Denmark)

    Tutum, Cem Celal

    combined with classical single-objective and evolutionary multi-objective optimization algorithms (i.e. SQP and NSGA-II), to find the optimum process parameters (heat input, rotational and traverse welding speeds) that would result in favorable thermo-mechanical conditions for the process.......This book deals with the challenging multidisciplinary task of combining variant thermal and thermo-mechanical simulations for the manufacturing process of friction stir welding (FSW) with numerical optimization techniques in the search for optimal process parameters. The FSW process...... is characterized by multiphysics involving solid material flow, heat transfer, thermal softening, recrystallization and the formation of residual stresses. Initially, the thermal models were addressed since they in essence constitute the basis of all other models of FSW. Following this, several integrated thermo-mechanical...

  18. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Song, M.; Sun, C.; Fan, Z.; Chen, Y.; Zhu, R.; Yu, K.Y.; Hartwig, K.T.; Wang, H.; Zhang, X.

    2016-01-01

    Ferritic/martensitic (F/M) steels with high strength and excellent ductility are important candidate materials for the life extension of the current nuclear reactors and the design of next generation nuclear reactors. Recent studies show that equal channel angular extrusion (ECAE) was able to improve mechanical strength of ferritic T91 steels moderately. Here, we examine several strategies to further enhance the mechanical strength of T91 while maintaining its ductility. Certain thermo-mechanical treatment (TMT) processes enabled by combinations of ECAE, water quench, and tempering may lead to “ductile martensite” with exceptionally high strength in T91 steel. The evolution of microstructures and mechanical properties of T91 steel were investigated in detail, and transition carbides were identified in water quenched T91 steel. This study provides guidelines for tailoring the microstructure and mechanical properties of T91 steel via ECAE enabled TMT for an improved combination of strength and ductility.

  19. Microstructural Characterization of Thermomechanical and Heat-Affected Zones of an Inertia Friction Welded Astroloy

    Science.gov (United States)

    Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.

    2014-08-01

    The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  20. Global thermo-mechanical effects from a KBS-3 type repository

    International Nuclear Information System (INIS)

    Hakami, E.; Olofsson, Stig-Olof

    1998-01-01

    The objective of this study has been to identify the global thermo-mechanical effects in the bedrock hosting a nuclear waste repository. Numerical thermo-mechanical modeling using distinct element models was performed. The number of fracture zones, the heat intensity of the waste, the material properties of the rock mass and the boundary conditions of the models were varied. Different models for multi-level repositories were also analyzed and compared to the main single-level case. Further, the global influence from the excavation of repository tunnels and deposition holes was examined by introducing weaker rock mass material properties in the repository region of one model. The maximum compression stress obtained for the main model is 44 MPa and occurs at the repository level after about 100 years of deposition. Due to thermal expansion, the rock mass displaces upward, and the maximum heave at the ground surface after 1000 years is calculated to be 16 cm. In the area close to the ground surface the horizontal stresses reduce, causing the rock to yield in tension down to a depth of about 80 meters. The fracture zones show opening displacements at shallow depths and closing and shearing at the repository level. The maximum displacements are 0.3-2.5 cm for closing, 0.0-0.8 cm for opening and 0.2-2.2 cm for shearing. The resultant stresses and displacements depend in large part on the assumptions made concerning the heat intensity of the waste. In the main model, an initial heat intensity of 10 W/m 2 is assumed, which gives larger effects than the case with 6 W/m 2 . Another important input parameter for the analysis is the Young's modulus of the rock mass. In the main model, a value of 30 GPa is assumed. Higher values of Young's modulus give larger thermo-mechanical effects. All multi-level repository layouts give rise to higher temperatures than the single-level layout, causing the compressive stresses to increase more at the repository level. The multi

  1. Effect of Different Thermomechanical Processes on the Microstructure, Texture, and Mechanical Properties of API 5L X70 Steel

    Science.gov (United States)

    Masoumi, Mohammad; Echeverri, Edwan Anderson Ariza; Silva, Cleiton Carvalho; Béreš, Miloslav; de Abreu, Hamilton Ferreira Gomes

    2018-03-01

    A commercial API 5L X70 steel plate was subjected to different thermomechanical processes to propose a novel thermomechanical rolling path to achieve improved mechanical properties. Scanning electron microscopy, electron backscatter diffraction, and x-ray texture analysis were employed for microstructural characterization. The results showed that strain-free recrystallized {001} ferrite grains that developed at higher rolling temperature could not meet the American Petroleum Institute (API) requirements. Also, refined and work-hardened grains that have formed in the intercritical region with high stored energy do not provide suitable tensile properties. However, fine martensite-austenite constituents dispersed in ferrite matrix with grains having predominantly {111} and {110} orientations parallel to the normal direction that developed under isothermal rolling at 850 °C provided an outstanding combination of tensile strength and ductility.

  2. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  3. Effect of microencapsulated phase change materials on the thermo-mechanical properties of poly(methyl-methacrylate) based biomaterials.

    Science.gov (United States)

    De Santis, Roberto; Ambrogi, Veronica; Carfagna, Cosimo; Ambrosio, Luigi; Nicolais, Luigi

    2006-12-01

    Microencapsulated paraffin based phase change material (PCM) have been incorporated into Poly(methyl-methacrylate) (PMMA) matrix in order to enhance the thermo-mechanical properties. Calorimetric and mechanical analyses are carried out and the thermo regulating potential of PMMA/PCM composites is investigated. Results indicate that the PCM phase has a negligible effect on the glass transition temperature of the PMMA matrix, and the thermal regulating capability spans around body temperature absorbing or releasing a thermal energy up to 30 J/g. One of the effect of the PCM phase into the cement is the reduction of the peak temperature developed during the exothermal reaction.

  4. Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads

    Directory of Open Access Journals (Sweden)

    A. E. Alshorbagy

    2013-01-01

    Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.

  5. Thermomechanical characterization of pure polycrystalline tantalum

    International Nuclear Information System (INIS)

    Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.

    2007-01-01

    The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure

  6. Influence of Carbon Nano Tubes on the Thermo-Mechanical Properties of Unsaturated Polyester Nanocomposite

    International Nuclear Information System (INIS)

    Alam, A K M Moshiul; Beg, M D H; Yunus, Rosli Mohd

    2015-01-01

    To date nano fillers are renowned reinforcing agent for polymer materials. In this work, unsaturated polyester (UPR) nanocomposites were fabricated by 0.1, 0.3 and 0.5 wt% multi walled carbon nanotubes (MWCNTs) through solution dispersion and casting method. The influence of MWCNT content was investigated by thermo-mechanical properties. Dispersion of nanotubes was observed by fracture morphology. The strength of nanocomposites rose with raising the CNT content. Moreover, DSC thermograms of nanocomposites represent noticeable improvement of glass transition temperature (T g ), melting temperature (T m ) and enthalpy (ΔH m ). Micro-crystallinity of nanocomposites increased with increasing the CNT content. Moreover, the stiffness increased with increasing the CNT content. (paper)

  7. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL-MOLYBDENUM STEEL WITH WELDING FUNCTION

    OpenAIRE

    V. A. Lutsenko

    2012-01-01

    There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  8. Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film

    International Nuclear Information System (INIS)

    Xiong Qi-lin; Tian Xin

    2017-01-01

    The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology (large or small ballistic range). In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source. (paper)

  9. Thermo-mechanical design of the Plasma Driver Plate for the MITICA ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy); Palma, Mauro Dalla; Marcuzzi, Diego [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2010-12-15

    In the framework of the activities for the development of the Neutral Beam Injector (NBI) for ITER, the detailed design of the Radio-Frequency (RF) negative ion source has been carried out. One of the most heated components of the RF source is the rear vertical plate, named Plasma Driver Plate (PDP), where the Back-Streaming positive Ions (BSI+) generated from stripping losses in the accelerator and back scattered on the plasma source impinge on. The heat loads that result are huge and concentrated, with first estimate of the power densities up to 60 MW/m{sup 2}. The breakdowns that occur into the accelerator cause such heat loads to act cyclically, so that the PDP is thermo-mechanically fatigue loaded. Moreover, the surface of the PDP facing the plasma is functionally required to be temperature controlled and to be molybdenum or tungsten coated. The thermo-hydraulic design of the plate has been carried out considering active cooling with ultra-pure water. Different heat sink materials, hydraulic circuit layout and manufacturing processes have been considered. The heat exhaust has been optimized by changing the channels geometry, the path of the heat flux in the heat sink, the thickness of the plate and maximizing the Heat Transfer Coefficient. Such optimization has been carried out by utilizing 3D Finite Element (FE) models. Afterwards all the suitable mechanical (aging, structural monotonic and cyclic) verifications have been carried out post-processing the results of the thermo-mechanical 3D FE analyses in accordance to specific procedures for nuclear components exposed to high temperature. The effect of sputtering phenomenon due to the high energy BSI+ impinging on the plate has been considered and combined with fatigue damage for the mechanical verification of the PDP. Alternative solutions having molybdenum (or tungsten coatings) facing the plasma, aiming to reduce the sputtering rate and the consequent plasma pollution, have been evaluated and related 3D FE

  10. Thermo-Mechanical Fatigue Crack Growth of RR1000.

    Science.gov (United States)

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-04

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  11. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  12. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  13. Far-field thermomechanical response of argillaceous rock to emplacement of a nuclear-waste repository

    International Nuclear Information System (INIS)

    McVey, D.F.; Thomas, R.K.; Lappin, A.R.

    1980-08-01

    Before heat-producing wastes can be emplaced safely in any argillaceous rock, it will be necessary to understand the far-field thermal and thermomechanical response of this rock to waste emplacement. This report presents the results of a first series of calculations aimed at estimating the far-field response of argillite to waste emplacement. Because the thermal and mechanical properties of argillite are affected by its content of expandable clay, its behavior is briefly compared and contrasted with that of a shale having the same matrix thermal properties, but containing no expandable clay. Under this assumption, modeled temperatures are the same for the two rock types at equivalent power densities and reflect the large dependence of in-situ temperatures on both initial power density and waste type. Thermomechanical calculations indicate that inclusion of contraction behavior of expandable clays in the assumed argillite thermal expansion behavior results, in some cases, in generation of a large zone in and near the repository that has undergone volumetric contraction but is surrounded by uniformly compressive stresses. Information available to date indicates that this contraction would likely result in locally increased fluid permeability and decreased in-situ thermal conductivity, but might well be advantageous as regards radionuclide retention, because of the increased surface area within the contracted zone. Assumption of continuous and positive expansion behavior for the shale eliminates the near-repository contraction and tensional zones, but results in near-surface tensional zones directly above the repository

  14. Thermo-mechanical treatment of zirconium alloys

    International Nuclear Information System (INIS)

    Levy, I.S.

    1975-01-01

    A zirconium alloy comprising at least 95 percent Zr (Zircaloy), which has been thoroughly annealed, is greatly increased in strength without substantial loss in ductility by subjecting it to tensile creep deformation in a temperature range in which creep will occur, yet which is below the temperature for significant recovery. (U.S.)

  15. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL-MOLYBDENUM STEEL WITH WELDING FUNCTION

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2012-01-01

    Full Text Available There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  16. Enhanced thermo-mechanical performance and strain-induced ...

    Indian Academy of Sciences (India)

    Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films ... School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea ...

  17. Water-cooled lithium-lead box-shaped blanket concept for Demo: thermo-mechanical optimization and manufacturing sequence proposal

    International Nuclear Information System (INIS)

    Baraer, L.; Dinot, N.; Giancarli, L.; Proust, E.; Salavy, J.F.; Severi, Y.; Quintric-Bossy, J.

    1992-01-01

    The development of the water-cooled lithium-lead box-shaped blanket concept for DEMO has now reached the stage of thermo-mechanical optimization. In the previous design phases the preliminary dimensioning of the cooling circuit has permitted to define the water proportions required in the breeder region and to demonstrate, after a minimization of steel proportion and thicknesses, that this concept could reach tritium breeding self-sufficiency. In the present analysis the location of the coolant pipes has been optimized for the whole equatorial plane cross-section of both inboard and outboard segments in order to maintain the maximum Pb-17Li/steel interface temperature below 480 deg C and to minimize the thermal gradients along the steel structures. The consequent thermo-mechanical analysis has shown that the thermal stresses always remain below the allowable limits. Segment fabricability and removal are the next design issues to be analyzed. Within this strategy, a first manufactury sequence for the outboard segment is proposed

  18. Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering

    Directory of Open Access Journals (Sweden)

    Wendy Margarita Chávez-Montes

    2016-04-01

    Full Text Available Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. However, PLA is susceptible to thermal degradation and thus an undesired decay of MW and a decrease of its mechanical properties during processing. To avoid this PLA degradation, nanofiller is incorporated as reinforcement to increase its thermo-mechanical properties. There are many papers focusing on filler effects on the thermal stability and mechanical properties of PLA/nanocomposites; however, these investigations lack an explanation of polymer/filler interactions. We propose interactions between PLA and Cloisite30B (C30B as nanofiller. We also study the effects on the thermal and mechanical properties due to molecular weight decay after exposure to artificial weathering. PLA blank and nanocomposites were subjected to three time treatments (0, 176, and 360 h of exposure to artificial weathering in order to achieve comparable materials with different MW. MW was acquired by means of Gel Permeation Chromatography (GPC. Thermo-mechanical properties were investigated through Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC, X-ray Diffraction (XRD, Dynamic Mechanical Thermal Analysis (DMTA and Fourier Transform Infrared Spectroscopy (FTIR.

  19. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  20. Experimental study on the thermo-mechanical behaviour of stiff clay under non-isotropic stress state

    International Nuclear Information System (INIS)

    Tang, Anh Minh; Cui, Yu-Jun; Li, Xiang-Ling

    2012-01-01

    Document available in extended abstract form only. Stiff clay is usually considered as possible host-rock for geological radioactive waste disposal due to its low permeability and its self-sealing capacity. Boom Clay, for instance, is one of the clays currently considered by the Belgian radioactive waste management agency Ondraf/Niras as a potential host for a geological repository. In order to analyse the performance of this material, it is important to understand its behaviour under the coupled thermo-hydro-mechanical solicitations. In laboratory, several studies have been performed to study the volume change of clay under coupled thermomechanical loading. The results show that heating under drained conditions can induce thermal dilation at low confining stress and thermal contraction at high confining stress. On the other hand, compression tests performed at constant temperature show that the compressibility parameters of soil can be modified by temperature change. These features are now well considered in constitutive laws based on the framework of elasto-plasticity. Under undrained conditions, heating can increase pore-water pressure and this behaviour can be simulated using the theoretical thermo-poro-elastic framework. The temperature effect on the soil behaviour under triaxial compression is also often considered. It is commonly accepted that heating decreases the shear strength of clay but this softening can be hidden by the thermal contraction that occurs during heating which can induce at the same time soil hardening. In spite of these existing works, laboratory tests considering the thermo-mechanical loading path that the soil can be subjected to are still rare. Actually, in the case of geological radioactive waste disposal, after the installation of waste canisters, the soil is expected to be heated under non-isotropic stress state. Most of the existing laboratory works show heating tests in odometer cell or triaxial cell under isotropic stress

  1. Tensile properties of unirradiated PCA from room temperature to 7000C

    International Nuclear Information System (INIS)

    Braski, D.N.; Maziasz, P.J.

    1983-01-01

    The tensile properties of Prime Candidate Alloy (PCA) austenitic stainless steel after three different thermomechanical treatments were determined from room temperature to 700 0 C. The solution-annealed PCA had the lowest strength and highest ductility, while the reverse was true for the 25%-cold-worked material. The PCA containing titanium-rich MC particles fell between the other two heats. The cold-worked PCA had nearly the same tensile properties as cold-worked type 316 stainless steel. Both alloys showed ductility minima at 300 0 C

  2. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    International Nuclear Information System (INIS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Zhang, Weihong; Van Herpen, Alain

    2016-01-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well. (paper)

  3. A numerical study of water percolation through an unsaturated variable aperture fracture under coupled thermomechanical effects

    International Nuclear Information System (INIS)

    Tsang, C.F.; Noorishad, J.; Hale, F.V.

    1991-12-01

    In calculation of ground water travel times associated with performance assessment of a nuclear waste repository, the role of fractures may turn out to be very important. There are two aspects related to fracture flow that have not been fully resolved. The first is the effect of coupled thermomechanical impact on fracture apertures due to the thermal output of the nuclear waste repository. The second is the effect of the variable aperture nature of the fractures. The present paper is an exploratory study of the impact of these two effects on water percolation through unsaturated fractures. The paper is divided into two main sections. the first section describes a calculation of the thermomechanical behavior of the geologic formation around a waste repository. In this exploratory study we assume two major fractures, one vertical and one horizontal through the repository center. Temperatures and thermally induced stress fields are calculated. The second part of the paper considers the unsaturated case and describes a study of water infiltration from the land surface through the vertical fracture to the repository

  4. Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products

    International Nuclear Information System (INIS)

    Kalkis, V.; Maksimov, R.D.; Kalnins, M.; Zicans, J.; Bocoka, T.; Revjakin, O.

    2000-01-01

    The gamma-irradiated blends of polyethylene (PE) with ethylene / propylene / diene copolymer (Epdm) and thermotropic liquid crystalline polymer (LCP) are investigated. The radiation dose absorbed does not exceed 150 kGy (10 kGy=1 Mrad). It is shown that the even small amounts of LCP added to PE improve the mechanical and operational properties of composites and the thermosetting products made of them. The temperature dependences of the elastics modulus, tension diagrams at a temperature above the PE melting point, and recovery curves of the oriented specimens are presented. The kinetics of thermorelaxation and residual setting stresses upon isometric heating and cooling of the previously oriented composites is studied. The data on the influence of LCP on the adhesion interaction of the blend with steel are obtained. The features of thermomechanical and adhesive properties are discussed and the results of morphological and calorimetric tests are given. (author)

  5. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures

    Directory of Open Access Journals (Sweden)

    Yun Cui

    2018-02-01

    Full Text Available The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.

  6. Global thermo-mechanical effects from a KBS-3 type repository. Summary report

    International Nuclear Information System (INIS)

    Hakami, E.; Olofsson, Stig-Olof; Hakami, H.; Israelsson, Jan

    1998-04-01

    The objective of this study has been to identify the global thermomechanical effects in the bedrock hosting a nuclear waste repository - i.e. the effects at large distances from the repository. Numerical thermomechanical modeling was performed in several steps, beginning with elastic continuum models and followed by distinct element models (3DEC), in which fracture zones are explicitly simulated. The number of fracture zones, the heat intensity of the waste, the material properties of the rock mass and the boundary conditions of the models were varied in different simulations. The results from the numerical modeling show that the principal stresses increase near the repository. The maximum stress obtained for the main model is 44 MPa and occurs at the repository level after about 100 years of deposition. Due to thermal expansion, the rock mass displaces upward, and the maximum heave at the ground surface after 1000 years is calculated to be 16 cm. In the area close to the ground surface, above the center of the repository, the horizontal stresses reduce, causing the rock to yield in tension down to a depth of about 80 m. In correspondence with the stress changes, the fracture zones show opening normal displacements at shallow depths and closing normal displacements and shearing at the repository level. The maximum displacements of the different fracture zones are 0.3-2.5 cm for closing, 0.0-0.8 cm for opening and 0.2-2.2 cm for shearing. Another important input parameter for the analysis is the Young's modulus of the rock mass. In the main model, a value of 30 GPa is assumed. Higher values of Young's modulus give larger thermo-mechanical effects. Other changes of the properties considered give minor changes of the rock mass behavior. All multi-level repository layouts give rise to higher temperatures than the single-level layout, causing the compressive stresses to increase more at the repository level. Fracture zone displacements caused by different layouts are

  7. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  8. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  9. Enhancing the ABAQUS Thermomechanics Code to Simulate Multidimensional Steady and Transient Fuel Rod Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L.; Knoll, D.A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-3855 (United States)

    2009-06-15

    convective heat transfer boundary is applied to the clad outer wall. Energy generation in the fuel is specified using a spatially uniform volumetric fission rate. The analysis includes three time periods: an initial rise to power from ambient conditions, steady operation to a burnup of approximately 47 MWd/kgU, and then a power ramp and 12 hr hold. Results are presented at various stages of burnup during steady operation and then at the end of the power-ramp and hold. The 2D axisymmetric model permits an in-depth view of the evolving temperature and stress fields at the so called 'triple point', where the ends of two adjacent pellets contact the clad. Displacement and temperature results clearly demonstrate the importance of fully-coupled thermomechanics as the gap narrows and contact occurs. The clad axial stress in this region evolves from bending, during initial contact, to full tension, as the fuel and clad are mechanically coupled via friction and fuel swelling results in axial clad displacement. A plot of the clad radial displacement along the axial length shows initial uniform clad creep-down during steady operation, the effects of initial pellet-clad contact at the pellet ends (triple points), eventual full pellet/clad contact, and significant increased displacement during power ramping. The expected 'bamboo' profile along the clad length is clearly demonstrated. An important point is that ABAQUS implicit numeric and error-based time step control permits time step sizes ranging from less than 0.1 s, during power-up, to greater than 10 days, during steady operation. The code can easily accommodate combined steady and transient reactor operations. Results from a multiple pellet simulation demonstrate the importance of a multidimensional fully coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing codes are, in fact, ABAQUS strengths. (authors)

  10. Modelling of the thermomechanical behaviour of saturated clays: application to the radioactive wastes disposal

    International Nuclear Information System (INIS)

    Rahbaoui, A.

    1995-01-01

    During the waste disposal of containers, the clay barriers of backfill and the confining medium, which is essentially composed of clay, are submitted to heavy thermal stresses which induce volume change and can result in material failure. The clay, composed of solid skeleton, adsorbed water, and free water, is submitted to physico-chemical interactions which influence its thermomechanical behaviour, itself quits different from granular media such as sand. The principal factor responsible for this response is the effect of temperature on the clays water. Thus, the loss of special structure of adsorbed water and the increase in thickness of the diffused double-layer provoke microstructural rearrangement mechanisms of particles. Those mechanisms are strongly correlated with the mechanical state of material. When it is highly over-consolidated, an irreversible swelling occurs during thermal cycle, accompanied by a breaking up of the particles and a permanent expansion of meso-pores. The greater the OCR, the more important the thermal swelling. When the material is normally consolidated, the particles settle during heating under the external stress, which results in a denser rearrangement of the material. With a slight over-consolidated material, all the intermediate stages between the above mechanisms can be reached. However, cooling produces only a weak reversible compression characterising the thermal contraction of the components. Those microscopic phenomena have been used to elaborate a macroscopic thermomechanical model based on the Cam-Clay and the Hujeux Models. The model formulation includes a thermal softening, on one hand, by the reduction of the mechanical yield surface f c and the translation of the thermal yield surface f T (PTL), and, on the other hand, an irreversible thermal expansive volumetric strain. This approach of the problem was tested along various thermomechanical paths and especially on the laboratory tests, on the expansive and non expansive

  11. Thermomechanical evaluation of the fuel assemblies fabricated in the ININ

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2005-01-01

    The pilot plant of fuel production of the National Institute of Nuclear Research (ININ) provided to the Laguna Verde Nuclear Power Plant (CNLV) four fuel assemblies type GE9B. The fuel irradiation was carried out in the unit 1 of the CNLV during four operation cycles, highlighting the fact that in their third cycle the four assemblies were placed in the center of the reactor core. In the Nuclear Systems Department (DSN) of the ININ it has been carried out studies to evaluate their neutron performance and to be able to determine the exposure levels of this fuels. Its also outlines the necessity to carry out a study of the thermomechanical behavior of the fuel rods that compose the assemblies, through computational codes that simulate their performance so much thermal as mechanical. For such purpose has been developing in the DSN the FETMA code, together with the codes that compose the system Fuel Management System (FMS), which evaluates the thermomechanical performance of fuel elements. In this work were used the FETMA and FEMAXI codes (developed by JAERI) to study the thermomechanical performance of the fuel elements manufactured in the ININ. (Author)

  12. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer S.

