WorldWideScience

Sample records for temperature thermal-chemical experiment

  1. Synthesis, Characterization and Growth Mechanism of ZnO Nano-flower by Thermal Chemical Vapor Deposition Method at Low Deposition Temperature

    Science.gov (United States)

    Hartini, A. R.; Amizam, S.; Mamat, M. H.; Abdullah, S.; Rusop, M.

    2008-05-01

    Photoluminescence and morphology studies of Zinc Oxide (ZnO) thin films prepared by using Thermal Chemical Vapor Deposition (Thermal-CVD) were investigated. The ZnO compound was synthesized from zinc acetate dehydrate which act as a starting material to form the ZnO thin films. It was deposited on silicon with low deposition temperature ranging from 400-600 °C with Au as a catalyst assisted. Surface morphology of the samples was examined by Scanning Electron Microscope and photoluminescence properties were studied using Photoluminescence Spectrometer. The surface morphologies of the ZnO nano-flower structure was obviously obtained at deposition temperature of 400 °C. The individual nano-rods diameter of nano-flower is about 100-350 nm, but the end of nano-rods are very sharp which is the size is less than 50 nm. Possible growth mechanism of ZnO nano-flower also discussed. Room temperature PL spectra from the ZnO nano-flower revealed a strong UV emission and broad green emission. This result is very useful for sensor, probe tip and light emitter applications.

  2. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    Directory of Open Access Journals (Sweden)

    Po-Sheng Hu

    2017-12-01

    Full Text Available In this research, the Zn(C5H7O22·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM, and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD, photoluminescence (PL, and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002 and (101 as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  3. Study the Effect of Annealing Temperature on Optical and Structural Properties of Zinc Oxide Thin Film Prepared by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Adawiah, R.; Rafaie, H. A.; Rusop, M.

    2009-06-01

    Zinc oxide (ZnO) thin films deposited on silicon and glass substrate were prepared using chemical vapor deposition (CVD) method utilizing zinc acetate dihydrate as the zinc sources. The deposited film then annealed at 300° C to 500° C for 1 hour. The optical and structural properties of ZnO thin films were characterized using photoluminescence (PL) and Scanning Electron Microscopy (SEM) respectively. SEM images show that the ZnO thin film on silicon substrate formed unique morphology of flower-like and ball-shaped structures at annealing temperature 300° C and 400° C. Increasing annealing temperature to 450° C for ZnO deposited on glass substrate had increased the grain size of particle which implies the improvement of crystalline grain of thin film. PL results observed that the defect of oxygen vacancy decreased after annealing process for films deposited on silicon substrate. The blue peak emission at 437 nm appears only on the glass substrate. Based on the highest PL intensity value, the optimum annealing temperature for silicon and glass substrate is 350° C and 450° C respectively.

  4. Structural Properties of ZnO/SnO2-Composite-Nanorod Deposited Using Thermal Chemical Vapour Deposition

    Science.gov (United States)

    Sin, N. D. Md; Shafura, A. K.; Malek, M. F.; Mamat, M. H.; Rusop, M.

    2015-05-01

    In this work, we report on the effect of substrate temperatures on ZnO/SnO2 composite nanorods deposited by thermal chemical vapour deposition (CVD) onto a ZnO template layer. The substrate temperature varied from 200 ∼ 600°C. The FESEM image reveals that the size of the thin film created by the ZnO/SnO2 composite nanorods decreased as the substrate temperature increased.

  5. Cockle Temperature Exposure Lab Experiment (2016)

    Data.gov (United States)

    U.S. Environmental Protection Agency — We carried out a lab experiment in which we exposed cockles to a range of air temperatures to simulate the physiological rigors of exposure to sunlight and air at...

  6. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  7. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  8. Plasma temperature measurements in disruption simulated experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.I. [Troitsk Inst. for Innovation and Fusion Research (Russian Federation); Bakhtin, V.P. [Troitsk Inst. for Innovation and Fusion Research (Russian Federation); Safronov, V.M. [Troitsk Inst. for Innovation and Fusion Research (Russian Federation); Toporkov, D.A. [Troitsk Inst. for Innovation and Fusion Research (Russian Federation); Vasenin, S.G. [Troitsk Inst. for Innovation and Fusion Research (Russian Federation); Wurz, H. [Kernforschungszentrum Karlsruhe, INR (Germany); Zhitlukhin, A.M. [Troitsk Inst. for Innovation and Fusion Research (Russian Federation)

    1995-12-31

    Results are reported of experiments to measure the temporal and spatial distributions of a temperature and radiation of a near surface plasma cloud appearing in the disruption simulated experiments. These measurements are needed to verificate the different numerical models of vapor shielding layer which appears to arise near the divertor plates surface and prevents them from the bulk of the incoming energy. Experiments with graphite and tungsten samples were carried out at the 2MK-200 plasma facility. Long CUSP trap was used as a source of high temperature deuterium plasma with a power density W = 10 MW/cm{sup 2} and time duration t = 20 mcs. Laser scattering, space and time resolved soft x-ray spectroscopy was employed to measure the plasma cloud temperature and radiation. The different behaviour of shielding layer parameters was shown for a graphite and tungsten samples. For a tungsten the sharp boundary existed between the incoming deuterium plasma and the thin layer of ablated material plasma and the strong gradient of electron temperature took place in this zone. For a graphite this boundary was broadened at the distance and the main part of the screening layer consisted of the mixture of the incoming deuterium and ablated carbon plasma. (orig.).

  9. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  10. Neutron experiments on high-temperature superconductors

    Science.gov (United States)

    Mook, H. A., Jr.

    1989-12-01

    This report details the trip to the ILL to perform neutron scattering research on high-temperature superconductivity. The trip was very successful because of the excellent users' facilities available at the ILL. The data we accumulated were of high quality and will make an impact on our understanding of high-temperature superconductivity. However, we cannot continue to run a research program in this field with the limited beam time available at the ILL. To make substantial progress in this field, we must restart the High Flux Isotope Reactor.

  11. Specimen loading list for the varying temperature experiment

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A.L.; Sitterson, R.G. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    The varying temperature experiment HFIR-RB-13J has been assembled and inserted in the reactor. Approximately 5300 specimens were cleaned, inspected, matched, and loaded into four specimen holders. A listing of each specimen loaded into the steady temperature holder, its position in the capsule, and the identification of the corresponding specimen loaded into the varying temperature holder is presented in this report.

  12. Antiparticle cloud temperatures for antihydrogen experiments

    Science.gov (United States)

    Bianconi, A.; Charlton, M.; Lodi Rizzini, E.; Mascagna, V.; Venturelli, L.

    2017-07-01

    A simple rate-equation description of the heating and cooling of antiparticle clouds under conditions typical of those found in antihydrogen formation experiments is developed and analyzed. We include single-particle collisional, radiative, and cloud expansion effects and, from the modeling calculations, identify typical cooling phenomena and trends and relate these to the underlying physics. Some general rules of thumb of use to experimenters are derived.

  13. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    Science.gov (United States)

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to

  14. Optical and structural properties of ZnO hexagonal rods prepared by thermal chemical vapor deposition technique

    Directory of Open Access Journals (Sweden)

    A Reyhani

    2014-11-01

    Full Text Available In this research, ZnO nanostructure hexagonal pyramid rods with high optical and structural quality were synthesized by the simple thermal chemical vapor deposition of Zn powder without a metal catalyst. Surface morphologies were characterized by scanning electron microscopy (SEM. XRD analyses demonstrated that ZnO hexagonal pyramid rods had a wurtzite structure with the orientation of (002. Investigation of optical properties of samples by photoluminescence spectrum exhibited a sharp UV emission peak at 380nm. The quality and composition of the ZnO pyramid rods were characterized using the Fourier transform infrared spectrum (FTIR at room temperature. In addition, the growth mechanism of ZnO hexagonal rods is also briefly discussed.

  15. Thermal, chemical, and optical properties of Crater Lake, Oregon

    Science.gov (United States)

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  16. High temperature furnace for nuclear magnetic resonance experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, C.; Scheler, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Sektion Physik)

    1984-01-01

    A furnace is described for NMR experiments in the temperature range 300 to 1,100 K. It can be used both in a superconducting solenoid (Oxford Instruments, B/sub 0/ = 6.4 T, bore 52 mm) and in iron magnets with a gap d >= 48 mm. All for NMR experiments important nuclei can be measured without /sup 29/Si. The NMR probe can be used both for instationary and stationary experiments.

  17. Salinity and Temperature Tolerance Experiments on Selected Florida Bay Mollusks

    Science.gov (United States)

    Murray, James B.; Wingard, G. Lynn

    2006-01-01

    The ultimate goal of the Comprehensive Everglades Restoration Plan (CERP) is to restore and preserve the unique ecosystems of South Florida, including the estuaries. Understanding the effect of salinity and temperature changes, beyond typical oscillations, on the biota of South Florida's estuaries is a necessary component of achieving the goal of restoring the estuaries. The U.S. Geological Survey has been actively involved in researching the history of the South Florida Ecosystem, to provide targets, performance measures, and baseline data for restoration managers. These experiments addressed two aspects of ecosystem history research: 1) determining the utility of using molluscan shells as recorders of change in water chemistry parameters, primarily salinity, and 2) enhancing our in situ observations on modern assemblages by exceeding typically observed aquatic conditions. This set of experiments expanded our understanding of the effects of salinity, temperature and other water chemistry parameters on the reproduction, growth and overall survivability of key species of mollusks used in interpreting sediment core data. Observations on mollusks, plants and microbes made as part of these experiments have further refined our knowledge and understanding of the effects of ecosystem feedback and the role salinity and temperature play in ecosystem stability. The results have demonstrated the viability of several molluscan species as indicators of atypical salinity, and possibly temperature, modulations. For example Cerithium muscarum and Bulla striata demonstrated an ability to withstand a broad salinity and temperature range, with reproduction occurring in atypically high salinities and temperatures. These experiments also provided calibration data for the shell biogeochemistry of Chione cancellata and the possible use of this species as a water chemistry recorder. Observations made in the mesocosms, on a scale not normally observable in the field, have led to new

  18. Materials characterization of rapid thermal chemical vapor deposition of titanium disilicide

    Science.gov (United States)

    Gladden-Green, Dannellia Banay

    Technological advancements of novel processes and materials involving refractory metal silicides for ultra large scale integration is of paramount importance to the semiconductor industry. Scaling of devices to meet the demands for increased packing density and speed requires such novel processes and materials. Rapid thermal chemical vapor deposition (RTCVD) of titanium disilicide (TiSisb2) was investigated in an effort to meet some of the challenges of ultra large scale integration (ULSI) technology. Selective RTCVD of TiSisb2 offers an optimal technological vehicle for achieving contacts to ultra-shallow junctions. Of all of the metal silicides, TiSisb2 has the lowest resistivity and meets the microelectronics demands for a thermally stable contact. The research results presented in this dissertation explores the mechanisms of selective RTCVD of TiSisb2 in terms of thermodynamic trends and kinetic driving forces for nucleation and growth. The present research addresses the qualitative and quantitative parameters that affect the controlling mechanisms for nucleation and therefore the results provide significant data and theoretical insights into a state-of-the-art process. Just as the fundamental building block in understanding the kinetic constraints of a process lie in the realm of thermodynamic exploration, understanding the complex processes involved in RTCVD TiSisb2 begin with characterization of the mechanisms governing thin film nucleation. In this work, the early stages of growth are investigated as they offer insight into how process parameters are optimized to render desired silicide film properties. Equilibrium simulations have been used to model the CVD reaction with very good trend indicating accuracy. Empirical investigations of CVD TiSisb2 took place in a low-pressure rapid-thermal environment using the SiHsb4 + TiClsb4 gas system on silicon (100) substrates. Secondary ion mass spectroscopy (SIMS) has been used to qualify the benefits of vacuum and

  19. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Du, Rui-Rui [Rice Univ., Houston, TX (United States). Dept. of Physics and Astronomy

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  20. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  1. High temperature engineering research facilities and experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuanhui; Liu, Meisheng; Yao, Huizhong; Ju, Huaiming [Institute of Nuclear Technology, Tsinghua University, Beijing (China)

    1998-09-01

    June 14, 1995, the construction of a pebble bed type high temperature gas-cooled reactor (HTGR) started in China. It is a test reactor with 10 MW thermal power output (termed HTR- 10). The test reactor is located on the site of Institute of Nuclear Energy Technology (INET) of Tsinghua University in the northwest suburb of Beijing, about 40 km away from the city. Design of the HTR-10 test reactor represents the features of HTR-Modular design: `side-by-side` arrangement, spherical fuel elements with `multi-pass` loading scheme, completely passive decay heat removal, reactor shutdown systems in the side reflector, etc. However, in the HTR-10 design some modifications from the HTR-Module were made to satisfy Chinese conditions. For example, the steam generator is composed of a number of modular helical tubes with small diameter, pulse pneumatic discharging apparatus are used in the fuel handling system and step motor driving control rods are designed. These modifications would cause some uncertainty in our design. It is necessary to do engineering experiments to prove these new or modified ideas. Therefore, a program of engineering experiments for HTR-10 key technologies is being conducted at INET. The main aims of these engineering experiments are to verify the designed characteristics and performance of the components and systems, to feedback on design and to obtain operational experiences. Those engineering experiments are depressurization test of the hot gas duct at room temperature and operating pressure, performance test of the hot gas duct at operating helium temperature and pressure, performance test of the pulse pneumatic fuel handling system, test of the control rods driving apparatus, two phase flow stability test for the once through steam generator and cross mixture test at the bottom of the reactor core

  2. High Temperature Superconducting Space Experiment II (HTSSE II) cryogenic design

    Science.gov (United States)

    Kawecki, T. G.; Chappie, S. S.; Mahony, D. R.

    At 60 to 80 K large performance gains are possible from high temperature superconducting (HTS) microwave devices for communications applications. The High Temperature Superconducting Space Experiment II (HTSSE II) will demonstrate eight HTS experiments in space for up to 3 years of operation. HTSSE II is the first application of HTS technology to space. In addition to demonstrating HTS devices, an important secondary goal is to demonstrate the cryogenic technologies required for long life HTS space applications. HTSSE II utilizes a British Aerospace 80 K Stirling cycle cryocooler to refrigerate a central cryogenic bus of seven HTS experiments and has an additional stand-alone TRW HTS experiment cooled by a TRW Stirling cycle cryocooler. The HTSSE II flight unit has been assembled and has successfully passed vibration and thermal vacuum environmental tests. HTSSE II was developed on a fixed budget and a fast track schedule of 24 months and is due to launch in March 1997 on the ARGOS spacecraft. This paper presents the design and test results of the cryogenic subsystem, cryocooler integration and a cryogenic coaxial cable I/O assembly.

  3. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes.

    Science.gov (United States)

    Kohno, Keigo; Sokabe, Takaaki; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2010-09-15

    Insects are relatively small heterothermic animals, thus they are highly susceptible to changes in ambient temperature. However, a group of honey bees is able to maintain the brood nest temperature between 32°C and 36°C by either cooling or heating the nest. Nevertheless, how honey bees sense the ambient temperature is not known. We identified a honey bee Hymenoptera-specific transient receptor potential A (HsTRPA) channel (AmHsTRPA), which is activated by heat with an apparent threshold temperature of 34°C and insect antifeedants such as camphor in vitro. AmHsTRPA is expressed in the antennal flagellum, and ablation of the antennal flagella and injection of AmHsTRPA inhibitors impair warmth avoidance of honey bees. Gustatory responses of honey bees to sucrose are suppressed by noxious heat and insect antifeedants, but are relieved in the presence of AmHsTRPA inhibitors. These results suggest that AmHsTRPA may function as a thermal/chemical sensor in vivo. As shown previously, Hymenoptera has lost the ancient chemical sensor TRPA1; however, AmHsTRPA is able to complement the function of Drosophila melanogaster TRPA1. These results demonstrate that HsTRPA, originally arisen by the duplication of Water witch, has acquired thermal- and chemical-responsive properties, which has resulted in the loss of ancient TRPA1. Thus, this is an example of neofunctionalization of the duplicated ion channel gene followed by the loss of the functionally equivalent ancient gene.

  4. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  5. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    Science.gov (United States)

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  6. Synthesis of boron nitride nanotubes by Argon supported Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-03-01

    Thermal Chemical Vapor Deposition technique is modified with the use of Argon gas flow inside the chamber as an alternative for vacuum and orientation of one end closed quartz test tube. The use of Argon gas not only simplified the experimental set up, but also made it ~ 18 % cost effective compared to the conventional set up. Field Emission Scanning Electron Microscopy micrographs show straight and long BNNTs along with some cotton like morphologies. Transmission electron microscopy revealed bamboo like structure inside the tube and ~0.34 nm interlayer spacing for highly crystalline nature of boron nitride nanotubes. X-ray photon spectroscopy shows B 1s peak at 191.08 eV and N 1s peak at 398.78 eV that represents h-BN. Whereas, Raman spectrum indicates a major peak at ~1379.60 (cm-1) that correspond to E2g mode of h-BN.

  7. Use of the Thermal Chemical Vapor Deposition to Fabricate Light-Emitting Diodes Based on ZnO Nanowire/p-GaN Heterojunction

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2011-01-01

    Full Text Available The fabrication and characteristics of grown ZnO nanowire/p-GaN heterojunction light-emitting diodes are reported. Vertically aligned ZnO nanowire arrays were grown on a p-GaN substrate by thermal chemical vapor deposition in quartz tube. The rectifying current-voltage characteristics indicate that a p-n junction was formed with a heterostructure of n-ZnO nanowire/p-GaN. The room temperature electroluminescent emission peak at 425 nm was attributed to the band offset at the interface between the n-ZnO nanowire and p-GaN and to defect-related emission from GaN; it was also found that the there exist the yellow band in the hetrojunction. It would be attributed to the deep defect level in the heterojunction.

  8. Small Specimen Data from a High Temperature HFIR Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; McDuffee, Joel Lee [ORNL; Thoms, Kenneth R [ORNL

    2014-01-01

    The HTV capsule is a High Flux Isotope Reactor (HFIR) target-rod capsule designed to operate at very high temperatures. The graphite containing section of the capsule (in core) is approximately 18 inches (457.2 mm) long and is separated into eight temperature zones. The specimen diameters within each zone are set to achieve the desired gas gap and hence design temperature (900 C, 1200 C or 1500 C). The capsule has five zones containing 0.400 inch (10.16 mm) diameter specimens, two zones containing 0.350 inch (8.89 mm) diameter specimens and one zone containing 0.300 inch (7.62 mm) diameter specimens. The zones have been distributed within the experiment to optimize the gamma heating from the HFIR core as well as minimize the axial heat flow in the capsule. Consequently, there are two 900 C zones, three 1200 C zones, and three 1500 C zones within the HTV capsule. Each zone contains nine specimens 0.210 0.002 inches (5.334 mm) in length. The capsule will be irradiated to a peak dose of 3.17 displacements per atom. The HTV specimens include samples of the following graphite grades: SGL Carbon s NBG-17 and NBG-18, GrafTech s PCEA, Toyo Tanso s IG-110, Mersen s 2114 and the reference grade H-451 (SGL Carbon). As part of the pre-irradiation program the specimens were characterized using ASTM Standards C559 for bulk density, and ASTM C769 for approximate Young s modulus from the sonic velocity. The probe frequency used for the determination of time of flight of the ultrasonic signal was 2.25 MHz. Marked volume (specimen diameter) effects were noted for both bulk density (increased with increasing specimen volume or diameter) and Dynamic Young s modulus (decreased with increasing specimen volume or diameter). These trends are extended by adding the property vs. diameter data for unirradiated AGC-1 creep specimens (nominally 12.5 mm-diameter x 25.4 mm-length). The relatively large reduction in Dynamic Young s Modulus was surprising given the trend for increasing density

  9. Experiment to measure oxygen opacity at high density and temperature

    Science.gov (United States)

    Keiter, Paul; Mussack, Katie; Orban, Chris; Colgan, James; Ducret, Jean-Eric; Fontes, Christopher J.; Guzik, Joyce Ann; Heeter, Robert F.; Kilcrease, Dave; Le Pennec, Maelle; Mancini, Roberto; Perry, Ted; Turck-Chièze, Sylvaine; Trantham, Matt

    2017-06-01

    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. This discrepancy has led to an investigation of opacities through laboratory experiments and improved opacity models for many of the larger contributors to the sun’s opacity, including iron and oxygen. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al, 2015]. Although these results are still controversial, repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for C, O and Fe to address the solar abundance issue [Colgan, 2013]. Armstrong et al [2014] have also implemented changes in the ATOMIC code for low-Z elements. However, no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions.This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, grant No. DE-NA0001840, and the NLUF Program, grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.

  10. Experiment to measure oxygen opacity at high density and temperature

    Science.gov (United States)

    Keiter, Paul; Butler, Hannah; Trantham, Matt; Mussack, Katie; Colgan, James; Fontes, Chris; Guzik, Joyce; Kilcrease, David; Perry, Ted; Orban, Chris; Ducret, Jean-Eric; La Pennec, Maelle; Turck-Chieze, Sylvaine; Mancini, Roberto; Heeter, Robert

    2017-10-01

    In recent years, there has been a debate over the abundances of heavy elements (Z >2) in the solar interior. Recent solar atmosphere models [Asplund 2009] find a significantly lower abundance for C, N, and O compared to models used roughly a decade ago. Recent opacity measurements of iron disagree with opacity model predictions [Bailey et al., 2015]. Repeated scrutiny of the experiment and data has not produced a conclusive reason for the discrepancy. New models have been implemented in the ATOMIC opacity code for low-Z elements [Colgan, 2013, Armstrong 2014], however no data currently exists to test the low-Z material models in the regime relevant to the solar convection zone. We present an experimental design using the opacity platform developed at the National Ignition Facility to study the oxygen opacity at densities and temperatures near the solar convection zone conditions. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDLP, Grant Number DE-NA0002956, and the NLUF Program, Grant Number DE-NA0002719, and through the LLE, University of Rochester by the NNSA/OICF under No. DE-NA0001944.

  11. Scanning Thermal Lithography for Nanopatterning of Polymers. Transient Heat Transport and Thermal Chemical Functionalization Across the Length Scales

    NARCIS (Netherlands)

    Duvigneau, Joost

    2011-01-01

    The research described in this Thesis comprises the development of Scanning Thermal Lithography (SThL) as an alternative approach for the spatially controlled, highly localized thermal chemical surface modification of polymer films for the development of e.g. (bio)sensors. In the Thesis, the range

  12. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    Science.gov (United States)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  13. Rapid thermal chemical vapor deposition growth of nanometer-thin SiC on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steckl, A.J.; Li, J.P. (Univ. of Cincinnati, OH (United States))

    1992-08-28

    Rapid thermal chemical vapor deposition growth of [beta]-SiC ultrathin films on Si (100) was achieved using the carbonization reaction of the silicon substrate with C[sub 3]H[sub 8] gas. Growth rates of 0.5-2 nm s[sup -1] have been achieved at 1100-1300degC using C[sub 3]H[sub 8] flow rates of 7-9 standard cm[sup 3] min[sup -1]. X-ray and electron diffraction indicate single-crystal growth. Therefore nanometer-scale SiC films can be grown by controlling the reaction time to a few seconds. The activation energy at atmospheric pressure is 3.12 eV. The growth rate was found to decrease significantly at higher C[sub 3]H[sub 8] flow rates, leading to films of constant thickness beyond a certain critical reaction time. Using this regime of self-limiting growth, SiC films of 3-5 nm have been grown with relatively little sensitivity to the growth time. (orig.).

  14. Experiment and calculation of reinforced concrete at elevated temperatures

    CERN Document Server

    Guo, Zhenhai

    2011-01-01

    Concrete as a construction material goes through both physical and chemical changes under extreme elevated temperatures. As one of the most widely used building materials, it is important that both engineers and architects are able to understand and predict its behavior in under extreme heat conditions. Brief and readable, this book provides the tools and techniques to properly analysis the effects of high temperature of reinforced concrete which will lead to more stable, safer structures. Based on years of the author's research, Reinforced Concrete at Elevated Temperatures four par

  15. Handbook of high-temperature superconductivity theory and experiment

    CERN Document Server

    Brooks, James S

    2007-01-01

    Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.

  16. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  17. Precision dosimetry system suited for low temperature radiation damage experiments

    DEFF Research Database (Denmark)

    Andersen, H.H.; Hanke, C.C.; Sørensen, H.

    1967-01-01

    A calorimetric system for dosimetry on a beam of charged particles is described. The calorimeter works at liquid helium temperature. The total dose may be measured with an accuracy of 0.3%, and the dose per area with 0.4%. No theoretical corrections are needed. © 1967 The American Institute...

  18. Study of surface phenomena at low temperatures. [spaceborne experiments

    Science.gov (United States)

    Cole, M. W.

    1980-01-01

    Superfluidity and nucleation concepts demonstrated by superfluid helium in finite geometries which can be tested in spaceborne experiments are discussed. Three specific problems are addressed: the liquid vapor interface, films and droplets, and ion induced clusterings.

  19. Parameterization of temperature and spectral distortions in future CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pitrou, Cyril; Stebbins, Albert

    2014-10-15

    CMB spectral distortions are induced by Compton collisions with electrons. We review the various schemes to characterize the anisotropic CMB with a non-Planckian spectrum. We advocate using logarithmically averaged temperature moments as the preferred language to describe these spectral distortions, both for theoretical modeling and observations. Numerical modeling is simpler, the moments are frame-independent, and in terms of scattering the mode truncation is exact.

  20. Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation.

    Directory of Open Access Journals (Sweden)

    Himadri Biswas

    Full Text Available Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol-1 and 14.90 Kcal mol-1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp is 3.42 Kcal mol-1 K-1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.

  1. Premixed CH4/O2-enriched air combustion: Identification of thermal, chemical and aerodynamic effects

    Science.gov (United States)

    Most, J.-M.; Dahikar, S.; Pal, S.; Claverie, A.; Denis, D.; Pillier, L.; de Persis, S.

    2012-11-01

    This work contributes to the evaluation of a new innovative process focused on the reduction of the cost of a post-combustion capture of CO2 in a Carbon Capture and Storage system (CCS). The process based on the separation of dried fumes composed mainly by CO2 and N2 by using membranes, which should lead to a lower energetic separation cost than amines. But the membranes become efficient if the upstream CO2 concentration is higher than 30% at their entrance that requires enriching the oxidizer flow by O2. To maintain the exhaust temperature compatible with materials thermal resistance, the reactants are diluted by a recirculation of a part of the flue gases (like N2/O2/CO2). But, the chemical kinetic, the energetic efficiencies, the radiation transfer, the transport and thermal properties of the flow can be affected by CO2. The objective of this work will be to identify the behaviour of the combustion of premixed CH4/O2-enriched air, both diluted in N2 and CO2 and to determine the combustion parameters. This allows to recover the CH4/air conditions in terms of CO2 concentration in reactants, O2 excess, dilution rate, temperature of the reactants, etc. Experiments are performed on the laminar premixed flame using counterflow burner. To characterize the combustion behaviour, the flammability limits are determined and flame thickness and position are measured from PLIF-OH diagnostic. Further, CHEMKIN simulations are performed to check the validity of the GRI3.0 chemical kinetic mechanism for premixed CH4/air synthetic combustion and identify the leading phenomena.

  2. High temperature engineering research facilities and experiments in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kodochigov, N.G.; Kuzavkov, N.G.; Sukharev, Y.P.; Chudin, A.G. [OKBM, Nizhny Novgorod (Russian Federation)

    1998-09-01

    An overview is given of the characteristics of the experimental facilities and experiments in the Russian Federation: the HTGR neutron-physical investigation facilities ASTRA and GROG; facilities for fuel, graphite and other elements irradiation; and thermal hydraulics experimental facilities. The overview is presented in the form of copies of overhead sheets

  3. Advanced Colloids Experiment (Temperature Controlled) - ACE-T9

    Science.gov (United States)

    Marr, David W. M.; Meyer, William V.; Sicker, Ronald; Bailey, Kelly; Eustace, John G.

    2017-01-01

    Increment 53 - 54 Science Symposium presentation of Advanced Colloids Experiment (ACE-T9) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  4. Advanced Colloids Experiment (Temperature Controlled) - ACE-T6

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Bailey, Kelly; Eustace, John; Lynch, Matthew

    2017-01-01

    Increment 53 - 54 Science Symposium presentation of Advanced Colloids Experiment (ACE-T6) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  5. Low Temperature Gaseous Helium and very High Turbulence Experiments

    CERN Document Server

    Pietropinto, S; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Poulain, C; Roche, P E

    2002-01-01

    Cryogenic gaseous helium gives access to extreme turbulent experimental conditions. The very high cooling helium flow rates available at CERN have been used to reach Reynolds numbers up to Re ~ 10**7 in a round jet experiment. First results are discussed.

  6. Experiment of electrical conductivity at low temperature (preliminary measurement)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Wang, H.

    1998-07-01

    A muon collider needs very large amount of RF power, how to reduce the RF power consumption is of major concern. Thus the application of liquid nitrogen cooling has been proposed. However, it is known that the electrical conductivity depends on many factors and the data from different sources vary in a wide range, especially the data of conductivity of beryllium has no demonstration in a real application. Therefore it is important to know the conductivity of materials, which are commercially available, and at a specified frequency. Here, the results of the preliminary measurement on the electrical conductivity of copper at liquid nitrogen temperature are summarized. Addressed also are the data fitting method and the linear expansion of copper.

  7. A Simple Experiment to Determine the Characteristics of an NTC Thermistor for Low-Temperature Measurement Applications

    Science.gov (United States)

    Mawire, A.

    2012-01-01

    A simple low-cost experiment for undergraduate students to determine the characteristics of a negative temperature coefficient of resistance thermistor is presented. The experiment measures the resistance-temperature and voltage-temperature characteristics of the thermistor. Results of the resistance-temperature experiment are used to determine…

  8. Effects of the gas feeding method on the properties of 3C-SiC/Si(111) grown by rapid thermal chemical vapor deposition

    CERN Document Server

    Shim, H W; Suh, E K

    1998-01-01

    High-quality crystalline 3C-SiC thin films are grown by rapid thermal chemical vapor deposition (RTCVD) on Si(111) by using two different growth processes. The films are grown along the [111] direction at 1200 .deg. C. The quality of the films are investigated by X-ray diffraction, transmission electron microscopy, and transmission electron diffraction. The SiC film grown by flowing the tetramethylsilane (TMS) gas before heating the substrate up to the growth temperature does not contain many voids at the SiC/Si interface, while the SiC grown by heating the substrate before supplying the TMS gas possesses many voids at the interface. The unintentionally doped SiC film grown by gas flow before heating the substrate appears to be n-type with a carrier concentration of 1.48 x 10 sup 1 sup 6 cm sup - sup 3 , a electron mobility of 884 cm sup 2 /V centre dot s, and a resistivity of 0.462 OMEGA centre dot cm. The physical properties, such as the electrical properties, the surface morphology, and the crystallinity, ...

  9. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  10. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A.C.; Core, W.G.F.; Gerstel, U.C.; Von Hellermann, M.G.; Koenig, R.W.T.; Marcus, F.B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  11. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature

    Science.gov (United States)

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios

    2008-01-01

    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  12. Environmental experiments with weaned piglets. Air temperature. Klimaforsoeg med fravaennede smaagrise. Lufttemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, A.

    1984-01-01

    This report deals with temperature experiments with pigs weaned at 4 weeks. The primary objectives of the experiments were: 1. To find the lower air temperature limit for the optimum state of health and production results (experiments with space heating). 2. To find out whether a too low air temperature could be compensated for by covering part of the lying area and possibly by using additional local heating (zone heating). Two commonly used pen types were used in the experiments, a pen with a perforated floor (flat-deck pen) and a pen with a solid lying area and a slatted dunging area (''minipen''). The experiments have been carried out from the end of 1977 at the bioclimatic laboratory belonging to the Danish Building Research Institute. In total 17 experiments have been performed. In the experiments at moderate air temperatures (mostly 18 degC constant) and covers with no zone heating the results of the experimental groups were equivalent to those of the control groups, except that in most of the experiments, the experimental groups had higher feed conversion ratios, especially in the flat-deck pens. By using good covers the heating cost can be substantially reduced without affecting good production results. Use of covers increases labour requirement for inspection of the pigs. The size of the extra work load is highly dependent on the design and position of the covers.

  13. In vivo experiments of laser thermotherapy on liver tissue with FBG temperature distribution sensor

    Science.gov (United States)

    Chen, Na; Chen, Shaofeng; Zhu, Hongfei; Liu, Shupeng; Chen, Zhenyi; Pang, Fufei; Wang, Tingyun

    2012-06-01

    In this paper, we report an in vivo experimental study of liver tissue during Laser Induced Interstitial Thermotherapy (LITT). Single FBG was used in the experiments to measure the temperature distribution profile of the bio tissue in real time. Ideally, the goal of LITT is to kill pathological tissue thoroughly and minimize its damage to surrounding healthy tissue, especially vital organs. The extent of treated tissue damage in the therapy is mainly dependent on the irradiation time and the laser power density at the tissue surface. Therefore, monitoring the dynamic change of the exact temperature distribution of the tissue is a key point for the safety of this treatment. In our experiments, FBG was embedded in the laser irradiated bio tissues and used as fully distributed temperature sensor. During the therapy, its reflection spectra were recorded and transmitted to PC in real time. The temperature profile along the FBG axial was reconstructed from its reflection spectrum by the spectra inversion program running on the PC. We studied the dependence of the temperature distribution and the laser output power experimentally and compared the results of in vivo and in vitro under similar laser irradiating conditions. Experimental results demonstrate the effectiveness of this method. Due to influence of body temperature, the in vivo measured temperature is higher than the in vitro one with an almost constant temperature difference value, but the slope and trend of the measured temperature curves in vivo and in vitro are almost identical.

  14. Experiment K-7-35: Circadian Rhythms and Temperature Regulation During Spaceflight. Part 1; Circadian Rhythms and Temperature Regulation

    Science.gov (United States)

    Fuller, C. A.; Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.

    1994-01-01

    Mammals have developed the ability to adapt to most variations encountered in their everyday environment. For example, homeotherms have developed the ability to maintain the internal cellular environment at a relatively constant temperature. Also, in order to compensate for temporal variations in the terrestrial environment, the circadian timing system has evolved. However, throughout the evolution of life on earth, living organisms have been exposed to the influence of an unvarying level of earth's gravity. As a result changes in gravity produce adaptive responses which are not completely understood. In particular, spaceflight has pronounced effects on various physiological and behavioral systems. Such systems include body temperature regulation and circadian rhythms. This program has examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite, COSMOS 2044, were exposed to 14 days of microgravity while constantly monitoring the circadian patterns temperature regulation, heart rate and activity. This experiment has extended our previous observations from COSMOS 1514, as well as providing insights into the physiological mechanisms that produce these changes.

  15. Importance of temperature control for HEFLEX, a biological experiment for Spacelab 1. [plant gravitational physiology study

    Science.gov (United States)

    Chapman, D. K.; Brown, A. H.

    1979-01-01

    The importance of temperature control to HEFLEX, a Spacelab experiment designed to measure kinetic properties of Helianthis nutation in a low-g environment, is discussed. It is argued that the development of the HEFLEX experiment has been severely hampered by the inadequate control of ambient air temperature provided by the spacecraft module design. A worst case calculation shows that delivery of only 69% of the maximum yield of useful data from the HEFLEX system is guaranteed; significant data losses from inadequate temperature control are expected. The magnitude of the expected data losses indicates that the cost reductions associated with imprecise temperature controls may prove to be a false economy in the long term.

  16. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  17. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  18. Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment

    Directory of Open Access Journals (Sweden)

    J. Taucher

    2012-09-01

    Full Text Available Increasing concentrations of atmospheric carbon dioxide are projected to lead to an increase in sea surface temperatures, potentially impacting marine ecosystems and biogeochemical cycling. Here we conducted an indoor mesocosm experiment with a natural plankton community taken from the Baltic Sea in summer. We induced a plankton bloom via nutrient addition and followed the dynamics of the different carbon and nitrogen pools for a period of one month at temperatures ranging from 9.5 °C to 17.5 °C, representing a range of ±4 °C relative to ambient temperature. The uptake of dissolved inorganic carbon (DIC and the net build-up of both particulate (POC and dissolved organic carbon (DOC were all enhanced at higher temperatures and almost doubled over a temperature gradient of 8 °C. Furthermore, elemental ratios of carbon and nitrogen (C : N in both particulate and dissolved organic matter increased in response to higher temperatures, both reaching very high C : N ratios of > 30 at +4 °C. Altogether, these observations suggest a pronounced increase in excess carbon fixation in response to elevated temperatures. Most of these findings are contrary to results from similar experiments conducted with plankton populations sampled in spring, revealing large uncertainties in our knowledge of temperature sensitivities of key processes in marine carbon cycling. Since a major difference to previous mesocosm experiments was the dominant phytoplankton species, we hypothesize that species composition might play an important role in the response of biogeochemical cycling to increasing temperatures.

  19. MMC-based low-temperature detector system of the AMoRE-Pilot experiment

    Science.gov (United States)

    Kang, C. S.; Jeon, J. A.; Jo, H. S.; Kim, G. B.; Kim, H. L.; Kim, I.; Kim, S. R.; Kim, Y. H.; Kwon, D. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Lee, S. H.; Oh, S. Y.; So, J. H.; Yoon, Y. S.

    2017-08-01

    Metallic magnetic calorimeters (MMCs) are highly sensitive temperature sensors that operate at millikelvin temperatures. An energy deposit in a detector can be measured using an MMC through the induced temperature increase. The MMC signal, i.e., a variation in magnetization can then be measured using a superconducting quantum interference device. MMCs are used in particle physics experiments searching for rare processes as their high sensitivity and fast response provide high energy and timing resolutions and good particle discrimination. Low-temperature detectors consisting of molybdenum-based scintillating crystals read out via MMCs were designed and built to perform simultaneous measurements of heat and light signals at millikelvin temperatures. These detectors have been used in the advanced Mo-based rare process experiment (AMoRE) that searches for the neutrinoless double beta decay of 100Mo. This article provides a detailed description of the MMC-based low-temperature detector system of the AMoRE-Pilot experiment which currently uses five crystals.

  20. Modeling of the jack rabbit series of experiments with a temperature based reactive burn model

    Science.gov (United States)

    Desbiens, Nicolas

    2017-01-01

    The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.

  1. Experiment on the formation of boron nitride in the jet of low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pollo, I. (Politechnika Lubelska (Poland)); Aniol, S. (Politechnika Slaska, Gliwice (Poland). Katedra Chemii i Technologii Nieorganicznej)

    1981-01-01

    The paper deals with the experiments on the formation of boron nitride in the jet of nitric-argon plasma into which solid boron trioxide as well as gaseous ammonia were introduced. It was found out that the conversion process of B/sub 2/O/sub 3/ into nitride in the jet of low-temperature plasma affected by gaseous NH/sub 3/ is possible and in the conditions of our experiment did not exceed 20 per cent.

  2. Thermal/chemical degradation of ceramic candle filter materials. Final report, September 1988--October 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    High-temperature ceramic candle filters are being developed for use in advanced power generation systems such as the Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized-Bed Combustor (PFBC), and Direct Coal-Fired Turbine (DCFT). The direct firing of coal produces particulate matter which must be removed to meet both environmental and process limitations. The ceramic candles increase the efficiency of the advanced power generation systems and protect downstream equipment from erosion and impingement of particulate matter in the hot exhaust gases. Ceramic candle filters are rigid, closed-ended (capped on one side) porous cylinders which generally have a flange on the open-ended side. The flange at the open end allows the candle to be suspended by a tubesheet in the filter vessel. Candle filters have shown promise, but have also encountered durability problems during use in hostile, high-temperature environments. Limitations in the candle lifetime lower the economic advantages of using candle filters for this application. Candles typically fail by cracking at the flange or in the body of the candle. The objective of this project was to test and analyze ceramic candle filter materials and to evaluate the degradation mechanisms. The tests were conducted such that the effects of each degradation mechanism could be examined. Separately. The overall objective of the project was to: (a) develop a better understanding of the thermal and chemical degradation mechanisms of ceramic candle filter materials in advanced coal utilization projects, (b) develop test procedures, and (c) recommend changes to increase filter lifetime. 15 refs., 67 figs., 17 tabs.