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental

  13. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  14. Microstructural stability and thermomechanical processing of boron modified beta titanium alloys

    Science.gov (United States)

    Cherukuri, Balakrishna

    One of the main objectives during primary processing of titanium alloys is to reduce the prior beta grain size. Producing an ingot with smaller prior beta grain size could potentially eliminate some primary processing steps and thus reduce processing cost. Trace additions of boron have been shown to decrease the as-cast grain size in alpha + beta titanium alloys. The primary focus of this dissertation is to investigate the effect of boron on microstructural stability and thermomechanical processing in beta titanium alloys. Two metastable beta titanium alloys: Ti-15Mo-2.6Nb-3Al-0.2Si (Beta21S) and Ti-5Al-5V-5Mo-3Cr (Ti5553) with 0.1 wt% B and without boron additions were used in this investigation. Significant grain refinement of the as-cast microstructure and precipitation of TiB whiskers along the grain boundaries was observed with boron additions. Beta21S and Beta21S-0.1B alloys were annealed above the beta transus temperature for different times to investigate the effect of boron on grain size stability. The TiB precipitates were very effective in restricting the beta grain boundary mobility by Zener pinning. A model has been developed to predict the maximum grain size as a function of TiB size, orientation, and volume fraction. Good agreement was obtained between model predictions and experimental results. Beta21S alloys were solution treated and aged for different times at several temperatures below the beta transus to study the kinetics of alpha precipitation. Though the TiB phase did not provide any additional nucleation sites for alpha precipitation, the grain refinement obtained by boron additions resulted in accelerated aging. An investigation of the thermomechanical processing behavior showed different deformation mechanisms above the beta transus temperature. The non-boron containing alloys showed a non-uniform and fine recrystallized necklace structure at grain boundaries whereas uniform intragranular recrystallization was observed in boron containing

  15. Interfacial characteristics of hybrid nanocomposite under thermomechanical loading

    Science.gov (United States)

    Choyal, Vijay; Kundalwal, Shailesh I.

    2017-12-01

    In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.

  16. Modelling the Thermomechanical Conditions in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich

    Friction Stir Welding is a solid-state welding process invented by TWI in 1991. The FSW process is unique in the sense that joining of un-weldable alloys readily can be made. The thermomechanical conditions present in the workpiece during the welding process are of great interest since...... these control the properties of the weld. In the present work, a set of experimental, analytical and numerical analyses are carried out in order to evaluate the thermomechanical conditions descriptive for welding of aluminium, in this case AA2024-T3, under a specific set of welding parameters. Despite...... these specific data, the developed models can be applied for other alloys and welding parameters as well. A detailed experiment is carried out which constitutes the basis for the development and validation of the numerical and analytical models presented in this work. The contact condition at the tool...

  17. Three-Dimensional Finite Element Modeling of Thermomechanical Problems in Functionally Graded Hydroxyapatite/Titanium Plate

    Directory of Open Access Journals (Sweden)

    S. N. S. Jamaludin

    2014-01-01

    Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.

  18. A preliminary study of thermo-mechanical stability of carbon S-phase formed in austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Chiu, Yu Long; Dong, Hanshan, E-mail: wsgddf@hotmail.com [School of Metallurgy and Materials, College of Physical and Engineering Sciences, The University of Birmingham, Birmingham (United Kingdom)

    2010-07-01

    Carbon S-phase was generated in the surface of AISI316 austenitic stainless steel by plasma carburising at 500°C for 10h in a gas mixture of 1.5%CH4 and 98.5%H{sub 2}. The thermo-mechanical stability of the carbon S-phase was studied by stressing the 'dog-bone' tensile specimens in the range of 0-200MPa at temperatures ranging from 400 to 500°C for 100-150h. Post-test characterisation was conducted using XRD, SEM, TEM and micro-indentation. The experimental results demonstrate that when tested at a fix temperature the thickness of the carbon S-phase layer increased with the stress applied to the tensile specimens during the thermo-mechanical stability tests. This indicates that tensile stress promotes the diffusion of carbon in the carbon-S-phase. When stressed at 400°C the microstructure of the carbon S-phase was not affected by the stress level; however, when stressed at 450 and 500°C for 100MPa or above, the corrosion resistance of the carbon S-phase slightly deteriorated. The application of a tensile stress during annealing of S-phase layer can retard the deduction of its hardness. This is believed to be related to the early stage precipitation of carbides in the S-phase, which could be facilitated by the applied tensile stress during thermal annealing. (author)

  19. CFD and FEM thermo-mechanical design of a recuperative-dissipative heat exchanger for a laboratory water gas shift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Michele Vascellari; Stefano Sollai; Pier Francesco Orru; Giorgio Cau [University of Cagliari, Cagliari (Italy). Department of Mechanical Engineering

    2007-07-01

    A small scale test rig based on a two-stage reactor for testing water gas shift conversion processes has been set up at the Department of Mechanical Engineering at the University of Cagliari, chiefly for the purpose of supporting a pilot plant operation for high sulphur (Sulcis) coal gasification, gas cleaning and treatment, CO{sub 2} separation, hydrogen and electricity production. The laboratory test rig comprises two packed-bed reactors in series to be operated at different temperatures and has been designed for testing CO-shift conversion processes using a variety of catalysts for different syngas temperatures (up to 500{sup o}C) and compositions. One critical component of the system is a recuperative-dissipative heat exchanger placed between the two reactors. The heat exchanger, which preheats the syngas prior to entering the high temperature reactor and cools the shifted gas exiting there from, prior to its entering the low temperature reactor, is subjected to severe thermo-mechanical stress. Thus the design and analysis of this component, described herein, is a critical issue. A full 3D conjugate heat transfer CFD analysis of the tubular heat exchanger has been performed, considering different geometries. Based on the CFD results we were able to verify the preliminary design of the component, carried out using simple thermal correlations and to predict wall temperature distribution for the thermo-structural analysis. 10 refs., 10 figs., 2 tabs.

  20. Enhancement of low temperature toughness of nanoprecipitates strengthened ferritic steel by delamination structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Xu, Songsong; Li, Junpeng; Zhang, Jian [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China); Sun, Liangwei; Chen, Liang; Sun, Guangai; Peng, Shuming [Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621999 (China); Zhang, Zhongwu, E-mail: zwzhang@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P R China (China)

    2017-04-13

    This study investigated the effects of aging and thermomechanical treatments on the microstructure evolution and mechanical properties of a nanoprecipitates strengthened ferritic steel. The toughness of steel at various temperatures was measured carefully and correlated with microstructural features. Tensile tests show that aging can improve the mechanical strength without scarifying the ductility. With high yield strength of ~1000 MPa, excellent low temperature Charpy impact energy more than 300 J at −80 °C can be obtained. The ductile brittle transition temperature (DBTT) is lower than −80 °C. The high strength can be contributed by the nanocluster precipitation as determined by small angle neutron scattering and transmission electron microscopy. The excellent low temperature toughness is attributed to the delamination structure of the steel, which blunts the cracks and restrains the crack propagation.

  1. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  2. Improvement of thermo-mechanical properties of ceramic materials for nuclear applications

    International Nuclear Information System (INIS)

    Decroix, G.M.; Gosset, D.; Kryger, B.; Boussuge, M.; Burlet, H.

    1994-01-01

    In order to improve the thermo-mechanical properties of materials used as neutron absorbers in nuclear reactors, cermet or cercer have been produced with two original microstructures: micro- or macro-dispersed composites. The composites thermal shock resistance has been evaluated in an image furnace. The microstructures we obtained involve different reinforcement mechanisms, such as crack deflection, crack branching, crack bridging or microcrack toughening, and improvement of thermal conductivity. The results reveal a significant improvement of the thermo-mechanical properties of the boron base neutron absorbers whose fabrication process leads to a macro-dispersed microstructure. (authors). 8 refs., 8 figs., 2 tabs

  3. Examination of the Thermo-mechanical Properties of E-Glass/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Hande Sezgin

    2017-12-01

    Full Text Available Eight-ply E-glass, carbon and E-glass/carbon fabric-reinforced polyester based hybrid composites were manufactured in this study. A vacuum infusion system was used as the production method. Dynamic mechanical analysis, thermogravimetric analysis and differential scanning calorimetry analysis were conducted to examine the thermo-mechanical properties of composite samples. The effect of reinforcement type and different stacking sequences of fabric plies on the thermo-mechanical properties of composite samples were also investigated. Results showed that the type and alignment of reinforcement material has a signifi cant effect on the dynamic mechanical properties of composite samples.

  4. Effects of Microstructural Variability on Thermo-Mechanical Properties of a Woven Ceramic Matrix Composite

    Science.gov (United States)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties.

  5. Thermomechanical properties of the silanized-kenaf/polystyrene composites

    Directory of Open Access Journals (Sweden)

    2009-10-01

    Full Text Available In order to improve the poor interfacial adhesion of the kenaf fiber and polystyrene (PS in their composite material, the surface of the kenaf fiber was modified using a synthesized polymeric coupling agent to promote adhesion with PS matrix. The dynamic thermo-mechanical properties of the composite composed of modified kenaf fiber and PS were also investigated. The polymeric coupling agent treatment of the kenaf fiber increased the fiber-matrix interaction through a condensation reaction between alkoxysilane and hydroxyl groups of kenaf cellulose. DMA (Dynamic Mechanical Thermal Analysis results showed that the modified fiber composites have higher E′ and lower tanδ than those with untreated fiber indicating that a greater interfacial interaction between the matrix resin and the fiber. It was also found that the storage modulus increases in proportion with the Si/C ratio on the fiber surface.

  6. Thermo-mechanical processing of a Ti 49.5Al 1.25Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, A.; Viana, F.; Vieira, M.F.; Santos, H.M.C. [GMM/IMAT, Dept. de Engenharia Metalurgica e de Materiais, FEUP, Porto (Portugal)

    2002-07-01

    Gamma titanium aluminide is an important candidate to several applications in the aerospace and automotive industries. The great drawback of these alloys is its low ductility at room temperature. This work is part of a study that intends to increase the ductility of gamma titanium aluminide through the addition of alloying elements. In this paper the effects of the heat treatment and the deformation processing on the microstructure of a Ti 49.5Al 1.25Ag are described. The alloy was produced by arc melting, under an argon atmosphere, using a water-cooled copper crucible. The as-cast samples were heat treated at 1300 and 1400 C. Encapsulated samples were deformed by double forging and multiple step rolling. The as-cast {gamma}-TiAl alloy presented an extended degree of segregation, have been detected three microconstituents: lamellar dendrites, interdendritic Al enriched {gamma}-phase and a number of Ag rich particles located at the dendritic/interdendritic interface. The heat treatment at 1400 C for 6 hours allowed the elimination of the as-cast microstructure and its replacement by a fully lamellar one. The thermomechanical processing produced non-homogenous microstructures of deformed lamellar grains and recrystallized gamma grains. The microstructure changes occurring during the several stages of the processing were characterized using optical and scanning electron microscopy. The modification of the chemical composition of the phases was determined using SEM-EDS facilities. (orig.)

  7. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties

    Directory of Open Access Journals (Sweden)

    C. S. M. F. Costa

    2017-11-01

    Full Text Available The main goal of this work was the development of fully biobased unsaturated polyesters (UPs that upon crosslinking with unsaturated monomers (UM could lead to greener unsaturated polyester resins (UPRs with similar thermomechanical properties to commercial fossil based UPR. After the successful synthesis of the biobased UPs, those were crosslinked with styrene (Sty, the most commonly used monomer, and the influence of the chemical structure of the UPs on the thermomechanical characteristics of UPRs were evaluated. The properties were compared with those of a commercial resin (Resipur 9837©. The BioUPRs presented high gel contents and contact angles that are similar to the commercial resin. The thermomechanical properties were evaluated by dynamic mechanical thermal analysis (DMTA and it was found that the UPR synthesized using propylene glycol (PG, succinic acid (SuAc and itaconic acid (ItAc presented very close thermomechanical properties compared to the commercial resin.

  8. Thermo-mechanical simulation and parameters optimization for beam blank continuous casting

    International Nuclear Information System (INIS)

    Chen, W.; Zhang, Y.Z.; Zhang, C.J.; Zhu, L.G.; Lu, W.G.; Wang, B.X.; Ma, J.H.

    2009-01-01

    The objective of this work is to optimize the process parameters of beam blank continuous casting in order to ensure high quality and productivity. A transient thermo-mechanical finite element model is developed to compute the temperature and stress profile in beam blank continuous casting. By comparing the calculated data with the metallurgical constraints, the key factors causing defects of beam blank can be found out. Then based on the subproblem approximation method, an optimization program is developed to search out the optimum cooling parameters. Those optimum parameters can make it possible to run the caster at its maximum productivity, minimum cost and to reduce the defects. Now, online verifying of this optimization project has been put in practice, which can prove that it is very useful to control the actual production

  9. Operating experience with the Harwell thermo-mechanical generators

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1980-06-01

    The Stirling-cycle thermo-mechanical generator (TMG) provides small amounts of electrical power continuously over long periods, while requiring much less fuel than other power sources running from hydrocarbon fuel or radio-isotopes. Two of these 25-watt generators, fuelled by propane, have been used to power the UK National Buoy on two successive missions. A total of more than three years experience at sea has now been accumulated. In addition, a 60-watt version has provided the power for a major lighthouse for more than a year. An early development version of the Thermo-mechanical Generator, adapted to run from the heat of a radio-isotope source, was loaded with strontium 90 titanate in October 1974 and has run continuously in the laboratory ever since. The improvements and changes found necessary in the course of 90,000 generator-hours of running time are described, and the improvements in operational performance and reliability which have resulted are outlined. (author)

  10. Multiscale Modeling at Nanointerfaces: Polymer Thin Film Materials Discovery via Thermomechanically Consistent Coarse Graining

    Science.gov (United States)

    Hsu, David D.

    Due to high nanointerfacial area to volume ratio, the properties of "nanoconfined" polymer thin films, blends, and composites become highly altered compared to their bulk homopolymer analogues. Understanding the structure-property mechanisms underlying this effect is an active area of research. However, despite extensive work, a fundamental framework for predicting the local and system-averaged thermomechanical properties as a function of configuration and polymer species has yet to be established. Towards bridging this gap, here, we present a novel, systematic coarse-graining (CG) method which is able to capture quantitatively, the thermomechanical properties of real polymer systems in bulk and in nanoconfined geometries. This method, which we call thermomechanically consistent coarse-graining (TCCG), is a two-bead-per-monomer CG hybrid approach through which bonded interactions are optimized to match the atomistic structure via the Iterative Boltzmann Inversion method (IBI), and nonbonded interactions are tuned to macroscopic targets through parametric studies. We validate the TCCG method by systematically developing coarse-grain models for a group of five specialized methacrylate-based polymers including poly(methyl methacrylate) (PMMA). Good correlation with bulk all-atom (AA) simulations and experiments is found for the temperature-dependent glass transition temperature (Tg) Flory-Fox scaling relationships, self-diffusion coefficients of liquid monomers, and modulus of elasticity. We apply this TCCG method also to bulk polystyrene (PS) using a comparable coarse-grain CG bead mapping strategy. The model demonstrates chain stiffness commensurate with experiments, and we utilize a density-correction term to improve the transferability of the elastic modulus over a 500 K range. Additionally, PS and PMMA models capture the unexplained, characteristically dissimilar scaling of Tg with the thickness of free-standing films as seen in experiments. Using vibrational

  11. Multiphysics model of thermomechanical and helium-induced damage of tungsten during plasma heat transients

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2013-11-15

    A combination of transient heating and bombardment by helium and hydrogen atoms has been experimentally proven to lead to severe surface and sub-surface damage. We developed a computational model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on a thermoelasticity fracture damage approach that was developed using the phase field method. The model simulates the distribution of helium bubbles inside the grains and on grain boundaries using space-dependent rate theory. In addition, the model is coupled with a transient heat conduction analysis for temperature distributions inside the material. The results show the effects of helium bubbles on reducing tungsten surface energy. Further, a temperature gradient in the material equals to 10 K/μm, resulted in deep cracks propagating from the tungsten surface.

  12. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  13. Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1982-10-01

    The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was 0 C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain

  14. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    Thermo-mechanical properties of a silicate based glass and its potential use for sealing application in intermediate temperature solid oxide cell (SOC) are presented in this paper. Effects of thermal aging are discussed on structural and microstructural evolution, thermal expansion, viscosity......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  15. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  16. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental

  17. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  18. Microstructure and Thermomechanical Properties of Magnesium Alloys Castings

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2012-04-01

    Full Text Available Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc., through exterior parts (wheels particularly of sporting models, up to driving (engine blocks and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type, and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr. These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation. From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C – 300°C. Achieved results are summarized in the concluding part of the contribution.

  19. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  20. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Zhou Hongwei; Jiang Pengfei; Yang Chunhe

    2008-01-01

    High-level radioactive wastes (HLW) repository is a special deep underground engineering, and in the stages of site selection, designing, constructing ,the stability evaluation, lots of important rock mechanics problems need to be resolved. During the decay of nuclear waste, enormous thermal energy was released and temperature variation caused dynamic distribution of stress and deformation field of surrounding rock of repository. BeiShan region of Gansu province was selected to be the repository field in the future, it is of practical significance to do research on granite in this region. Based on the concept model of HLW repository, this thesis calculates temperature field, stress field and deformation field of HLW repository surrounding rock under the condition of TM coupled with applying the finite difference FLAC 3D . From this study, thermo-mechanical characteristic of granite is obtained primarily under given canister heat source and given decay law function. And these results show that the reasonable space between disposal hole is 8 m-12 m, and the peak temperature of the canister surface is 130 ℃, the centerline temperature between pits is about 40 ℃ which is maintained for about hundreds of years under given heating output at -500 m depth. (authors)

  1. Reliable high-power diode lasers: thermo-mechanical fatigue aspects

    Science.gov (United States)

    Klumel, Genady; Gridish, Yaakov; Szafranek, Igor; Karni, Yoram

    2006-02-01

    High power water-cooled diode lasers are finding increasing demand in biomedical, cosmetic and industrial applications, where repetitive cw (continuous wave) and pulsed cw operation modes are required. When operating in such modes, the lasers experience numerous complete thermal cycles between "cold" heat sink temperature and the "hot" temperature typical of thermally equilibrated cw operation. It is clearly demonstrated that the main failure mechanism directly linked to repetitive cw operation is thermo-mechanical fatigue of the solder joints adjacent to the laser bars, especially when "soft" solders are used. Analyses of the bonding interfaces were carried out using scanning electron microscopy. It was observed that intermetallic compounds, formed already during the bonding process, lead to the solders fatigue both on the p- and n-side of the laser bar. Fatigue failure of solder joints in repetitive cw operation reduces useful lifetime of the stacks to hundreds hours, in comparison with more than 10,000 hours lifetime typically demonstrated in commonly adopted non-stop cw reliability testing programs. It is shown, that proper selection of package materials and solders, careful design of fatigue sensitive parts and burn-in screening in the hard pulse operation mode allow considerable increase of lifetime and reliability, without compromising the device efficiency, optical power density and compactness.

  2. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng-Hui [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Guo, Wei-Guo, E-mail: weiguo@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Huang, Wei-Dong [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Su, Yu [Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Lin, Xin [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Yuan, Kang-Bo [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-10-28

    To understand and evaluate the thermomechanical property of Ti–6Al–4V alloy prepared by the 3D laser deposition technology, an uniaxial compression test was performed on cylindrical samples using an electronic universal testing machine and enhanced Hopkinson technique, over the range of strain rate from 0.001/s to 5000/s, and at initial temperatures from the room temperature to 1173 K. The microstructure of the undeformed and deformed samples was examined through optical microscopy and the use of scanning electron microscope (SEM). The experimental results show the followings: (1) the anisotropy of the mechanical property of this alloy is not significant despite the visible stratification at the exterior surfaces; (2) initial defects, such as the initial voids and lack of fusion, are found in the microstructure and in the crack surfaces of the deformed samples, and they are considered as a major source of crack initiation and propagation; (3) adiabatic shear bands and shearing can easily develop at all selected temperatures for samples under compression; (4) the yield and ultimate strengths of this laser-deposited Ti–6Al–4V alloy are both lower than those of the Ti–6Al–4V alloy prepared by forging and electron beam melting, whereas both of its strengths are higher than those of a conventional grade Ti–6Al–4V alloy at high strain rate only. In addition to compression tests we also conducted tensile loading tests on the laser-deposited alloy at both low and high strain rates (0.1/s and 1000/s). There is significant tension/compression asymmetry in the mechanical response under high-strain-rate loading. It was found that the quasi-static tensile fracturing exhibits typical composite fracture characteristic with quasi-cleavages and dimples, while the high-strain-rate fracturing is characterized by ductile fracture behavior.

  3. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-05-01

    An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.

  4. Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.R.; Matera, R.; Roedig, M.; Smith, J.J.; Janev, R.K.

    1991-03-01

    This Report contains the proceedings, results and conclusions of the work done and the analysis performed during the IAEA Consultants' Meeting on ''Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials'', convened on December 17-21, 1990, at the IAEA Headquarters in Vienna. Although the prime objective of the meeting was to critically assess the available thermo-mechanical properties data for certain types of carbon-based fusion relevant materials, the work of the meeting went well beyond this task. The meeting participants discussed in depth the scope and structure of the IAEA material properties database, the format of data presentation, the most appropriate computerized system for data storage, retrieval, exchange and management. The existing IAEA ALADDIN system was adopted as a convenient tool for this purpose and specific ALADDIN labelling schemes and dictionaries were established for the material properties data. An ALADDIN formatted test-file for the thermo-physical and thermo-mechanical properties of pyrolytic graphite is appended to this Report for illustrative purposes. (author)

  5. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  6. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  7. Thermomechanical analysis of porous solid oxide fuel cell by using peridynamics

    Directory of Open Access Journals (Sweden)

    Hanlin Wang

    2017-06-01

    Full Text Available Solid oxide fuel cell (SOFC is widely used in hybrid marine propulsion systems due to its high power output, excellent emission control and wide fuel suitability. However, the operating temperature in SOFC will rise up to 800–1000 ℃ due to redox reaction among hydrogen and oxygen ions. This provides a suitable environment for ions transporting through ceramic materials. Under such operation temperatures, degradation may occur in the electrodes and electrolyte. As a result, unstable voltage, low capacity and cell failure may eventually occur. This study presents thermomechanical analysis of a porous SOFC cell plate which contains electrodes, electrolytes and pores. A microscale specimen in the shape of a plate is considered in order to maintain uniform temperature loading and increase the accuracy of estimation. A new computational technique, peridynamics, is utilized to calculate the deformations and stresses of the cell plate. Moreover, the crack formation and propagation are also obtained by using peridynamics. According to the numerical results, damage evolution depends on the electrolyte/electrode interface strength during the charging process. For weak interface strength case, damage emerges at the electrode/electrolyte interface. On the other hand, for stronger interface cases, damage emerges on pore boundaries especially with sharp corner.

  8. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments.

    Science.gov (United States)

    Pereira, E S J; Peixoto, I F C; Viana, A C D; Oliveira, I I; Gonzalez, B M; Buono, V T L; Bahia, M G A

    2012-05-01

    To compare physical and mechanical properties of one conventional and one thermomechanically treated nickel-titanium (NiTi) wire used to manufacture rotary endodontic instruments. Two NiTi wires 1.0 mm in diameter were characterized; one of them, C-wire (CW), was processed in the conventional manner, and the other, termed M-Wire (MW), received an additional heat treatment according to the manufacturer. Chemical composition was determined by energy-dispersive X-ray spectroscopy, phase constitution by XRD and the transformation temperatures by DSC. Tensile loading/unloading tests and Vickers microhardness measurements were performed to assess the mechanical behaviour. Data were analysed using analysis of variance (α = 0.05). The two wires showed approximately the same chemical composition, close to the 1 : 1 atomic ratio, and the β-phase was the predominant phase present. B19' martensite and the R-phase were found in MW, in agreement with the higher transformation temperatures found in this wire compared with CW, whose transformation temperatures were below room temperature. Average Vickers microhardness values were similar for MW and CW (P = 0.91). The stress at the transformation plateau in the tensile load-unload curves was lower and more uniform in the M-Wire, which also showed the smallest stress hysteresis and apparent elastic modulus. The M-Wire had physical and mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. © 2011 International Endodontic Journal.

  9. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-01-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide. PMID:27619897

  10. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan.

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-09-13

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  11. On capabilities of thermomechanical treatment in increasing durability of short service life elements of mining аnd processing equipment

    Directory of Open Access Journals (Sweden)

    В. И. Болобов

    2016-11-01

    Full Text Available Hadfield steel (110G13L is the basic material for fast wornout items of mining equipment: beaters, hammers, liners, refractory plates of crushers and mills. By way of example, the effect of cold hardening was specifically analyzed on the rate of wear of mining equipment parts for various types of wear by hard (more than 1100 HV and soft rock. A unique ability of that steel to resist shock wear is noted. It is shown that this steel exhibits low resistance to abrasive rock wear. Meanwhile wear by rock of hardness lower than steel (less than 1100 HV, may be substantially increased by pre-hardening of samples (up to 10-fold. In case of wear by high hardness rocks, shock impact that should contribute to hardening of the material, fails  to increase abrasive wear resistance of Hadfield steel, and in that parameter it does not differ from the conventional medium carbon steel 45. Also, the authors of this article describe a technique they developed of high-temperature thermomechanical treatment of specimen of Hadfield steel (free forging at 1150-950ºC and subsequent quenching in water and experiments in their abrasion. The results of tests show that hardness and wear resistance of Hadfield steel to hard abrasive (corundum 25A with aggregate hardness of ~2500 HV increases with plastic deformation at HTMT. For maximum plastic deformation intensity (deformation magnitude of α = 2.25, reached in the experiments by the authors, wear resistance grew by 70% as compared to undeformed steel. The dependence is presented of wear resistance of steel on hardness, HV, achieved in the result of plastic deformation. Since a similar positive effect was obtained earlier by the authors for 35HGSA steel, also used in mining machinery, they conclude that the HTMT technique may be recommended for treating short lived parts of the mining and mineral processing equipment to increase their service life.