  3. Data scaling and temperature calibration in time-resolved photocrystallographic experiments

    DEFF Research Database (Denmark)

    Schmøkel, Mette Stokkebro; Kaminski, Radoslaw; Benedict, Jason B.

    2010-01-01

    -steady-state experiments conducted at conventional sources, but not negligible in synchrotron studies in which very short laser exposures may be adequate. The relative scaling of the light-ON and light-OFF data and the correction for temperature differences between the two sets are discussed....

  4. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquir...... of castings with different plate thicknesses....

  5. Temperature dependence of anti-hydrogen production in the ATHENA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bonomi, G. E-mail: germano.bonomi@cern.ch; Amoretti, M.; Amsler, C.; Bouchta, A.; Bowe, P.; Carraro, C.; Cesar, C.L.; Charlton, M.; Doser, M.; Filippini, V.; Fontana, A.; Fujiwara, M.C.; Funakoshi, R.; Genova, P.; Hangst, J.S.; Hayano, R.S.; Joergensen, L.V.; Lagomarsino, V.; Landua, R.; Lindeloef, D.; Lodi Rizzini, E.; Macri, M.; Madsen, N.; Montagna, P.; Pruys, H.; Regenfus, C.; Riedler, P.; Rotondi, A.; Testera, G.; Variola, A.; Werf, D.P. van der

    2004-01-01

    The ATHENA experiment recently produced the first sample of cold anti-hydrogen atoms by mixing cold plasmas of anti-protons and positrons. The temperature of the positron plasma was increased by controlled RF heating and the anti-hydrogen production rate was measured. Preliminary results are presented.

  6. Temperature dependence of anti-hydrogen production in the ATHENA experiment

    CERN Document Server

    Bonomi, G; Amsler, Claude; Bouchta, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Doser, Michael; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Montagna, P; Pruys, H S; Regenfus, C; Riedler, P; Rotondi, A; Testera, G; Variola, A; Van der Werf, D P

    2004-01-01

    The ATHENA experiment recently produced the first sample of cold anti-hydrogen atoms by mixing cold plasmas of anti-protons and positrons. The temperature of the positron plasma was increased by controlled RF heating and the anti-hydrogen production rate was measured. Preliminary results are presented. (8 refs).

  7. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    Hydrogen oxidation at 50 bar and temperatures of 700–900 K was investigated in a high pressure laminar flow reactor under highly diluted conditions. The experiments provided information about H 2 oxidation at pressures above the third explosion limit. The fuel–air equivalence ratio of the reactants...

  8. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  9. Cryogen Free Ultra-Low Temperature Cryostat for Neutron Scattering Experiments

    Science.gov (United States)

    Downa, R. B. E.; Kirichek, O.; Manuel, P.; Keeping, J.; Bowden, Z. A.

    Most ultra-low temperature (below 1K) experiments at advanced neutron facilities are based on dilution and 3He refrigerator inserts used with Orange cryostats, or similar systems. However recent increases in liquid helium costs; caused by global helium supply problems, has raised significant concern about the affordability of such cryostats. Here we present the design and test results of a cryogen free top-loading cryostat which provides neutron scattering sample environment within the temperature range 1.25 - 300 K. The high cooling power of the cryostat 0.23 W at 1.9 K enables the operation of a dilution refrigerator insert in a continuous regime; which expands the low temperature margin of the temperature range to 35 mK. The cooling time of the dilution refrigerator insert is similar to one operated in an Orange cryostat. The main performance criteria such as base temperature, cooling power, and circulation rate are compatible with the technical specification of a standard dilution refrigerator. In fact the system offers operating parameters very similar to those of an Orange cryostat, but without the complication of cryogens. The first scientific results obtained in an ultra-low temperature neutron scattering experiment with this system are also going to be discussed.

  10. Evaluation and analysis of uncertainty in tensile experiment results of modified PPR at elevated temperature

    Science.gov (United States)

    Xiang, Yu; Zhonghua, Su; Jinhua, Leng; Teng, Yun

    2017-08-01

    A high temperature tensile experiment of modified random copolymerized polypropylene was carried out by ASTM D 638-2014. It analyzed the factors influencing the accuracy of the high temperature mechanical properties of modified random copolymer polypropylene and discussed the causes of the uncer-tainty of measurement standards from the sample size measurement, the indication error of force value of experiment machines, its calibration, data acquisition of the experimental software, the temperature control, the numerical correction, and the material nonuniformity, etc. According to JJF 1059.1-2012, class A and class B evaluation were conducted on the above-mentioned uncertainty components, and all the uncertainty components were synthesized. By analyzing the uncertainty of the measurement results, this paper provides a reference for evaluating the uncertainty of the same type of measurement results.

  11. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    Science.gov (United States)

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  12. Monitoring an Induced Permafrost Warming Experiment Using ERT, Temperature, and NMR in Fairbanks, Alaska

    Science.gov (United States)

    Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.

    2016-12-01

    As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this

  13. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations.

    Science.gov (United States)

    Wirth, Anna Jean; Liu, Yanxin; Prigozhin, Maxim B; Schulten, Klaus; Gruebele, Martin

    2015-06-10

    The unimolecular folding reaction of small proteins is now amenable to a very direct mechanistic comparison between experiment and simulation. We present such a comparison of microsecond pressure and temperature jump refolding kinetics of the engineered WW domain FiP35, a model system for β-sheet folding. Both perturbations produce experimentally a faster and a slower kinetic phase, and the "slow" microsecond phase is activated. The fast phase shows differences between perturbation methods and is closer to the downhill limit by temperature jump, but closer to the transiently populated intermediate limit by pressure jump. These observations make more demands on simulations of the folding process than just a rough comparison of time scales. To complement experiments, we carried out several pressure jump and temperature jump all-atom molecular dynamics trajectories in explicit solvent, where FiP35 folded in five of the six simulations. We analyzed our pressure jump simulations by kinetic modeling and found that the pressure jump experiments and MD simulations are most consistent with a 4-state kinetic mechanism. Together, our experimental and computational data highlight FiP35's position at the boundary where activated intermediates and downhill folding meet, and we show that this model protein is an excellent candidate for further pressure jump molecular dynamics studies to compare experiment and modeling at the folding mechanism level.

  14. SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yih, P.H.; Li, J.P.; Steckl, A.J. (Univ. of Cincinnati, OH (United States). Dept. of Electrical and Computer Engineering)

    1994-03-01

    SiC/Si heterojunction diodes have been fabricated by two different rapid thermal chemical vapor deposition (RTCVD) processes: a localized self-selective growth and blanket growth. The self-selective growth of crystalline cubic ([beta]) SiC was obtained by propane carbonization of the Si substrate in regions unprotected by an SiO[sub 2] layer, producing planar diodes. Mesa diodes were fabricated using the blanket growth of polycrystalline [beta]-SiC produced by the decomposition of methylsilane (CH[sub 3]SiH[sub 3]). The SiC/Si heterojunction diodes show good rectifying properties for both device structures. Reverse breakdown voltage of 50 V was obtained with the self-selective SiC/Si diode. The mesa diodes exhibited even higher breakdown voltages (V[sub br]) of 150 V and excellent ideality factors of 1.06 at 25 C. The high V[sub br] and good forward rectifying characteristics indicate that the SiC/Si heterojunction diode represents a promising approach for the fabrication of wide-gap emitter SiC/Si heterojunction bipolar transistors.

  15. Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.; Garrabos, Yves; Lecoutre, Carole; Zappoli, Bernard

    2013-01-01

    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground.

  16. Uncertainty quantification of calculated temperatures for advanced gas reactor fuel irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh Thi-Cam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hawkes, Grant Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Einerson, Jeffrey James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technology Research and Development program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR tests, the results of the numerical simulations are used in combination with statistical analysis methods to improve qualification of measured data. The temperature simulation data for AGR tests are also used for validation of the fission product transport and fuel performance simulation models. These crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. To quantify the uncertainty of AGR calculated temperatures, this study identifies and analyzes ABAQUS model parameters of potential importance to the AGR predicted fuel temperatures. The selection of input parameters for uncertainty quantification of the AGR calculated temperatures is based on the ranking of their influences on variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. Propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of AGR calculated temperatures. Expert judgment is used as the basis to specify the uncertainty range for selected input parameters. The input uncertainties are dynamic accounting for the effect of unplanned events and changes in thermal properties of capsule components over extended exposure to high temperature and fast neutron irradiation. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using experimental design, analysis of pairwise interactions of model parameters was performed to establish

  17. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    of the mixture was varied from oxidizing to reducing conditions. Moreover, a series of experiments in an oxygen atmosphere instead of a nitrogen atmosphere has been done. A reaction mechanism based on a recent work by Burke et al. has been developed. In addition to modeling of the present experiments......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  18. The neutral atmosphere temperature experiment. [for thermospheric nitrogen measurement on AEROS satellite

    Science.gov (United States)

    Spencer, N. W.; Pelz, D. T.; Niemann, H. B.; Carignan, G. R.; Caldwell, J. R.

    1974-01-01

    The AEROS Neutral Atmosphere Temperature Experiment (NATE) is designed to measure the kinetic temperature of molecular nitrogen in the thermosphere. A quadrupole mass spectrometer tuned to N2 measures the N2 density variation in a small spherical antechamber having a knife-edged orifice which is exposed to the atmosphere at the outer surface of the spacecraft. The changing density of N2 due to the spinning motion of the spacecraft permits determination of the velocity distribution of the N2 from which the temperature is calculated. An alternate mode of operation of the instrument allows measurement of the other gases in the atmosphere as well as N2 permitting determination of the neutral particle composition of the atmosphere.

  19. UTLS temperature validation of MPI-ESM decadal hindcast experiments with GPS radio occultations

    Directory of Open Access Journals (Sweden)

    Torsten Schmidt

    2016-12-01

    Full Text Available Global Positioning System (GPS radio occultation (RO temperature data are used to validate MPI-ESM (Max Planck Institute – Earth System Model decadal hindcast experiments in the upper troposphere and lower stratosphere (UTLS region between 300 hPa and 10 hPa (8 km and 32 km for the time period between 2002 and 2011. The GPSRO dataset is unique since it is very precise, calibration independent and covers the globe better than the usual radiosonde dataset. In addition it is vertically finer resolved than any of the existing satellite temperature measurements available for the UTLS and provides now a unique one decade long temperature validation dataset. The initialization of the MPI-ESM decadal hindcast runs mostly increases the skill of the atmospheric temperatures when compared to uninitialized climate projections with very high skill scores for lead-year one, and gradually decreases for the later lead-years. A comparison between two different initialization sets (b0, b1 of the low-resolution (LR MPI-ESM shows increased skills in b1-LR in most parts of the UTLS in particular in the tropics. The medium resolution (MR MPI-ESM initializations are characterized by reduced temperature biases in the uninitialized runs as compared to observations and a better capturing of the high latitude northern hemisphere interannual polar vortex variability as compared to the LR model version. Negative skills are found for the b1-MR hindcasts however in the regions around the mid-latitude tropospheric jets on both hemispheres and in the vicinity of the tropical tropopause in comparison to the b1-LR variant. It is interesting to highlight that none of the model experiments can reproduce the observed positive temperature trend in the tropical tropopause region since 2001 as seen by GPSRO data.

  20. Laboratory experiment on coalbed-methane desorption influenced by water injection and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D.; Feng, Z.; Zhao, Y.

    2011-07-15

    The exploration of coalbed-methane (CBM) has significantly increased in the last decade, its exploitation is now widely spread. CBM exploitation technologies involve high-pressure water, which reduces the CBM-desorption capacity resulting in a low efficiency. This study has been conducted to examine the CBM desorption and output after water injection and temperature increase. They developed a new experimental system to simulate water-injection in ideal conditions and study the behaviour of water and methane in a coalbed. These experiments revealed that, at constant temperature, water injection pressure controls the CBM-desorption capacity; and that this capacity is highly increased when the temperature is increased. These results show that a higher temperature would increase the efficiency of CBM exploitation, thus producers are likely to use heating in future CBM technologies. Some advances were made in the knowledge of water pressure and temperature effects on desorption behaviour but further research has to be carried to fully define these effects.

  1. Experiment and simulation of temperature characteristics of intermittently-controlled ground heat exchanges

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qing; Li, Ming; Yu, Ming [Department of Thermal Engineering, Jilin University, Changchun (China)

    2010-06-15

    Because of poor heat transfer coefficients of soil/rock, ground source heat pumps (GSHP) or underground thermal energy storage (UTES) systems always occupy a large area and need many ground heat exchangers. This initial energy investment is so heavy that it cannot be used on a large-scale. Intermittent operation can reduce the extreme temperatures around the ground heat exchangers (GHEs) and keep the temperature in reasonable range. The aim of this study is to implement an experiment and develop a dynamic model of hydronic heating systems of GSHP in order to get a more fair comparison of energy efficiency between continuously controlled and intermittently controlled systems. Factors such as thermal inertia, temperature levels and lag time are also considered to see how they affect the efficiency. It is shown that temperature variation is related to the intermittent period and that intermittence prolongs the heat transfer without reaching at an utmost temperature (operation limitation). An effectively controlled intermittent process can optimize the capacity of heat exchange units so as to achieve better application of the ground energy. Additionally, the intermittent control can decrease the number of GHEs of GSHP and UTES systems and keep better working conditions. (author)

  2. Retrieval of Lower Thermospheric Temperatures from O2 A Band Emission: The MIGHTI Experiment on ICON

    Science.gov (United States)

    Stevens, Michael H.; Englert, Christoph R.; Harlander, John M.; England, Scott L.; Marr, Kenneth D.; Brown, Charles M.; Immel, Thomas J.

    2018-02-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is a satellite experiment scheduled to launch on NASA's Ionospheric Connection Explorer (ICON) in 2018. MIGHTI is designed to measure horizontal neutral winds and neutral temperatures in the terrestrial thermosphere. Temperatures will be inferred by imaging the molecular oxygen Atmospheric band (A band) on the limb in the lower thermosphere. MIGHTI will measure the spectral shape of the A band using discrete wavelength channels to infer the ambient temperature from the rotational envelope of the band. Here we present simulated temperature retrievals based on the as-built characteristics of the instrument and the expected emission rate profile of the A band for typical daytime and nighttime conditions. We find that for a spherically symmetric atmosphere, the measurement precision is 1 K between 90-105 km during the daytime whereas during the nighttime it increases from 1 K at 90 km to 3 K at 105 km. We also find that the accuracy is 2 K to 11 K for the same altitudes. The expected MIGHTI temperature precision is within the measurement requirements for the ICON mission.

  3. Thermophysical Property Estimation by Transient Experiments: The Effect of a Biased Initial Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Federico Scarpa

    2015-01-01

    Full Text Available The identification of thermophysical properties of materials in dynamic experiments can be conveniently performed by the inverse solution of the associated heat conduction problem (IHCP. The inverse technique demands the knowledge of the initial temperature distribution within the material. As only a limited number of temperature sensors (or no sensor at all are arranged inside the test specimen, the knowledge of the initial temperature distribution is affected by some uncertainty. This uncertainty, together with other possible sources of bias in the experimental procedure, will propagate in the estimation process and the accuracy of the reconstructed thermophysical property values could deteriorate. In this work the effect on the estimated thermophysical properties due to errors in the initial temperature distribution is investigated along with a practical method to quantify this effect. Furthermore, a technique for compensating this kind of bias is proposed. The method consists in including the initial temperature distribution among the unknown functions to be estimated. In this way the effect of the initial bias is removed and the accuracy of the identified thermophysical property values is highly improved.

  4. Development of Ultra Low-Temperature Electronics for the AEgIS Experiment

    CERN Document Server

    Kaltenbacher, Thomas; Kellerbauer, Alban; Doser, Michael; Caspers, Friedhelm

    This thesis presents the development of electronics for operation at cryogenic temperatures, with particular emphasis on the cryogenic electronics required for the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment at the European Organisation for Nuclear Research (CERN). The research is focused on a highly sensitive charged particle detection system for a Penning trap, on cryogenic low-pass filters and on a low-loss DC-contact RF switch. The detection system consists of a high quality factor tuned circuit including a superconducting coil, and a low-noise amplifier. Since the experimental setup of the AEgIS experiment requires it, the developed electronics must reliably operate at 4.2 K (~269C) and in high constant magnetic field of more than 1 Tesla. Therefore, the performance of the cryogenic electronic designs were carefully evaluated at low-temperature/high magnetic field, the result of which have important implications for the AEgIS experiment. Moreover, a new possibility of ...

  5. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    Science.gov (United States)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with

  6. Pyrometry in the Multianvil Press: New approach for temperature measurement in large volume press experiments

    Science.gov (United States)

    Sanehira, T.; Wang, Y.; Prakapenka, V.; Rivers, M. L.

    2008-12-01

    Temperature measurement in large volume press experiments has been based on thermocouple emf, which has well known problems: unknown pressure dependence of emf [e.g., 1], chemical reaction between thermocouple and other materials, deformation related texture development in the thermocouple wires [2], and so on. Thus, different techniques to measure temperatures in large volume press experiments other than thermocouples are required to measure accurate temperatures under high pressures. Here we report a new development using pyrometry in the multianvil press, where temperatures are derived on the basis of spectral radiometry. Several high pressure runs were conducted using the 1000 ton press with a DIA module installed at 13 ID-D GSECARS beamline at Advanced Photon Source (APS) [3]. The cubic pressure medium, 14 mm edge length, was made of soft-fired pyrophyllite with a graphite furnace. A moissanite (SiC) single crystal was built inside the pressure medium as a window for the thermal emission signal to go through. An MgO disk with 1.0 mm thickness was inserted in a gap between the top of the SiC crystal and thermocouple hot junction. The bottom of the window crystal was in direct contact with the tip of the anvil, which had a 1.5 mm diameter hole drilled all the way through the anvil axis. An optical fiber was inserted in this hole and the open end of fiber was in contact with the SiC crystal. Thermal spectral radiance from the inner cell assembly was obtained via the fiber and recorded by an Ocean Optics HP2000 spectrometer. The system response of spectrometer was calibrated by a tungsten ribbon ramp (OL550S, Optronic Laboratories, Inc.) with standard of spectral radiance. The cell assembly was compressed up to target value of 15 tons and then temperature was increased up to 1573 K. Radiation spectra were mainly obtained above 873 K and typical integration time was 1 ms or 10 ms. Data collection was done in the process of increase and decrease of temperature. In

  7. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    Energy Technology Data Exchange (ETDEWEB)

    Dutrow, Barbara

    2008-08-13

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  8. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    Science.gov (United States)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  9. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  10. Neoclassical study of temperature anisotropy in NSTX experiments using the GTC-NEO particle code

    Science.gov (United States)

    Perkins, David; Ethier, Stephane; Wang, Weixing

    2012-10-01

    It is well-known that the level of ion transport in the National Spherical Torus eXperiment (NSTX) is close to the neoclassical level. This makes self-consistent neoclassical simulations carried out with the GTC-NEO particle code highly relevant for studying transport-related issues in NSTX. GTC-NEO, which now treats multiple species of ion impurities [1], takes as input the experimental profiles from NSTX discharges and calculates the fully non-local, self-consistent neoclassical fluxes and radial electric field. One unanswered question related to NSTX plasmas is that of possible ion temperature anisotropy, which cannot be determined experimentally with the current diagnostics. This work describes new numerical diagnostics and computational improvements that were implemented in GTC-NEO to enable the study of temperature anisotropy.[4pt] [1] R.A. Kolesnikov et al., Phy. Plasmas 17, 022506 (2010)

  11. Observing System Simulation Experiments for the assessment of temperature sampling strategies in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    F. Raicich

    Full Text Available For the first time in the Mediterranean Sea various temperature sampling strategies are studied and compared to each other by means of the Observing System Simulation Experiment technique. Their usefulness in the framework of the Mediterranean Forecasting System (MFS is assessed by quantifying their impact in a Mediterranean General Circulation Model in numerical twin experiments via univariate data assimilation of temperature profiles in summer and winter conditions. Data assimilation is performed by means of the optimal interpolation algorithm implemented in the SOFA (System for Ocean Forecasting and Analysis code. The sampling strategies studied here include various combinations of eXpendable BathyThermograph (XBT profiles collected along Volunteer Observing Ship (VOS tracks, Airborne XBTs (AXBTs and sea surface temperatures. The actual sampling strategy adopted in the MFS Pilot Project during the Targeted Operational Period (TOP, winter-spring 2000 is also studied.