  12. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  13. Modeling of concrete response at high temperature

    International Nuclear Information System (INIS)

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  14. Prediction of thermo-mechanical reliability of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; van Driel, W.D.; Hoofman, R.J.O.M.; Ernst, L.J.

    2004-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  15. Prediction of thermo-mechanical integrity of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; Hoofman, R.J.O.M.; Ernst, L.J.; Ernst, L.J.

    2003-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  16. Effect of the Thermomechanical Treatment on Structural and Phase Transformations in Cu-14Al-3Ni Shape Memory Alloy Subjected to High-Pressure Torsion

    Science.gov (United States)

    Lukyanov, A. V.; Pushin, V. G.; Kuranova, N. N.; Svirid, A. E.; Uksusnikov, A. N.; Ustyugov, Yu. M.; Gunderov, D. V.

    2018-04-01

    The possibilities of controlling the structure and properties of a Cu-Al-Ni shape memory alloy due to the use of different schemes of the thermomechanical treatment, including forging, homogenizing in the austenitic state and subsequent quenching, and high-pressure torsion have been found. For the first time, an ultrafine-grain structure has been produced in this alloy via severe plastic deformation using high-pressure torsion. It has been detected that high-pressure torsion using ten revolutions of the anvils leads to the formation of a nanocrystalline structure with a grain size of less than 100 nm. The subsequent short-term heating of the alloy to 800°C (10 s) in the temperature region of the existence of the homogeneous β phase made it possible to form an ultrafine-grain structure with predominant sizes of recrystallized grains of 1 and 8 μm. The quenching after heating prevented the decomposition of the solid solution. The refinement of the grain structure changed the deformation behavior of the alloy, having provided the possibility of the significant plastic deformation upon mechanical tensile tests. The coarse-grained hot-forged quenched alloy was brittle, and fracture occurred along the boundaries of former austenite grains and martensite packets. The highstrength ultrafine-grained alloy also experienced mainly the intercrystalline fracture along the high-angle boundaries of elements of the structure, the grain size of which was less by two orders than that in the initial alloy. This determined an increase in its relative elongation upon mechanical tests.

  17. Thermomechanical DART code improvements for LEU VHD dispersion and monolithic fuel element analysis

    International Nuclear Information System (INIS)

    Taboada, H.; Saliba, R.; Moscarda, M.V.; Rest, J.

    2005-01-01

    A collaboration agreement between ANL/US DOE and CNEA Argentina in the area of Low Enriched Uranium Advanced Fuels has been in place since October 16, 1997 under the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy. An annex concerning DART code optimization has been operative since February 8, 1999. Previously, as a part of this annex a visual FASTDART version and also a DART THERMAL version were presented during RERTR 2000, 2002 and RERTR 2003 Meetings. During this past year the following activities were completed: Optimization of DART TM code Al diffusion parameters by testing predictions against reliable data from RERTR experiments. Improvements on the 3-D thermo-mechanical version of the code for modeling the irradiation behavior of LEU U-Mo monolithic fuel. Concerning the first point, by means of an optimization of parameters of the Al diffusion through the interaction product theoretical expression, a reasonable agreement between DART temperature calculations with reliable RERTR PIE data was reached. The 3-D thermomechanical code complex is based upon a finite element thermal-elastic code named TERMELAS, and irradiation behavior provided by the DART code. An adequate and progressive process of coupling calculations of both codes at each time step is currently developed. Compatible thermal calculation between both codes was reached. This is the first stage to benchmark and validate against RERTR PIE data the coupling process. (author)

  18. Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts

    Directory of Open Access Journals (Sweden)

    Saeed Tourchi

    2015-04-01

    Full Text Available A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rule and yield criterion to take into account the role of suction. Also, according to previous studies, an increase in temperature causes a reduction in specific volume. A reduction in suction (wetting for a given confining stress may induce an irreversible volumetric compression (collapse. Thus an increase in suction (drying raises a specific volume i.e. the movement of normal consolidation line (NCL to higher values of void ratio. However, some experimental data confirm the assumption that this reduction is dependent on the stress level of soil element. A generalized approach considering the effect of stress level on the magnitude of clays thermal dependency in compression plane is proposed in this study. The number of modeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitate the usefulness of model for practical applications. A step-by-step procedure used for parameter calibration is also described. The model is finally evaluated using a comprehensive set of experimental data for the thermo-mechanical behavior of unsaturated soils.

  19. Proceedings of the first thermomechanical workshop for shale

    International Nuclear Information System (INIS)

    1986-03-01

    Chapter 2 provides a description of the three federal regulations that pertain to the development of a high-level nuclear waste repository regardless of the rock type. Chapter 3 summarizes the reference shale repository conditions selected for this workshop. A room-and-pillar configuration was considered at an extraction ratio of about 0.25. The depth was assumed to be 700 m. Chapter 4 gives a summary of several case histories that were considered to be valuable in gaining an understanding of some of the design and construction features that might be unique in creating underground openings in shale. Chapter 5 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for analytical/numerical modeling in heat transfer, fluid flow, and thermomechanics. Chapter 6 assesses data and information needs in the laboratory and considerations associated with shale rock characterization. Chapter 7 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for field/in situ testing. Chapter 8 presents the consensus of the workshop participants that there is a definite need to advance the state of knowledge concerning the thermomechanical behavior of shales and to gain experience in applying this knowledge to the design of room-and-pillar excavations. Finally, Chapter 9 provides a summary of the research and development needs in the various interacting activities of repository development, including analytical/numerical modeling, laboratory testing, and field/in situ testing. The main conclusion of the workshop was that a need exists for an aggressive program in laboratory, field, numerical modeling, and design studies to provide a thermomechanical, technological base for comparison of shale types and shale regions/areas/sites

  20. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    Science.gov (United States)

    Kumar, Amit; Mehta, Neeraj

    2017-06-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.

  1. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    International Nuclear Information System (INIS)

    Kumar, Amit; Mehta, Neeraj

    2017-01-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se_7_8_-_xTe_2_0Sn_2Cd_x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V_h), formation energy (E_h) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated. (orig.)

  2. Effect of cerium and thermomechanical processing on microstructure

    Indian Academy of Sciences (India)

    The effect of cerium content and thermomechanical processing on structure and properties of Fe–10.5 wt.%Al–0.8 wt%C alloy has been investigated. Alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot-forged and hotrolled at ...

  3. Shape Memory Characteristics of Ti(sub 49.5)Ni(sub 25)Pd(sub 25)Sc(sub 0.5) High-Temperature Shape Memory Alloy After Severe Plastic Deformation

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2011-01-01

    A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.

  4. Thermomechanical behavior of dry contacts in disc brake rotor with a grey cast iron composition

    Directory of Open Access Journals (Sweden)

    Belhocine Ali

    2013-01-01

    Full Text Available The main purpose of this study is to analysis the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase. The simulation strategy is based on the calculation code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal-structural analysis is then used coupling to determine the deformation established and the Von Mises stresses in the disk, the contact pressure distribution in pads. The results are satisfactory compared to those found in the literature.

  5. The equations of the thermomechanics of electrically conducting nonferromagnetic bodies taking account of structural transformations

    International Nuclear Information System (INIS)

    Nagirnyi, T.S.

    1993-01-01

    Studies of the coupled processes in electrically conducting nonferromagnetic viscoelastic bodies usually begin with a system of equations that accounts for the influence of rheology on the mechanical and temperature fields. In this context, rheology is understood as the course of certain internal processes in the body that are reflected when the relaxation time and the defects of thermomechanical moduli are specified. In this work, the methods of continuum mechanics are used to state a system of equations for the quantitative description of coupled mechanical, thermal, and electromagnetic processes taking account of structural transformations in the context of the model of a rheologically simple electrically conducting nonferromagnetic body

  6. Thermomechanical stability of underground installations: significance of the thermophysical properties of rocks

    International Nuclear Information System (INIS)

    Mirkovich, V.

    1981-01-01

    When heat is generated in an underground installation, there are several interdependent factors-such as the rate of heat dissipation, changes in this rate with temperature, or the effects of thermal gradients and thermal expansivities-which influence the stability of the rock mass. To evaluate the thermomechanical stability of a proposed site for an underground nuclear power station, rock specimens from a 300 m deep drill core were obtained, and their thermal diffusivity and linear thermal expansion were measured between 25 0 C and 500 0 C. The thermal conductivity was also measured, in the temperature range 100-500 0 C. Under normal operating conditions, heat transfer to the surface of the rock mass surrounding the power installation would be low. However, in some contingencies, this heat load could become large. The results are discussed from the point of view of the stability of a rock enclosure at higher heat fluxes; they indicate that the rocks studied would, in general, not be suitable as an unprotected wall for containment of such a heat source. (author)

  7. A Numerical Model for the Thermomechanical Conditions During Hydration of Early-age Concrete

    DEFF Research Database (Denmark)

    Hattel, Jesper; Thorborg, Jesper

    2003-01-01

    In the present study, a macroscopic numerical model for the thermomechanical conditions during hydration of early-age concrete is presented. The formulation is based on a semi-coupled, incremental thermomechanical model where the heat production from the hydration process is expressed in terms...... of the maturity and the thermal activation is expressed by the Arrhenius principle. The material properties are assumed to depend on the hydration process via the maturity. The discretization of the governing equations is accomplished by a control volume formulation involving a time-splitting scheme for the heat...

  8. ITER baffle module small-scale mock-ups: first wall thermo-mechanical testing results

    International Nuclear Information System (INIS)

    Severi, Y.; Giancarli, L.; Poitevin, Y.; Salavy, J.F.; Le Marois, G.; Roedig, M.; Vieider, G.

    1998-01-01

    The EU-home team is in charge of the R and D related to the ITER baffle first wall. Five small-scale mock-ups, using Be, CFC and W tiles and different armour/heat-sink material joints under development, have been fabricated and thermomechanically tested in FE200 (Le Creusot) and JUDITH (Juelich) electron beam facilities. The small-scale mock-ups have been submitted to thermo-mechanical fatigue tests (up to failure using accelerating techniques). The objective was to determine the performances of the armour material joints under high heat flux cycles. (orig.)

  9. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  10. TEM characterization on new 9% Cr advanced steels thermomechanical treated after tempering

    Science.gov (United States)

    Fernández, P.; Hoffmann, J.; Rieth, M.; Roldán, M.; Gómez-Herrero, A.

    2018-03-01

    Phase transformation on new six reduced activation ferritic/martensitic steels (RAFMs) was investigated to provide the basis for the design and development of advanced steels to maintain adequate strength and creep resistance above 500 °C. The new alloys are designed to increase the amount of fine MX precipitates and reduce coarse M23C6 carbides through alloy composition refinement and the application of thermomechanical treatments. The microstructural investigations by TEM have shown M23C6, M2X, and MX precipitation after tempering at 700 °C/2h with low dislocation recovery, while at 825 °C/2h the martensite developed to subgrain formation and growth. At this stage, only M23C6 and MX were detected. Preliminary results demonstrate that it is feasible to produce fine MX strengthened particles dispersed in the matrix with further optimization of tempering treatments.

  11. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis

    Science.gov (United States)

    Singh, Gyanender; Terrani, Kurt; Katoh, Yutai

    2018-02-01

    SiC/SiC composites are considered among leading candidates for accident tolerant fuel cladding in light water reactors. However, when SiC-based materials are exposed to neutron irradiation, they experience significant changes in dimensions and physical properties. Under a large heat flux application (i.e. fuel cladding), the non-uniform changes in the dimensions and physical properties will lead to build-up of stresses in the structure over the course of time. To ensure reliable and safe operation of such a structure it is important to assess its thermo-mechanical performance under in-reactor conditions of irradiation and elevated temperature. In this work, the foundation for 3D thermo-mechanical analysis of SiC/SiC cladding is put in place and a set of analyses with simplified boundary conditions has been performed. The analyses were carried out with two different codes that were benchmarked against one another and prior results in the literature. A constitutive model is constructed and solved numerically to predict the stress distribution and variation in the cladding under normal operating conditions. The dependence of dimensions and physical properties variation with irradiation and temperature has been incorporated. These robust models may now be modified to take into account the axial and circumferential variation in neutron and heat flux to fully account for 3D effects. The results from the simple analyses show the development of high tensile stresses especially in the circumferential and axial directions at the inner region of the cladding. Based on the results obtained, design guidelines are recommended. For lack of certainty in or tailor-ability for the physical and mechanical properties of SiC/SiC composite material a sensitivity analysis is conducted. The analysis results establish a precedence order of the properties based on the extent to which these properties influence the temperature and the stresses.

  12. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    Science.gov (United States)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  13. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks. Part I: Development of glass-ceramic microstructure and thermomechanical properties

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, Tonci

    2018-01-01

    Sealing performance in solid oxide cell (SOC) stacks and the devitrification process of commercially available alkaline earth boroaluminosilicate glasses containing 48‐61 mol% SiO2, 18‐28 mol% CaO, 1‐7 mol% MgO, 7‐10 mol% Al2O3, 1‐11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO, and TiO2 were...... investigated and quantified through analysis of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X‐ray diffraction. For two of these glasses devitrification behavior was compared to the devitrification behavior of similar glasses...... produced in the laboratory. Glasses were characterized after annealing in air at 800°C and 850°C for up to 6 weeks. Even though the glasses lie within a relatively narrow compositional range, sealing performance and the resulting microstructures differed significantly. Best thermomechanical properties...

  14. The Mg{sub 2}Si phase evolution during thermomechanical processing of in-situ aluminum matrix macro-composite

    Energy Technology Data Exchange (ETDEWEB)

    Shafieizad, A.H. [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Zarei-Hanzaki, A., E-mail: Zareih@ut.ac.ir [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Abedi, H.R. [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Al-Fadhalah, K.J. [Department of Mechanical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)

    2015-09-17

    The microstructure and flow stress behavior of thermomechanically processed Al–Cu/Mg{sub 2}Si in-situ composite was studied emphasizing the evolution of primary and secondary reinforcement phases. Toward this end, the hot compression tests were conducted over the wide range of temperature (300–500 °C) and strain rate (0.001–0.1 s{sup −1}). Both the temperature and strain rate are found to possess a significant effect on the microstructural characteristics where a considerable softening is identified specially at low temperature regime. Besides the occurrence of restoration processes (mainly particle stimulated nucleation) the dynamic evolution of the reinforcements is introduced as the main factors affecting the reported softening. In this regard, the mechanical fragmentation, thermal disintegration, micro-buckling, coalescence and spheroidization of the primary and secondary particles are quantitatively and qualitatively addressed through a comprehensive scanning electron microscopy studies.

  15. Mechanical and thermomechanical properties of polycarbonate-based polyurethane-silica nanocomposites

    Directory of Open Access Journals (Sweden)

    Rafał Poręba

    2011-09-01

    Full Text Available In this work aliphatic polycarbonate-based polyurethane-silica nanocomposites were synthesized and characterized. The influence of the type and of the concentration of nanofiller differing in average particle size (7 nm for Aerosil 380 and 40 nm for Nanosilica 999 on mechanical and thermomechanical properties was investigated. DMTA measurements showed that Nanosilica 999, irrespective of its concentration, slightly increased the value of the storage shear modulus G’ but Aerosil 380 brings about a nearly opposite effect, the shear modulus in the rubber region decreases with increasing filler content. Very high elongations at break ranging from 800% to more than 1000%, as well as high tensile strengths illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 0.5 wt.% of Nanosilica 999.

  16. Thermomechanical fatigue life prediction of high temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Thomas; Hartrott, Philipp von; Riedel, Hermann; Siegele, Dieter [Fraunhofer-Inst. fuer Werkstoffmechanik (IWM), Freiburg (Germany)

    2009-07-01

    The aim of the work described in this paper is to provide a computational method for fatigue life prediction of high temperature components, in which the time and temperature dependent fatigue crack growth is a relevant damage mechanism. The fatigue life prediction is based on a law for microcrack growth and a fracture mechanics estimate of the cyclic crack tip opening displacement. In addition, a powerful model for nonisothermal cyclic plasticity is employed, and an efficient laboratory test procedure is proposed for the determination of the model parameters. The models are efficiently implemented into finite element programs and are used to predict the fatigue life of a cast iron exhaust manifold and a notch in the perimeter of a turbine rotor made of a ferritic/martensitic 10%-chromium steel. (orig.)

  17. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  18. Modelling of the thermomechanical behaviour of salt rock

    International Nuclear Information System (INIS)

    Albers, G.; Graefe, V.; Korthaus, E.; Pudewillis, A.; Prij, J.

    1986-01-01

    The modelling of the thermomechanical behaviour of salt rock is examined, with respect to the disposal of radioactive waste in salt formations. The calculation methods and programmes currently available for the modelling are described. Some examples are given of calculations carried out in parallel with tests. Some results of modelling calculations for a repository are presented by way of illustration. (U.K.)

  19. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process; Simulation numerique du soudage du TA6V par laser YAG impulsionnel: caracterisation experimentale et modelisation des aspects thermomecanique associees a ce procede

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Y

    2007-09-15

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  20. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelly, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslam, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-29

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finite Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.

  1. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide/ Carbon Fiber Laminates: Thermomechanical Behaviour

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2013-07-01

    Full Text Available Carbon fiber (CF-reinforced high-temperature thermoplastics such as poly(phenylene sulphide (PPS are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2 lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg. IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

  2. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  3. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks.

    Science.gov (United States)

    Meisels, R; Toifl, M; Hartlieb, P; Kuchar, F; Antretter, T

    2015-02-10

    A numerical analysis in a two-component model rock is presented including the propagation and absorption of a microwave beam as well as the microwave-induced temperature and stress distributions in a consistent way. The analyses are two-dimensional and consider absorbing inclusions (discs) in a non-absorbing matrix representing the model of a heterogeneous rock. The microwave analysis (finite difference time domain - FDTD) is performed with values of the dielectric permittivity typical for hard rocks. Reflections at the discs/matrix interfaces and absorption in the discs lead to diffuse scattering with up to 20% changes of the intensity in the main beam compared to a homogeneous model rock. The subsequent thermo-mechanical finite element (FE) analysis indicates that the stresses become large enough to initiate damage. The results are supported by preliminary experiments on hard rock performed at 2.45 GHz.

  4. Transformation-induced plasticity in multiphase steels subjected to thermomechanical loading

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.; Zwaag, van der S.

    2008-01-01

    The behaviour of transformation-induced plasticity steels subjected to combined thermomechanical loading is studied at the microscale by means of numerical simulations. The microstructure is composed of an austenitic phase that may deform plastically and/or transform into martensite, and a ferritic

  5. Thermomechanical Morphology of Peas and Its Relation to Fracture Behaviour

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Schutyser, M.A.I.; Boom, R.M.

    2013-01-01

    Milling and subsequent air classification can be exploited for production of functional protein-enriched fractions from legumes and grains. Fracture behaviour is of large relevance to optimal disentanglement of protein and starch and is determined by the thermomechanical morphology of the seeds.

  6. Characterization of Irreversible Fouling after Ultrafiltration of Thermomechanical Pulp Mill Process Water

    DEFF Research Database (Denmark)

    Thuvander, Johan; Zarebska, Agata; Hélix-Nielsen, Claus

    2018-01-01

    process streams is fouling of the membranes. Fouling not only increases operating costs but also reduces the operating time of the membrane plant. When optimizing the membrane cleaning method, it is important to know which compounds cause the fouling. In this work fouling of an ultrafiltration membrane...... was studied. The fouling propensity of untreated process water and microfiltrated process water was compared. Fouled membranes were analyzed using scanning electron microscopy and attenuated total reflection Fourier transform infrared spectrometry. Acid hydrolysis of membranes exposed to untreated process......Large volumes of wastewater with dissolved wood components are treated in wastewater treatment plants at thermomechanical pulp mills. It has been shown previously that hemicelluloses in these wastewater streams can be recovered by membrane filtration. A serious obstacle when treating lignocellulose...

  7. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  8. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Mehta, Neeraj [Banaras Hindu University, Department of Physics, Institute of Science, Varanasi (India)

    2017-06-15

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se{sub 78-x}Te{sub 20}Sn{sub 2}Cd{sub x} glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V{sub h}), formation energy (E{sub h}) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated. (orig.)

  9. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  10. An investigation of the thermomechanical features of Laohugou Glacier No. 12 on Qilian Shan, western China, using a two-dimensional first-order flow-band ice flow model

    Science.gov (United States)

    Wang, Yuzhe; Zhang, Tong; Ren, Jiawen; Qin, Xiang; Liu, Yushuo; Sun, Weijun; Chen, Jizu; Ding, Minghu; Du, Wentao; Qin, Dahe

    2018-03-01

    By combining in situ measurements and a two-dimensional thermomechanically coupled ice flow model, we investigate the thermomechanical features of the largest valley glacier (Laohugou Glacier No. 12; LHG12) on Qilian Shan located in the arid region of western China. Our model results suggest that LHG12, previously considered as fully cold, is probably polythermal, with a lower temperate ice layer overlain by an upper layer of cold ice over a large region of the ablation area. Modelled ice surface velocities match well with the in situ observations in the east branch (main branch) but clearly underestimate those near the glacier terminus, possibly because the convergent flow is ignored and the basal sliding beneath the confluence area is underestimated. The modelled ice temperatures are in very good agreement with the in situ measurements from a deep borehole (110 m deep) in the upper ablation area. The model results are sensitive to surface thermal boundary conditions, for example surface air temperature and near-surface ice temperature. In this study, we use a Dirichlet surface thermal condition constrained by 20 m borehole temperatures and annual surface air temperatures. Like many other alpine glaciers, strain heating is important in controlling the englacial thermal structure of LHG12. Our transient simulations indicate that the accumulation zone becomes colder during the last two decades as a response to the elevated equilibrium line altitude and the rising summer air temperatures. We suggest that the extent of accumulation basin (the amount of refreezing latent heat from meltwater) of LHG12 has a considerable impact on the englacial thermal status.

  11. A study of thermo-mechanical stress and its impact on through-silicon vias

    International Nuclear Information System (INIS)

    Ranganathan, N; Balasubramanian, N; Prasad, K; Pey, K L

    2008-01-01

    The BOSCH etch process, which is commonly used in microelectromechanical system fabrication, has been extensively investigated in this work for implementation in through-silicon via (TSV) technology for 3D-microsystems packaging. The present work focuses on thermo-mechanical stresses caused by thermal loading due to post-TSV processes and their impact on the electrical performance of through-silicon copper interconnects. A test vehicle with deep silicon copper-plated comb structure was designed to study and evaluate different deep silicon via etch processes and its effect on the electrical leakage characteristics under various electrical and thermal stress conditions. It has been shown that the leakage current between the comb interconnect structures increases with an increase in sidewall roughness and that it can be significantly lowered by smoothening the sidewalls. It was also shown that by tailoring a non-BOSCH etch process with the normal BOSCH process, a similar leakage current reduction can be achieved. It was also shown through thermo-mechanical simulation studies that there is a clear correlation between high leakage current behavior due to non-uniform Ta barrier deposition over the rough sidewalls and the thermo-mechanical stress induced by post-TSV processes

  12. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  13. On behaviour of fuel elements subject to combined cyclic thermomechanical loads

    International Nuclear Information System (INIS)

    Hsu, T.R.

    1980-01-01

    This paper presents detailed finite element formulations on the kinematic hardening rule of plasticity included in an existing thermoelastoplastic stress analysis code primarily designed to predict the thermomechanical behaviour of nuclear reactor fuel elements. The kinematic hardening rule is considered to be important for structures subject to repeated (or cyclic) loads. The start-up/operation/shut-down and various power excursions in a reactor all can be classified as cyclic loadings. In addition to the shifting of material yield surfaces as usually handled by the kinematic hardening rule, the thermal effect and temperature-dependent material properties have also been included in the present work for the first time. A case study related to an in-reactor experiment on a single fuel element indicated that significantly higher cumulative sheath residual strains after two load cycles was obtained by the present scheme than those calculated by the usual isotropic hardening rule. This observation may alert fuel modellers to select proper hardening rules in their analyses. (orig.)