    The data impact is quantified by the error reduction relative to the free run. The most effective sampling strategies determine 25–40% error reduction, depending on the season, the geographic area and the depth range. A qualitative relationship can be recognized in terms of the spread of information from the data positions, between basin circulation features and spatial patterns of the error reduction fields, as a function of different spatial and seasonal characteristics of the dynamics. The largest error reductions are observed when samplings are characterized by extensive spatial coverages, as in the cases of AXBTs and the combination of XBTs and surface temperatures. The sampling strategy adopted during the TOP is characterized by little impact, as a consequence of a sampling frequency that is too low.

    Key words. Oceanography: general (marginal and semi-enclosed seas; numerical modelling

  12. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Van Loon, L.R

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60{sup o} and 90{sup o}C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 {sup o}C and 90 {sup o}C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline

  13. High temperature experiments on a 4 tons UF6 container TENERIFE program

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  14. Design and operating experience of 1000MW high-temperature steam turbine

    Energy Technology Data Exchange (ETDEWEB)

    Matsukuma, Masaharu; Magoshi; Ryotaro; Nakano, Takashi; Tashiro; Hikaru; Tanaka, Yoshinori

    1999-07-01

    The applicable steam conditions for large-capacity fossil-fuel thermal power plants over 500 MW in Japan have conventionally been 24.2MPa and 538/566 C. Mitsubishi Heavy Industries, Ltd. (MHI) has established, through wide-scale development programs, the technologies for design and materials of steam turbines with steam temperature 593 C, and has applied the steam conditions of 24.2MPa and 538/593 C to the large-capacity 700 MW turbine, Hekinan No. 3 Unit for Chubu Electric Power Co., Inc. According to the further development of high-temperature design, MHI has successfully developed and manufactured the 1000 MW turbine, Matsuura No. 2 Unit, Electric Power Development Co., Ltd. with a steam condition of 600 C class main steam and reheating steam temperature for the first time in the world. The unit, that was first rolled with steam in January 1997, started commercial operation in July 1997. This paper describes the features of design and operating experience of this unit after about one year's commercial operation.

  15. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  16. Pressure and temperature dependence of growth and morphology of Escherichia coli: Experiments and Stochastic Model

    CERN Document Server

    Kumar, Pradeep

    2012-01-01

    We have investigated the growth of Escherichia coli E.coli, a mesophilic bacterium, as a function of pressure $P$ and temperature $T$. E.coli can grow and divide in a wide range of pressure (1-400atm) and temperature ($23-40^{\\circ}$C). For $T>30^{\\circ}$ C, the division time of E.coli increases exponentially with pressure and exhibit a departure from exponential behavior at pressures between 250-400 atm for all the temperatures studied in our experiments. For $T<30^{\\circ}$ C, the division time shows an anomalous dependence on pressure -- first decreases with increasing pressure and then increases upon further increase of pressure. The sharp change in division time is followed by a sharp change in phenotypic transition of E. Coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic changes in bacteria at high pressures is an irreversible stochastic process whereas the switching probability to elongating cell type increases with increasing press...

  17. Laboratory Experiments on the Low-temperature Formation of Carbonaceous Grains in the ISM

    Science.gov (United States)

    Fulvio, Daniele; Góbi, Sándor; Jäger, Cornelia; Kereszturi, Ákos; Henning, Thomas

    2017-11-01

    The life cycle of cosmic dust grains is far from being understood and the origin and evolution of interstellar medium (ISM) grains is still under debate. In the ISM, the cosmic dust destruction rate is faster than the production rate by stellar sources. However, observations of ISM refractory matter suggest that to maintain a steady amount of cosmic grains, some supplementary production mechanism takes place. In this context, we aimed to study possible reformation mechanisms of cosmic grains taking place at low temperature directly in the ISM. The low-temperature condensation of carbonaceous materials has been investigated in experiments mimicking the ISM conditions. Gas-phase carbonaceous precursors created by laser ablation of graphite were forced to accrete on cold substrates (T ≈ 10 K) representing surviving dust grains. The growing and evolution of the condensing carbonaceous precursors have been monitored by MIR and UV spectroscopy under a number of experimental scenarios. For the first time, the possibility to form ISM carbonaceous grains in situ is demonstrated. The condensation process is governed by carbon chains that first condense into small carbon clusters and finally into more stable carbonaceous materials, of which structural characteristics are comparable to the material formed in gas-phase condensation experiments at very high temperature. We also show that the so-formed fullerene-like carbonaceous material is transformed into a more ordered material under VUV processing. The cold condensation mechanisms discussed here can give fundamental clues to fully understand the balance between the timescale for dust injection, destruction, and reformation in the ISM.

  18. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  19. Probing soil C metabolism in response to temperature: results from experiments and modeling

    Science.gov (United States)

    Dijkstra, P.; Dalder, J.; Blankinship, J.; Selmants, P. C.; Schwartz, E.; Koch, G. W.; Hart, S.; Hungate, B. A.

    2010-12-01

    C use efficiency (CUE) is one of the least understood aspects of soil C cycling, has a very large effect on soil respiration and C sequestration, and decreases with elevated temperature. CUE is directly related to substrate partitioning over energy production and biosynthesis. The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We have developed a new stable isotope approach using position-specific 13C-labeled metabolic tracers to measure these fundamental metabolic processes in intact soil communities (1). We use this new approach, combined with models of soil metabolic flux patterns, to analyze the response of microbial energy production, biosynthesis, and CUE to temperature. The method consists of adding small but precise amounts of position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through various metabolic pathways. A simplified metabolic model consisting of 23 reactions is iteratively solved using results of the metabolic tracer experiments and information on microbial precursor demand under different temperatures. This new method enables direct study of fundamental aspects of microbial energy production, C use efficiency, and soil organic matter formation in response to temperature. (1) Dijkstra P, Blankinship JC, Selmants PC, Hart SC, Koch GW, Schwarz E and Hungate BA. Probing metabolic flux patterns of soil microbial communities using parallel position-specific tracer labeling. Soil Biology and Biochemistry (accepted)

  20. Temperature distribution in the upper layers of the northern and eastern Arabian Sea during Indo-Soviet monsoon experiment

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Rao, L.V.G.; Varkey, M.J.; Udayavarma, P.

    -Soviet Monsoon Experiment (ISMEX). Using the bathythermograph data collected in those cruises, vertical distribution of temperature in the upper 275 metres was studied. Along the zonal section, east of 67 degrees E meridian, the depth of thermocline was found...

  1. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions

    Science.gov (United States)

    Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.

    2018-02-01

    To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures <700 °C; and (7) occurrence of accessory zircon, rutile and phosphates in the coldest regions. In terms of element redistribution, the peridotite becomes strongly enriched in SiO2 compared to the starting composition, and the sediment gains MgO, FeO and Cr2O3. Potassium is fully extracted into the melt, while Na and Ca are largely retained in the coldest part of the metasediment

  2. Use of Skylab EREP data in a sea-surface temperature experiment. [Monroe Reservoir and Key West, Fla.

    Science.gov (United States)

    Anding, D. C. (Principal Investigator); Walker, J. P.

    1975-01-01

    The author has identified the following significant results. A sea surface temperature experiment was studied, demonstrating the feasibility of a procedure for the remote measurement of sea surface temperature which inherently corrects for the effect of the intervening atmosphere without recourse to climatological data. The procedure was applied to Skylab EREP S191 spectrometer data, and it is demonstrated that atmospheric effects on the observed brightness temperature can be reduced to less than 1.0 K.

  3. Progressive evolution of microfabrics in high-temperature indentation creep experiments

    Science.gov (United States)

    Wassmann, S.; Dorner, D.; Stoeckhert, B.

    2014-12-01

    Microfabrics of natural rocks as well as of those deformed in laboratory experiments are studied post-mortem, the history of fabric evolution being inferred from a finite state. This is a major drawback when being interested in modification of fabrics related to progressive deformation. Here we present a novel approach to analyze and compare fabrics in different stages of evolution, taking spatial position to mimic a time series. Using this approach, evolution in time can be investigated on one sample deformed in a single indentation creep test. Such experiments at high temperatures and atmospheric pressure provide information on mechanical properties of rock-forming minerals as well as on microfabrics developed during inhomogeneous deformation underneath the indenter. Using a conventional creep apparatus, a cylindrical alumina indenter, 2 mm in diameter, is driven by a dead load into the flat surface of a specimen. A penetration depth of 1 mm is typically reached after hours to days, depending on material, applied temperature, and load. Previous experiments on natural, polycrystalline anhydrite carried out at temperatures between 700°C and 920 °C yield a stress exponent of 3.9 indicating deformation in the dislocation creep regime, consistent with microstructural observations (Dorner et al., 2014; Solid Earth). Within a cone-shaped region in front of the indenter, the original microfabric appears entirely unaffected. The neutral cone is mantled by highly deformed shear zones. During progressive indentation this structure of undeformed cone and shear zones propagates into the specimen. Thus, for a homogeneous starting material, serial sections of the deformed specimen normal to the indenter axis provide insight into fabrics in distinct stages of evolution. Microfabrics developed at different distance in front of the approaching indenter can be taken to represent a time series. A disadvantage of the technique is that the history of shear zone deformation is

  4. Uncertainty Quantification of Calculated Temperatures for the AGR 3/4 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh Thi-Cam [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A series of Advanced Gas Reactor (AGR) irradiation experiments are being conducted within the Advanced Reactor Technology (ART) Fuel Development and Qualification Program. The main objectives of the fuel experimental campaign are to provide the necessary data on fuel performance to support fuel process development, qualify a fuel design and fabrication process for normal operation and accident conditions, and support development and validation of fuel performance and fission product transport models and codes (PLN 3636, “Technical Program Plan for INL Advanced Reactor Technologies Technology Development Office/Advanced Gas Reactor Fuel Development and Qualification Program”). The AGR 3/4 test was inserted in the Northeast Flux Trap position in the Advanced Test Reactor (ATR) core at Idaho National Laboratory (INL) in December 2011 and successfully completed irradiation in mid-April 2014, resulting in irradiation of the tristructural isotropic (TRISO) fuel for 369.1 effective full-power days (EFPDs) during approximately 2.4 calendar years. The AGR 3/4 data, including the irradiation data and calculated results, were qualified and stored in the Nuclear Data Management and Analysis System (NDMAS). To support the U.S. TRISO fuel performance assessment and to provide data for validation of fuel performance and fission product transport models and codes, the daily as run thermal analysis has been performed separately on each of twelve AGR 3/4 capsules for the entire irradiation as discussed in ECAR-2807, “AGR 3/4 Daily As Run Thermal Analyses”. The ABAQUS code’s finite element-based thermal model predicts the daily average volume average (VA) fuel temperature (FT), peak FT, and graphite matrix, sleeve, and sink temperature in each capsule. The JMOCUP simulation codes were also created to perform depletion calculations for the AGR 3/4 experiment (ECAR-2753, “JMOCUP As-Run Daily Physics Depletion Calculation for the AGR 3/4 TRISO Particle Experiment in ATR

  5. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation

    Science.gov (United States)

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.

  6. Scaling of viscosity with rate, pressure, and temperature: Linking simulations to experiments

    Science.gov (United States)

    Jadhao, Vikram; Robbins, Mark

    Elastohydrodynamic lubrication (EHL) is important in many practical devices and produces extreme pressures (> 1 GPa) and shear rates (105 -107 s-1). This makes EHL fluids ideal candidates for bridging the gap between experimental and simulation studies of viscosity. There is an ongoing debate about whether the high-rate response of simple molecules like squalane follows a power-law Carreau model or a thermal activation based Eyring model. We use molecular dynamics simulations to investigate the rheological response of squalane for a wide range of rates (105 -1010 s-1), pressures (0.1 MPa to 3 GPa), and temperatures (100 - 313 K). We find that experimental and theoretical results can be collapsed onto a master curve consistent with Eyring theory over more than 20 orders of magnitude in rate. Extrapolating Eyring fits to simulations at 107 s-1 and above yields Newtonian viscosities η0 that are consistent with available low-rate experiments, and allows predictions to much higher pressures and lower temperatures. There is no indication of a diverging viscosity at finite stress, since log η0 rises sublinearly with pressure up to 6 GPa and η0 >1012 Pa-s. Correlations between chain conformations and Eyring parameters are also presented. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  7. Sensitivity Experiments on the Impact of Vb-Cyclones to Ocean Temperature and Soil Moisture Changes

    Science.gov (United States)

    Messmer, Martina; José Gómez-Navarro, Juan; Raible, Christoph C.

    2016-04-01

    Cyclones developing over the western Mediterranean and move northeastward are a major source of extreme weather and responsible for heavy precipitation over Central Europe. Gaining insight into these processes is crucial to improve the projection of changes in frequency and severity of these so-called Vb-cyclones under future climate change scenarios. This study explores the impact of climate change on Vb-events through a number of idealized sensitivity experiments that assess the role of the sea surface temperature (SST) and soil moisture and their contribution to the moisture content in the atmosphere in recent Vb-events. To achieve this task, we use the Weather Research and Forecasting model (WRF) to dynamically downscale the ERA Interim reanalysis, simulating five prominent Vb-events that led to extreme precipitation in Central Europe. WRF allows simulating a physical consistent response of Vb-cyclones to different SSTs and soil water volumes. The changes in SSTs are designed to follow the expected temperature changes in a future climate scenario. Additionally the corresponding uncertainty in such projections is considered. Results indicate that although an increase of the Mediterranean SSTs leads to increased precipitation over Central Europe, e.g. 136% greater precipitation in the +5 K experiment compared to the control simulation, a change in the high-impact region of Vb-events at the northern side of the Alps is not found. This counter-intuitive behavior seems to be related to the increase of atmospheric instability over the artificially heated SSTs. Thereby, precipitation notably increases over the east Adriatic coast in response to warmer SSTs, which corresponds to the first location where the air is lifted. However, Vb-events become less destructive in their high-impact region, due to high loss of atmospheric water. Further experiments demonstrate that changing the SSTs of the Atlantic invokes almost no reaction (around 1% change) with respect to

  8. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    Science.gov (United States)

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. High pressure and temperature deformation experiments on San Carlos olivine and implications for upper mantle anisotropy

    Science.gov (United States)

    Shekhar, Sushant; Frost, Daniel J.; Walte, Nicolas; Miyajima, Nobuyoshi; Heidelbach, Florian

    2010-05-01

    Crystallographic preferred orientation developed in olivine due to shearing in the mantle is thought to be the prominent reason behind seismic anisotropy in the upper mantle. Seismic anisotropy in upper mantle can be observed up to a depth of 350 km with a marked drop in the strength of anisotropy seen around 250 km. Studies on natural rock samples from the mantle and deformation experiments performed on olivine have revealed that olivine deforms mainly through dislocation creep with Burgers vectors parallel to the [100] crystallographic axis under low pressure conditions (up to 3 GPa). Under similar pressures, evidence of [001] slip has been reported due to the presence of water. In order to understand the deformation mechanism in olivine at pressures greater than 3 GPa, we have performed experiments using the deformation DIA multi-anvil apparatus. The DIA consist of 6 square faceted anvils that compress a cubic high-pressure assembly. The deformation DIA possesses two vertically acting opposing inner rams, which can be operated independently of the main compressive force to deform the sample assembly. The experimental setup consists of a hot-pressed sample of polycrystalline dry San Carlos olivine 0.2 mm cut from a 1.2 mm diameter core at 45° . This slice is sandwiched between alumina pistons also cut at 45° in simple shear geometry. Experiments have been performed at 3, 5 and 8 GPa at a deformation anvil strain rate of 1.0x10-4 s-1and temperatures between 1200-1400° C. Deformed samples were cut normal to the shear plane and parallel to the shear direction. Then the sample was polished and analyzed using electron back scattered diffraction (EBSD) to identify the crystallographic preferred orientation (CPO). The fabric that developed in olivine deformed at 3 GPa mainly resulted from the [100] slip on the (010) plane. Samples deformed at 5 GPa showed both [100] and [001] slip. On the other hand, samples deformed at 8 GPa and 1200° C, show deformation mainly

  10. Test Capabilities and Recent Experiences in the NASA Langley 8-Foot High Temperature Tunnel

    Science.gov (United States)

    Hodge, Jeffrey S.; Harvin, Stephen F.

    2000-01-01

    The NASA Langley 8-Foot High Temperature Tunnel is a combustion-heated hypersonic blowdown-to-atmosphere wind tunnel that provides flight enthalpy simulation for Mach numbers of 4, 5, and 7 through an altitude range from 50,000 to 120,000 feet. The open-.jet test section is 8-ft. in diameter and 12-ft. long. The test section will accommodate large air-breathing hypersonic propulsion systems as well as structural and thermal protection system components. Stable wind tunnel test conditions can be provided for 60 seconds. Additional test capabilities are provided by a radiant heater system used to simulate ascent or entry heating profiles. The test medium is the combustion products of air and methane that are burned in a pressurized combustion chamber. Oxygen is added to the test medium for air-breathing propulsion tests so that the test gas contains 21 percent molar oxygen. The facility was modified extensively in the late 1980's to provide airbreathing propulsion testing capability. In this paper, a brief history and general description of the facility are presented along with a discussion of the types of supported testing. Recently completed tests are discussed to explain the capabilities this facility provides and to demonstrate the experience of the staff.

  11. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  12. Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric Circulation Model

    Science.gov (United States)

    computation of the ground surface temperature. It is hoped that this discussion will contribute to the improvement of the accuracy of computed ground surface temperature in the simulation of climatic changes .

  13. Uncertainty Quantification of Calculated Temperatures for the U.S. Capsules in the AGR-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lybeck, Nancy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Einerson, Jeffrey J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pham, Binh T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hawkes, Grant L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A series of Advanced Gas Reactor (AGR) irradiation experiments are being conducted within the Advanced Reactor Technology (ART) Fuel Development and Qualification Program. The main objectives of the fuel experimental campaign are to provide the necessary data on fuel performance to support fuel process development, qualify a fuel design and fabrication process for normal operation and accident conditions, and support development and validation of fuel performance and fission product transport models and codes (PLN-3636). The AGR-2 test was inserted in the B-12 position in the Advanced Test Reactor (ATR) core at Idaho National Laboratory (INL) in June 2010 and successfully completed irradiation in October 2013, resulting in irradiation of the TRISO fuel for 559.2 effective full power days (EFPDs) during approximately 3.3 calendar years. The AGR-2 data, including the irradiation data and calculated results, were qualified and stored in the Nuclear Data Management and Analysis System (NDMAS) (Pham and Einerson 2014). To support the U.S. TRISO fuel performance assessment and to provide data for validation of fuel performance and fission product transport models and codes, the daily as-run thermal analysis has been performed separately on each of four AGR-2 U.S. capsules for the entire irradiation as discussed in (Hawkes 2014). The ABAQUS code’s finite element-based thermal model predicts the daily average volume-average fuel temperature and peak fuel temperature in each capsule. This thermal model involves complex physical mechanisms (e.g., graphite holder and fuel compact shrinkage) and properties (e.g., conductivity and density). Therefore, the thermal model predictions are affected by uncertainty in input parameters and by incomplete knowledge of the underlying physics leading to modeling assumptions. Therefore, alongside with the deterministic predictions from a set of input thermal conditions, information about prediction uncertainty is instrumental for the ART

  14. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  15. HIGH-TEMPERATURE EXAFS EXPERIMENTS ON LIQUID KPB ALLOYS ANALYZED WITH THE REVERSE MONTE-CARLO METHOD

    NARCIS (Netherlands)

    BRAS, W; XU, R; WICKS, JD; VANDERHORST, F; OVERSLUIZEN, M; MCGREEVY, RL; VANDERLUGT, W

    1994-01-01

    A new sample chamber has been designed which allows high temperature Extended X-ray Absorption Fine Structure (EXAFS) experiments on metallic melts which offer a number of special experimental problems: they are highly corrosive, have high vapour pressures and strongly absorb X-rays. The EXAFS

  16. Tensile and impact properties of vanadium-base alloys irradiated at low temperatures in the ATR-A1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Nowicki, L.J.; Billone, M.C.; Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-03-01

    Subsize tensile and Charpy specimens made from several V-(4-5)Cr-(4-5)Ti alloys were irradiated in the ATR-A1 experiment to study the effects of low-temperature irradiation on mechanical properties. These specimens were contained in lithium-bonded subcapsules and irradiated at temperatures between {approx}200 and 300 C. Peak neutron damage was {approx}4.7 dpa. Postirradiation testing of these specimens has begun. Preliminary results from a limited number of specimens indicate a significant loss of work-hardening capability and dynamic toughness due to the irradiation. These results are consistent with data from previous low-temperature neutron irradiation experiments on these alloys.