  14. Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: homogenized behaviors and effect of contact

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2016-01-01

    temperature, deformations involving the elastic, creep as well as effect of changes in the geometry due to contact should be accounted for. The constitutive law can be applied using 3D modeling, but for simple presentation of the theory, 2D plane strain formulation is used to model the corrugated metallic......Currently thermo-mechanical analysis of the entire solid oxide fuel cell (SOFC) stack at operational conditions is computationally challenging if the geometry of metallic interconnects is considered explicitly. This is particularly the case when creep deformations in the interconnect are considered...... model to calculate the homogenized mechanical response of corrugated metallic interconnects at high temperatures.Thereafter, a constitutive law for the homogenized structure (effective material law) is developed. In order to properly describe the mechanical behavior of the interconnect at high...

  15. THERMO-MECHANICAL PULPING AS A PRETREATMENT FOR AGRICULTURAL BIOMASS FOR BIOCHEMICAL CONVERSION

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-03-01

    Full Text Available The use of thermo-mechanical pulping (TMP, an existing and well known technology in the pulp and paper industry, is proposed as a potential pretreatment pathway of agriculture biomass for monomeric sugar production in preparation for further fermentation into alcohol species. Three agricultural biomass types, corn stover, wheat straw, and sweet sorghum bagasse, were pretreated in a TMP unit under two temperature conditions, 160 ºC and 170 ºC, and hydrolyzed using cellulase at 5, 10, and 20 FPU/g OD biomass. Wheat straw biomass was further pretreated at different conditions including: i soaking with acetic acid, ii longer steaming residence time (15 and 30 min, and iii refined at lower disk gap (0.0508 and 0.1524 mm. Preliminary results showed that carbohydrate conversion increased from 25% to 40% when the TMP temperature was increased from 160 to 170 ºC. Carbohydrate conversion was relatively similar for the three biomasses under the same pretreatment conditions and enzyme loading. Acetic acid soaking and refining at a reduce disk gap increases carbohydrate conversion. Further studies within this technological field to identify optimum process and TMP conditions for pretreatment are suggested.

  16. Thermo-mechanical behavior of retro-reflector and resulting parallelism error of laser beams for Wendelstein 7-X interferometer

    International Nuclear Information System (INIS)

    Peng, X.B.; Hirsch, M.; Köppen, M.; Fellinger, J.; Bykov, V.; Schauer, F.; Vliegenthart, W.

    2014-01-01

    Highlights: • The criterion for thermo-mechanical design of W7-X interferometer retro-reflector. • Thermo-mechanical analysis of retro-reflector with two different methods. • The most flexible part in the retro-reflector is spring washer. • Calculation of parallelism error between the incoming and reflected laser beams. • The parallelism error is much lower than the design limit 28 arcs. - Abstract: A 10 channels interferometer will be used in the Wendelstein 7-X (W7-X) for plasma density control and density profile tracking with laser beams passing through the plasma. Due to complex shape of non-planar modular coils and divertor structure, there are no large poloidally opposite ports on the plasma vessel (PV). Therefore 10 in-vessel Corner Cube Retro-reflectors (CCRs) will be used. The CCRs are integrated in the water cooled heat shield and exposed directly to thermal loads from plasma radiation. Thermo-mechanical issues are very important for the design of the CCR because deformation and flatness as well as mutual angles of the three reflecting surfaces would affect the parallelism of the laser beams and the functionality of the interferometer. Intensive work has been done to explore a suitable design for the CCR concerning thermo-mechanical behavior. Previous studies Ye et al. (2008, 2009) and Köppen et al. (2011) focused on structural optimization to decrease thermal stress in the reflecting plates under the thermal loads, and on computation and check of curvature radii of the deformed reflecting surfaces with the design criterion that the curvature radius must be bigger than 200 m. The paper presents detailed thermo-mechanical analysis of the current improved CCR under thermal loads and bolt preloads. The results of the thermo-mechanical analysis were used for the study of the resulting parallelism error of the laser beams with newly developed and more reasonable design criterion

  17. Thermo-mechanical behavior of retro-reflector and resulting parallelism error of laser beams for Wendelstein 7-X interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei Anhui (China); Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Hirsch, M.; Köppen, M.; Fellinger, J.; Bykov, V.; Schauer, F. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Vliegenthart, W. [TNO, Stieltjesweg 1, P.O. Box 2600, 2628 CK Delft (Netherlands)

    2014-04-15

    Highlights: • The criterion for thermo-mechanical design of W7-X interferometer retro-reflector. • Thermo-mechanical analysis of retro-reflector with two different methods. • The most flexible part in the retro-reflector is spring washer. • Calculation of parallelism error between the incoming and reflected laser beams. • The parallelism error is much lower than the design limit 28 arcs. - Abstract: A 10 channels interferometer will be used in the Wendelstein 7-X (W7-X) for plasma density control and density profile tracking with laser beams passing through the plasma. Due to complex shape of non-planar modular coils and divertor structure, there are no large poloidally opposite ports on the plasma vessel (PV). Therefore 10 in-vessel Corner Cube Retro-reflectors (CCRs) will be used. The CCRs are integrated in the water cooled heat shield and exposed directly to thermal loads from plasma radiation. Thermo-mechanical issues are very important for the design of the CCR because deformation and flatness as well as mutual angles of the three reflecting surfaces would affect the parallelism of the laser beams and the functionality of the interferometer. Intensive work has been done to explore a suitable design for the CCR concerning thermo-mechanical behavior. Previous studies Ye et al. (2008, 2009) and Köppen et al. (2011) focused on structural optimization to decrease thermal stress in the reflecting plates under the thermal loads, and on computation and check of curvature radii of the deformed reflecting surfaces with the design criterion that the curvature radius must be bigger than 200 m. The paper presents detailed thermo-mechanical analysis of the current improved CCR under thermal loads and bolt preloads. The results of the thermo-mechanical analysis were used for the study of the resulting parallelism error of the laser beams with newly developed and more reasonable design criterion.

  18. Martensitic transformation and residual stresses after thermomechanical treatment of heat treatable steel 42CrMo4 (SAE 4140)

    Energy Technology Data Exchange (ETDEWEB)

    Weise, A. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik; Fritsche, G. [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Maschinenbau und Verfahrenstechnik

    1996-01-01

    The influence of thermomechanical deformation on the residual stresses caused by quenching in bar shaped specimens of heat treatable steel 42CrMo4 has been investigated using a mechanical method for determining the distribution of residual stresses of the first kind. The results obtained show that the residual stress distribution after quenching is affected by the strengthening and softening of the austenite as a result of deformation and recrystallization and the modified transformation behaviour in martensite stage. An attempt is made to discuss qualitatively the influence of these changes on the generation of residual stresses as compared to results obtained after conventional hardening. (orig.).

  19. Martensitic transformation and residual stresses after thermomechanical treatment of heat treatable steel 42CrMo4 (SAE 4140)

    International Nuclear Information System (INIS)

    Weise, A.; Fritsche, G.

    1996-01-01

    The influence of thermomechanical deformation on the residual stresses caused by quenching in bar shaped specimens of heat treatable steel 42CrMo4 has been investigated using a mechanical method for determining the distribution of residual stresses of the first kind. The results obtained show that the residual stress distribution after quenching is affected by the strengthening and softening of the austenite as a result of deformation and recrystallization and the modified transformation behaviour in martensite stage. An attempt is made to discuss qualitatively the influence of these changes on the generation of residual stresses as compared to results obtained after conventional hardening. (orig.)

  20. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  1. Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions

    Science.gov (United States)

    Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst

    2018-01-01

    The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.

  2. Heat treatment effects on tensile properties of V-(4-5) wt.% Cr-(4-5) wt.% Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    Effects of thermomechanical treatments on microstructures and mechanical properties are of interest for long term application of V-Cr-Ti alloys in fusion reactor systems. Influence of thermal annealing at 1050{degrees}C on stress/strain behavior, maximum engineering strength, and uniform and total elongation were evaluated. The results show that multiple annealing has minimal effect on the tensile properties of V-(4-5)Cr-(4-5)Ti alloys tested at room temperature and at 500{degrees}C.

  3. The influence of thermo-mechanical processing on the microstructure of steel 20MoCrS4

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Meyer, L.W.; Masek, B.; Novy, Z.; Kesner, D.; Motycka, P

    2003-05-25

    The influence of thermo-mechanical processing (TMP) on the microstructure and mechanical properties of 0.22%C-0.87%Mn-0.73Cr-0.40Mo steel was investigated. The transformation CCT diagram and CCCT diagram were determined by dilatometric measurements. Hot deformation before austenite decomposition slightly accelerates ferritic transformation, retards bainitic reactions and decreases the bainite start temperature. Special methods of TMP were performed consisting of hot and/or warm compression deformations and dwell at an elevated temperature. The microstructure was studied using metallography and transmission electron microscopy. The compression deformation results in a remarkable refinement of the microstructure and an improvement of mechanical properties. Warm deformation followed by dwell at 470 deg. C was found to be suitable for an increase of tensile strength and notch toughness; the corresponding microstructure is a fine lath-like bainitic microstructure with a relatively homogeneous distribution of carbide particles.

  4. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  5. Local approach: fracture at high temperature in an austenitic stainless steel submitted to thermomechanical loadings. Calculations and experimental validations

    International Nuclear Information System (INIS)

    Poquillon, D.

    1997-10-01

    Usually, for the integrity assessment of defective components, well established rules are used: global approach to fracture. A more fundamental way to deal with these problems is based on the local approach to fracture. In this study, we choose this way and we perform numerical simulations of intergranular crack initiation and intergranular crack propagation. This type of damage can be find in components of fast breeder reactors in 316 L austenitic stainless steel which operate at high temperatures. This study deals with methods coupling partly the behaviour and the damage for crack growth in specimens submitted to various thermomechanical loadings. A new numerical method based on finite element computations and a damage model relying on quantitative observations of grain boundary damage is proposed. Numerical results of crack initiation and growth are compared with a number of experimental data obtained in previous studies. Creep and creep-fatigue crack growth are studied. Various specimen geometries are considered: compact Tension Specimens and axisymmetric notched bars tested under isothermal (600 deg C) conditions and tubular structures containing a circumferential notch tested under thermal shock. Adaptative re-meshing technique and/or node release technique are used and compared. In order to broaden our knowledge on stress triaxiality effects on creep intergranular damage, new experiments are defined and conducted on sharply notched tubular specimens in torsion. These isothermal (600 deg C) Mode II creep tests reveal severe intergranular damage and creep crack initiation. Calculated damage fields at the crack tip are compared with the experimental observations. The good agreement between calculations and experimental data shows the damage criterion used can improve the accuracy of life prediction of components submitted to intergranular creep damage. (author)

  6. Application of an enriched FEM technique in thermo-mechanical contact problems

    Science.gov (United States)

    Khoei, A. R.; Bahmani, B.

    2018-02-01

    In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

  7. Creation of submicrocrystalline structure and enhancing of functional properties of Ti-Ni-Fe alloys with the shape-memory effect using equichannel-angular pressing (ECAP)

    International Nuclear Information System (INIS)

    Prokoshkin, S.D.; Belousov, M.N.; Abramov, V.Ya.

    2007-01-01

    Methods of X-ray diffraction analysis, transmission electron microscopy, mechanical and thermomechanical tests are used to study structure, mechanical and service properties of Ti-Ni-Fe system shape memory alloys (Ti-47.6 % Ni-2.4 % Fe; Ti-47 % Ni-3 % Fe; Ti-46.6 % Ni-3.4 % Fe). The alloys are subjected to hardening, high temperature thermomechanical treatment (HTMT) and equal-channel angular pressing (EChAP). Thermomechanical connecting pieces of given alloys are tested for carrying capacity and low temperature stability. It is established that the use of EChAP and post-deformation annealing at pressing temperature provides more high properties of the alloys in comparison with hardening and HTMT [ru

  8. Determination of the necessary parameters for a protection insulation disk of sodium circuit weighing system for thermomechanical and small component tests

    International Nuclear Information System (INIS)

    Bloch, M.; Cesar, S.B.G.

    1985-01-01

    The parameters requisited for a plastic disk used as thermal insulation, between feeding tank and weghing system, where the tank is supported are defined. The tank and weghing system are component parts of sodium circuit for thermomechanical and small component tests. During the circuit operation the temperature at tank reaches 600 0 C, however the temperature at weghing system should not reach 50 0 C. The temperature distribution in insulation disk is obtained by finit element method in function of thickness and thermal conductivity of material. The results obtained indicate for thickness E = 32 mm should be K 0 C and for E = 48 mm the thermal conductivity should be K 0 C. In both cases the pressure is σ > 14.5 Kgf/mm 2 . (M.C.K.) [pt

  9. The development of heat exchangers with advanced thermomechanical materials

    International Nuclear Information System (INIS)

    Capra, Marcello

    1997-07-01

    Current metallurgical limitations necessarily impose a number of restrictions on the efficiency of power plant and combustion systems. These limitations include both temperature and corrosion resistance. If significant improvements can be made in these areas, then not only will it be possible to obtain higher system efficiencies, but it will also be possible to further exploit new technologies. Consequently, there is appreciable interest in the development of ceramic tubes for heat exchangers. Such tubes would offer the potential of operation at much higher temperatures combined with a much improved resistance to chemical attack. They are unlikely to be suitable for high pressure operation, at least in the foreseeable future, and hence their use would be limited generally to gas to gas exchangers. In spite of the limitations on details and specific technological solutions imposed by industrial property conditions, this report provides an overview on the development of these components, which is in charge of all the major international industrial companies of the field, in consideration of the relevant benefits coming from their large industrialization. After an analysis of the industrial situation of the product, in terms both of possible applications and economical impacts on the market, an overview of major on-going R and D programmes is carried out. At present, these programmes are mostly within the general frame of the study of advanced thermomechanical components and the related manufacturing technologies development

  10. A fast-track preliminary thermo-mechanical design of oil export pipelines from P-56 platform

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Rafael F.; Mendonca, Salete M. de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Franco, Luciano D.; Walker, Alastair; El-Gebaly, Sherif H. [INTECSEA, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The oil export pipelines of Marlim Sul field Module 3, Campus Basin, offshore Brazil, will operate in high pressure and temperature conditions, and will be laid on seabed crossing ten previously laid pipelines along the routes. In terms of thermo-mechanical design, these conditions turn out to be great challenges. In order to obtain initial results and recommendations for detail design, a preliminary thermo-mechanical design of pipelines was carried out as a fast-track design before the bid. This way, PETROBRAS can assess and emphasize the susceptibility of these lines to lateral buckling and pipeline walking behavior. Therefore, PETROBRAS can present a preliminary mitigation strategy for lateral buckling showing solutions based on displacement controlled criteria and by introducing buckle initiation along the pipeline using distribution buoyancy. Besides that, axial displacements and loads at the pipeline ends can be furnished also in order to provide a basis for the detailed design. The work reported in this paper follows the SAFEBUCK JIP methodology and recommendation, which were used to determine the allowable strain and maximum allowable VAS (Virtual Anchor Spacing) considered in the buckling mitigation strategy. The paper presents also the formation of uncontrolled buckles on the seabed and the propensity for pipeline walking in its sections between buckles. The buckling mitigation strategy established in this preliminary design confirms that the oil pipeline specifications are adequate to maintain integrity during design life. (author)

  11. Thermo-mechanical design methodology for ITER cryo-distribution cold boxes

    International Nuclear Information System (INIS)

    Shukla, Vinit; Patel, Pratik; Vaghela, Hiten; Das, Jotirmoy; Shah, Nitin; Bhattacharya, Ritendra; Sarkar, Biswanath; Chang, Hyun-sik

    2015-01-01

    The ITER cryo-distribution system is in charge of the proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users namely; the superconducting magnets and cryopumps. The cryo-distribution also acts as a thermal buffer in order to run the cryo-plant as much as possible at a steady state condition. A typical cryo-distribution cold box is equipped with mainly liquid helium bath with heat exchangers, cryogenic valves, cold circulating pump and cold compressor. During the intended operation life of ITER, several loads on the cryo-distribution system are envisaged, these are, gravity/assembly loads, nominal pressure/temperature, test pressure/temperature, purge pressure, thermo-mechanical loads due to break of insulation vacuum, transport acceleration and seismic loads. Single loads or combinations of them can act on the cryo-distribution system and its components; therefore, it is very important to analyze the behavior of the system and components under the influence of these loads or combinations. Possible load combinations for the cryo-distribution system will be analyzed and will lead to the basis of the design. This paper will focus on the understanding of the nature of the loads and their combinations for the ITER cryo-distribution as well as their impacts on the design. A representative model of a cold box is considered on which the load combinations have been applied in order to understand their impacts on the design of the cryo-distribution. Also the worst-impact loads or their combination which drive the design of cryo-distribution cold boxes will be derived. (author)

  12. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  13. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    Science.gov (United States)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  14. Effect of gluten, egg and soy proteins on the rheological and thermo-mechanical properties of wholegrain rice flour.

    Science.gov (United States)

    Pătraşcu, Livia; Banu, Iuliana; Vasilean, Ina; Aprodu, Iuliana

    2017-03-01

    The effect of protein addition on the rheological, thermo-mechanical and baking properties of wholegrain rice flour was investigated. Gluten, powdered eggs and soy protein concentrate were first analyzed in terms of rheological properties, alone and in admixture with rice flour. The temperature ramp tests showed clear differences in the rheological behavior of the batters supplemented with different proteins. The highest thermal stability was observed in case of soy protein samples. Frequency sweep tests indicated significant improvements of the rheological properties of rice flour supplemented with 15% gluten or soy proteins. The thermo-mechanical tests showed that, due to the high fat contents and low level of free water, the dough samples containing powdered eggs exhibited the highest stability. Addition of gluten resulted in a significant decrease of the dough development time, whereas samples with powdered eggs and soy proteins were more difficult to hydrate. The incorporation of proteins into the rice flour-based dough formulations significantly affected starch behavior by decreasing the peak consistency values. Concerning the quality of the rice flour-based breads, soy protein addition resulted in lighter crumb color and increased texture attributes, samples with gluten had better resilience and adhesiveness, whereas breads with egg protein were less brittle.

  15. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part)

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2003-01-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  16. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel

    Czech Academy of Sciences Publication Activity Database

    Petráš, Roman; Škorík, Viktor; Polák, Jaroslav

    2016-01-01

    Roč. 650, JAN (2016), s. 52-62 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : thermomechanical fatigue * Sanicro 25 steel * damage mechanism * FIB cutting * localized oxidation-cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  17. Phase transformations on Zr-Nb alloys

    International Nuclear Information System (INIS)

    Doi, Sergio Norifumi

    1980-01-01

    This research intended the laboratory scale experimental development of Zr-Nb alloys with adequate characteristics for use as fuel element cladding or for the making of irradiation capsules. Zr-Nb alloys with different Nb contents were melted and the resulting material was characterised. The following metallurgical aspects were considered: preparation of Zr-Nb alloys with various Nb contents; heat and thermomechanical treatments; microstructural characterization; mechanical properties; oxidation properties. The influence of the heat treatment and thermomechanical treatment, on the out-of-pile mechanical and oxidation properties of the Zr-Nb alloys were studied. It was found that the alloy microhardness increases with the Nb content and/or with the thermomechanical treatment. Mechanical properties such as yield and ultimate tensile strength as well as elongation were determined by means of compression tests. The results showed that the alloy yield stress increases with the Nb content and with the thermomechanical treatment, while its elongation decreases. Thermogravimetric analysis determined the alloy oxidation kinetics, in the 400 - 800 deg C interval, at 1 atm. oxygen pressure. The results showed that the alloy oxidation rate increases with the temperature and Nb content. It was also observed that the oxidation rate increases considerably for temperatures higher than 600 deg C.(author)

  18. Structural and thermomechanical properties of the zinc-blende AlX (X = P, As, Sb) compounds

    Science.gov (United States)

    Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Nguyen, Viet Tuyen; Hieu, Ho Khac

    2017-08-01

    The structural and thermomechanical properties of zinc-blende aluminum class of III-V compounds have been studied based on the statistical moment method (SMM) in quantum statistical mechanics. Within the SMM scheme, we derived the analytical expressions of the nearest-neighbor distance, thermal expansion coefficient, atomic mean-square displacement and elastic moduli (Young’s modulus, bulk modulus and shear modulus). Numerical calculations have been performed for zinc-blende AlX (X = As, P, Sb) at ambient conditions up to the temperature of 1000 K. Our results are in good and reasonable agreements with earlier measurements and can provide useful references for future experimental and theoretical works. This research presents a systematic approach to investigate the thermodynamic and mechanical properties of materials.

  19. Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic breeder blanket designs with SiCf/SiC

    International Nuclear Information System (INIS)

    Ying, Alice Y.; Yokomine, Takehiko; Shimizu, Akihiko; Abdou, Mohamed; Kohyama, Akira

    2004-01-01

    This paper presents results from a recent effort initiated under the JUPITER-II collaborative program for high temperature gas-cooled blanket systems using SiC f /SiC as a structural material. Current emphasis is to address issues associated with the function of the helium gas considered in the DREAM and ARIES-I concepts by performing thermomechanical and thermofluid analysis. The objective of the analysis is to guide future research focus for a task in the project. It is found that the DREAM concept has the advantage of achieving uniform temperature without threatening blanket pebble bed integrity by differential thermal stress. However, its superiority needs to be further justified by investigating the feasibility and economic issues involved in the tritium extraction technology

  20. Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic breeder blanket designs with SiCf/SiC

    International Nuclear Information System (INIS)

    Ying, A.Y.; Abdou, M.; Yokomine, T.; Shimizu, A.; Kohyama, A.

    2008-01-01

    This paper presents results from a recent effort initiated under the JUPITER-II collaborative program for high temperature gas-cooled blanket systems using SiC/SiC as a structural material. Current emphasis is to address issues associated with the function of the helium gas considered in the DREAM and ARIES-I concepts by performing thermomechanical and thermofluid analysis. The objective of the analysis is to guide future research focus for a task in the project. It is found that the DREAM concept has the advantage of achieving uniform temperature without threatening blanket pebble bed integrity by differential thermal stress. However, its superiority needs to be further justified by investigating the feasibility and economic issues involved in the tritium extraction technology. (author)

  1. Thermomechanical Behavior of Monolithic SN-AG-CU Solder and Copper Fiber Reinforced Solders

    National Research Council Canada - National Science Library

    Reuse, Rolando

    2005-01-01

    .... The thermomechanical cycling in the solder causes numerous reliability challenges, mostly because of the mismatch of the coefficient of thermal expansion between the silicon chip and the substrate...

  2. Surface finishing and levelling of thermomechanically hardened rolled steel

    International Nuclear Information System (INIS)

    Grosval'd, V.G.; Bashchenko, A.P.; Grishkov, A.I.; Gutnik, M.V.; Kanevskij, B.L.; Nikozov, A.I.; Sedov, N.D.; Prosin, K.A.; Safonov, L.I.

    1975-01-01

    The finishing of high-strength merchant shapes from alloy steel was tried out under industrial conditions with the equipment of metallurgical plants. After thermomechanical hardening in the production line of the rolling mill, 30KhGSN2A and 40Kh1NVA steel rounds 32 and 31 mm in diameter were straightened on a two-roller straightening machine designed by the All-Union Scientific Research Institute for Metallurgical Machinery (VNII Metmash). This made possible subsequent turning and grinding of the rods. The conditions of straightening, turning and grinding have been worked so as to obtain thermomechanically strengthened and ground rolled products approximating the gauged and ground metal in shape geometry and surface finish. It is shown that the labour-consuming operation of turning can be eliminated by reducing the machining pass of the rolled product, and this lowers the labour required for the finishing operations by 75%. After grinding with 40- and 25-grain abrasive wheels, high strength rolled shapes were obtained with a diameter of 30-0.20 mm and a surface finish of class 6-5 satisfying the technical specifications. (author)

  3. Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

    CERN Document Server

    AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco

    2016-01-01

    As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.

  4. A Thermomechanical Transport Approach and Application in Soil-Water System of Polluted Mining Areas considering the Three-Phase Coupling

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available The thermomechanical transport approach includes the process of diffusing or the condition of being diffused, absorption/desorption, swell/shrink, equilibrium/nonequilibrium, and thermomechanical transport of contaminant in three phases of polluted mining soil which are discussed. The thermomechanical transport model of the contaminants transport in polluted soil is established, and its basic equations are given. Based on that, the distribution regularities of the contaminant seepage in water-soil system are discussed in detail and the sensitivities of parameters are analyzed. The study shows that the parameter has important influence on the contamination distribution and transportation in polluted soil-water system. The influence degree is also related to the action of seepage force directly.

  5. COMPARATIVE ANALYSIS OF MECHANICAL CHARACTERISTICS OF THE STEELS, APPLIED FOR PRODUCTION OF CHIPPING KNIVES, RECEIVED BY METHODS OF THERMAL AND THERMOMECHANICAL PROCESSINGS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2014-01-01

    Full Text Available Results of researches of chemical composition of chipping knives of foreign and domestic producers are given in the article. Results of mechanical tests of samples with determination of temporary resistance, percentage elongation, ultimate strength at cross bending, bend from the various tool steels, subjected to heat treatment (tempering and thermomechanical processing with low tempering, are given. Recommendations on use of TO and TMO for investigated steels are given.

  6. Unstable Temperature Distribution in Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Sadiq Aziz Hussein

    2014-01-01

    Full Text Available In the friction stir welding process, a nonuniform and high generated temperature is undesirable. Unstable temperature and distribution affect thermal and residual stresses along the welding line, thus necessitating mitigation. This paper presents a simple method to prevent significant temperature difference along the welding line and also to help nullifying some defect types associated with this welding, such as end-hole, initial unwelded line, and deformed areas. In the experimental investigation, a heat and force thermocouple and dynamometer were utilized while couple-field thermomechanical models were used to evaluate temperature and its distribution, plastic strain, and material displacement. The suggested method generated uniform temperature distributions. Measurement results are discussed, showing a good correlation with predictions.

  7. Temperature evolution during compaction of pharmaceutical powders.

    Science.gov (United States)

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  8. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    International Nuclear Information System (INIS)

    Ehrhardt, F.

    2014-01-01

    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  9. Thermo-mechanical lifetime assessment of components for 700 °C steam turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, F.

    2014-07-01

    In order to increase thermal efficiency, steam turbine technology has been oriented to cover steam inlet temperatures above 700 °C and steam pressures exceeding 350 bar. These temperature levels require the use of nickel and cobalt based alloys. Nickel-based alloys were identified as being suitable for forgeable high-pressure steam turbine rotor materials, including welding procedures for joints between nickel-based alloys and alloyed ferritic steels. Expensive nickel-based alloys should be replaced with conventional heat-resistant steels in applications operating below ∼500-550°C. Since a welded rotor design is favoured, dissimilar metal weldments are required. The research work presented is aimed at the development of thermo-mechanical lifetime assessment methodologies for 700°C steam turbine components. The first main objective was the development of advanced creep-fatigue (CF) lifetime assessment methodologies for the evaluation of Alloy 617 steam turbine rotor features at maximum application temperatures. For the characterisation of the material behaviour under static loading conditions, creep rupture experiments for both medium temperatures and target application temperature have been conducted in order to investigate the influence of ageing treatment on Alloy 617. A creep deformation equation was developed on the basis of a modified Graham-Walles law. Continuous Low Cycle Fatigue (LCF) experiments have been performed. A plasticity model of Chaboche type has been developed. Cyclic/hold experiments have been conducted on Alloy 617. A modification on the creep law was introduced for the description of the material’s decreased creep resistance under combined CF loading. A very promising approach considering plastic and creep-dissipated energy was developed. The effectiveness of this energy exhaustion method was verified with the calculation of endurance curves for continuous cycling LCF and cyclic/hold conditions over a broad range of temperatures, strain

  10. Thermo-mechanical properties and integrity of metallic interconnects in microelectronics

    Science.gov (United States)

    Ege, Efe Sinan

    In this dissertation, combined numerical (Finite Element Method) and experimental efforts were undertaken to study thermo-mechanical behavior in microelectronic devices. Interconnects, including chip-level metallization and package-level solder joints, are used to join many of the circuit parts in modern equipment. The dissertation is structured into six independent studies after the introductory chapter. The first two studies focus on thermo-mechanical fatigue of solder joints. Thermo-mechanical fatigue, in the form of damage along a microstructurally coarsened region in tin-lead solder, is analyzed along with the effects of intermetallic morphology. Also, lap-shear testing is modeled to characterize the joint and to investigate the validity of experimental data from different solder and substrate geometries. In the third study, the effects of pre-machined holes on strain localization and overall ductility in bulk eutectic tin-lead alloy is examined. Finite element analyses, taking into account the viscoplastic response, were carried out to provide a mechanistic rationale to corroborate the experimental findings. The fourth study concerns chip-level copper interconnects. Various combinations of oxide and polymer-based low-k dielectric schemes, with and without the thin barrier layers surrounding the Cu line, are considered. Attention is devoted to the thermal stress and strain fields and their dependency on material properties, geometry, and modeling details. This study is followed by a chapter on atomistics of interface-mediated plasticity in thin metallic films. The objective is to gain fundamental insight into the underlying mechanisms affecting the mechanical response of nanoscale thin films. The final study investigates the effect of microstructural heterogeneity on indentation response, for the purpose of raising awareness of the uncertainties involved in applying indentation techniques in probing mechanical properties of miniaturized devices.

  11. Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells.

    Science.gov (United States)

    Zhang, Qi; Du, Xinhang; Tan, Shengwei; Tang, Dian; Chen, Kongfa; Zhang, Teng

    2017-07-13

    Nb 2 O 5 is added to a borosilicate sealing system to improve the thermo-mechanical stability of the sealing interface between the glass and Fe-Cr metallic interconnect (Crofer 22APU) in solid oxide fuel cells (SOFCs). The thermo-mechanical stability of the glass/metal interface is evaluated experimentally as well as by using a finite element analysis (FEA) method. The sealing glass doped with 4 mol.% Nb 2 O 5 shows the best thermo-mechanical stability, and the sealing couple of Crofer 22APU/glass/GDC (Gd 0.2 Ce 0.8 O 1.9 ) remains intact after 50 thermal cycles. In addition, all sealing couples show good joining after being held at 750 °C for 1000 h. Moreover, the possible mechanism on the thermo-mechanical stability of sealing interface is investigated in terms of stress-based and energy-based perspectives.

  12. Dislocation-mediated strain hardening in tungsten: Thermo-mechanical plasticity theory and experimental validation

    Science.gov (United States)

    Terentyev, Dmitry; Xiao, Xiazi; Dubinko, A.; Bakaeva, A.; Duan, Huiling

    2015-12-01

    A self-consistent thermo-mechanical model to study the strain-hardening behavior of polycrystalline tungsten was developed and validated by a dedicated experimental route. Dislocation-dislocation multiplication and storage, as well dislocation-grain boundary (GB) pinning were the major mechanisms underlying the evolution of plastic deformation, thus providing a link between the strain hardening behavior and material's microstructure. The microstructure of the polycrystalline tungsten samples has been thoroughly investigated by scanning and electron microscopy. The model was applied to compute stress-strain loading curves of commercial tungsten grades, in the as-received and as-annealed states, in the temperature range of 500-1000 °C. Fitting the model to the independent experimental results obtained using a single crystal and as-received polycrystalline tungsten, the model demonstrated its capability to predict the deformation behavior of as-annealed samples in a wide temperature range and applied strain. The relevance of the dislocation-mediated plasticity mechanisms used in the model have been validated using transmission electron microscopy examination of the samples deformed up to different amounts of strain. On the basis of the experimental validation, the limitations of the model are determined and discussed.

  13. Thermo-mechanical response of rigid plastic laminates for greenhouse covering

    Directory of Open Access Journals (Sweden)

    Silvana Fuina

    2016-09-01

    Full Text Available Innovation in the field of protected crops represents an argument of great applied and theoretical research attention due to constantly evolving technologies and automation for higher quality flower and vegetable production and to the corresponding environmental and economic impact. The aim of this paper is to provide an analysis of some thermomechanical properties of rigid polymeric laminates for greenhouses claddings, including innovative tests such as the thermographic ones. Four types of laminates have been analysed: two polycarbonates, a polymethylmethacrylate and a polyethylene terephthalate (PET. The tests gave interesting results on different important properties, such as radiometric properties, limit stresses, strains and ductility. Moreover, a direct comparison of infrared images and force elongation curves gave important information on the relation of the (localised or homogeneous damage evolution, with both an applicative and theoretical implication. Finally, even if to the authors knowledge at present there are no examples of using PET for covering greenhouses, the results of this paper indicates the thermomechanical and radiometric characteristics of this material make it interesting for agricultural applications.

  14. Thermo-mechanical analysis of RMP coil system for EAST tokamak

    International Nuclear Information System (INIS)

    Wang, Songke; Ji, Xiang; Song, Yuntao; Zhang, Shanwen; Wang, Zhongwei; Sun, Youwen; Qi, Minzhong; Liu, Xufeng; Wang, Shengming; Yao, Damao

    2014-01-01

    Highlights: • Thermal design requirements for EAST RMP coils are summarized. • Cooling parameters based on both theoretical and numerical solutions are determined. • Compromise between thermal design and structural design is made on number of turns. • Thermo-mechanical calculations are made to validate its structural performance. - Abstract: Resonant magnetic perturbation (RMP) has been proved to be an efficient approach on edge localized modes (ELMs) control, resistive wall mode (RWM) control, and error field correction (EFC), RMP coil system under design in EAST tokamak will realize the above-mentioned multi-functions. This paper focuses on the thermo-mechanical analysis of EAST RMP coil system on the basis of sensitivity analysis, both normal and off-normal working conditions are considered. The most characteristic set of coil system is chosen with a complete modelling by means of three-dimensional (3D) finite element method, thermo-hydraulic and thermal-structural performances are investigated adequately, both locally and globally. The compromise is made between thermal performance and structural design requirements, and the results indicate that the optimized design is feasible and reasonable

  15. Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation.

    Science.gov (United States)

    Kwon, Beomjin; Rosenberger, Matthew; Bhargava, Rohit; Cahill, David G; King, William P

    2012-01-01

    This paper investigates the dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by an infrared laser operating at a wavelenegth of 10.35 μm. A model relates incident radiation, heat transfer, temperature distribution in the cantilever, and thermal expansion mismatch to find the cantilever displacement. Experiments were conducted on two custom-fabricated bimaterial cantilevers and two commercially available bimaterial microcantilevers. The cantilever response was measured as a function of the modulation frequency of the laser over the range of 0.01-30 kHz. The model and the method of cantilever displacement calibration can be applied for bimaterial cantilever with thick coating layer. The sensitivity and signal-to-noise of bimaterial cantilevers were evaluated in terms of either total incident power or incident flux. The custom-fabricated bimaterial cantilevers showed 9X or 190X sensitivity improvement compared to commercial cantilevers. The detection limit on incident flux is as small as 0.10 pW μm(-2) Hz(-1/2).

  16. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W

    International Nuclear Information System (INIS)

    Grigore, E; Ruset, C; Gherendi, M; Chioibasu, D; Hakola, A

    2016-01-01

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20–35 μm to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 °C and a power density of about 3 MW m −2 . A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples. (paper)

  17. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W

    Science.gov (United States)

    Grigore, E.; Ruset, C.; Gherendi, M.; Chioibasu, D.; Hakola, A.; contributors, JET

    2016-02-01

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20-35 μm to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 °C and a power density of about 3 MW m-2. A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples.

  18. Thermo-mechanical modelling and experimental validation of CLIC prototype module type 0

    CERN Document Server

    Kortelainen, Lauri; Koivurova, Hannu; Riddone, Germana; Österberg, Kenneth

    Micron level stability of the two-meter repetitive modules constituting the two main linacs is one of the most important requirements to achieve the luminosity goal for the Compact Linear Collider. Structural deformations due to thermal loads and related to the RF power dissipated inside the modules affect the alignment of the linacs and therefore the resulting luminosity performance. A CLIC prototype module has been assembled in a dedicated laboratory and a thermal test program has been started in order to study its thermo-mechanical behaviour. This thesis focuses on the finite elements modelling of the first CLIC prototype module 0. The aim of the modelling is to examine the temperature distributions and the resulting deformations of the module in different operating conditions defined in the thermal test program. The theoretical results have been compared to the experimental ones; the comparison shows that the results are in good agreement both for the thermal behaviour of the module and for the resulting ...

  19. Application of Laser Pulse Heating to Simulate Thermomechanical Damage at Gun Bore Surfaces

    National Research Council Canada - National Science Library

    Cote, Paul

    2003-01-01

    Laser pulse heating experiments were performed to provide insights into the thermomechanical damage effects that occur at the surface of coated and uncoated gun steel under cyclic rapid heating and cooling...

  20. Towards thermomechanics of fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2007-11-01

    Hans Ziegler’s thermomechanics [1,2,3], established half a century ago, is extended to fractal media on the basis of a recently introduced continuum mechanics due to Tarasov [14,15]. Employing the concept of internal (kinematic) variables and internal stresses, as well as the quasiconservative and dissipative stresses, a field form of the second law of thermodynamics is derived. In contradistinction to the conventional Clausius Duhem inequality, it involves generalized rates of strain and internal variables. Upon introducing a dissipation function and postulating the thermodynamic orthogonality on any lengthscale, constitutive laws of elastic-dissipative fractal media naturally involving generalized derivatives of strain and stress can then be derived. This is illustrated on a model viscoelastic material. Also generalized to fractal bodies is the Hill condition necessary for homogenization of their constitutive responses.

  1. Effects of thermomechanical processing on microstructure and properties of bainitic work hardening steel

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jie, E-mail: caojie910@ahut.edu.cn [School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002 (China); Yan, Jun; Zhang, Jing [School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243002 (China); Yu, Tongren [Technology Center, Maanshan Iron & Steel Company Limited, Ma’anshan 243000 (China)

    2015-07-15

    The thermomechanical processing (TMP) of a bainitic work hardening steel was carried out on a Gleeble3500 simulator. The microstructure of processed specimens was investigated by means of optical and electron microscopy, and tensile tests were performed in a ZwickRoell tensile tester. The deformation temperatures of austenite varied from 800 °C to 900 °C. The cooling methods include single rate cooling method and two-stage cooling method. The two-stage cooling method includes fast cooling rates ranging from 4 °C/s to 12 °C/s and slow cooling rates ranging from 1 °C/s to 2 °C/s. It is shown that, within the range of parameters tested, the obtained microstructures are granular bainite, the tensile strength of the steel can be adjusted from 897.8 MPa to 1083.2 MPa, and good plasticity can be obtained at different strength levels.

  2. Structural transitions in the titanium alloy β-CEZ studied by precipitation mechanisms after solution treatment

    International Nuclear Information System (INIS)

    Angelier, C.; Bechet, J.

    1994-01-01

    The β-CEZ, a high strength titanium alloy developed for aerospace engine applications, is a α/β near β alloy. A wide variety of phase transformations and attendant nodular, lamellar and mixed microstructures are possible according to thermomechanical treatment conditions. The aim of this present paper is to illustrate the influence of solution treat-ment temperature on equilibrium microstructures and continuous cooling transformations. Solution treatment temperature controls the volume fraction of primary α particles and composition of the β-matrix. Therefore the transformation during continuous cooling from α/β or β field depends on β-matrix stability and potential sites amount of α precipitation. After a β solution treatment, the α particles are disappeared and the β phase contains all alloying elements; the continuous cooling transformation produces a Widmanstaetten structure. If the cooling rate or/and the solution treatment temperature in the α/β field are sufficiently low, the microstructure consists only of nodular morphology. During α particles growth the α volume fraction increases as equilibrium and the decreasing of growth kinetic leads to supersaturated β matrix and Widmanstaetten α precipitation. The final microstructures are mixed. The influence of solution trat-ment temperature and cooling rate on nucleation and growth mechanisms is specially developed. (orig.)

  3. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications

    Science.gov (United States)

    Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.

    2012-07-01

    Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.

  4. Thermo-mechanical behaviour during encapsulation of glass in a steel vessel

    International Nuclear Information System (INIS)

    Nakhodchi, S.; Smith, D.J.; Thomas, B.G.

    2016-01-01

    Quantitative numerical simulations and qualitative evaluations are conducted to elucidate thermo-mechanical behaviour during pouring and solidification of molten glass into a stainless-steel cylindrical container. Residual stress and structural integrity in this casting/vitrification process is important because it can be used for long-term storage of high-level nuclear wastes. The predicted temperature and stress distributions in the glass and container agree well with previous measurements of the temperature histories and residual stresses. Three different thermal-stress models are developed using the finite-element method and compared. Two simple slice models were developed based on the generalized plane strain assumption as well as a detailed two-dimensional axi-symmetric model that adds elements according to the stages of pouring glass into the stainless steel container. The results reveal that mechanical interaction between the glass and the wall of the stainless steel container generates residual tensile stresses that approach the yield strength of the steel. Together, these results reveal important insights into the mechanism of stress generation in the process, the structural integrity of the product, and accuracy of the modelling-tool predictions. - Highlights: • Source of residual stresses in glass and stainless steel containers (canisters) is discussed. • Final residual stresses in both glass and container is quantified. • Simple models presented for simulation of complicated casting process. • Comparison between detailed and simple FE modeling.

  5. Effects of surface treatment on the cavitation erosion of high-chrome steel, zirconium, titanium and their alloys

    International Nuclear Information System (INIS)

    Marinin, V.G.

    1994-01-01

    The erosion resistance of some structural materials used for equipment components of the first and second circuits of NPPs is studied under cavitation created by an ultrasonic vibrator. It appears that after various thermomechanical treatments (programmed loading, low-temperature rolling) and coating deposition (titanium, zirconium and titanium nitride), the erosion resistance of the materials under consideration increases and the plasticity value is not notably modified. The titanium coatings deposited onto the steel increase the corrosion-fatigue resistance in a sodium chloride environment, in several cases

  6. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    International Nuclear Information System (INIS)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E.

    1995-01-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in open-quotes Institute of Berylliumclose quotes for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round open-quotes hypervapotron typeclose quotes test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of open-quotes swirl tape inside of tubeclose quotes have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces open-quotes swirl tape inside of tubeclose quotes type are given in this report

  7. Welding thermal cycle-triggered precipitation processes in steel S700MC subjected to the thermo-mechanical control processing

    OpenAIRE

    Górka J.

    2017-01-01

    This study presents tests concerned with welding thermal process-induced precipitation processes taking place in 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) with accelerated cooling. The thermomechanical processing of steel S700MC leads to its refinement, structural defects and solutioning with hardening constituents. Tests of thin foils performed using a transmission electron microscope revealed that the hardening of steel S700MC was primarily caused by...

  8. Unveiling the climate memory of an Arctic polythermal glacier: a combined radar and thermomechanical modeling approach

    Science.gov (United States)

    Delcourt, C.; Van Liefferinge, B.; Pattyn, F.; Nolan, M.

    2011-12-01

    Based on borehole temperature measurements and radio-echo sounding surveys on McCall Glacier, Alaska (USA) we were able to identify and map the Cold Transition Surface (CTS) marking the limit between cold and warm ice of a polythermal glacier. In the accumulation area, the ice column is observed to be warm throughout, while in the ablation area, the amount of cold ice at the top of the ice column increases downstream, hence lowering the CTS. High englacial temperatures in the accumulation are explained by the latent heat release due to percolating meltwater and precipitation, hence warming the ice column. With increasing atmospheric temperatures and increasing ablation rates, reduction of the perennial snowpack results in surface runoff and ice cooling. Using a transient thermomechanically-coupled higher-order glacier model, the timing of the cooling was determined from which past equilibrium-line altitudes (ELA) were constructed, which are in accord with ELAs measured since the 1950s (IGY). The paper therefore shows that (i) mapping of the CTS allows reconstructing the recent climate history of polythermal glaciers, and (ii) with a warming climate, McCall Glacier tends to cool down in a counterintuitive way.

  9. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  10. Drift-scale thermomechanical analysis for the retrievability systems study

    International Nuclear Information System (INIS)

    Tsai, F.C.

    1996-01-01

    A numerical method was used to estimate the stability of potential emplacement drifts without considering a ground support system as a part of the Thermal Loading Systems Study for the Yucca Mountain Site Characterization Project. The stability of the drift is evaluated with two variables: the level of thermal loading and the diameter of the emplacement drift. The analyses include the thermomechanical effects generated by the excavation of the drift, subsequently by the thermal loads from heat-emitting waste packages, and finally by the thermal reduction resulting from rapid cooling ventilation required for the waste retrieval if required. The Discontinuous Deformation Analysis (DDA) code was used to analyze the thermomechanical response of the rock mass of multiple blocks separated by joints. The result of this stability analysis is used to discuss the geomechanical considerations for the advanced conceptual design (ACD) with respect to retrievability. In particular, based on the rock mass strength of the host rock described in the current version of the Reference Information Base, the computed thermal stresses, generated by 111 MTU/acre thermal loads in the near field at 100 years after waste emplacement, is beyond the criterion for the rock mass strength used to predict the stability of the rock mass surrounding the emplacement drift

  11. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam

    2018-05-01

    The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.

  12. Thermomechanical analysis of an electrically assisted wire drawing process

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Celentano, Diego Javier; Jorba Peiró, Jordi; Cao, Jia

    2017-01-01

    Electrically-assisted wire drawing process is a hybrid manufacturing process characterized by enhancement of the formability, ductility and elongation of the wire drawn specimen. A thermomechanical model to describe the change of the mechanical response due to the thermal contribution is proposed in this work. Additionally, a numerical simulation was conducted to study the potential and limitations of this hybrid process by using two different hardening laws: a phenomenological and a dislocat...

  13. Finite elements for the thermomechanical calculation of massive structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1978-01-01

    The paper examines the fine element analysis of thermal stress and deformation problems in massive structures. To this end compatible idealizations are utilized for heat conduction and static analysis in order to minimize the data transfer. For transient behaviour due to unsteady heat flow and/or inelastics material processes the two computational parts are interwoven in form of an integrated software package for finite element analysis of thermomechanical problems in space and time. (orig.) [de

  14. A simple 1D model with thermomechanical coupling for superelastic SMAs

    International Nuclear Information System (INIS)

    Zaki, W; Morin, C; Moumni, Z

    2010-01-01

    This paper presents an outline for a new uniaxial model for shape memory alloys that accounts for thermomechanical coupling. The coupling provides an explanation of the dependence of SMA behavior on the loading rate. 1D simulations are carried in Matlab using simple finite-difference discretization of the mechanical and thermal equations.

  15. Effect of thermomechanical treatment of the stress corrosion cracking of metastable beta III titanium

    International Nuclear Information System (INIS)

    Seats, J.H.; Condit, D.O.

    1974-01-01

    Results of studies on the relations of microstructural changes with stress corrosion of Ti--11.5 Mo--6 Zr--4.5 Sn (Beta III) alloys are presented. It was found that this alloy is virtually immune to stress corrosion cracking if no imperfections in the surface are present. Specimens that had not been cold worked showed surface deterioration, but it was not serious enough to cause any marked reduction in yield strengths. The alloy is, however, susceptible to SCC if the surface contains an imperfection such as a fatigue crack where high stresses can concentrate during testing. These high stress levels at the crack tip may cause mechanical destruction of the passivating oxide and allow a higher concentration of chloride ions near the fresh metal surfaces. However, even with precracked specimens, crack propagation is slow as evidenced by no failures within the 720 hour test period. The extreme notch sensitivity of Beta III prevented initiation of fatigue cracks in the sections of the alloy with 20 and 50 percent cold work. More research must be done to test Beta III in this condition. However, on the basis of the research conducted thus far, SCC susceptibility of Beta III titanium alloy appears to be independent of thermomechanical pretreatment. (U.S.)

  16. Solvability of an unsaturated porous media flow problem with thermomechanical interaction

    Czech Academy of Sciences Publication Activity Database

    Detmann, B.; Krejčí, Pavel; Rocca, E.

    2016-01-01

    Roč. 48, č. 6 (2016), s. 4175-4201 ISSN 0036-1410 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : porous media * hysteresis * thermomechanical interactions Subject RIV: BA - General Mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/abs/10.1137/16M1056365

  17. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tavassoli, A.-A.F.; Henry, J. [DMN/Dir, DEN, CEA Saclay, 91191, Gif-sur-Yvette Cedex (France); Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe, 76021 (Germany); Sakasegawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Tanigawa, H. [National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori, 039-3212 (Japan); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-10-15

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. In addition to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti, X = C/N) precipitates and reducing coarse M{sub 23}C{sub 6} (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. Limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic are presented and compared with data for F82H and Eurofer97 irradiated up to ∼70 displacements per atom at ∼300–325 °C.

  18. Cesium relocation in mixed-oxide fuel pins resulting from increased temperature reirradiation

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Woodley, R.E.; Weber, E.T.

    1976-06-01

    Mixed-oxide fuel pins from EBR-II test subassemblies PNL-3 and PNL-4 were reirradiated in the GETR to study effects of increased fuel and cladding temperatures on chemical and thermomechanical behavior. Radial and axial distributions of cesium were obtained using postirradiation nondestructive precision gamma-scanning techniques. Data presented relate to the dependence of cesium distribution and transport processes on temperature gradients which were altered after substantial steady-state operation

  19. Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models

    Science.gov (United States)

    Samadian, P.; Parsa, M. H.; Mirzadeh, H.

    2015-02-01

    Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.