  17. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qiong, E-mail: lian24111@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Li, Hongyuan, E-mail: lihongyuan@ncepu.edu.cn [School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 (China); Lu, Daogang, E-mail: ludaogang@ncepu.edu.cn [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Chang, Mu, E-mail: changmu123@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China)

    2017-04-01

    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  18. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: Melting temperatures of Ta at pressures of 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun; Zhou Xianming; Li Jiabo; Wu Qiang; Cai Lingcang; Dai Chengda [National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, 621900 (China)

    2012-05-15

    Equations of state of metals are important issues in earth science and planetary science. A major limitation of them is the lack of experimental data for determining pressure-volume and temperature of shocked metal simultaneously. By measuring them in a single experiment, a major source of systematic error is eliminated in determining from which shock pressure release pressure originates. Hence, a non-contact fast optical method was developed and demonstrated to simultaneously measure a Hugoniot pressure-volume (P{sub H}-V{sub H}) point and interfacial temperature T{sub R} on the release of Hugoniot pressure (P{sub R}) for preheated metals up to 1000 K. Experimental details in our investigation are (i) a Ni-Cr resistance coil field placed around the metal specimen to generate a controllable and stable heating source, (ii) a fiber-optic probe with an optical lens coupling system and optical pyrometer with ns time resolution to carry out non-contact fast optical measurements for determining P{sub H}-V{sub H} and T{sub R}. The shock response of preheated tantalum (Ta) at 773 K was investigated in our work. Measured data for shock velocity versus particle velocity at an initial state of room temperature was in agreement with previous shock compression results, while the measured shock data between 248 and 307 GPa initially heated to 773 K were below the Hugoniot evaluation from its off-Hugoniot states. Obtained interfacial temperatures on release of Hugoniot pressures (100-170 GPa) were in agreement with shock-melting points at initial ambient condition and ab initio calculations of melting curve. It indicates a good consistency for shock melting data of Ta at different initial temperatures. Our combined diagnostics for Hugoniot and temperature provides an important approach for studying EOS and the temperature effect of shocked metals. In particular, our measured melting temperatures of Ta address the current controversy about the difference by more than a factor of 2

  19. Thermal, Chemical and pH Induced Denaturation of a Multimeric β-Galactosidase Reveals Multiple Unfolding Pathways

    Science.gov (United States)

    Kishore, Devesh; Kundu, Suman; Kayastha, Arvind M.

    2012-01-01

    Background In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL), as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH. Methodology/Principal Findings CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class of protein. The conformational stability and thermodynamic parameters of CpGAL unfolding in different states were estimated and interpreted using circular dichroism and fluorescence spectroscopic measurements. The enzyme was found to be structurally and functionally stable in the entire pH range and upto 50°C temperature. Further increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were irreversible, non-coincidental and sigmoidal. Free energy of protein unfolding (ΔG0) and unfolding constant (Kobs) were also calculated for chemically denatured CpGAL. Significance The protein seems to use different pathways for unfolding in different environments and is a classical example of how the environment dictates the path a protein might take to fold while its amino acid sequence only defines its final three-dimensional conformation. The knowledge accumulated could be of immense biotechnological significance as well. PMID:23185611

  20. Investigation of the Cause of Low Blister Threshold Temperatures in the RERTR-12 and AFIP-4 Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell K Meyer

    2012-06-01

    Blister–threshold testing of fuel plates is a standard method through which the safety margin for operation of plate-type in research and test reactors is assessed. The blister-threshold temperature is indicative of the ability of fuel to operate at high temperatures for short periods of time (transient conditions) without failure. This method of testing was applied to the newly developed U-Mo monolithic fuel system. Blister annealing studies on the U-Mo monolithic fuel plates began in 2007, with the Reduced Enrichment for Research and Test Reactors (RERTR)-6 experiment, and they have continued as the U-Mo fuel system has evolved through the research and development process. Blister anneal threshold temperatures from early irradiation experiments (RERTR-6 through RERTR-10) ranged from 400 to 500°C. These temperatures were projected to be acceptable for NRC-licensed research reactors and the high-power Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) based on current safety-analysis reports (SARs). Initial blister testing results from the RERTR-12 experiment capsules X1 and X2 showed a decrease in the blister-threshold temperatures. Blister threshold temperatures from this experiment ranged from 300 to 400°C. Selected plates from the AFIP-4 experiment, which was fabricated using a process similar to that used to fabricate the RERTR-12 experiment, also underwent blister testing to determine whether results would be similar. The measured blister-threshold temperatures from the AFIP-4 plates fell within the same blister-threshold temperature range measured in the RERTR-12 plates. Investigation of the cause of this decrease in bister threshold temperature is being conducted under the guidance of Idaho National Laboratory PLN-4155, “Analysis of Low Blister Threshold Temperatures in the RERTR-12 and AFIP-4 Experiments,” and is driven by hypotheses. The main focus of the investigation is in the following areas: 1. Fabrication variables 2. Pre

  1. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Sato, K.; Kinoshita, M. [Nuclear Power Engineering Corp., Tokyo (Japan)

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  2. A method for estimating the temperature in high energy density free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Principi, Emiliano, E-mail: emiliano.principi@unicam.i [CNISM, Dipartimento di Fisica, Universita degli Studi di Camerino via Madonna delle Carceri, I-62032 Camerino (Italy); Ferrante, Carino; Filipponi, Adriano [Dipartimento di Fisica, Universita degli Studi dell' Aquila, Via Vetoio, I-67100 L' Aquila (Italy); Bencivenga, Filippo; D' Amico, Francesco; Masciovecchio, Claudio [Synchrotron ELETTRA, Strada Statale 14-I-34149 Basovizza, Trieste (Italy); Di Cicco, Andrea [CNISM, Dipartimento di Fisica, Universita degli Studi di Camerino via Madonna delle Carceri, I-62032 Camerino (Italy); IMPMC, Universite Paris 6, CNRS, 140 rue de Lourmel, 75015 Paris (France)

    2010-09-21

    Present and forthcoming free electron laser (FEL) large scale facilities deliver high fluence ultrafast soft and hard X-ray pulses able to create and probe warm dense matter (WDM). Proper diagnostic for basic physical quantities, like temperature and density, is necessary, but the short lifetime of the WDM state (few ps) makes their measurements a challenging task. In this work we propose a method to estimate the WDM temperature using the experimental information from a slow temperature pyrometric probe exploiting the properties of the heat diffusion equation. Numerical simulations show that for typical thin foil samples, a temperature measurement with 1-10{mu}s temporal resolution at the distance of about 300-500{mu}m from the beam center contains sufficient information to retrieve the initial spatial temperature distribution with sufficient accuracy providing information on the temperature reached in the WDM regime. The inversion of the experimental information is obtained by means of a Bayesian approach exploiting a Metropolis Monte Carlo numerical procedure. The model and calculations presented in this work provide the theoretical background for the development of a device for temperature diagnostics of the TIMEX end-station at the Fermi-Elettra FEL facility.

  3. Temperature dependent lattice misfit in nickel-base superalloys - Simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, Steffen; Goeken, Mathias [Lehrstuhl fuer Allgemeine Werkstoffeigenschaften, Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2011-07-01

    Ni-base superalloys are widely used in high temperature applications like jet engines and land-based turbines, because of their excellent high temperature properties. They derive their excellent high temperature strength and creep resistance from the presence of a high volume fraction of Ni{sub 3}Al {gamma}{sup '} precipitates (L1{sub 2} structure), which are embedded coherently within the face centred cubic (A1) {gamma} matrix. The magnitude and sign of the lattice misfit between {gamma} and {gamma}{sup '} are important parameters affecting the microstructural evolution and high temperature strength of Ni-base superalloys. Therefore the knowledge of the lattice misfit at application temperature is of great importance. In this study the lattice misfit of several 1{sup st}, 2{sup nd} and 4{sup th} generation Ni-base superalloys in dependence of temperature has been measured by means of HRXRD and compared with lattice misfit simulations based on thermodynamic calculations. The influence of the thermal expansion coefficients and the change in the chemical composition of both {gamma} and {gamma}{sup '} due to the {gamma}{sup '} dissolution with increasing temperature has been taking into account. The experimentally measured {gamma} and {gamma}{sup '} lattice parameters could be reproduced by the simulation and the {gamma}/{gamma}{sup '} lattice misfit could be reasonably predicted.

  4. Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff

    Science.gov (United States)

    Iserloh, Thomas; Pegoraro, Dominique; Schlösser, Angelika; Thesing, Hannah; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. This study aims at contributing fundamental data for understanding rainfall simulations in depth by studying the effect of the following parameters on the measurement results: 1. Plot design - round or rectangular plot: Can we identify differences in amount of runoff and erosion? 2. Water quality: What is the influence of the water's salt load on interrill erosion and infiltration as measured by rainfall experiments? 3. Water temperature: How much are the results conditioned by the temperature of water, which is subject to changes due to environmental conditions during the experiments? Preliminary results show a moderate increase of soil erosion with the water's salt load while runoff stays almost on the same level. With increasing water temperature, runoff increases continuously. At very high temperatures, soil erosion is clearly increased. A first comparison between round and rectangular plot indicates the rectangular plot to be the most suitable plot shape, but ambiguous results make further research necessary. The analysis of these three factors concerning their influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable.

  5. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  6. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.

    Science.gov (United States)

    Wang, Jing; Zhang, Zhengfeng; Zhao, Weijing; Wang, Liying; Yang, Jun

    2016-05-09

    The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using (1) H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical (1) H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l(-1) of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of (1) H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  8. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). Executive summary. [weather forecasting

    Science.gov (United States)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions so as to significantly reduce the cost for frost and freeze protection and crop losses. The design and implementation of the first phase of an economic experiment which will monitor citrus growers decisions, actions, costs and losses, and meteorological forecasts and actual weather events was carried out. The economic experiment was designed to measure the change in annual protection costs and crop losses which are the direct result of improved temperature forecasts. To estimate the benefits that may result from improved temperature forecasting capability, control and test groups were established with effective separation being accomplished temporally. The control group, utilizing current forecasting capability, was observed during the 1976-77 frost season and the results are reported. A brief overview is given of the economic experiment, the results obtained to date, and the work which still remains to be done.

  9. Method of temperature waves in thermophysical investigations (Analysis of Soviet and Russian Experiences)

    OpenAIRE

    Ivliyev, A. D.

    2009-01-01

    The procedure of employing temperature waves for the investigation of the thermophysical properties of condensed materials is considered. Some experimental facilities utilizing this method are described. © 2009 Pleiades Publishing, Ltd.

  10. In Vivo Experiments with Intraluminal Ultrasound Applicator Compatible with ``Real-Time'' MR Temperature Mapping, designed for Oesophagus Tumour Ablation

    Science.gov (United States)

    Melodelima, D.; Salomir, R.; Mougenot, C.; Theillère, Y.; Moonen, C.; Cathignol, D.

    2005-03-01

    High intensity ultrasound has shown considerable ability to produce precise and deep thermal coagulation necrosis. Focused, cylindrical, spherical or plane transducers have been used to induce high temperature elevation in tissues, in order to coagulate proteins and kill cells. Magnetic Resonance Imaging (MRI) has been used, with focused transducers and cylindrical interstitial applicators, to monitor temperature distribution and provide temperature feedback control during heating procedures. The active part of intraluminal applicators is positioned very close to the target region. It is therefore essential to provide accurate monitoring of heat deposition in the tissue layer near the transducer, in order to control the extension of coagulation necrosis. The purpose of this study was to develop a 10-mm diameter intraluminal ultrasound applicator, designed to treat oesophageal cancers and compatible with "real-time" MR temperature mapping. The ultrasound applicator was tested in vivo under real time, PRF based, fast MR temperature monitoring. Experiments were performed in vivo on pig oesophagus. Respiratory-gated, MR thermometry was performed with segmented EPI gradient echo sequences. Post treatment follow up was performed with MRI in oesophagus and liver. Excellent MR compatibility was demonstrated. Thermal lesions identified on post-treatment follow up showed good correlation with on line MR thermometry data. This study demonstrated the feasibility of oesophageal thermal ablation using intraluminal ultrasound and on line MR temperature monitoring.

  11. DECOVALEX III PROJECT. Thermal-Chemical Modeling of the Yucca Mountain Project Drift Scale Test. Task 2D Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Robin N. [Bechtel SAlC Company, Las Vegas (US)] (comp.)

    2005-02-15

    Task 2D concerns numerical simulation of the coupled THC modeling of the DST test at Yucca mountain, with given results for geologic, thermal, hydrologic, mineralogic and petrologic characterization, as-built configuration of the test block of DST, including locations of various sensors and measuring instruments and the plans for heating and cooling, including expected heater powers at various times, and compared with geochemical measurements performed on gas, water, and mineral samples collected from the DST. Two teams of DOE/LBNL (USA) and JNC (Japan) participated the task with different approaches. The LBNL model represented the fractures and rock matrix by a dual-continuum concept, with the mineral-water-gas reactions treated by primarily kinetic and a few equilibrium reactions. The JNC model represented the fractures and matrix as a single effective continuum, with equilibrium mineral-water reactions controlling the chemical evolution (as well as considering aqueous species transport). The JNC team performed the coupled THC simulation of the Yucca Mountain Drift Scale Test by the coupled THM code 'THAMES', mass transport code 'Dtransu' and geochemical code 'PHREEQE' under coupling system code 'COUPLYS'. The LBNL team simulated the THC processes include coupling between heat, water, and vapor flow; aqueous and gaseous species transport; kinetic and equilibrium mineral-water reactions; and feedback of mineral precipitation/dissolution on porosity, permeability, and capillary pressure, with the FDM code TOUGHREACT V3.0. In general, both models capture the temperature evolution in the rock fairly well, although the JNC model yielded a closer match to the initial temperature rise in the rock, probably due to the better site-specific thermal data. Both models showed the contrasting solubility effects of increasing temperature on calcite and silica solubility; yet the dual continuum approach better represented the effects of

  12. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature

    Science.gov (United States)

    Wang, Zhi-hua; Zhou, Jun-hu; Zhang, Yan-wei; Lu, Zhi-min; Fan, Jian-ren; Cen, Ke-fa

    2005-01-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C~1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  13. Formation of hydrous Mg-silicates at low temperatures: New insights from sepiolite precipitation experiments

    Science.gov (United States)

    Baldermann, Andre; Mavromatis, Vasileios; Dietzel, Martin

    2017-04-01

    The spatiotemporal changes in the distribution and abundance of hydrous Mg-silicates have been frequently used to reconstruct sedimentary facies in modern and past epicontinental seas and lakes, lacustrine settings and in marine environments; albeit the physicochemical conditions and the mineral-forming processes of hydrous Mg-silicates remain questionable. In this experimental study, sepiolite [Mg4Si6O15(OH)2ṡ6H2O] was precipitated from silica-doped seawater and silica-doped synthetic MgCl2-brines over a three months period at aqueous Si/Mg molar ratios ranging from 1:27.5 to 1:110, initial pH of 8.3 ± 0.03 at 25 ± 1°C. The evolution of the solution chemistry and solid-phase composition was monitored using UV-vis spectroscopy, ICP-OES, XRD, ATR-FTIR and TEM analysis. The reactive fluids were, at any time, undersaturated in respect to amorphous silica [SiO2ṡnH2O] and brucite [Mg(OH)2]; thus, a Mg-rich phyllosilicate with a modulated, sepiolite-like structure was the only precipitates in our experiments. The crystallites were poorly crystalline, fibrous (20 to 100 nm in length) and had a (MgO+Al2O3)/SiO2 ratio of 0.44 ± 0.02, which is almost equal to that of ideal and naturally-grown sepiolite. An increase in the intensity of the striking infrared lattice vibration at ˜1205 cm-1 is in accord with an elevated Si/Mg molar ratio of the reactive solutions. This feature results from the periodic inversion of the Si tetrahedra in the evolving 2:1 layer and subsequently denotes the formation of "polysome units" in sepiolite-palygorskite group minerals. For the first time, we determined the apparent growth rate of sepiolite to be 172 ± 16 × 10-6 up to 279 ± 29 × 10-6 mole L-1ṡday-1, which mainly depended on the evolution of pH of the reactive fluids. The presence of MgSO40 aquo-complexes seems to have insignificant influence on the precipitation rate of sepiolite. Our results demonstrate that hydrous Mg-silicates can form in most (peri)marine and diagenetic

  14. Neutron scattering experiments on high-temperature superconducting materials: Foreign trip report, September 13, 1988--October 4, 1988

    Science.gov (United States)

    Mook, H. A.

    1988-10-01

    The trip to the Institut Laue-Langevin (ILL) was made to perform neutron scattering experiments on the new high temperature superconducting materials. Part of this work could have been accomplished at the High Flux Isotope Reactor (HFIR) at ORNL had it been operational; other parts utilized the special instrumentation at the ILL available at no other place. Experiments performed were the following: high energy magnetic excitations in pure and Ba-doped La2CuO4, magnetic excitations and structural phase transitions in the Bi2Ba2Cu1O6 superconductor, search for the fluxoid lattice in the high temperature materials, and magnetic spin structures in ErBa2Cu3O7 and GdBa2Cu3O6.5. Measurements were also made on supermirrors important for polarizing and neutron guide applications.

  15. A high-pressure vessel for X-ray diffraction experiments for liquids in a wide temperature range

    CERN Document Server

    Hosokawa, S

    2001-01-01

    An internally heated high-pressure vessel was developed for angle-dispersive X-ray scattering experiments on liquids at high-temperatures and high-pressures. It consists of a closed-end Al cylinder and a steel flange. Continuous windows made of Be cover a scattering angle range up to 55 deg. In combination with a single-crystal sapphire cell and a small heating system inside the vessel, we were able to carry out diffraction measurements for liquids in a wide temperature range up to 2000 K at high pressures up to 150 bars. Some of our recent X-ray scattering experiments using synchrotron radiation, such as inelastic scattering, high-energy elastic scattering, and anomalous scattering, are also reported.

  16. Temperature dependence of the critical current of the superconducting microladder in zero magnetic field: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fink, H.J. (Department of Electrical Engineering and Computer Science, University of California, Davis, Davis, California 95616 (USA)); Buisson, O.; Pannetier, B. (Centre de Recherches sur les Tres Basses Temperature, Centre National de la Recherche Scientifique, Boite Postale 166X, 38042 Grenoble CEDEX, France (FR))

    1991-05-01

    The largest supercurrent which can be injected into a superconducting microladder was calculated as a function of nodal spacing {ital scrL} and temperature for zero magnetic flux using (i) exact solutions of the Ginzburg-Landau equation in terms of Jacobian elliptic functions and (ii) approximate solutions in terms of hyperbolic functions. The agreement is good for {ital scrL}/{xi}({ital T}){lt}3, where {xi}({ital T}) is the temperature-dependent coherence length. Since solution (ii) is much simpler than solution (i), it is of considerable value when calculating critical currents of micronets with nodal spacings comparable to {xi}({ital T}). We find that the temperature-dependent critical current deviates significantly from the classical 3/2 power law of the Ginzburg-Landau theory. Preliminary experiments on a submicrometer ladder confirm such deviations.

  17. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application

    Science.gov (United States)

    Wang, Daoming; Zi, Bin; Zeng, Yishan; Qian, Sen; Qian, Jun

    2017-09-01

    The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify the correctness and feasibility of the simulation.

  18. Experiences with high temperature corrosion at straw‐firing power plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Borg, U.

    2011-01-01

    By the end of 2009, there will be eight biomass and five biomass co‐firing plants in Denmark. Due to the steep increase of corrosion rate with respect to temperature in biomass plants, it is not viable to have similar steam data as fossil fuel plants. Thus for the newer plants, Maribo Sakskøbing...... to enable better lifetime prediction of vulnerable components in straw‐firing plants since the corrosion rates are so much faster than in coal firing plants. Therefore, there are continued investigations in recently commissioned plants with test tubes installed into actual superheaters. In addition...... rates at higher temperatures to assess if there is a possibility to increase the outlet temperature of the plant, thus making the plant more cost effective. For this purpose Avedøre 2 biomass boiler has a test superheater loop fabricated in TP347H FG (the same material as the final superheaters). Some...

  19. Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment

    Science.gov (United States)

    Larionova, A. A.; Maltseva, A. N.; Lopes de Gerenyu, V. O.; Kvitkina, A. K.; Bykhovets, S. S.; Zolotareva, B. N.; Kudeyarov, V. N.

    2017-04-01

    The mineralization and humification of leaf litter collected in a mixed forest of the Prioksko-Terrasny Reserve depending on temperature (2, 12, and 22°C) and moisture (15, 30, 70, 100, and 150% of water holding capacity ( WHC)) has been studied in long-term incubation experiments. Mineralization is the most sensitive to temperature changes at the early stage of decomposition; the Q 10 value at the beginning of the experiment (1.5-2.7) is higher than at the later decomposition stages (0.3-1.3). Carbon losses usually exceed nitrogen losses during decomposition. Intensive nitrogen losses are observed only at the high temperature and moisture of litter (22°C and 100% WHC). Humification determined from the accumulation of humic substances in the end of incubation decreases from 34 to 9% with increasing moisture and temperature. The degree of humification CHA/CFA is maximum (1.14) at 12°C and 15% WHC; therefore, these temperature and moisture conditions are considered optimal for humification. Humification calculated from the limit value of litter mineralization is almost independent of temperature, but it significantly decreases from 70 to 3% with increasing moisture. A possible reason for the difference between the humification values measured by two methods is the conservation of a significant part of hemicelluloses, cellulose, and lignin during the transformation of litter and the formation of a complex of humic substances with plant residues, where HSs fulfill a protectoral role and decrease the decomposition rate of plant biopolymers.

  20. Installation of a cryogenic station to perform Emission Channeling experiments at low temperature

    CERN Document Server

    Amorim, Lígia; Ribeiro-da-Silva, Manuel; Correia, João-Guilherme

    2008-09-30

    The emission channeling (EC) technique is used to determine with high precision the lattice sites of elements/impurities in a single-crystal. With the introduction of a cooling system the EC technique will allow to study the traveling of the impurities in the single-crystal as function of temperature, below room temperature. EC further allows the study of the elements/impurity vibrations and its eventual anisotropy along different lattice orientations. This report presents the planning and implementation of the cooling station for an existing emission channeling chamber.

  1. Temperature dependence of the cosphi conductance in Josephson tunnel junctions determined from plasma resonance experiments

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper

    1978-01-01

    as the temperature is decreased from Tc. We used three different schemes for observation of the plasma oscillations: (a) second-harmonic generation (excitation at ∼ 4.5 GHz, fp∼4.5 GHz); (b) mixing (excitations at ∼ 9 and ∼ 18 GHz, fp∼9 GHz); (c) parametric half-harmonic oscillation (excitation at ∼ 18 GHz, fp∼9 GHz...

  2. Measurements of Humidity and Temperature in the Marine Environment during the HEXOS Main Experiment

    NARCIS (Netherlands)

    Katsaros, K.B.; Cosmo, J. de; Lind, R.J.; Anderson, R.J.; Smith, S.D.; Kraan, R.; Oost, W.A.; Uhlig, K.; Mestayer, P.G.; Larsen, S.E.; Smith, M.H.; Leeuw, G. de

    1994-01-01

    Accurate measurement of fluctuations in temperature and humidity are needed for determination of the surface evaporation rate and the air-sea sensible heat flux using either the eddy correlation or inertial dissipation method for flux calculations. These measurements are difficult to make over the

  3. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  4. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  5. Volume growth during uniaxial tension of particle-filled elastomers at various temperatures - Experiments and modelling

    Science.gov (United States)

    Ilseng, Arne; H. Skallerud, Bjørn; H. Clausen, Arild

    2017-10-01

    A common presumption for elastomeric material behaviour is incompressibility, however, the inclusion of filler particles might give rise to matrix-particle decohesion and subsequent volume growth. In this article, the volumetric deformation accompanying uniaxial tension of particle-filled elastomeric materials at low temperatures is studied. An experimental set-up enabling full-field deformation measurements is outlined and novel data are reported on the significant volume growth accompanying uniaxial tension of two HNBR and one FKM compounds at temperatures of - 18 , 0, and 23 °C. The volumetric deformation was found to increase with reduced temperature for all compounds. To explain the observed dilatation, in situ scanning electron microscopy was used to inspect matrix-particle debonding occurring at the surface of the materials. A new constitutive model, combining the Bergström-Boyce visco-hyperelastic formulation with a Gurson flow potential function is outlined to account for the observed debonding effects in a numerical framework. The proposed model is shown to provide a good correspondence to the experimental data, including the volumetric response, for the tested FKM compound at all temperature levels.

  6. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    Science.gov (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  7. Fast temperature cycling and electromigration induced thin film cracking multilevel interconnection: experiments and modeling

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Nguyen, H.; Salm, Cora; Vroemen, J.; Voets, J.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    2002-01-01

    There is an increasing reliability concern of thermal stress-induced and electromigration-induced failures in multilevel interconnections in recent years. This paper reports our investigations of thinfilm cracking of a multilevel interconnect due to fast temperature cycling and electromigration

  8. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Däumling, Manfred; Jensen, Kim Høj

    2004-01-01

    of this demonstration project is to gain experience with HTS cables under realistic conditions in a live distribution network. Approximately 50 000 utility customers have their electric power supplied through the HTS cable. The cable system has delivered 226 GW h of energy and reached a maximum operating current......A superconducting cable based on Bi-2223 tape technology has been developed, installed and operated in the public network of Copenhagen Energy in a two-year period between May 2001 and May 2003. This paper gives a brief overview of the system and analyses some of the operation experiences. The aim...... of 1157 A. The operation experiences include over-currents of 6 kA due to faults on peripheral lines, commissioning, servicing and failure responses on the cooling system, continuous 24 h, 7 day per week monitoring and performance of the alarm system. The implications of these experiences for the future...

  9. Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA.

    Science.gov (United States)

    Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning.

  10. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments

    Science.gov (United States)

    Seewald, Jeffrey S.

    2001-05-01

    Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350°C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxylation and/or oxidation reactions to form carbon dioxide and shorter chain saturated hydrocarbons. This alteration assemblage is compositionally distinct from that produced by thermal cracking under anhydrous conditions, indicating that the presence of water and minerals provide alternative reaction pathways for the decomposition of hydrocarbons. The rate of hydrocarbon oxidation decreases substantially under reducing conditions and in the absence of catalytically active aqueous sulfur species. These results represent compelling evidence that the stability of aqueous hydrocarbons at elevated temperatures in natural environments is not a simple function of time and temperature alone. Under the appropriate geochemical conditions, stepwise oxidation represents a mechanism for the decomposition of low

  11. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). [weather forecasting

    Science.gov (United States)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions. An economic experiment was carried out which will monitor citrus growers' decisions, actions, costs and losses, and meteorological forecasts and actual weather events and will establish the economic benefits of improved temperature forecasts. A summary is given of the economic experiment, the results obtained to date, and the work which still remains to be done. Specifically, the experiment design is described in detail as are the developed data collection methodology and procedures, sampling plan, data reduction techniques, cost and loss models, establishment of frost severity measures, data obtained from citrus growers, National Weather Service, and Federal Crop Insurance Corp., resulting protection costs and crop losses for the control group sample, extrapolation of results of control group to the Florida citrus industry and the method for normalization of these results to a normal or average frost season so that results may be compared with anticipated similar results from test group measurements.

  12. Blue Intensity based experiments for reconstructing North Pacific temperatures along the Gulf of Alaska

    Science.gov (United States)

    Wilson, Rob; D'Arrigo, Rosanne; Andreu-Hayles, Laia; Oelkers, Rose; Wiles, Greg; Anchukaitis, Kevin; Davi, Nicole

    2017-04-01

    The Gulf of Alaska (GOA) is highly sensitive to the variability of the North Pacific climate system. Ring-width (RW) records from the GOA have yielded a valuable long-term perspective for North Pacific changes on decadal to longer time scales in previous studies, but can be less robust on interannual time scales due to autocorrelation and other factors. Similar to maximum latewood density (MXD), the novel Blue Intensity (BI) parameter has recently been shown to correlate strongly with year-to-year warm-season temperatures for a number of sites at northern latitudes. Since BI is much less expensive and labor intensive to generate than MXD, it has much value for future tree-ring studies in the GOA where few MXD records have been developed. Here we highlight the potential for improvement of reconstruction models using various combinations of RW and BI-related parameters (latewood BI and delta BI) measured from eight hemlock (Tsuga mertensiana) sites along the GOA. This is the first such study for the hemlock genus using BI data. We find that a combined experimental model using RW, delta BI and latewood BI best reflects inter-annual to multi-decadal temperature variability for the North Pacific sector, particularly during the warm-season months. A resulting test reconstruction (1792-1989 CE) of GOA CRUT 3.24 land JJAS temperatures (57-60°N/154-134°W) is significantly improved over that based on RW alone (58% vs 36% variance explained). Significant validation is also found with 19th century temperature data from Sitka, Alaska and using the BEST gridded data product. We therefore find that BI has considerable potential to become a sensitive, readily accessible alternative proxy for understanding past ocean-atmosphere variability in the GOA and elsewhere around the globe. A key need in furthering the utility of BI as a proxy is experimentation in the extraction of lower frequency variability.

  13. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes

    OpenAIRE

    M. Messmer; J. J. Gómez-Navarro; Raible, C. C.

    2017-01-01

    Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST) and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysi...

  14. Sensitivity Experiments on the Response of Vb Cyclones to Ocean Temperature and Soil Moisture Changes

    OpenAIRE

    Messmer, Martina; Gómez-Navarro, Juan José; Raible, Christoph C.

    2016-01-01

    Extra-tropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards being responsible for heavy precipitation over Central Europe. To gain further understanding in the governing processes of these Vb cyclones the stu-dy explores the role of soil moisture and sea surface temperature (SST) and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically do...

  15. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  16. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments.

    Science.gov (United States)

    Sano-Furukawa, A; Hattori, T; Arima, H; Yamada, A; Tabata, S; Kondo, M; Nakamura, A; Kagi, H; Yagi, T

    2014-11-01

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm(3). Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  17. Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition - a mesocosm experiment

    Science.gov (United States)

    Cinzia Fissore; Martin F. Jurgensen; James Pickens; Chris Miller; Deborah Page-Dumroese; Christian P. Giardina

    2016-01-01

    Of all the major pools of terrestrial carbon (C), the dynamics of coarse woody debris (CWD) are the least understood. In contrast to soils and living vegetation, the study of CWD has rarely relied on ex situ methods for elaborating controls on decomposition rates. In this study, we report on a mesocosm incubation experiment examining how clay amount (8%, 16%,...

  18. Does temperature affect dimorphic reproduction in benthic foraminifera? A culture experiment on Rosalina leei

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Caron, D.A.

    tion for sa mple collection. The species R. leei was selected for future experiments. F o raminiferal specimens were obtained by vigorous shaking of Sa r- gassum into a plastic bucket filled with sea water. The residue was passed through a 63...

  19. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    Science.gov (United States)

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to

  20. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  1. Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Béla Kosztin

    2013-03-01

    Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.

  2. Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska

    Directory of Open Access Journals (Sweden)

    R. Wilson

    2017-08-01

    Full Text Available Ring-width (RW records from the Gulf of Alaska (GOA have yielded a valuable long-term perspective for North Pacific changes on decadal to longer timescales in prior studies but contain a broad winter to late summer seasonal climate response. Similar to the highly climate-sensitive maximum latewood density (MXD proxy, the blue intensity (BI parameter has recently been shown to correlate well with year-to-year warm-season temperatures for a number of sites at northern latitudes. Since BI records are much less labour intensive and expensive to generate than MXD, such data hold great potential value for future tree-ring studies in the GOA and other regions in mid- to high latitudes. Here we explore the potential for improving tree-ring-based reconstructions using combinations of RW- and BI-related parameters (latewood BI and delta BI from an experimental subset of samples at eight mountain hemlock (Tsuga mertensiana sites along the GOA. This is the first study for the hemlock genus using BI data. We find that using either inverted latewood BI (LWBinv or delta BI (DB can improve the amount of explained temperature variance by > 10 % compared to RW alone, although the optimal target season shrinks to June–September, which may have implications for studying ocean–atmosphere variability in the region. One challenge in building these BI records is that resin extraction did not remove colour differences between the heartwood and sapwood; thus, long term trend biases, expressed as relatively warm temperatures in the 18th century, were noted when using the LWBinv data. Using DB appeared to overcome these trend biases, resulting in a reconstruction expressing 18th–19th century temperatures ca. 0.5 °C cooler than the 20th–21st centuries. This cool period agrees well with previous dendroclimatic studies and the glacial advance record in the region. Continuing BI measurement in the GOA region must focus on sampling and measuring more trees per

  3. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, James P., E-mail: james.tonks@awe.co.uk [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk; King, Martin O. [AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Kerherve, Gwilherm [VACGEN Ltd, St. Leonards-On-Sea, East Sussex TN38 9NN (United Kingdom); Watts, John F. [Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  4. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  5. Mathematical Evaluation of Prediction Accuracy for Food Quality by Time Temperature Integrator of Intelligent Food Packaging through Virtual Experiments

    Directory of Open Access Journals (Sweden)

    Soo Dong Shim

    2013-01-01

    Full Text Available Prediction of the quality of packaged foods using a colorimetric time temperature integrator (TTI is affected by the types of kinetic models for the TTIs and the associated food qualities. Several types of kinetic models were applied for the TTI color change (four types and food microbial growth (three types. To evaluate the prediction, a virtual experiment data of the food microbial growth were mathematically created by using the relevant kinetic models. In addition to the kinetic models, two types of temperature-dependent models (Arrhenius and square root models were used in the calculation. Among the four types of TTIs, M2-3510 or S type for Pseudomonas spp. and M type for Listeria monocytogenes and Escherichia coli showed the least erroneous results. Overall, a suitable TTI could be selected for each food microorganism, based on the prediction accuracy.

  6. Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment

    Science.gov (United States)

    Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.

    1995-01-01

    Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.

  7. Effects of ultrafiltration, dialysis, and temperature on gas exchange during hemodiafiltration: a laboratory experiment.

    Science.gov (United States)

    Ruzicka, J; Novak, I; Rokyta, R; Matejovic, M; Hadravsky, M; Nalos, M; Sramek, V

    2001-12-01

    To study gas exchange in the filter during continuous venovenous hemodiafiltration (CVVHDF), an air-tight heated mixing chamber with adjustable CO2 supply was constructed and connected to a CVVHDF monitor. Bicarbonate-free crystalloid (Part 1) and packed red blood cell (Part 2) solutions were circulated at 150 ml x min(-1). Gas exchange expressed as pre-postfilter difference in CO2 and O2 contents was measured at different CVVHDF settings and temperatures of circulating and dialysis solutions. Ultrafiltration was most efficacious for CO2 removal (at 1,000 ml x h(-1) ultrafiltration CO2 losses reached 13% of prefilter CO2 content). Addition of dialysis (1,000 ml x h(-1)) increased CO2 loss to 17% and at maximal parameters (filtration 3,000 ml x h(-1), dialysis 2,500 ml x h(-1)), the loss of CO2 amounted to 35% of prefilter content. Temperature changes of circulating and/or dialysis fluids had no significant impact on CO2 losses. The O2 exchange during CVVHDF was negligible. Currently used CVVHDF is only marginally effective in CO2 removal. Higher volume ultrafiltration combined with dialysis can be expected to reach clinical significance.

  8. Soft and hard probes of high-temperature matter with the ATLAS experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Relativistic heavy ion collisions provide an experimental setting for studying a variety of novel QCD phenomena. In particular, they enable the study of QCD at high temperatures and provide accessibility to a medium, the Quark-Gluon Plasma (QGP), containing a high density of unscreened color charges. Measurements performed in the LHC era have revolutionized our understanding of phenomena such as harmonic flow and jet quenching in the QGP and have altered the paradigm underlying proton-ion collisions. The high-quality calorimetry make the ATLAS detector an ideal apparatus to study jet observables and the large acceptance enables detailed measurements of soft particle correlations. In this talk I will summarize measurements performed by the ATLAS Collaboration. These include jet observables that are directly sensitive to jet quenching as well as a comprehensive set of color-neutral probes that provide control over hard scattering rates. Also presented are flow measurements that elucidate the role of initial geo...

  9. Weakness of serpentine minerals revealed by friction experiments under low and high temperature conditions.

    Science.gov (United States)

    Harbord, C. W. A.; Tesei, T.; De Paola, N.; Collettini, C.; Scarlato, P.; Viti, C.

    2016-12-01

    Serpentines are important constituents of fault rocks and mélanges in a large variety of tectonic settings, including some major plate-boundary structures such as the San Andreas fault. Many of these structures are considered frictionally weak on geological and geophysical basis (i.e. µDurham University, UK). The sliding strength of lizardite and chrisotile/polygonal (the typical association in retrograde serpentinites and in several natural shear zones) is lower than previously reported (µ<0.2) and scarcely affected by temperature changes for T<200°. Interestingly, these results are in agreement with the fault strength inferred for the central segment of the San Andreas fault where abundant serpentinites are present. Our observations, together with field evidence from natural shear zones, suggest that serpentine-rich faults may significantly contribute to the weakness of major faults throughout the brittle upper crust.

  10. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment.

    Science.gov (United States)

    Robinson, Sinikka I; McLaughlin, Órla B; Marteinsdóttir, Bryndís; O'Gorman, Eoin J

    2018-01-25

    1.Global warming is predicted to significantly alter species physiology, biotic interactions, and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. 2.Here, we used a natural warming experiment in Iceland to investigate the changes in aboveground terrestrial plant and invertebrate communities along a soil temperature gradient (10-30 °C). 3.The α-diversity of plants and invertebrates decreased with increasing soil temperature, driven by decreasing plant species richness and increasing dominance of certain invertebrate species in warmer habitats. There was also greater species turnover in both plant and invertebrate communities with increasing pairwise temperature difference between sites. There was no effect of temperature on percentage cover of vegetation at the community level, driven by contrasting effects at the population level. 4.There was a reduction in the mean body mass and an increase in the total abundance of the invertebrate community, resulting in no overall change in community biomass. There were contrasting effects of temperature on the population abundance of various invertebrate species, which could be explained by differential thermal tolerances and metabolic requirements, or may have been mediated by changes in plant community composition. 5.Our study provides an important baseline from which the effect of changing environmental conditions on terrestrial communities can be tracked. It also contributes to our understanding of why community-level studies of warming impacts are imperative if we are to disentangle the contrasting thermal responses of individual populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Precision rectifier detectors for ac resistance bridge measurements with application to temperature control systems for irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M. G.

    1977-05-01

    The suitability of several temperature measurement schemes for an irradiation creep experiment is examined. It is found that the specimen resistance can be used to measure and control the sample temperature if compensated for resistance drift due to radiation and annealing effects. A modified Kelvin bridge is presented that allows compensation for resistance drift by periodically checking the sample resistance at a controlled ambient temperature. A new phase-insensitive method for detecting the bridge error signals is presented. The phase-insensitive detector is formed by averaging the magnitude of two bridge voltages. Although this method is substantially less sensitive to stray reactances in the bridge than conventional phase-sensitive detectors, it is sensitive to gain stability and linearity of the rectifier circuits. Accuracy limitations of rectifier circuits are examined both theoretically and experimentally in great detail. Both hand analyses and computer simulations of rectifier errors are presented. Finally, the design of a temperature control system based on sample resistance measurement is presented. The prototype is shown to control a 316 stainless steel sample to within a 0.15/sup 0/C short term (10 sec) and a 0.03/sup 0/C long term (10 min) standard deviation at temperatures between 150 and 700/sup 0/C. The phase-insensitive detector typically contributes less than 10 ppM peak resistance measurement error (0.04/sup 0/C at 700/sup 0/C for 316 stainless steel or 0.005/sup 0/C at 150/sup 0/C for zirconium).