  20. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  1. Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid/Agave Bagasse Fiber Bioplastic Composites

    Directory of Open Access Journals (Sweden)

    F. J. Aranda-García

    2015-01-01

    Full Text Available Water absorption and thermomechanical behavior of composites based on thermoplastic starch (TPS are presented in this work, wherein the concentration of agave bagasse fibers (ABF, 0–15 wt% and poly(lactic acid (PLA, 0–30 wt% is varied. Glycerol (G is used as starch (S plasticizer to form TPS. Starch stands as the polymer matrix (70/30 wt/wt, S/G. The results show that TPS hygroscopicity decreases as PLA and fiber content increase. Storage, stress-strain, and flexural moduli increase with PLA and/or agave bagasse fibers (ABF content while impact resistance decreases. The TPS glass transition temperature increases with ABF content and decreases with PLA content. Micrographs of the studied biocomposites show a stratified brittle surface with a rigid fiber fracture.

  2. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    Science.gov (United States)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  3. Microstructure and mechanical properties of V–Me(Cr,W–Zr alloys as a function of their chemical–thermal treatment modes

    Directory of Open Access Journals (Sweden)

    V.M. Chernov

    2015-07-01

    Full Text Available Formation of regularities of the nanometric oxide precipitates and defect microstructure in vanadium-based low activation alloys V–Cr–Zr–(C,N,O and V–Cr–W–Zr–(C,N,O as a function of the regimes of their thermochemical treatment was investigated. Several methods of internal oxidation which provide formation of the nanosized ZrO2 particles of controllable dispersion, ensure the nanometric size of the heterophase structure to be maintained up to the temperatures as high as 1300–1400 °С, and allow the recrystallization temperature to be increased up to ≥1400 °С were proposed. Formation of such microstructure contributes to dispersion- and substructural hardening and results in more than twofold increase in the yield stress of these alloys both at room and elevated (800 °С temperatures, compared to the conventional thermo-mechanical treatment.

  4. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Nematzadeh, Fardin; Akbarpour, Mohammad Reza; Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam

    2009-01-01

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  5. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.; Park, Byoung; Costin, Laurence

    2018-05-01

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range of temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.

  6. Advanced Characterization Techniques for Silicon Carbide and Pyrocarbon Coatings on Fuel Particles for High Temperature Reactors (HTR)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, V.; Charollais, F. [CEA Cadarache, DEN/DEC/SPUA, BP 1, 13108 St Paul Lez Durance (France); Dugne, O. [CEA Marcoule, DEN/DTEC/SCGS BP 17171 30207 Bagnols sur Ceze (France); Garcia, C. [Laboratoire des Composites Thermostructuraux (LCTS), UMR CNRS 5801, 3 allee de La Boetie, 33600 Pessac (France); Perez, M. [CEA Grenoble DRT/DTH/LTH, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2008-07-01

    Cea and AREVA NP have engaged an extensive research and development program on HTR (high temperature reactor) fuel. The improving of safety of (very) high temperature reactors (V/HTR) is based on the quality of the fuel particles. This requires a good knowledge of the properties of the four-layers TRISO particles designed to retain the uranium and fission products during irradiation or accident conditions. The aim of this work is to characterize exhaustively the structure and the thermomechanical properties of each unirradiated layer (silicon carbide and pyrocarbon coatings) by electron microscopy (SEM, TEM), selected area electronic diffraction (SEAD), thermo reflectance microscopy and nano-indentation. The long term objective of this study is to define pertinent parameters for fuel performance codes used to better understand the thermomechanical behaviour of the coated particles. (authors)

  7. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    Science.gov (United States)

    Padula, Santo A., II (Inventor)

    2016-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  8. Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Hansen, Ole; Boisen, Anja

    2006-01-01

    Stress in polymeric resins is tailored by a thermomechanical process. It allows for controlled self-positioning of membranes in microdevices (see Figure). The process makes specific use of plastic deformation that results from the low viscosity of the polymer. This demonstrates that polymers offer...... new approaches to microfabrication that cannot be realized for common semiconductor materials without severe difficulties....

  9. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  10. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  11. Relationship between thermomechanical treatment, microstructure and α' martensite in stainless Fe-based shape memory alloys

    International Nuclear Information System (INIS)

    Otubo, J.; Mei, P.R.; Shinohara, A.H.; Suzuki, C.K.

    1999-01-01

    This work presents some preliminary results relating training treatment, training temperature and the formation of α' martensite to the shape recovery effect of stainless shape memory alloys. For the composition tested, the sample shows some mechanical memory (constant tensile stress at 4% strain and constant yield stress throughout the training cycles) with a very good shape recovery (95% after 4% tensile strain) at a training temperature of 873 K. Its residual strain is related to the generation of perfect dislocations only. For the sample trained at 723 K, the residual strain could be attributed to incomplete reversion of stress-induced ε martensite, in part due to the blocking effect of α' martensite and also to the generation of perfect dislocations. The influence of α' martensite on shape recovery is relative and is dependent on training temperature, and the preferential growth of α' martensite is shown to occur for large grain size. (orig.)

  12. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  13. Experimental simulation of irradiation effects on thermomechanical behaviour of UO2 fuel: Impact of solid and gaseous fission products

    International Nuclear Information System (INIS)

    Balland, J.

    2007-12-01

    Predictive simulation of thermomechanical behaviour of nuclear fuel has to take into account irradiation effects. Fission Products (FP) can modify the thermomechanical behaviour of UO 2 . During this thesis, differentiation was made between fission products which create a solid solution with UO 2 and gaseous products, generating pressurized bubbles. SIMFUELS containing gadolinium oxide and pressurized argon bubbles were manufactured, respectively by conventional process and by Gas Pressure Sintering. Brittle and ductile behaviour of UO 2 was investigated, under experimental conditions representative of Pellet-Cladding Interaction (PCI), respectively with 3 points bending tests and compressive creep tests. Investigation of brittle behaviour of UO 2 showed that fracture is mainly controlled by natural defects, like porosities, acting like starting points for cracks propagation. Addition of simulates fission products increase the brittle-to-ductile transition temperature of UO 2 , up to 400-500 C regarding FP in solid solution, and up to 200 C for gaseous products. Fission products although reduce fracture stresses, by a factor between 1.5 and 4, respectively for gas bubbles and solid solutions. Decrease of fracture stress is linked to an increase of microstructural defects due the solid solution and to pressurized bubbles located at grain boundaries. Pellets were tested under compressive solicitation at high temperatures. Experimental results of creep tests are well represented by Norton laws. Creep controlling mechanisms are evidenced by microstructural analysis performed on pellets at different strains. On the basis of calculations made for fuels having the same microstructures than the SIMFUELs, a creep factor is determined. It revealed a strong hardening effect of the solid solution, due to the fact that the added elements anchor the dislocations, whereas pressurized bubbles showed a coupling between hardening and softening effects. (author)

  14. Effect of Plastic Hot Deformation on the Hardness and Continuous Cooling Transformations of 22MnB5 Microalloyed Boron Steel

    Science.gov (United States)

    Barcellona, A.; Palmeri, D.

    2009-05-01

    The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s-1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermomechanical treatments were performed using the thermomechanical simulator Gleeble 1500. The results showed that increasing hot prestrain (HPS) values generate, at the same cooling rate, lower hardness values; this means that the increasing of HPS generates a shift of the CCT diagram toward a lower starting time for each transformation. Therefore, high values of hot deformations during the hot stamping process require a strict control of the cooling process in order to ensure cooling rate values that allow maintaining good mechanical component characteristics. This phenomenon is amplified when the prestrain occurs at lower temperatures, and thus, it is very sensitive to the temperature level.

  15. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    Science.gov (United States)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  16. A Multi-objective Optimization Application in Friction Stir Welding: Considering Thermo-mechanical Aspects

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2-dimensional sequentially coupled thermomechanical...

  17. Modelling thermomechanical conditions at the tool/matrix interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    is obtained. A fully coupled thermo-mechanical 3D FE model has been developed in ABAQUS/Explicit using the ALE formulation and the Johnson-Cook material law. The contact forces are modelled by Coulomb’s law of friction making the contact condition highly solution dependent. The heat is generated by both...

  18. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    Science.gov (United States)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  19. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    International Nuclear Information System (INIS)

    Baum, O I; Omelchenko, A I; Sobol, E N; Zheltov, G I; Romanov, G S; Romanov, O G

    2013-01-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method. (paper)

  20. Thermomechanical Behavior of Rotor with Rubbing

    Directory of Open Access Journals (Sweden)

    Jerzy T. Sawicki

    2003-01-01

    Full Text Available This article presents an analytical study of the dynamics and stability of rotors subjected to rubbing due to contact with seals, taking account of associated thermal effects. The seal interaction force acting on the shaft gives rise to a friction force, which is a source of heating and can induce so-called spiral vibrations. A mathematical model that has been developed couples the heat-conduction equation with the equations for motion of the rotor. Numerical simulations have been conducted that show the thermomechanical behavior of the rotor at various operating conditions. A procedure for analyzing the stability of multibearing rotors based on the system eigenvalue analysis and the state-space approach has been proposed. Finally, the experimental data related to full annular rub have been presented.

  1. Thermomechanical properties of polyurethane insulation used in district heating pipes; Termomekaniska egenskaper hos kulvertisolering av PUR-cellplast

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, G.; Karlsson, Jonas [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    1996-08-01

    The load bearing capacity of the types of rigid expanded polyurethane which is used as insulation in underground mains in district heating systems has been studied in this project over the temperature range 23 deg C to 170 deg C. The objective has been to acquire such knowledge concerning the thermal and mechanical properties of the materials that their load bearing capacity can be predicted for a service life of at least 30 years. Two reference materials and two commercial materials have been studied in addition to two materials produced in the laboratory. The investigations were mainly performed as creep tests at definite temperature levels, and extended over periods ranging from 1 hour to 2 years. An endeavour was then made to incorporate the results into a general thermomechanical model, with different parameters adapting the model to the different materials. The comprehensive description of time and temperature dependence is given in the form of master curves for the temperature 100 deg C and with conversion factors for other temperatures. The measurements have shown that PUR insulation has a more complicated time and temperature dependence than had been expected. This means that the descriptions of material behaviour presented must be seen as a first approximation that must be improved in order that an adequate margin of safety may be attained in the planned FEM calculations for underground heating mains subjected to long term loading. 15 refs, 34 figs

  2. Effect of thermomechanical treatments on the microstructure and mechanical properties of 9%Cr martensitic steel (Grade 91)

    International Nuclear Information System (INIS)

    Piozin, Emma

    2014-01-01

    9%Cr tempered martensitic steels are currently used in fossil power and in petrochemical plants. Due to attractive properties and manufacturing costs, there are also potential candidates for structural components of new generation nuclear reactors. To optimize their high temperatures mechanical properties (∼500-650 C), a thermal-mechanical treatment based on 'ausforming' is being considered. It is composed of an austenitization step, followed by warm-rolling of metastable austenite at intermediate temperatures (500-600 C), then quenching and tempering. This study aims at understanding the effects of each of these steps, and particularly the warm-rolling of the metastable austenite, on the resulting microstructure and mechanical properties. After applying a variety of thermal-mechanical treatment conditions, with or without warm rolling, the microstructures were systematically characterized at various scales by SEM, TEM, SANS, and neutron diffraction. Martensite laths are finer and dislocations density is higher in warm-rolled samples compared to thermally treated samples. In some cases, warm-rolled + tempered microstructures were partially recrystallized, showing that tempered martensite keeps a 'memory' of previous rolling of metastable austenite. Contrary to what was expected, warm-rolling did not affect precipitation, which is principally governed by austenitizing and tempering temperatures. Warm-rolling lead to a remarkable increase in tensile and creep strength but strongly impairs ductility and significantly increases the ductile-to-brittle transition temperature. Some of the warm-rolled materials are sensitive to intergranular failure at both low (Charpy impact tests) and high temperature (creep tests). Moreover, warm-rolling of metastable austenite does not improve, and even increases cyclic softening. All microstructural features have been quantitatively linked to mechanical properties at 20 C, by applying a structural hardening model

  3. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials

    Science.gov (United States)

    Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.

    2015-09-01

    This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.

  4. Microstructure history effect during sequential thermomechanical processing

    International Nuclear Information System (INIS)

    Yassar, Reza S.; Murphy, John; Burton, Christina; Horstemeyer, Mark F.; El kadiri, Haitham; Shokuhfar, Tolou

    2008-01-01

    The key to modeling the material processing behavior is the linking of the microstructure evolution to its processing history. This paper quantifies various microstructural features of an aluminum automotive alloy that undergoes sequential thermomechanical processing which is comprised hot rolling of a 150-mm billet to a 75-mm billet, rolling to 3 mm, annealing, and then cold rolling to a 0.8-mm thickness sheet. The microstructural content was characterized by means of electron backscatter diffraction, scanning electron microscopy, and transmission electron microscopy. The results clearly demonstrate the evolution of precipitate morphologies, dislocation structures, and grain orientation distributions. These data can be used to improve material models that claim to capture the history effects of the processing materials

  5. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  6. The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloys

    International Nuclear Information System (INIS)

    Angst, D.R.; Thoma, P.E.; Kao, M.Y.

    1995-01-01

    Ternary alloys of NiTiHf, having higher transformation temperatures than binary NiTi shape memory alloys, have been produced and analyzed. Beginning with a base composition of Ni 49 Ti 51 , Hf was substituted for Ti up to 30 atomic percent. Differential scanning calorimetry was used to determine the transformation temperatures of the as-cast alloys. The peak martensite temperature of the Ni 49 Ti 51 alloy was 69 C and increased to 525 C for the Ni 49 Ti 21 Hf 30 alloy. The peak austenite temperature of the Ni 49 Ti 51 alloy was 114 C and increased to 622 C for the Ni 49 Ti 21 Hf 30 alloy. An apparent minimum in the peak transformation temperatures occurred between 0 and 3 atomic percent Hf. Preliminary experiments were also conducted to determine the effect of thermomechanical processing on the shape memory properties of the Ni 49 Ti 41 Hf 10 . Data are presented on the effect of cold work and heat treatment on the transformation temperatures of this alloy. (orig.)

  7. Equipment for the investigation of the thermomechanical fatigue of metallic materials

    International Nuclear Information System (INIS)

    Wolter, F.; Petersen, C.

    1992-01-01

    Within the framework of the European research program on nuclear fusion, a question is to be answered which is of great importance for the design of a fusion reactor, namely: To what extent is the 'First Wall structure' damaged by the pulsating mode of operation in this reactor type. This pulsating mode of operation leads to a thermal and mechanical cyclic stress in the metal support structure of the reactor. Thermomechanical cyclic stresses of a similar kind also occur in aircraft turbines, rocket drive units, and heat generating systems. For simulation of such stresses, a facility was developed in the Karlsruhe Nuclear Research Center which permits to produce thermomechanical cyclic stresses in uniaxial metallic materials specimens. The results of investigations with a martensitic 12%-Cr steel are explained. The stress range variations show a degressive behavior at the onset of fatigue and develop into a linear decline. The plastic strain reached a plateau after a number of cycles which was dependent on the mechanical strain (linear behavior). Relationships can be described by a simple transformation of number of cycles to failure between mechanical strain and number of stress cycles to failure. (orig./MM) [de

  8. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  9. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Energy Technology Data Exchange (ETDEWEB)

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  10. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    International Nuclear Information System (INIS)

    Santaoja, K.

    1997-01-01

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable 'equivalent tensile flow stress in the matrix material' denoted by σ M . Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for σ M . This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor σ and σM. Investigation of the Clausius-Duhem inequality shows that in compression, states occur which are not

  11. Thermodynamic power stations at low temperatures

    Science.gov (United States)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  12. Thermal and thermomechanical analyses of WIPP [Waste Isolation Pilot Plant] shaft seals: Topical report RSI-0324

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.

    1987-10-01

    Thermal and thermomechanical analyses provided information on the behavior and stability of concrete seals emplaced in a circular shaft. The two types of concrete considered were an expansive salt-saturated concrete for seals located in rock salt or other rock and an expansive freshwater concrete for seals located in nonsalt rock. Thermal analyses determined the temperature rise in the concrete and surrounding rock as a result of the exothermic hydration of the cement in the concretes. The thermomechanical analyses considered time-dependent elastic modulus, thermoelastic expansion, time-dependent chemically induced expansion, and creep of the concrete; thermoelastic behavior of the nonsalt rocks; and thermoelastic and creep behavior of the rock salt. Supplementary analyses determined the effects of pressure loading on a face of the seal as might result from a static brine head or the swelling of a bentonite backfill; the influence of using a reduced elastic modulus for the rock salt; and the effect of eliminating the chemical expansivity of the concrete. Results of interest were the development of radial stress in the seal, the magnitudes of tensile and shear stresses induced in the seal and rock, and the effect of bonding or lack of bonding between the seal and the surrounding rock. The chemical expansivity of the concrete was shown to be important for the development of radial stresses in the seal and at the contact between the seal and the surrounding rock. The shear stresses induced in the seal by the swelling pressure of bentonite become a concern if the radial stresses are not developed. 20 refs., 58 figs., 3 tabs

  13. Influence of thermo-mechanical processing on the microstructure of Cu-based shape memory alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P.P.; Ibarra, A.; Iza-Mendia, A.; Recarte, V.; Perez-Landazabal, J.I.; San Juan, J.; No, M.L.

    2003-01-01

    Cu-Al-Ni shape memory alloys processed by powder metallurgy show very good thermo-mechanical properties, much better than those found in alloys produced by conventional casting. In this paper, we present the microstructural characterisation of these powder metallurgy alloys in order to find the microscopic mechanisms, linked to the powder metallurgy processing method, which are indeed responsible of such good thermo-mechanical behaviour. Electron microscopy studies [scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM)] show that powder metallurgy processing creates a sub-grain structure characterised by the presence of low angle sub-boundaries. These sub-boundaries are found to be lying on {1 1 0} and {1 1 2} lattice planes and are composed by an arrangement of superdislocations. These sub-boundaries may improve ductility in two ways: acting as a sink of dislocations which promotes plastic deformation and decreasing stress concentration at grain boundaries. Moreover, since sub-boundaries act as weak obstacles for the movement of martensite plates, the improvement on ductility is accomplished by an adequate thermo-mechanical behaviour

  14. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    Science.gov (United States)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-04-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

  15. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    Science.gov (United States)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111|| ND-oriented grains, while WE showed a more random distribution of 111|| ND-, 011|| ND-, and 001|| ND-oriented grains with a lower intensity.

  16. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  17. Temperature-monitored optical treatment for radial tissue expansion.

    Science.gov (United States)

    Bak, Jinoh; Kang, Hyun Wook

    2017-07-01

    Esophageal stricture occurs in 7-23% of patients with gastroesophageal reflux disease. However, the current treatments including stent therapy, balloon dilation, and bougienage involve limitations such as stent migration, formation of the new strictures, and snowplow effect. The purpose of the current study was to investigate the feasibility of structural expansion in tubular tissue ex vivo during temperature-monitored photothermal treatment with a diffusing applicator for esophageal stricture. Porcine liver was used as an ex vivo tissue sample for the current study. A glass tube was used to maintain a constant distance between the diffuser and tissue surface and to evaluate any variations in the luminal area after 10-W 1470-nm laser irradiation for potential stricture treatment. The 3D goniometer measurements confirmed roughly isotropic distribution with less than 10% deviation from the average angular intensity over 2π (i.e., 0.86 ± 0.09 in arbitrary unit) from the diffusing applicator. The 30-s irradiation increased the tissue temperature up to 72.5 °C, but due to temperature feedback, the interstitial tissue temperature became saturated at 70 °C (i.e., steady-state error = ±0.4 °C). The irradiation times longer than 5 s presented area expansion index of 1.00 ± 0.04, signifying that irreversible tissue denaturation permanently deformed the lumen in a circular shape and secured the equivalent luminal area to that of the glass tube. Application of a temperature feedback controller for photothermal treatment with the diffusing applicator can regulate the degree of thermal denaturation to feasibly treat esophageal stricture in a tubular tissue.

  18. Thermomechanical Analysis (TMA) and its application to polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    Thermomechanical analysis (TMA) instruments are used to measure dimensional changes as a sample is heated or cooled. Data obtained from these instruments can be used to calculate the glass transition (Tg) and the coefficient of thermal expansion (CTE). Commonly, materials expand when heated and contract when cooled; however, the rate of such changes depends largely on the type of material. In manufacturing, it is important to use components with similar CTE values to avoid product failure, leaks, or a build-up of thermal stress. Therefore, TMA is a straightforward, useful tool in research and industry.

  19. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  20. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  1. Preliminary thermal/thermomechanical analyses of the Site Characterization Plan's Conceptual Design for a repository containing horizontally emplaced waste packages at the Deaf Smith County site

    International Nuclear Information System (INIS)

    Ghantous, N.Y.; Raines, G.E.

    1987-10-01

    This report presents thermal/thermomechanical analyses of the Site Characterization Plan Conceptual Design for horizontal package emplacement at the Deaf Smith County site, Texas. The repository was divided into three geometric regions. Then two-dimensional finite-element models were set up to approximate the three-dimensional nature of each region. Thermal and quasistatic thermomechanical finite-element analyses were performed to evaluate the thermal/thermomechanical responses of the three regions. The exponential-time creep law was used to represent the creep behavior of salt rock. The repository design was evaluated by comparing the thermal/thermomechanical responses obtained for the three regions with interim performance constraints. The preliminary results show that all the performance constraints are met except for those of the waste package. The following factors were considered in interpreting these results: (1) the qualitative description of the analytical responses; (2) the limitations of the analyses; and (3) either the conclusions based on overall evaluation of limitations and analytical results or the conclusions based on the fact that the repository design may be evaluated only after further analyses. Furthermore, a parametric analysis was performed to estimate the effect of material parameters on the predicted thermal/thermomechanical response. 23 refs., 34 figs., 9 tabs

  2. Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application

    International Nuclear Information System (INIS)

    Rana, R.; Liu, C.; Ray, R.K.

    2014-01-01

    The evolution of the microstructure and mechanical properties in a low-density, low-alloy steel containing 6.57Al–3.34Mn–0.18C (wt.%) has been investigated as a function of processing. The steel was designed to have a duplex microstructure with ferrite as the major phase and austenite as the minor phase within the temperature range 800–1350 °C. The steel was processed to sheet form, which was thermomechanically treated and characterised by a variety of techniques such as optical metallography, scanning electron microscopy, electron backscatter diffraction, electron probe microanalysis, X-ray diffraction, transmission electron microscopy, tensile testing and density and elastic modulus measurements. The amount of austenite was found to decrease with an increase in the annealing temperature. While C and Mn partitioned into the austenite phase, Al partitioned into the ferrite. The tensile elongation increased with an increase in the amount of austenite in the microstructure. However, the austenite showed only a small transformation induced plasticity effect during tensile deformation due to its high stability. After annealing, mostly κ-carbide precipitates with a (Fe + Mn)/Al ratio of 3.6 appeared in the ferrite matrix, along with some cementite and complex carbides. These precipitates became coarser (330 nm) during a short time overageing treatment at 400 °C, causing a significant increase in elongation. The κ-carbides were found to have a close to Nishiyama–Wasserman type orientation relationship with the ferrite matrix. Although the Young’s modulus of the steel dropped due to the large amount of Al added, the reduced density was found to be beneficial for automotive applications, overriding the effect of a drop in Young’s modulus

  3. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

    Directory of Open Access Journals (Sweden)

    Anura Fernando

    2013-03-01

    Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

  4. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  5. Mechanical Characterization of Thermomechanical Matrix Residual Stresses Incurred During MMC Processing

    Science.gov (United States)

    Castelli, Michael G.

    1998-01-01

    In recent years, much effort has been spent examining the residual stress-strain states of advanced composites. Such examinations are motivated by a number of significant concerns that affect composite development, processing, and analysis. The room-temperature residual stress states incurred in many advanced composite systems are often quite large and can introduce damage even prior to the first external mechanical loading of the material. These stresses, which are induced during the cooldown following high-temperature consolidation, result from the coefficient of thermal expansion mismatch between the fiber and matrix. Experimental techniques commonly used to evaluate composite internal residual stress states are non-mechanical in nature and generally include forms of x-ray and neutron diffraction. Such approaches are usually complex, involving a number of assumptions and limitations associated with a wide range of issues, including the depth of penetration, the volume of material being assessed, and erroneous effects associated with oriented grains. Furthermore, and more important to the present research, these techniques can assess only "single time" stress in the composite. That is, little, if any, information is obtained that addresses the time-dependent point at which internal stresses begin to accumulate, the manner in which the accumulation occurs, and the presiding relationships between thermoelastic, thermoplastic, and thermoviscous behaviors. To address these critical issues, researchers at the NASA Lewis Research Center developed and implemented an innovative mechanical test technique to examine in real time, the time-dependent thermomechanical stress behavior of a matrix alloy as it went through a consolidation cycle.

  6. Rational thermomechanical parameters of pressing granulated heat resistant alloy-EhP741

    International Nuclear Information System (INIS)

    Garibov, G.S.; Frolov, A.A.; Ermanok, M.Z.; Kurakin, E.K.; Galkin, A.M.