  12. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    Science.gov (United States)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  13. Review of the Safety Concern Related to CANDU Moderator Temperature Distribution and Status of KAERI Moderator Circulation Test (MCT) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Bo W.; Kim, Hyoung T. [Severe Accident and PHWR Safety Research Division, Daejeon (Korea, Republic of); Kim, Tongbeum [University of the Witwatersrand, Johannesburg (South Africa); Im, Sunghyuk [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Following a large break LOCA and before Emergency Coolant Injection (ECI) initiation, pressure tubes (PT) significantly heat up as a result of the initial power pulse and degraded coolant flow. Consequently, some pressure tubes balloon and come into contact with the calandria tubes (CT). Following the PT/CT contact, the pressure tubes cool as they transfer some of the absorbed heat to the moderator via conduction at contact locations. As long as sustained calandria tube dryout does not occur, the calandria tube surface temperature remains below the creep threshold temperature and no further deformation is expected. Consequently, a sufficient condition to ensure fuel channel integrity following a large LOCA, is the avoidance of sustained calandria tubes dryout. If the moderator available subcooling at the onset of a large LOCA is greater than the subcooling requirements, a sustained calandria tube dryout is avoided. The subcooling requirements are determined from a set of experiments known as fuel channel contact experiments. The difference between available subcooling and required subcooling is called subcooling margins. The moderator flow circulation patterns are complicated slow flows that significantly vary from buoyancy dominated to inertia dominated patterns. Accurate predictions of flow patterns are essential for accurate calculation of moderator temperature distributions and the related moderator subcooling. Following a large break LOCA and before Emergency Coolant Injection (ECI) initiation, pressure tubes (PT) significantly heat up as a result of the initial power pulse and degraded coolant flow. Consequently, some pressure tubes balloon and come into contact with the calandria tubes (CT). Following the PT/CT contact, the pressure tubes cool as they transfer some of the absorbed heat to the moderator via conduction at contact locations. As long as sustained calandria tube dryout does not occur, the calandria tube surface temperature remains below the creep

  14. Heave, settlement and fracture of chalk during physical modelling experiments with temperature cycling above and below 0 °C

    Science.gov (United States)

    Murton, Julian B.; Ozouf, Jean-Claude; Peterson, Rorik

    2016-10-01

    To elucidate the early stages of heave, settlement and fracture of intact frost-susceptible rock by temperature cycling above and below 0 °C, two physical modelling experiments were performed on 10 rectangular blocks 450 mm high of fine-grained, soft limestone. One experiment simulated 21 cycles of bidirectional freezing (upward and downward) of an active layer above permafrost, and the other simulated 26 cycles of unidirectional freezing (downward) of a seasonally frozen bedrock in a non-permafrost region. Heave and settlement of the top of the blocks were monitored in relation to rock temperature and unfrozen water content, which ranged from almost dry to almost saturated. In the bidirectional freezing experiment, heave of the wettest block initially occurred abruptly at the onset of freezing periods and gradually during thawing periods (summer heave). After the crossing of a threshold marked by the appearance of a macrocrack in the upper layer of permafrost, summer heave increased by an order of magnitude as segregated ice accumulated incrementally in macrocracks, interrupted episodically by abrupt settlement that coincided with unusually high air temperatures. In the unidirectional freezing experiment, the wet blocks heaved during freezing periods and settled during thawing periods, whereas the driest blocks showed the opposite behaviour. The two wettest blocks settled progressively during the first 15 freeze-thaw cycles, before starting to heave progressively as macrocracks developed. Four processes, operating singly or in combination in the blocks account for their heave and settlement: (1) thermal expansion and contraction caused heave and settlement when little or no water-ice phase change was involved; (2) volumetric expansion of water freezing in situ caused short bursts of heave of the outer millimetres of wet rock; (3) ice segregation deeper in the blocks caused sustained heave during thawing and freezing periods; and (4) freeze-thaw cycling caused

  15. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  16. Assessment of lidar remote sensing capability of Raman water temperature from laboratory and field experiments (Conference Presentation)

    Science.gov (United States)

    Josset, Damien B.; Hou, Weilin W.; Goode, Wesley; Matt, Silvia C.; Hu, Yongxiang

    2017-05-01

    multispectral capability in both emission (based on an optical parametric oscillator) and detection (optical filters) provide flexibility to measure the polarization signature of both elastic and inelastic scattering. We will present the characteristics of TURBOL and several results from our laboratory and field experiments with an emphasis on temperature profiling capabilities based on vibrational Raman polarization. We will also present other directions of research related to this activity.

  17. The onset of dissipation in high-temperature superconductors: Self-field experiments

    Science.gov (United States)

    Talantsev, E. F.; Strickland, N. M.; Wimbush, S. C.; Crump, W. P.

    2017-12-01

    The transport critical current, Ic, is usually defined in terms of a threshold electric field criterion, Ec, with the convention Ec = 1 μV/cm chosen somewhat arbitrarily to provide "reasonably small" electric power dissipation in practical devices. Thus Ic is not fundamentally determined. However, recently it has been shown that the self-field critical current of thin-film superconductors is indeed a fundamental property governed only by the London penetration depth of the material. Here we reconsider the definition of the critical current and resolve this apparent contradiction. We measure the field distribution across the width of both first-generation and second-generation high-temperature superconducting tapes as the transport current is increased from zero to Ic. We identify a threshold current, Ic,surfB, at which the local surface magnetic flux density, Bsurf, abruptly crosses over from a non-linear to a linear dependence on the transport current, as measured at any point on the superconductor surface. This results from the current distribution across the tape width transitioning from non-uniform to uniform. This coincides with the onset of dissipation and immediately precedes the appearance of a measureable electric field. In the present examples Ic,surfB is 12-15% lower than an Ic determined by the Ec criterion. We propose the transition of Bsurf(I) from non-linear to linear as a more fundamental criterion for determining transport critical currents.

  18. Operating experience of the southwire high-temperature superconducting cable project

    Science.gov (United States)

    Hughey, R. L.; Lindsay, D.

    2002-01-01

    Southwire Company of Carrollton, Georgia in cooperation with Oak Ridge National Laboratory has designed, built, installed and is operating the world's first field installation of a High Temperature Superconducting (HTS) cable system. The cables supply power to three Southwire manufacturing facilities and part of the corporate headquarters building in Carrollton, GA. The system consists of three 30-m single phase cables rated at 12.4 kV, 1250 Amps, liquid nitrogen cooling system, and the computer-based control system. The cables are built using BSCCO-2223 powder-in-tube HTS tapes and a proprietary cryogenic dielectric material called Cryoflex™. The cables are fully shielded with a second layer of HTS tapes to eliminate any external magnetic fields. The Southwire HTS cables were first energized on january 6, 2000. Since that time they have logged over 8,500 hours of operation while supplying 100% of the required customer load. To date, the cables have worked without failure and operations are continuing. The cable design has passed requisite testing for this class of conventional cables including 10× over current to 12,500 Amps and BIL testing to 110 kV. Southwire has also successfully designed and tested a cable splice. System heat loads and AC Losses have been measured and compared to calculated values. On June 1, 2001 on-site monitoring was ceased and the system was changed to unattended operation to further prove the reliability of the HTS cable system. .

  19. Comparison between large area photo-multiplier tubes at cryogenic temperature for neutrino and rare event physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, A., E-mail: andrea.falcone@pv.infn.it [University of Pavia – Via Bassi 6, 27100 Pavia (Italy); INFN Sezione di Pavia – Via Bassi 6, 27100 Pavia (Italy); Bertoni, R. [INFN Sezione di Milano Bicocca – Piazza della Scienza 3, 20126 Milano (Italy); Boffelli, F. [University of Pavia – Via Bassi 6, 27100 Pavia (Italy); INFN Sezione di Pavia – Via Bassi 6, 27100 Pavia (Italy); Bonesini, M. [INFN Sezione di Milano Bicocca – Piazza della Scienza 3, 20126 Milano (Italy); Cervi, T. [University of Pavia – Via Bassi 6, 27100 Pavia (Italy); Menegolli, A. [University of Pavia – Via Bassi 6, 27100 Pavia (Italy); INFN Sezione di Pavia – Via Bassi 6, 27100 Pavia (Italy); Montanari, C.; Prata, M.C.; Rappoldi, A.; Raselli, G.L.; Rossella, M. [INFN Sezione di Pavia – Via Bassi 6, 27100 Pavia (Italy); Spanu, M. [University of Pavia – Via Bassi 6, 27100 Pavia (Italy); Torti, M. [University of Pavia – Via Bassi 6, 27100 Pavia (Italy); INFN Sezione di Pavia – Via Bassi 6, 27100 Pavia (Italy); Zani, A. [INFN Sezione di Pavia – Via Bassi 6, 27100 Pavia (Italy)

    2015-07-01

    An evaluation of the behavior of three large cathode area photo-multiplier tubes, Hamamatsu R5912 Mod and R5912-02 Mod, and ETL 9357 KFLB, was carried out both at room and cryogenic temperature, using a 405 nm light source. The main electrical and optical features of the devices were studied; the obtained results were compared with the characteristics of the ETL 9357 FLA tubes, used in the ICARUS experiment. Tubes were also studied as a function of the Earth's magnetic field and an evaluation of the quantum efficiency was made in the vacuum ultraviolet light region. - Highlights: • We tested three 8-in. PMTs both at room and at cryogenic temperature. • The response as a function of the terrestrial magnetic field was tested. • The quantum efficiency for VUV light was measured. • Gain, linearity and dark count rate at 77 K and at 300 K were compared. • The PMTs were found able to work at cryogenic temperature.

  20. Study of using aqueous NH{sub 3} to synthesize GaN nanowires on Si(1 1 1) by thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saron, K.M.A., E-mail: kamalmohammedabdalla@yahoo.com [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, University Sains Malaysia, Penang 11800 (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, University Sains Malaysia, Penang 11800 (Malaysia)

    2013-03-20

    Highlights: ► This study presents a facile, low cost and safe method to synthesize high quality GaN NWs, by using NH{sub 3} solution as N source. ► Moderating the N{sub 2} flow rate improved the crystalline quality of the NWs and also produced zigzag shaped NWs. ► Raman spectra showed that the synthesized GaN NWs had hexagonal wurtzite structures as a result of increased tensile stress. ► By moderating N{sub 2} flow, strong NBE emission peaks at about 364 nm and YB is subsided. -- Abstract: High-quality GaN nanowires (NWs) and zigzag-shaped NWs were grown on catalyst-free Si(1 1 1) substrate by thermal chemical vapor deposition (TCVD). Gallium (Ga) metal and aqueous NH{sub 3} solution are used as a source of materials. Ga vapor was directly reacts with gaseous NH{sub 3} under controlled nitrogen flow at 1050 °C. Scanning electron microscopy (SEM) images showed that the morphology of GaN displayed various densities of NWs and zigzag NWs depending on the gas flow rate, and increased nitrogen flow rate caused density reduction. The GaN NWs exhibited clear X-ray diffraction analysis (XRD) peaks that corresponded to GaN with hexagonal wurtzite structures. The photoluminescence spectra showed that the ultraviolet band emission of GaN NWs had a strong near band-edge emission (NBE) at 361–367 nm. Yellow band emissions were observed at low and high flow rates due to nitrogen and Ga vacancies, respectively. Moderate N{sub 2} flow resulted in a strong NBE emission and a high optical quality of the NWs. This study shows the possibility of low-cost synthesis of GaN nanostructures on Si wafers using aqueous NH{sub 3} solution.

  1. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  2. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes

    Directory of Open Access Journals (Sweden)

    M. Messmer

    2017-07-01

    Full Text Available Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically downscaled with the Weather Research and Forecasting (WRF model. Results indicate that a mean high-impact summer Vb event is mostly sensitive to an increase in the Mediterranean SSTs and rather insensitive to Atlantic SSTs and soil moisture changes. Hence, an increase of +5 K in Mediterranean SSTs leads to an average increase of 24 % in precipitation over central Europe. This increase in precipitation is mainly induced by larger mean upward moisture flux over the Mediterranean with increasing Mediterranean SSTs. This further invokes an increase in latent energy release, which leads to an increase in atmospheric instability, i.e. in convective available potential energy. Both the increased availability of atmospheric moisture and the increased instability of the atmosphere, which is able to remove extra moisture from the atmosphere due to convective processes, are responsible for the strong increase in precipitation over the entire region influenced by Vb events. Precipitation patterns further indicate that a strong increase in precipitation is found at the eastern coast of the Adriatic Sea for increased Mediterranean SSTs. This premature loss in atmospheric moisture leads to a significant decrease in atmospheric moisture transport to central Europe and the northeastern flanks of the Alpine mountain chain. This leads to a reduction in precipitation in this high-impact region of the Vb event for an increase in Mediterranean SSTs of +5 K. Furthermore, the

  3. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes

    Science.gov (United States)

    Messmer, Martina; José Gómez-Navarro, Juan; Raible, Christoph C.

    2017-07-01

    Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST) and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically downscaled with the Weather Research and Forecasting (WRF) model. Results indicate that a mean high-impact summer Vb event is mostly sensitive to an increase in the Mediterranean SSTs and rather insensitive to Atlantic SSTs and soil moisture changes. Hence, an increase of +5 K in Mediterranean SSTs leads to an average increase of 24 % in precipitation over central Europe. This increase in precipitation is mainly induced by larger mean upward moisture flux over the Mediterranean with increasing Mediterranean SSTs. This further invokes an increase in latent energy release, which leads to an increase in atmospheric instability, i.e. in convective available potential energy. Both the increased availability of atmospheric moisture and the increased instability of the atmosphere, which is able to remove extra moisture from the atmosphere due to convective processes, are responsible for the strong increase in precipitation over the entire region influenced by Vb events. Precipitation patterns further indicate that a strong increase in precipitation is found at the eastern coast of the Adriatic Sea for increased Mediterranean SSTs. This premature loss in atmospheric moisture leads to a significant decrease in atmospheric moisture transport to central Europe and the northeastern flanks of the Alpine mountain chain. This leads to a reduction in precipitation in this high-impact region of the Vb event for an increase in Mediterranean SSTs of +5 K. Furthermore, the intensity of the Vb

  4. Deformation Experiment on Quartz Aggregates with High Porosity and High Water Contents at High Pressure and Temperature

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2016-12-01

    Large earthquakes typically nucleate near the depth limit of seismogenic zones. In these areas, high Vp/Vs ratios are commonly observed, indicating the presence of high pore fluid pressures. Thus, it is important to understand how the water content (both water in the crystal and in the pores) and the pore structure affect the rheology of polycrystalline materials. We conducted deformation experiments on quartz aggregates using a Griggs-type deformation apparatus. Samples were hot-pressed from silica gels, which contain 9 wt% water within the amorphous structure and absorbed on the surface. Hydrostatic experiments within the α-quartz stability field at a pressure of 1.5 GPa and 900°C indicate that hot-pressed samples are composed of quartz and no relict of amorphous material is present. The average grain size and porosity of the hot-pressed aggregates is about 4 μm and 23%, respectively. The grain shape is equigranular and no crystallographic preferred orientation (CPO) is observed. Initial results from general shear experiments on the hot-pressed quartz aggregates at the equivalent strain rate of 1.5 x 10-4 1/s, a pressure of 1.5 GPa and 900°C show very low strength (equivalent stress of 140 MPa) and nominally steady state flow at shear strains up to 3.5. The samples show no CPO and evidence for strain localization along R1 riedel shears. In contrast, deformation experiments on cores of quartzite show dislocation creep at this pressure/temperature condition. The measured stress from the new experiments is significantly lower than predicted by the wet quartz flow law (e.g., Hirth et al., 2001). The low flow stress and absence of CPO suggest the operation of grain-size sensitive flow, or perhaps that the effective pressure law is still applicable and the sample deforms by a distributed semi-brittle flow process

  5. Determination of the bias in LOFT fuel peak cladding temperature data from the blowdown phase of large-break LOCA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Berta, V.T.; Hanson, R.G.; Johnsen, G.W.; Schultz, R.R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-05-01

    Data from the Loss-of-Fluid Test (LOFT) Program help quantify the margin of safety inherent in pressurized water reactors during postulated loss-of-coolant accidents (LOCAs). As early as 1979, questions arose concerning the accuracy of LOFT fuel rod cladding temperature data during several large-break LOCA experiments. This report analyzes how well externally-mounted fuel rod cladding thermocouples in LOFT accurately reflected actual cladding surface temperature during large-break LOCA experiments. In particular, the validity of the apparent core-wide fuel rod cladding quench exhibited during blowdown in LOFT Experiments L2-2 and L2-3 is studied. Also addressed is the question of whether the externally-mounted thermocouples might have influenced cladding temperature. The analysis makes use of data and information from several sources, including later, similar LOFT Experiments in which fuel centerline temperature measurements were made, experiments in other facilities, and results from a detailed FRAP-T6 model of the LOFT fuel rod. The analysis shows that there can be a significant difference (referred to as bias) between the surface-mounted thermocouple reading and the actual cladding temperature, and that the magnitude of this bias depends on the rate of heat transfer between the fuel rod cladding and coolant. The results of the analysis demonstrate clearly that a core-wide cladding quench did occur in Experiments L2-2 and L2-3. Further, it is shown that, in terms of peak cladding temperature recording during LOFT large-break LOCA experiments, the mean bias is 11.4 {plus_minus} 16.2K (20.5 {plus_minus} 29.2{degrees} F). The best-estimate value of peak cladding temperature for LOFT LP-02-6 is 1,104.8 K. The best-estimate peak cladding temperature for LOFT LP-LB-1 is 1284.0 K.

  6. Laboratory Visualization Experiments of Temperature-induced Fractures Around a Borehole (Cryogenic Fracturing) in Shale and Analogue Rock Samples

    Science.gov (United States)

    Kneafsey, T. J.; Nakagawa, S.; Wu, Y. S.; Mukhopadhyay, S.

    2014-12-01

    In tight shales, hydraulic fracturing is the dominant method for improving reservoir permeability. However, injecting water-based liquids can induce formation damage and disposal problems, thus other techniques are being sought. One alternative to hydraulic fracturing is producing fractures thermally, using low-temperature fluids (cryogens). The primary consequence of thermal stimulation is that shrinkage fractures are produced around the borehole wall. Recently, cryogenic stimulation produced some promising results when the cryogen (typically liquid nitrogen and cold nitrogen gas) could be brought to reservoir depth. Numerical modeling also showed possible significant increases in gas production from a shale reservoir after cryogenic stimulation. However, geometry and the dynamic behavior of these thermally induced fractures under different stress regimes and rock anisotropy and heterogeneity is not yet well understood.Currently, we are conducting a series of laboratory thermal fracturing experiments on Mancos Shale and transparent glass blocks, by injecting liquid nitrogen under atmospheric pressure into room temperature blocks under various anisotropic stress states. The glass blocks allow clear optical visualization of fracture development and final fracturing patterns. For the shale blocks, X-ray CT is used to image both pre-existing and induced fractures. Also, the effect of borehole orientation with respect to the bedding planes and aligned preexisting fractures is examined. Our initial experiment on a uniaxially compressed glass block showed fracturing behavior which was distinctly different from conventional hydraulic fracturing. In addition to tensile fractures in the maximum principal stress directions, the thermal contraction by the cryogen induced (1) chaotic, spalling fractures around the borehole wall, and (2) a series of disk-shaped annular fractures perpendicular to the borehole. When applied to a horizontal borehole, the propagation plane of the

  7. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures.

    Science.gov (United States)

    Sicher, Richard C

    2015-08-05

    Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  8. Extreme precipitation and their linkage with temperature over Japan: Comparison of ensemble experiments between a high resolution RCM and a driving GCM

    Science.gov (United States)

    Nayak, S.; Dairaku, K.; Ishizaki, N. N.