    1976-01-01

    The paper deals with the development of thermomechanical parameters for the compacting of a granulated, heat-resistant, nickel-base alloy EP 741. With the flow-sheet of the technological process for the production of semi-manufactured products from granules being used as a starting point it was necessary, after compaction, to obtain a bar having optimum plastic properties and to know under what conditions these properties are to be found. On the basis of these assumptions the authors took as the optimized parameter the maximum value of the plasticity characteristic (e.g. relative to elongation of sigma) and measured it on samples cut out from a bar after compacting. The samples of granulated alloy EP 741 which were prepared from bars compacted in accordance with the plan for industrial-scale experiments were tested in factor space tsub(exp)-vsub(exp) (tsub(exp) - sample testing temperature, vsub(exp) - sample testing velocity). Using regressive analysis the authors obtained an equation describing variation of the maximum plasticity of the alloy as a function of temperature and reduction ratio. There were two repetitions of the experimental plan, at vsub(compaction) = 20 and 40mm/sec. A qualitative trend was observed in the influence of compaction velocity on the properties of the bars. The results of the final tests on extension and settling of samples cut from a compact billet showed a maximum for plastic properties at 1170-1180degC

  7. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Okimoto, P.C.

    1988-01-01

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  8. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  9. Thermomechanical Behavior of Late Indo-Chinese Granodiorite under High Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2018-01-01

    Full Text Available This study investigates the influence of temperature, effective stress, and rock fracture on the bulk modulus and Biot’s coefficient of granodiorite from a hot dry rock geothermal reservoir using the triaxial compression test. Three types of representative granodiorite samples were chosen for comparative experiments. The experiments were conducted with 0–55 MPa effective stress under cyclic loading. Results show that bulk modulus can continuously increase with the increase in effective stress at a constant temperature. The influencing law on Biot’s coefficient is opposite that on bulk modulus. Interestingly, the temperature effects on the drained bulk modulus and Biot’s coefficient depend on the effective stress. With regard to rock fractures, temperature and effective stress exert similar effects on the Biot’s coefficients and bulk moduli of the samples compared with those of intact rock. The data of this experiment have a wide range of applications because most of the reservoir rocks in dry-hot-rock geothermal system have lithology of granite or granodiorite. The change law of rock modulus and Biot’s coefficient with the temperature and pressure in this experiment provide the data basis for the future simulation calculation making the considered factors more comprehensive and the results closer to the real situation.

  10. Experimental and analytical evaluation of preheating temperature during multipass repair welding

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2017-01-01

    Full Text Available Experimental measurement and analytical calculation of preheating, i. e. interpass temperature during multi-pass repair welding has been presented. Analytical calculation is based on heat transfer analysis, whereas measurements have been performed by thermovision camera. Repair welding was performed on crane wheels in the Steelworks Smederevo. Comparison of results indicated that analytical calculation is good enough as the first approximation, but it needs further elaboration, e. g. taking into account the radiation component of heat dissipation and/or temperature dependence of material thermomechanical properties.

  11. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  12. Phase transformation, oxidation and shape memory properties of Ti–50Au–10Zr alloy for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, A.; Hosoda, H.; Yamabe-Mitarai, Y.

    2014-01-01

    Highlights: • Ti–50Au–10Zr exhibited better thermo-mechanical and shape memory properties than Ti–50Au. • Improvement was related to solid solution and precipitation strengthening. • No oxidation problem as oxidation was observed at 100 K higher than A f . • TMA was used not only for thermo-mechanical but also for shape memory and oxidation. - Abstract: In this study, we investigated the phase transformation, oxidation and high temperature mechanical and shape memory properties of Ti–50Au–10Zr (all compositions in atomic%) alloy. Thermo-mechanical analyzer (TMA) was used not only for phase transformation but also for the measurement of shape memory effect and oxidation behavior in air environment. Ti–50Au–10Zr exhibited lower martensitic transformation temperature of 758 K than TiAu stoichiometric alloy exhibiting 870 K since Zr addition stabilizes B2 parent phase. Oxidation was initiated at 873 K that was about 100 K higher than the austenite finish temperature, indicating no such oxidation problems for practical use. Shape memory effect was improved by partial substitution of Ti with Zr in Ti–50Au–10Zr alloy. Compression test of Ti–50Au–10Zr revealed high compressive strength of 1239 MPa of martensite at 691 K (=M f − 50 K) and 924 MPa of B2 parent phase at 834 K (=A f + 50 K) in comparison with Ti–50Au. It is concluded that Zr is effective to improve the mechanical and shape memory properties of TiAu alloy, and that Ti–50Au–10Zr shape memory alloy has potential for high temperature (∼650–850 K) practical applications

  13. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    Science.gov (United States)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  14. Effect of Thermomechanical Processing on Microstructure, Texture Evolution, and Mechanical Properties of Al-Mg-Si-Cu Alloys with Different Zn Contents

    Science.gov (United States)

    Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.

    2017-07-01

    The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.

  15. Design Analysis and Thermo-Mechanical Fatigue of a Polyimide Composite for Combustion Chamber Support

    Science.gov (United States)

    Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris

    2004-01-01

    Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.

  16. SATURN-FS 1: A computer code for thermo-mechanical fuel rod analysis

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.; Heck, M.

    1993-09-01

    The SATURN-FS code was written as a general revision of the SATURN-2 code. SATURN-FS is capable to perform a complete thermomechanical analysis of a fuel pin, with all thermal, mechanical and irradiation-based effects. Analysis is possible for LWR and for LMFBR fuel pins. The thermal analysis consists of calculations of the temperature profile in fuel, gap and in the cladding. Pore migration, stoichiometry change of oxide fuel, gas release and diffusion effects are taken into account. The mechanical modeling allows the non steady-state analysis of elastic and nonelastic fuel pin behaviour, such as creep, strain hardening, recovery and stress relaxation. Fuel cracking and healing is taken into account as well as contact and friction between fuel and cladding. The modeling of the irradiation effects comprises swelling and fission gas production, Pu-migration and irradiation induced creep. The code structure, the models and the requirements for running the code are described in the report. Recommendations for the application are given. Program runs for verification and typical examples of application are given in the last part of this report. (orig.) [de

  17. Thermomechanical response of a cross-ply titanium matrix composite subjected to a generic hypersonic flight profile

    International Nuclear Information System (INIS)

    Mirdamadi, M.; Johnson, W.S.

    1993-01-01

    Cross-ply laminate behavior of Ti-15V-3Cr-3AI-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a generic hypersonic flight profile was evaluated experimentally and analytically. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failure. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled

  18. Study of the thermo-mechanical performances of the IFMIF-EVEDA Lithium Test Loop target assembly

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: dimaio@din.unipa.it [Dipartimento dell' Energia, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Arena, P.; Bongiovi, G. [Dipartimento dell' Energia, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R.; Micciche, G.; Tincani, A. [ENEA C. R. Brasimone, 40032 Camugnano, Bologna (Italy)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer IFMIF-EVEDA target assembly thermo-mechanical behavior has been investigated. Black-Right-Pointing-Pointer Finite element method has been followed and a commercial code has been used. Black-Right-Pointing-Pointer Nominal, design and pressure test steady state scenarios and start-up transient conditions have been investigated. Black-Right-Pointing-Pointer Steady state results have shown that back-plate yielding may occur only under the design scenario. Black-Right-Pointing-Pointer Transient analysis has indicated that TA start-up lasts for {approx}60 h. - Abstract: Within the framework of the IFMIF R and D program and in close cooperation with ENEA-Brasimone, at the Department of Energy of the University of Palermo a research campaign has been launched to investigate the thermo-mechanical behavior of the target assembly under both steady state and start-up transient conditions. A theoretical approach based on the finite element method (FEM) has been followed and a well-known commercial code has been adopted. A realistic 3D FEM model of the target assembly has been set-up and optimized by running a mesh independency analysis. A proper set of loads and boundary conditions, mainly concerned with radiation heat transfer between the target assembly external walls and the inner walls of its containment vessel, have been considered and the target assembly thermo-mechanical behavior under nominal, design and pressure test steady state scenarios and start-up transient conditions has been investigated. Results are herewith reported and discussed.

  19. Study of the damaging mechanisms of a copper / carbon - carbon composite under thermomechanical loading; Etude des mecanismes d'endommagement d'un assemblage cuivre / composite carbone - carbone sous chargement thermomecanique

    Energy Technology Data Exchange (ETDEWEB)

    Moncel, L

    1999-06-18

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterization. (author)

  20. Structure and Properties of Ti-19.7Nb-5.8Ta Shape Memory Alloy Subjected to Thermomechanical Processing Including Aging

    Science.gov (United States)

    Dubinskiy, S.; Brailovski, Vladimir; Prokoshkin, S.; Pushin, V.; Inaekyan, K.; Sheremetyev, V.; Petrzhik, M.; Filonov, M.

    2013-09-01

    In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy's structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates' particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.

  1. Thermomechanical behaviour of bolted assemblies

    International Nuclear Information System (INIS)

    Scliffet, L.

    1995-01-01

    This paper presents first results obtained in an R and D study on the thermomechanical behaviour of bolted assemblies. Thermal shocks during operating transients both severely distort such assemblies and cause variations in stud pre-loads. So during a hot shock, the thermal gradient in the flange induced over-tightening due to the differential thermal expansion involved. Over-tightening can reach 70% of the nominal value, usually after 10 to 15 mn, after which the stress relaxes as soon as the heating affects the stud. A series of hot shocks causes assembly fatigue, notably resulting in thread plasticization, making it impossible to tighten the studs. In the case of cold transients, the reverse phenomenon is observed. The hot flange contracts sharply upon contact with the cold fluid, causing stress relief in the expanded studs. The resulting loss of tensile stress, which reaches up to 50%, can then cause severe leakage, especially if the nominal tightening capacity is already impaired. The study presented is based on tests and modelling. (author). 16 figs

  2. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  3. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    International Nuclear Information System (INIS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-01-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments. (paper)

  4. Effect of Prior Athermal Martensite on the Isothermal Transformation Kinetics Below M s in a Low-C High-Si Steel

    NARCIS (Netherlands)

    Navarro-Lopez, A.; Sietsma, J.; Santofimia, M.J.

    2015-01-01

    Thermomechanical processing of Advanced Multiphase High Strength Steels often includes isothermal treatments around the martensite start temperature (M s). It has been reported that the presence of martensite formed prior to these isothermal treatments accelerates the kinetics of the subsequent

  5. High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting process

    Science.gov (United States)

    Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.

    2017-03-01

    In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.

  6. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V

    International Nuclear Information System (INIS)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J.

    2006-01-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  7. Effect of quinoa and potato flours on the thermomechanical and breadmaking properties ofwheat flour

    Directory of Open Access Journals (Sweden)

    E. Rodriguez-Sandoval

    2012-09-01

    Full Text Available The thermomechanical properties of dough and the physical characteristics of bread from quinoa-wheat and potato-wheat composite flours at 10 and 20% substitution level were evaluated. The functional properties of flours were measured by the water absorption index (WAI, water solubility index (WSI and swelling power (SP. The thermomechanical properties of wheat and composite flours were assessed using a Mixolab and the baking quality characteristics of breads were weight, height, width, and specific volume. The results showed that the higher values of WAI (4.48, WSI (7.45%, and SP (4.84 were for potato flour. The quinoa-wheat composite flour presented lower setback and cooking stability data, which are a good indicator of shelf life of bread. On the other hand, the potato-wheat composite flour showed lower stability, minimum torque and peak torque, and higher water absorption. Weight, height, width, and specific volume of wheat bread were most similar to samples of potato-wheat composite flour at 10% substitution level.

  8. Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.

    2016-10-01

    As a part of the newly established Collaborative Research Center 1153 (SFB 1153) "Process chain for the manufacturing of hybrid high-performance components by tailored forming" at the Leibniz Universität Hannover, the Institute of Forming Technology and Machines (IFUM) examines the influence of thermo-mechanical stresses on the reduced Young's modulus as well as the hardness of hybrid (steel-steel compound) joined semi-finished products. Currently the expertise in the production of bulk metal formed parts is limited to mono-materials. For manufacturing parts of hybrid materials and also for the methods of the new process routes, practical experience has to be gained. The subproject C1 within the collaborative research center 1153 with the short title "Failure Prediction" deals with the question, if the hybrid semi-finished products fulfill the thermo-mechanical demands or if they fail at the joining zone (JZ) during forging. For this purpose, stresses similar to those in the process were imposed on hybrid semi-finished products by torsion tests by using the thermo-mechanical test system Gleeble 3800. Afterwards, the specimens were examined metallographically and by nanoindentations with the help of a TriboIndenter TI950. Thus, first knowledge on the behaviour of thermo-mechanical stresses on the reduced Young's modulus and the hardness of hybrid joined semi-finished parts was gained.

  9. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    International Nuclear Information System (INIS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-01-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated

  10. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    Science.gov (United States)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  11. Influence of Pt-aluminide coating on the oxidation and thermo-mechanical fatigue behaviour of the single crystal superalloy CMSX-4

    Energy Technology Data Exchange (ETDEWEB)

    Jargelius-Pettersson, R F.A.; Andersson, H C.M.; Lille, C; Haenstroem, S; Liu, L [Swedish Institute for Metals Research, Stockholm (Sweden)

    2001-10-01

    Oxidation and thermo-mechanical fatigue studies have been performed on a single crystal nickel base superalloy, CMSX-4, with and without an MDC150L Pt-modified diffusional aluminide coating. Oxidation for up to 500 hours at 900, 1050 and 1150 deg C revealed formation of mixed nickel-aluminium oxides, with a pronounced spalling tendency, on the base material, but parabolic growth of aluminium oxide on the coated material. The effect of water vapour and SO{sub 2} on the oxidation rate has also been investigated, and attempts have been made to apply thermodynamic and kinetic modelling to microstructural evolution in the interdiffusion zone between coating and substrate. Thermo-mechanical fatigue testing was performed on both coated and uncoated specimens. The temperature was cycled between 400 and 1050 deg C and mechanical strain ranges between 0.7 and 2.0% were used. Some specimens were cycled from a raised lower temperature estimated to be above the brittle transition temperature of the coat. Both in-phase and out-of-phase test conditions were used. No significant difference in fatigue life was detected between coated specimens cycled in-phase and out-of-phase. An improvement in fatigue life was observed with uncoated specimens tested out-of-phase. Coated specimens cycled above the transition temperature exhibited the longest fatigue life of all tested specimens. In the uncoated specimens the cracks started at the surface of the specimens. Initial cracks in the coated specimens may have started in the bond interface between the coat and the substrate or on the surface of the coat. The damage mechanism in all specimens is characterised by an initial strain hardening followed by crack initiation and crack propagation until final collapse. The load versus number of cycles curve features a maximum followed by a slow load drop and then a fast final load drop. The maxima is associated with crack initiation and the final fast load drop with plastic collapse of the specimen

  12. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.

    Science.gov (United States)

    Elmay, W; Prima, F; Gloriant, T; Bolle, B; Zhong, Y; Patoor, E; Laheurte, P

    2013-02-01

    Thermomechanical treatments have been proved to be an efficient way to improve superelastic properties of metastable β type titanium alloys through several studies. In this paper, this treatment routes, already performed on superelastic alloys, are applied to the Ti-24Nb alloy (at%) consisting of a pure martensite α'' microstructure. By short-time annealing treatments performed on the heavily deformed material, an interesting combination of a large recoverable strain of about 2.5%, a low elastic modulus (35 GPa) and a high strength (900 MPa) was achieved. These properties are shown to be due to a complex microstructure consisting of the precipitation of nanoscale (α+ω) phases in ultra-fine β grains. This microstructure allows a superelastic behavior through stress-induced α'' martensitic transformation. In this study, the microstructures were characterized by X-ray diffraction and transmission electron microscopy and the evolution of the elastic modulus and the strain recovery as a function of the applied strain was investigated through loading-unloading tensile tests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)

  14. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  15. CIEMAT’s contribution to the phase II of the OECD-NEA RIA benchmark on thermo-mechanical fuel codes performance

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado, I.C.; Vallejo, I.; Herranz, L.E.

    2015-07-01

    As a part of the international efforts devoted to validate and/or update the current fuel safety criteria, the OECD-NEA has launched a second phase of the RIA benchmark on thermomechanical fuel codes performance. CIEMAT contributes simulating the ten scenarios proposed with FRAPTRAN and SCANAIR. Both codes lead to similar predictions during the heating-up; however, during the cooling-down significant deviations may appear. They are mainly caused by the estimations of gap closure and re-opening and the clad to water heat exchange approaches. The uncertainty analysis performed for the SCANAIR estimations leads to uncertainty ranges below 15% and 28% for maximum temperatures and deformations, respectively. The corresponding sensitivity analysis shows that, in addition to the injected energy, special attention should be paid to fuel thermal expansion and clad yield stress models. (Author)

  16. Simulation of temperature distribution in tumor Photothermal treatment

    Science.gov (United States)

    Zhang, Xiyang; Qiu, Shaoping; Wu, Shulian; Li, Zhifang; Li, Hui

    2018-02-01

    The light transmission in biological tissue and the optical properties of biological tissue are important research contents of biomedical photonics. It is of great theoretical and practical significance in medical diagnosis and light therapy of disease. In this paper, the temperature feedback-controller was presented for monitoring photothermal treatment in realtime. Two-dimensional Monte Carlo (MC) and diffuse approximation were compared and analyzed. The results demonstrated that diffuse approximation using extrapolated boundary conditions by finite element method is a good approximation to MC simulation. Then in order to minimize thermal damage, real-time temperature monitoring was appraised by proportional-integral-differential (PID) controller in the process of photothermal treatment.

  17. Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble

    Science.gov (United States)

    Rong, G.; Peng, J.; Jiang, M.

    2017-12-01

    High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for

  18. Parametric optimization of the MVC desalination plant with thermomechanical compressor

    Science.gov (United States)

    Blagin, E. V.; Biryuk, V. V.; Anisimov, M. Y.; Shimanov, A. A.; Gorshkalev, A. A.

    2018-03-01

    This article deals with parametric optimization of the Mechanical Vapour Compression (MVC) desalination plant with thermomechanical compressor. In this plants thermocompressor is used instead of commonly used centrifugal compressor. Influence of two main parameters was studied. These parameters are: inlet pressure and number of stages. Analysis shows that it is possible to achieve better plant performance in comparison with traditional MVC plant. But is required reducing the number of stages and utilization of low or high initial pressure with power consumption maximum at approximately 20-30 kPa.

  19. Thermo-Mechanical Effect on Poly Crystalline Boron Nitride Tool Life During Friction Stir Welding (Dwell Period)

    Science.gov (United States)

    Almoussawi, M.; Smith, A. J.

    2018-03-01

    Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool's binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model.

  20. Thermo-Mechanical Effect on Poly Crystalline Boron Nitride Tool Life During Friction Stir Welding (Dwell Period)

    Science.gov (United States)

    Almoussawi, M.; Smith, A. J.

    2018-05-01

    Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool's binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model.

  1. Modelling of the Thermo-Mechanical Behavior of the Two-Beam Module for the Compact Linear Collider

    CERN Document Server

    Raatikainen, Riku; Österberg, K; Lehtovaara, A; Pajunen, S

    2011-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the compact linear collider, the 2-m long two-beam modules, the shortest repetitive elements in the main linear accelerator, have to be controlled at micrometer level. At the same time these modules are exposed to high power dissipation that varies while the accelerator is ramped up to nominal power and when the mode of the accelerator operation is modified. These variations will give rise to inevitable temperature transients driving mechanical distortions in and between different module components. Therefore, the thermo-mechanical behaviour of the module is of a high importance. This thesis describes a finite element method model for the two-beam compact linear collider module. The components are described in detail compared to earlier models, which should result in a realistic description of the module. Due to the complexity of the modules, the modelling is divided into several phases from geometrical simplification and modification to the...

  2. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  3. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  4. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  5. Thermo-mechanical analysis of a user filter assembly for undulator/wiggler operations at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Nian, H.L.T.; Kuzay, T.M.; Collins, J.; Shu, D.; Benson, C.; Dejus, R.

    1996-01-01

    This paper reports a thermo-mechanical study of a beamline filter (user filter) for undulator/wiggler operations. It is deployed in conjunction with the current commissioning window assembly on the APS insertion device (ID) front ends. The beamline filter at the Advanced Photon Source (APS) will eventually be used in windowless operations also. Hence survival and reasonable life expectancy of the filters under intense insertion device (ID) heat flu are crucial to the beamline operations. To accommodate various user requirements, the filter is configured to be a multi-choice type and smart to allow only those filter combinations that will be safe to operate with a given ring current and beamline insertion device gap. However, this paper addresses only the thermo-mechanical analysis of individual filter integrity and safety in all combinations possible. The current filter design is configured to have four filter frames in a cascade with each frame holding five filters. This allows a potential 625 total filter combinations. Thermal analysis for all of these combinations becomes a mammoth task considering the desired choices for filter materials (pyrolitic graphite and metallic filters), filter thicknesses, undulator gaps, and the beam currents. The paper addresses how this difficult task has been reduced to a reasonable effort and computational level. Results from thermo-mechanical analyses of the filter combinations are presented both in tabular and graphical format

  6. Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale

    International Nuclear Information System (INIS)

    Arnaud, A; Boughaleb, J; Monfray, S; Boeuf, F; Skotnicki, T; Cugat, O

    2015-01-01

    Bimetallic strip heat engines are energy harvesters that exploit the thermo-mechanical properties of bistable bimetallic membranes to convert heat into mechanical energy. They thus represent a solution to transform low-grade heat into electrical energy if the bimetallic membrane is coupled with an electro-mechanical transducer. The simplicity of these devices allows us to consider their miniaturization using MEMS fabrication techniques. In order to design and optimize these devices at the macro-scale and micro-scale, this article proposes an explanation of the origin of the thermal snap-through by giving the expressions of the constitutive equations of composite beams. This allows us to evaluate the capability of bimetallic strips to convert heat into mechanical energy whatever their size is, and to give the theoretical thermo-mechanical efficiencies which can be obtained with these harvesters. (paper)

  7. Study of the damaging mechanisms of a carbon - carbon composite bonded to copper under thermomechanical loading; Etude des mecanismes d'endommagement d'un assemblage cuivre / composite carbone - carbone sous chargement thermomecanique

    Energy Technology Data Exchange (ETDEWEB)

    Moncel, L

    1999-06-15

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM 2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterisation. (author)

  8. Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Kostryzhev, A.G.; AlShahrani, A.; Zhu, C.; Cairney, J.M.; Killmore, C.R.; Ringer, S.P.

    2014-01-01

    The effect of thermomechanical processing conditions on Nb clustering and precipitation in both austenite and ferrite in a Nb–Ti microalloyed steel was studied using electron microscopy and atom probe tomography. A decrease in the deformation temperature increased the Nb-rich precipitation in austenite and decreased the extent of precipitation in ferrite. Microstructural mechanisms that explain this variation are discussed

  9. High-resolution temperature-based optimization for hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Kok, H P; Haaren, P M A van; Kamer, J B Van de; Wiersma, J; Dijk, J D P Van; Crezee, J

    2005-01-01

    In regional hyperthermia, optimization techniques are valuable in order to obtain amplitude/phase settings for the applicators to achieve maximal tumour heating without toxicity to normal tissue. We implemented a temperature-based optimization technique and maximized tumour temperature with constraints on normal tissue temperature to prevent hot spots. E-field distributions are the primary input for the optimization method. Due to computer limitations we are restricted to a resolution of 1 x 1 x 1 cm 3 for E-field calculations, too low for reliable treatment planning. A major problem is the fact that hot spots at low-resolution (LR) do not always correspond to hot spots at high-resolution (HR), and vice versa. Thus, HR temperature-based optimization is necessary for adequate treatment planning and satisfactory results cannot be obtained with LR strategies. To obtain HR power density (PD) distributions from LR E-field calculations, a quasi-static zooming technique has been developed earlier at the UMC Utrecht. However, quasi-static zooming does not preserve phase information and therefore it does not provide the HR E-field information required for direct HR optimization. We combined quasi-static zooming with the optimization method to obtain a millimetre resolution temperature-based optimization strategy. First we performed a LR (1 cm) optimization and used the obtained settings to calculate the HR (2 mm) PD and corresponding HR temperature distribution. Next, we performed a HR optimization using an estimation of the new HR temperature distribution based on previous calculations. This estimation is based on the assumption that the HR and LR temperature distributions, though strongly different, respond in a similar way to amplitude/phase steering. To verify the newly obtained settings, we calculate the corresponding HR temperature distribution. This method was applied to several clinical situations and found to work very well. Deviations of this estimation method for

  10. Thermomechanical properties of polymer nanocomposites: Exploring a unified relationship with planar polymer films

    Science.gov (United States)

    Bansal, Amitabh

    The thermal and mechanical response of polymers, which provide limitations to their practical use, are greatly improved by the addition of a small fraction of an inorganic nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. This research explores the properties of polystyrene filed with silica nanoparticles and illustrates for the first time that the thermodynamic properties of "polymer nanocomposites" are quantitatively equivalent to the well-understood case of planar polymer films with a uniform thickness. These ideas are quantified by drawing a direct analogy between thin film thickness and an appropriate average ligament thickness measured using electron microscopy. The change in polymer glass transition temperatures with decreasing ligament thickness were found to be quantitatively equivalent to the corresponding thin film data. In combination with viscoelastic properties of the nanocomposites that are in quantitative agreement with data from thin films, these conclusions provide a facile means of understanding and predicting the thermomechanical properties and, potentially, the engineering properties of practically relevant polymer nanocomposites. Grafting of high molecular weight polystyrene onto the silica nanoparticles greatly improves the dispersion quality of nanofillers and also provides a means to tailor the thermo-mechanical properties in nanocomposites. It is concluded that the grafted polystyrene is akin to polymer brushes on flat surfaces. The mobility and stiffness of these grafted chains are expected to be low as compared to the free polymer. In this context a mechanism for the increase in glass transition is proposed: (1) the stiff grafted chains will tend to decrease mobility and thus increase glass transition, (2) the extent of interdigitation of the grafted polystyrene into the matrix will determine the extent to which the nanocomposite

  11. Thermomechanical analyses of conceptual repository designs for the Paradox and Permian Basins

    International Nuclear Information System (INIS)

    Loken, M.C.; Callahan, G.D.; Svalstad, D.K.; Wagner, R.A.

    1987-11-01

    The potential repositories are designed to accommodate all waste forms emplaced at various thermal loadings; specifically, commercial high-level waste (30 W/m 2 ), spent fuel (15 W/m 2 ), defense high-level waste (20 W/m 2 ), and remote-handled and contact-handled transuranic nonheat-generating waste. The study evaluates the design parameters, primarily thermal loading, based on a comparison of calculable thermomechanical parameters with prescribed performance constraints. This evaluation was accomplished by numerical simulation using finite element techniques of the canister, disposal room, and repository regions of each potential site. Important thermal and thermomechanical results were compared with their prescribed constraint or limit value. All of the performance constraints were satisfied at the Davis Canyon site in the Paradox Basin for commercial high-level waste, spent fuel, and defense high-level waste at areal thermal loadings of 20 W/m 2 , 15 W/m 2 , and 20 W/m 2 , respectively. Similarly, for the Deaf Smith County site in the Permian Basin, commercial high-level waste, spent fuel, and defense high-level waste thermal loadings of 13.5 W/m 2 , 8.5 W/m 2 , and 6.0 W/m 2 , respectively, satisfied all of the performance constraints. 89 refs., 64 figs., 22 tabs

  12. Thermo-mechanical analysis for determining the optimum design of a deposition hole using FLAC3D

    International Nuclear Information System (INIS)

    Kwon, Sang Ki; Park, Jeong Hwa; Choi, Jong Won; Kang, Chul Hyung

    2002-01-01

    In this study, the vertical location of canister in a deposition hole was determined from the thermo-mechanical coupling analysis using the three-dimensional finite difference code, FLAC3D. A FISH program was made and used for the modeling for different conditions. The following conclusions could be drawn from the study. (1) The canister moves downward initially, but moves upward with time due to the thermal expansion of buffer. (2) The tunnel floor above the deposition hole remains elastic until 100 years after the emplacement of the canister if the top buffer thickness is more than 1.5 m. (3) It was found that the peak temperature decreases with the increase of the buffer and backfill thickness, when backfilling is done immediately after the emplacement. (4) Without swelling pressure, the maximum tensile stress is up to 18 MPa at 100 days after the emplacement. Since the swelling pressure from the buffer confines the thermal expansion of the canister, the mechanical stability of canister is improved with the swelling pressure. (5) When the air temperature in the tunnels is maintained at 27 .deg. C by ventilation, the peak temperature with delayed backfilling for 50 years is about 75 .deg. while it is over 90 .deg. with immediately backfilling. (6) The buffer and backfill thickness above the canister in a deposition hole should be at least 2 m based on literature review and the computer simulations

  13. Temperature development and sterilization of red pine poles during CCA treatment, elevated temperature fixation and drying

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.; Albright, M.; Srinivasan, U.; Ung, A. [New Brunswick Univ., Fredericton, NB (Canada). Wood Science and Technology Centre

    2002-07-01

    The application of chromated copper arsenate (CCA) treatment and fixation and drying under the conditions of the study to large red pine poles left for an air seasoning period of 10 months in Quebec, Canada progressively reduced the number of micro-organisms present. A large number of microfungi isolations were effected before the treatment from the sapwood and heartwood of all poles and wood decay fungi on 8 selected poles from the 20 test poles. They originated from the sapwood zone. A reduction of approximately 50 per cent in the number of microfungi isolated from the sapwood was noted after the CCA treatment. In the case of 9 of 30 poles, basidiomycetes were isolated after treatment primarily from the untreated heartwood. There were a few instances where basidiomycetes were isolated from unpenetrated sapwood (wet pockets). Temperatures of 55 to 60 degrees Celsius were achieved under moderate temperature fixation schedules (20 hours) for approximately 5 hours at full sapwood depth. Only by the end of the schedule was a temperature of 55 degrees celsius achieved at the centre of the poles. Most of the microfungi were eliminated by this temperature regime. Trichoderma was eliminated, and only one isolation of basidiomycetes was left from the heartwood of one pole. Temperatures of 55 to 60 degrees Celsius were achieved in the wood core for 9 to 10 days during kiln drying. No basidiomycete isolations remained after this exposure. In several of the poles, there was evidence of Paecilomyces variotii, a thermo-tolerant species and a number of species of Penicillium moulds. It was concluded that there was a negligible probability of decay fungi surviving the sequence of processes as described, given the effectiveness of the fixation exposure and the higher wood temperatures sustained for longer periods. 16 refs., 5 tabs., 2 figs.

  14. Fuel element thermo-mechanical analysis during transient events using the FMS and FETMA codes

    International Nuclear Information System (INIS)

    Hernandez Lopez Hector; Hernandez Martinez Jose Luis; Ortiz Villafuerte Javier

    2005-01-01

    In the Instituto Nacional de Investigaciones Nucleares of Mexico, the Fuel Management System (FMS) software package has been used for long time to simulate the operation of a BWR nuclear power plant in steady state, as well as in transient events. To evaluate the fuel element thermo-mechanical performance during transient events, an interface between the FMS codes and our own Fuel Element Thermo Mechanical Analysis (FETMA) code is currently being developed and implemented. In this work, the results of the thermo-mechanical behavior of fuel rods in the hot channel during the simulation of transient events of a BWR nuclear power plant are shown. The transient events considered for this work are a load rejection and a feedwater control failure, which among the most important events that can occur in a BWR. The results showed that conditions leading to fuel rod failure at no time appeared for both events. Also, it is shown that a transient due load rejection is more demanding on terms of safety that the failure of a controller of the feedwater. (authors)

  15. Thermo-mechanical analysis of PWR bolts susceptible to IASCC

    International Nuclear Information System (INIS)

    Matteoli, C.; Hannink, M.H.C.; Blom, F.J.; Marck, S.C. van der; Charpin-Jacobs, F.

    2015-01-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is considered a primary ageing issue for the Reactor Pressure Vessel (RPV) internals of Pressurized Water Reactors (PWR). In particular, this complex phenomenon which develops in an environment featuring thermal and mechanical stresses, interaction with corrosive compounds and irradiation, is affecting the bolts connecting the baffles and the formers in the Nuclear Power Plants' RPVs. The baffle-former assembly is the structure that borders the fuel assemblies region, contributing to keep them in position and separating in the radial direction, the core region from the downcomer region. An evaluation of the stresses and temperatures reached in the baffle-former bolts during normal operation was performed by means of a coupled thermo-mechanical study which uses reactor physics calculations to obtain the fluence in the reactor core and as a consequence the heat deposition in the RPV internals. The heat deposition data are coupled with a finite element model of the bolts and the RPV internals in order to perform a complete analysis taking in account thermal, mechanical and radiation loadings. The study is first carried out focusing on a section of the RPV internals, showing a single row of baffle-former bolts. Then the work is extended to the full core height. The model set up in this work, includes an in-depth study of the behavior of the core internals, in particular baffle-former bolts. The model has the capability of understanding the mechanical and thermal behavior of essential internal components in a PWR. (authors)

  16. Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process

    International Nuclear Information System (INIS)

    Depradeux, L.; Julien, J.F.

    2004-01-01

    In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone (HAZ) during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated. When a melted zone is created, the thermal simulation reproduce well the temperature field in the upper face of the disk, but the size of the weld pool is not correctly rated, as fluid flows are not taken into account. Despite this fact, the general structural behavior is well represented by simulation

  17. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  18. Development of a methodology for the evaluation of the thermomechanical behavior of the TRISO fuel

    International Nuclear Information System (INIS)

    Garcia, Lorena P. Rodríguez; Pérez, Daniel Milian; Hernández, Carlos Rafael García; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Universidad Federal de Pernambuco

    2017-01-01

    The use of the Generation IV Very High Temperature Reactors (VHTR) presents significant perspectives to assume the future nuclear energy and hydrogen production. VHTR has advantages because its low electricity generation costs, short construction periods, high hydrogen production efficiency, safety and reliability, proliferation resistance and inherent safety features of the fuel and reactor. However, it faces substantial challenges to be successfully deployed as a sustainable energy source. One of these key challenges is the nuclear safety which mainly relies on the quality and integrity of the coated fuel particles (TRISO) planned to be used in these reactors taking into consideration the high temperatures (1000°C in normal operation and up to 1800°C in accidents conditions) and burnup degrees (150 - 200 GWd/tonU) achievable in these reactors. In this paper is presented the current state of development of a methodology for the evaluation of the thermomechanical behavior of the TRISO fuel in function of the variation of different parameters in the VHTR. In order to achieve this goal will be used coupled computational modeling using analytical methods and Monte Carlo and CFD codes such as MCNPX version 2.6e and Ansys version 14. The studies performed in this investigation included the evaluation of key parameters in the TRISO such as the release of fission gases and CO, gas pressure, temperature distributions, kernel migration, maximum stress values, and failure probabilities. The results achieved in this investigation contributes to demonstrating the viability of the proposed methodology for the study, the design and safety calculations of VHTR. (author)

  19. Development of a methodology for the evaluation of the thermomechanical behavior of the TRISO fuel

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Lorena P. Rodríguez; Pérez, Daniel Milian; Hernández, Carlos Rafael García; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira, E-mail: lorenapilar1109@gmail.com, E-mail: milianperez89@gmail.com, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Habana (Cuba); Universidad Federal de Pernambuco (UFPE), Recife (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of the Generation IV Very High Temperature Reactors (VHTR) presents significant perspectives to assume the future nuclear energy and hydrogen production. VHTR has advantages because its low electricity generation costs, short construction periods, high hydrogen production efficiency, safety and reliability, proliferation resistance and inherent safety features of the fuel and reactor. However, it faces substantial challenges to be successfully deployed as a sustainable energy source. One of these key challenges is the nuclear safety which mainly relies on the quality and integrity of the coated fuel particles (TRISO) planned to be used in these reactors taking into consideration the high temperatures (1000°C in normal operation and up to 1800°C in accidents conditions) and burnup degrees (150 - 200 GWd/tonU) achievable in these reactors. In this paper is presented the current state of development of a methodology for the evaluation of the thermomechanical behavior of the TRISO fuel in function of the variation of different parameters in the VHTR. In order to achieve this goal will be used coupled computational modeling using analytical methods and Monte Carlo and CFD codes such as MCNPX version 2.6e and Ansys version 14. The studies performed in this investigation included the evaluation of key parameters in the TRISO such as the release of fission gases and CO, gas pressure, temperature distributions, kernel migration, maximum stress values, and failure probabilities. The results achieved in this investigation contributes to demonstrating the viability of the proposed methodology for the study, the design and safety calculations of VHTR. (author)

  20. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    Science.gov (United States)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  1. Well-posedness of a thermo-mechanical model for shape memory alloys under tension

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Stefanelli, U.

    2010-01-01

    Roč. 44, č. 6 (2010), s. 1239-1253 ISSN 0764-583X R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape memory alloys * thermo-mechanics * well-posedness * hysteresis operator Subject RIV: BA - General Mathematics Impact factor: 1.202, year: 2010 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8129335

  2. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.S.; Ghosh, S.K.; Kundu, S.; Chatterjee, S.

    2013-01-01

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching

  3. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P.S. [Ordnance Development Centre, Metal and Steel Factory, Ishapore 743 144 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Kundu, S.; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2013-02-15

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching.

  4. Thermo-mechanical analyses and model validation in the HAW test field. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heijdra, J J; Broerse, J; Prij, J

    1995-01-01

    An overview is given of the thermo-mechanical analysis work done for the design of the High Active Waste experiment and for the purpose of validation of the used models through comparison with experiments. A brief treatise is given on the problems of validation of models used for the prediction of physical behaviour which cannot be determined with experiments. The analysis work encompasses investigations into the initial state of stress in the field, the constitutive relations, the temperature rise, and the pressure on the liner tubes inserted in the field to guarantee the retrievability of the radioactive sources used for the experiment. The measurements of temperatures, deformations, and stresses are described and an evaluation is given of the comparison of measured and calculated data. An attempt has been made to qualify or even quantify the discrepancies, if any, between measurements and calculations. It was found that the model for the temperature calculations performed adequately. For the stresses the general tendency was good, however, large discrepancies exist mainly due to inaccuracies in the measurements. For the deformations again the general tendency of the model predictions was in accordance with the measurements. However, from the evaluation it appears that in spite of the efforts to estimate the correct initial rock pressure at the location of the experiment, this pressure has been underestimated. The evaluation has contributed to a considerable increase in confidence in the models and gives no reason to question the constitutive model for rock salt. However, due to the quality of the measurements of the stress and the relatively short period of the experiments no quantitatively firm support for the constitutive model is acquired. Collections of graphs giving the measured and calculated data are attached as appendices. (orig.).

  5. Thermo-mechanical analyses and model validation in the HAW test field. Final report

    International Nuclear Information System (INIS)

    Heijdra, J.J.; Broerse, J.; Prij, J.

    1995-01-01

    An overview is given of the thermo-mechanical analysis work done for the design of the High Active Waste experiment and for the purpose of validation of the used models through comparison with experiments. A brief treatise is given on the problems of validation of models used for the prediction of physical behaviour which cannot be determined with experiments. The analysis work encompasses investigations into the initial state of stress in the field, the constitutive relations, the temperature rise, and the pressure on the liner tubes inserted in the field to guarantee the retrievability of the radioactive sources used for the experiment. The measurements of temperatures, deformations, and stresses are described and an evaluation is given of the comparison of measured and calculated data. An attempt has been made to qualify or even quantify the discrepancies, if any, between measurements and calculations. It was found that the model for the temperature calculations performed adequately. For the stresses the general tendency was good, however, large discrepancies exist mainly due to inaccuracies in the measurements. For the deformations again the general tendency of the model predictions was in accordance with the measurements. However, from the evaluation it appears that in spite of the efforts to estimate the correct initial rock pressure at the location of the experiment, this pressure has been underestimated. The evaluation has contributed to a considerable increase in confidence in the models and gives no reason to question the constitutive model for rock salt. However, due to the quality of the measurements of the stress and the relatively short period of the experiments no quantitatively firm support for the constitutive model is acquired. Collections of graphs giving the measured and calculated data are attached as appendices. (orig.)

  6. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  7. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.

    1997-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is headed. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  8. Electrical resistivity monitoring of the thermomechanical heater test in Yucca Mountain

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; Buettner, M.; LaBrecque, L

    1996-01-01

    A test is being conducted in the densely welded Topopah Springs tuff within Yucca Mountain, Nevada to study the thermomechanical and hydrological behavior of this horizon when it is heated. A single 4 kW heater, placed in a horizontal borehole, was turned on August, 1996 and will continue to heat the rockmass until April 1997. Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Four boreholes, containing a total of 30 ERT electrodes, were drilled to form the sides of a 30 foot square with the heater at the center and perpendicular to the plane. Images of resistivity change were calculated using data collected before and during the heating episode. The changes recovered show a region of decreasing resistivity approximately centered around the heater. The size this region grows with time and -the resistivity decreases become stronger. The changes in resistivity are caused by both temperature and saturation changes. The observed resistivity changes suggest that the rock adjacent to the heater dries as heating progresses. This dry region is surrounded by a region of increased saturation where steam recondenses and imbibes into the rock

  9. The effect of thermo-mechanical processing on the mechanical properties of molybdenum - 2 volume % lanthana

    International Nuclear Information System (INIS)

    Mueller, A.J.; Shields, J.A. Jr.; Buckman, R.W. Jr.

    2001-01-01

    Variations in oxide species and consolidation method have been shown to have a significant effect on the mechanical properties of oxide dispersion strengthened (ODS) molybdenum material. The mechanical behavior of molybdenum - 2 volume % La 2 O 3 mill product forms, produced by CSM Industries by a wet doping process, were characterized over the temperature range of -150 o C to 1800 o C. The various mill product forms evaluated ranged from thin sheet stock to bar stock. Tensile properties of the material in the various product forms were not significantly affected by the vast difference in total cold work. Creep properties, however, were sensitive to the total amount of cold work as well as the starting microstructure. Stress-relieved .material had superior creep rupture properties to recrystallized material at 1200 o C, while at 1500 o C and above the opposite was observed. Thus it is necessary to match the appropriate thermo-mechanical processing and microstructure of molybdenum - 2 volume % La 2 O 3 to the demands of the application being considered. (author)

  10. Thermomechanical behavior and modeling of zircaloy cladding tubes from an unirradiated state to high burn-up

    International Nuclear Information System (INIS)

    Schaeffler-Le Pichon, I.; Geyer, P.; Bouffioux, P.

    1997-01-01

    Creep laws are nowadays commonly used to simulate the fuel rod response to the solicitations it faces during its life. These laws are sufficient for describing the base operating conditions (where only creep appears), but they have to be improved for power ramp conditions (where hardening and relaxation appear). The modification due to a neutronic irradiation of the thermomechanical behavior of stress-relieved Zircaloy 4 fuel tubes that have been analysed for five different fluences ranging from a non-irradiated material to a material for which the combustion rate was very high is presented. In the second part, a viscoplastic model able to simulate, for different isotherms, out-of-flux anisotropic mechanical behavior of the cladding tubes irradiated until high burn-up is proposed. Finally, results of numerical simulations show the ability of the model to reproduce the totality of the thermomechanical experiments. (author)

  11. Thermomechanical evaluation of the fuel assemblies fabricated in the ININ; Evaluacion termomecanica de los ensambles combustibles fabricados en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The pilot plant of fuel production of the National Institute of Nuclear Research (ININ) provided to the Laguna Verde Nuclear Power Plant (CNLV) four fuel assemblies type GE9B. The fuel irradiation was carried out in the unit 1 of the CNLV during four operation cycles, highlighting the fact that in their third cycle the four assemblies were placed in the center of the reactor core. In the Nuclear Systems Department (DSN) of the ININ it has been carried out studies to evaluate their neutron performance and to be able to determine the exposure levels of this fuels. Its also outlines the necessity to carry out a study of the thermomechanical behavior of the fuel rods that compose the assemblies, through computational codes that simulate their performance so much thermal as mechanical. For such purpose has been developing in the DSN the FETMA code, together with the codes that compose the system Fuel Management System (FMS), which evaluates the thermomechanical performance of fuel elements. In this work were used the FETMA and FEMAXI codes (developed by JAERI) to study the thermomechanical performance of the fuel elements manufactured in the ININ. (Author)

  12. Application of a unified fatigue modelling to some thermomechanical fatigue problems

    International Nuclear Information System (INIS)

    Dang, K. van; Maitournam, H.; Moumni, Z.

    2005-01-01

    Fatigue under thermomechanical loadings is an important topic for nuclear industries. For instance, thermal fatigue cracking is observed in the mixing zones of the nuclear reactor. Classical computations using existing methods based on strain amplitude or fracture mechanics are not sufficiently predictive. In this paper an alternative approach is proposed based on a multiscale modelling thanks to shakedown hypothesis. Examples of predictive results are presented. Finally an application to the RHR problem is discussed. Main ideas of the fatigue modelling: Following an idea of Professor D. Drucker who wrote in 1963 'when applied to the microstructure there is a hope that the concept of endurance limit and shakedown are related, and that fatigue failure can be related to energy dissipated in idealized material when shakedown does not occur.' we have developed a theory of fatigue based on this concept which is different from classical fatigue approaches. Many predictive applications have been already done particularly for the automotive industry. Fatigue resistance of structures undergoing thermomechanical loadings in the high cycle regime as well as in the low cycle regime are calculated using this modelling. However, this fatigue theory is until now rarely used in nuclear engineering. After recalling the main points of the theory, we shall present some relevant applications which were done in different industrial sectors. We shall apply this modelling to the prediction of thermal cracking observed in the mixing zones of RHR. (authors)

  13. Best estimate modeling of fuel thermomechanical behaviour in WWER 1000 LB LOCA

    International Nuclear Information System (INIS)

    Valach, M.; Klouzal, J.; Zymak, J.; Dostal, M.

    2009-01-01

    The paper summarizes our calculations of the performance of the WWER 1000 NPP fuel rods during postulated LB LOCA. The thermomechanical modeling was performed by FRAPTRAN using the FRACAS-I mechanical model using the boundary conditions calculated by the ATHLET code. The results and their statistical evaluation are presented, the process of the generalization of gained insight into the best-estimate thermal-hydraulic analyses (BE TM) predictions in order to define a generic BE TM methodology is outlined (authors)

  14. Thermomechanical characterization of joints for blanket and divertor application processed by electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang; Lorenz, Julia; Konys, Jürgen; Basuki, Widodo; Aktaa, Jarir

    2016-11-01

    Highlights: • Electroplating is a relevant technology for brazing of blanket and divertor parts. • Tungsten, Eurofer and steel joints successfully fabricated. • Reactive interlayers improve adherence and reduce failure risks. • Qualification of joints performed by thermo-mechanical testing and aging. • Shear strength of joints comparable with conventionally brazing of steels. - Abstract: Fusion technology requires in the fields of first wall and divertor development reliable and adjusted joining processes of plasma facing tungsten to heat sinks or blanket structures. The components to be bonded will be fabricated from tungsten, steel or other alloys like copper. The parts have to be joined under functional and structural aspects considering the metallurgical interactions of alloys to be assembled and the filler materials. Application of conventional brazing showed lacks ranging from bad wetting of tungsten up to embrittlement of fillers and brazing zones. Thus, the deposition of reactive interlayers and filler components, e.g. Ni, Pd or Cu was initiated to overcome these metallurgical restrictions and to fabricate joints with aligned mechanical behavior. This paper presents results concerning the joining of tungsten, Eurofer and stainless steel for blanket and divertor application by applying electroplating technology. Metallurgical and mechanical characterization by shear testing were performed to analyze the joints quality and application limits in dependence on testing temperature between room temperature and 873 K and after thermal aging of up to 2000 h. The tested interlayers Ni and Pd enhanced wetting and enabled the processing of reliable joints with a shear strength of more than 200 MPa at RT.

  15. Thermomechanical scoping calculations for the waste package environment tests

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Yow, J.L. Jr.

    1986-03-01

    During the site characterization phase of the Nevada Nuclear Waste Storage Investigation Project, tests are planned to provide field information on the hydrological and thermomechanical environment. These results are needed for assessing performance of stored waste packages emplaced at depth in excavations in a rock mass. Scoping calculations were performed to provide information on displacements and stress levels attained around excavations in the rock mass from imposing a thermal load designed to simulate the heat produced by radioactive decay. In this way, approximate levels of stresses and displacements are available for choosing instrumentation type and sensitivity as well as providing indications for optimizing instrument emplacement during the test. 7 refs., 9 figs., 1 tab

  16. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.

  17. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  18. Thermo-mechanical modeling of the obduction process based on the Oman ophiolite case

    OpenAIRE

    Duretz , Thibault; Agard , Philippe; Yamato , Philippe; Ducassou , Céline; Burov , Evgenii ,; Gerya , T. V.

    2016-01-01

    International audience; Obduction emplaces regional-scale fragments of oceanic lithosphere (ophiolites) over continental lithosphere margins of much lower density. For this reason, the mechanisms responsible for obduction remain enigmatic in the framework of plate tectonics. We present two-dimensional (2D) thermo-mechanical models of obduction and investigate possible dynamics and physical controls of this process. Model geometry and boundary conditions are based on available geological and g...

  19. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha; Papadopoulos, Panayiotis; Taylor, Robert L.

    2012-01-01

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  20. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.