    2016-12-01

    Added value of regional climate model (RCM) to driving parent general circulation model (GCM) is a long-standing issue. Several studies have shown that RCMs can reproduce well the climate statistics compared to parent GCM. Thus the demand of reliable climate information, especially for extreme events, is increasing in recent years. A number of studies have suggested that the extreme precipitation intensities are increased in many regions across the world (IPCC 2007, 2012) due to atmospheric warming and that RCMs can add value to extreme precipitations and temperatures. In our study, we analyzed 340 ensemble experiments [140 experiments with the NHRCM (50 experiments for present climate: 1951-2010 & 90 experiments for future climate: 2051-2110 at 20km) and 200 experiments with the MRI-AGCM (100 experiments for present climate & 100 experiments for future climate at 60km)] to address whether the NHRCM ensemble experiments reproduce extreme precipitations linked to temperature over Japan better than its driving AGCM ensemble experiments and projected future changes in the relationship. Precipitation intensities of wet days (defined as ≥ 1 mm/d) are stratified to different bins with 1°C temperature interval and compared the results with AMeDAS station observations. The results indicate that the simulated extreme precipitations linked to temperature basically follow the Clausius-Clapeyron (CC) relationship ( 7% per degree rise in temperature) for the temperatures below 24°C. The RCM overestimated the extreme precipitations over whole Japan and its sub-regions at higher temperatures roughly above 24°C and the GCM is underestimated the extreme precipitations over Japan at higher temperatures particularly at the peaks (18-26°C). The reason of overestimation by the RCM is associated with strong vertical velocity (i.e. upward motion of air) and much availability of water vapor, while the underestimation by the GCM is associated with weak vertical velocity and less

  9. A comparison between Nimbus 5 THIR and ITPR temperatures and derived winds with rawinsonde data obtained in the AVE 2 experiment

    Science.gov (United States)

    Arnold, J. E.; Scoggins, J. R.; Fuelberg, H. E.

    1976-01-01

    During the period of May 11 and 12, 1974, NASA conducted its second Atmospheric Variability Experiment (AVE II) over the eastern United States. In this time interval, two Nimbus 5 orbits crossed the AVE II area, providing a series of ITPR soundings as well as THIR data. Horizontal temperature mapping of the AVE II cloud field is examined using two grid print map scales. Implied cloud top heights are compared with maximum radar-echo top reports. In addition, shelter temperatures in areas of clear sky are compared with the surface temperatures as determined from 11.5 micrometer radiometer data of the THIR experiment. The ITPR sounding accuracy is evaluated using interpolated radiosonde temperatures at times nearly coincident with the ITPR soundings. It was found that mean differences between the two data sets were as small as 1.3 C near 500 mb and as large as 2.9 C near the tropopause. The differences between ITPR and radiosonde temperatures at constant pressure levels were sufficient to induce significant differences in the horizontal temperature gradient. Cross sections of geostrophic wind along the orbital tracks were developed using a thermal wind buildup based on the ITPR temperature data and the radiosonde temperature data. Differences between the radiosonde and ITPR geostrophic winds could be explained on the basis of differences in the ITPR and radiosonde temperature gradients.

  10. Temperature dependent equilibrium native to unfolded protein dynamics and properties observed with IR absorption and 2D IR vibrational echo experiments.

    Science.gov (United States)

    Chung, Jean K; Thielges, Megan C; Bowman, Sarah E J; Bren, Kara L; Fayer, M D

    2011-05-04

    Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures. © 2011

  11. Monte Carlo analysis of experiments on the reactivity temperature coefficient for UO{sub 2} and MOX light water moderated lattices

    Energy Technology Data Exchange (ETDEWEB)

    Erradi, L.; Chetaine, A. [Faculte des Sciences, Groupe de Physique des Reacteurs, Rabat Maroc (Morocco); Chakir, E.; Kharchaf, A. [Faculte des sciences de Kenitra, Dept. de physique (Morocco); Elbardouni, T. [Faculte des Sciences de Tetouan, Dept. de Physique (Morocco); Elkhoukhi, T. [CNESTEN, Rabat (Morocco)

    2005-07-01

    In a previous work, we have analysed the main French experiments available on the reactivity temperature coefficient (RTC): CREOLE and MISTRAL experiments. In these experiments, the RTC has been measured in both UO{sub 2} and UO{sub 2}-PuO{sub 2} PWR type lattices. Our calculations, using APOLLO2 code with CEA93 library based on JEF2.2 evaluation, have shown that the calculation error in UO{sub 2} lattices is less than 1 pcm/C degrees which is considered as the target accuracy. On the other hand the calculation error in the MOX lattices is more significant in both low and high temperature ranges: an average error of -2 {+-} 0.5 pcm/C degrees is observed in low temperatures and an error of +3 {+-} 2 pcm/C degrees is obtained for temperatures higher than 250 C degrees. In the present work, we analysed additional experimental benchmarks on the RTC of UO{sub 2} and MOX light water moderated lattices. To analyze these benchmarks and with the aim of minimizing uncertainties related to modelling of the experimental set up, we chose the Monte Carlo method which has the advantage of taking into account in the most exact manner the geometry of the experimental configurations. This analysis shows for the UO{sub 2} lattices, a maximum experiment-calculation deviation of about 0,7 pcm/C degrees, which is below the target accuracy for this type of lattices. For the KAMINI experiment, which relates to the measurement of the RTC in a light water moderated lattice using U-233 as fuel our analysis shows that the ENDF/B6 library gives the best result, with an experiment-calculation deviation of the order of -0,16 pcm/C degrees. The analysis of the benchmarks using MOX fuel made it possible to highlight a discrepancy between experiment and calculation on the RTC of about -0.7 pcm/C degrees (for a range of temperatures going from 20 to 248 C degrees) and -1,2 pcm/C degrees (for a range of temperatures going from 20 to 80 C degrees). This result, in particular the tendency which has the

  12. Electron spin resonance in neutron-irradiated graphite. Dependence on temperature and effect of annealing; Resonance paramagnetique du graphite irradie aux neutrons. Variation en fonction de la temperature et experiences de recuit

    Energy Technology Data Exchange (ETDEWEB)

    Kester, T. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Laboratoire de resonance magnetique

    1967-09-01

    The temperature dependence of the electron spin resonance signal from neutron irradiated graphite has been studied. The results lead to an interpretation of the nature of the paramagnetic centers created by irradiation. In annealing experiments on graphite samples, which had been irradiated at low temperature, two annealing peaks and one anti-annealing peak were found. Interpretations are proposed for these peaks. (author) [French] Le graphite irradie aux neutrons a ete etudie par resonance paramagnetique electronique en fonction de la temperature. La nature des centres paramagnetiques crees par irradiation est interpretee a l'aide des resultats. Des experiences de recuit sur des echantillons de graphite irradie a 77 deg. K ont permis de mettre en evidence deux pics de recuit et un pic d'anti-recuit, pour lesquels des interpretations sont proposees. (auteur)

  13. A climatic chamber experiment to test the short term effect of increasing temperature on branched GDGT distribution in Sphagnum peat

    OpenAIRE

    Huguet, Arnaud; Francez, Andre-Jean; Jusselme, My Dung; Fosse, Céline; Derenne, Sylvie

    2014-01-01

    International audience; Branched glycerol dialkyl glycerol tetraethers (br GDGTs) are membrane lipids produced by unknown Bacteria and are being increasingly used as temperature proxies. Nevertheless, the direct effect of temperature on br GDGT distributions has been rarely evaluated. In this study, the impact of increasing temperature on br GDGT distributions and the speed of adaptation of br GDGT source microorganisms to temperature change were investigated by analysing br GDGTs in Sphagnum...

  14. Research on the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic wave and audible sound wave at high temperatures.

    Science.gov (United States)

    Wang, Zhenjun; Gu, Simin; Zhou, Long

    2018-01-01

    In this paper, the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic irradiation at high temperatures is carried out. How the all factors, such as ultrasonic frequency, sound intensity, ultrasonic power, ultrasonic treatment time, sedimentation time, temperature and water ratio, affect ultrasonic crude oil demulsification and dehydration are summarized though this experiment. In addition, recent progress on ultrasonic demulsification equipment in China are reviewed. The purpose of this paper is to provide equipment and technical support for the extensive application of the technique of ultrasonic demulsification and dehydration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: Laboratory experiments and theoretical calculations

    Science.gov (United States)

    Li, Weiqiang; Kwon, Kideok D.; Li, Shilei; Beard, Brian L.

    2017-10-01

    Improvements in mass spectrometry have made it possible to identify naturally occurring K isotope (39K/41K) variability in terrestrial samples that can be used in a variety of geological and biological applications that involve cycling of K such as clay or evaporite formation. However, our ability to interpret K isotope variability is limited by a poor understanding of how K isotopes are fractionated at low temperatures. In this study, we conducted recrystallization experiments of eight K-salts in order to measure the K isotope fractionation factor between the salt and the saturated K solution (Δ41Kmin-sol). Measured Δ41Kmin-sol are +0.50‰ for K2CO3·1.5H2O, +0.32‰ for K2SO4, +0.23‰ for KHCO3, +0.06‰ for K2C2O4·H2O, +0.02‰ for KCl, -0.03‰ for K2CrO4, -0.15‰ for KBr, and -0.52‰ for KI. Overall the Δ41Kmin-sol decreases with increasing r for K in crystals, where r is the average distance between a K atom and its neighboring atoms of negative charge. Salts with monovalent anions and salts with divalent anion complexes define different linear trends with distinct slopes on a plot of Δ41Kmin-sol - r. We applied ab initio lattice dynamics and empirical crystal-chemistry models to calculation of K isotope fractionation factors between K salts; both methods showed that the calculated inter-mineral K isotope fractionation factors (Δ41Kmin-KCl) are highly consistent with experimentally derived Δ41Kmin-KCl under the assumption of consistent β factors for different saturated K solutions. Formulations for the crystal-chemistry model further indicate that both anion charge and bond length r are the principle controlling factors for K isotope fractionation, and the K isotope fractionation factors correlate with r following a 1/r3 relationship. Our experiment and theoretical study confirms the existence of significant equilibrium K isotope fractionation at ambient conditions, and the K isotope fractionation factors for halides and sulfate obtained in this

  16. Validation of the Atmospheric Chemistry Experiment (ACE version 2.2 temperature using ground-based and space-borne measurements

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2008-01-01

    Full Text Available An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

  17. Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling

    Science.gov (United States)

    Mangan, M.; Mastin, L.; Sisson, T.

    2004-01-01

    In this paper we examine the consequences of bubble nucleation mechanism on eruptive degassing of rhyolite magma. We use the results of published high temperature and pressure decompression experiments as input to a modified version of CONFLOW, the numerical model of Mastin and Ghiorso [(2000) U.S.G.S. Open-File Rep. 00-209, 53 pp.] and Mastin [(2002) Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000192] for steady, two-phase flow in vertical conduits. Synthesis of the available experimental data shows that heterogeneous nucleation is triggered at ??P 120-150 MPa, and leads to disequilibrium degassing at extreme H2O supersaturation. In this latter case, nucleation is an ongoing process controlled by changing supersaturation conditions. Exponential bubble size distributions are often produced with number densities of 106-109 bubbles/cm3. Our numerical analysis adopts an end-member approach that specifically compares equilibrium degassing with delayed, disequilibrium degassing characteristic of homogeneously-nucleating systems. The disequilibrium simulations show that delaying nucleation until ??P =150 MPa restricts degassing to within ???1500 m of the surface. Fragmentation occurs at similar porosity in both the disequilibrium and equilibrium modes (???80 vol%), but at the distinct depths of ???500 m and ???2300 m, respectively. The vesiculation delay leads to higher pressures at equivalent depths in the conduit, and the mass flux and exit pressure are each higher by a factor of ???2.0. Residual water contents in the melt reaching the vent are between 0.5 and 1.0 wt%, roughly twice that of the equilibrium model. ?? 2003 Elsevier B.V. All rights reserved.

  18. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  19. Data compilation of soil respiration, moisture, and temperature measurements from global warming experiments from 1994-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3800 observations representing 27...

  20. Influence of temperature on the corticosterone stress-response: an experiment in the Children's python (Antaresia childreni).

    Science.gov (United States)

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier; Angelier, Frédéric

    2013-11-01

    To cope with environmental challenges, organisms have to adjust their behaviours and their physiology to the environmental conditions they face (i.e. allostasis). In vertebrates, such adjustments are often mediated through the secretion of glucocorticoids (GCs) that are well-known to activate and/or inhibit specific physiological and behavioural traits. In ectothermic species, most processes are temperature-dependent and according to previous studies, low external temperatures should be associated with low GC concentrations (both baseline and stress-induced concentrations). In this study, we experimentally tested this hypothesis by investigating the short term influence of temperature on the GC stress response in a squamate reptile, the Children's python (Antaresia childreni). Snakes were maintained in contrasting conditions (warm and cold groups), and their corticosterone (CORT) stress response was measured (baseline and stress-induced CORT concentrations), within 48h of treatment. Contrary to our prediction, baseline and stress-induced CORT concentrations were higher in the cold versus the warm treatment. In addition, we found a strong negative relationship between CORT concentrations (baseline and stress-induced) and temperature within the cold treatment. Although it remains unclear how cold temperatures can mechanistically result in increased CORT concentrations, we suggest that, at suboptimal temperature, high CORT concentrations may help the organism to maintain an alert state. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. TFA and EPA Productivities of Nannochloropsis salina Influenced by Temperature and Nitrate Stimuli in Turbidostatic Controlled Experiments

    Directory of Open Access Journals (Sweden)

    Klaus Heinrich Vanselow

    2010-09-01

    Full Text Available The influence of different nitrate concentrations in combination with three cultivation temperatures on the total fatty acids (TFA and eicosapentaenoic acid (EPA content of Nannochloropsis salina was investigated. This was done by virtue of turbidostatic controlled cultures. This control mode enables the cultivation of microalgae under defined conditions and, therefore, the influence of single parameters on the fatty acid synthesis of Nannochloropsis salina can be investigated. Generally, growth rates decreased under low nitrate concentrations. This effect was reinforced when cells were exposed to lower temperatures (from 26 °C down to 17 °C. Considering the cellular TFA concentration, nitrate provoked an increase of TFA under nitrate limitation up to 70% of the biological dry mass (BDM. In contrast to this finding, the EPA content decreased under low nitrate concentrations. Nevertheless, both TFA and EPA contents increased under a low culture temperature (17 °C compared to moderate temperatures of 21 °C and 26 °C. In terms of biotechnological production, the growth rate has to be taken into account. Therefore, for both TFA and EPA production, a temperature of 17 °C and a nitrate concentration of 1800 µmol L-1 afforded the highest productivities. Temperatures of 21 °C and 26 °C in combination with 1800 µmol L-1 nitrate showed slightly lower TFA and EPA productivities.

  2. TFA and EPA Productivities of Nannochloropsis salina Influenced by Temperature and Nitrate Stimuli in Turbidostatic Controlled Experiments

    Science.gov (United States)

    Hoffmann, Maren; Marxen, Kai; Schulz, Rüdiger; Vanselow, Klaus Heinrich

    2010-01-01

    The influence of different nitrate concentrations in combination with three cultivation temperatures on the total fatty acids (TFA) and eicosapentaenoic acid (EPA) content of Nannochloropsis salina was investigated. This was done by virtue of turbidostatic controlled cultures. This control mode enables the cultivation of microalgae under defined conditions and, therefore, the influence of single parameters on the fatty acid synthesis of Nannochloropsis salina can be investigated. Generally, growth rates decreased under low nitrate concentrations. This effect was reinforced when cells were exposed to lower temperatures (from 26 °C down to 17 °C). Considering the cellular TFA concentration, nitrate provoked an increase of TFA under nitrate limitation up to 70% of the biological dry mass (BDM). In contrast to this finding, the EPA content decreased under low nitrate concentrations. Nevertheless, both TFA and EPA contents increased under a low culture temperature (17 °C) compared to moderate temperatures of 21 °C and 26 °C. In terms of biotechnological production, the growth rate has to be taken into account. Therefore, for both TFA and EPA production, a temperature of 17 °C and a nitrate concentration of 1800 μmol L−1 afforded the highest productivities. Temperatures of 21 °C and 26 °C in combination with 1800 μmol L−1 nitrate showed slightly lower TFA and EPA productivities. PMID:20948904

  3. Comparison between experiment and theory in the temperature variation of film tension above the bulk isotropic transition in free-standing liquid-crystal films.

    Science.gov (United States)

    Veum, M; Duelge, L; Droske, J; Nguyen, H T; Huang, C C; Mirantsev, L V

    2009-09-01

    Using differential scanning calorimetry, the transition enthalpies and temperatures for the bulk smectic-isotropic phase transition have been measured for a series of liquid-crystal compounds. For five compounds, those values were used as parameters in a microscopic mean-field model to predict the temperature dependence of the difference in free-energy density between a sample of material in a free-standing smectic film and that in the bulk. The model predicts a weak temperature dependence below the bulk clearing point and a pronounced monotonic increase with temperature above the transition temperature. The compounds used in this study were chosen specifically because they were also the subject of a previous independent experimental study [M. Veum, Phys. Rev. E 74, 011703 (2006)] that demonstrated a sudden monotonic increase in the free-standing film tension with temperature, which is qualitatively consistent with the predictions of the above-mentioned mean-field model. This study presents a direct and quantitative comparison between the predictions of the mean-field model and the results from previous tension experiments.

  4. Effect of Si doping on the thermal conductivity of bulk GaN at elevated temperatures – theory and experiment

    Directory of Open Access Journals (Sweden)

    P. P. Paskov

    2017-09-01

    Full Text Available The effect of Si doping on the thermal conductivity of bulk GaN was studied both theoretically and experimentally. The thermal conductivity of samples grown by Hydride Phase Vapor Epitaxy (HVPE with Si concentration ranging from 1.6×1016 to 7×1018 cm-3 was measured at room temperature and above using the 3ω method. The room temperature thermal conductivity was found to decrease with increasing Si concentration. The highest value of 245±5 W/m.K measured for the undoped sample was consistent with the previously reported data for free-standing HVPE grown GaN. In all samples, the thermal conductivity decreased with increasing temperature. In our previous study, we found that the slope of the temperature dependence of the thermal conductivity gradually decreased with increasing Si doping. Additionally, at temperatures above 350 K the thermal conductivity in the highest doped sample (7×1018 cm-3 was higher than that of lower doped samples. In this work, a modified Callaway model adopted for n-type GaN at high temperatures was developed in order to explain such unusual behavior. The experimental data was analyzed with examination of the contributions of all relevant phonon scattering processes. A reasonable match between the measured and theoretically predicted thermal conductivity was obtained. It was found that in n-type GaN with low dislocation densities the phonon-free-electron scattering becomes an important resistive process at higher temperatures. At the highest free electron concentrations, the electronic thermal conductivity was suggested to play a role in addition to the lattice thermal conductivity and compete with the effect of the phonon-point-defect and phonon-free-electron scattering.

  5. Effect of Si doping on the thermal conductivity of bulk GaN at elevated temperatures - theory and experiment

    Science.gov (United States)

    Paskov, P. P.; Slomski, M.; Leach, J. H.; Muth, J. F.; Paskova, T.

    2017-09-01

    The effect of Si doping on the thermal conductivity of bulk GaN was studied both theoretically and experimentally. The thermal conductivity of samples grown by Hydride Phase Vapor Epitaxy (HVPE) with Si concentration ranging from 1.6×1016 to 7×1018 cm-3 was measured at room temperature and above using the 3ω method. The room temperature thermal conductivity was found to decrease with increasing Si concentration. The highest value of 245±5 W/m.K measured for the undoped sample was consistent with the previously reported data for free-standing HVPE grown GaN. In all samples, the thermal conductivity decreased with increasing temperature. In our previous study, we found that the slope of the temperature dependence of the thermal conductivity gradually decreased with increasing Si doping. Additionally, at temperatures above 350 K the thermal conductivity in the highest doped sample (7×1018 cm-3) was higher than that of lower doped samples. In this work, a modified Callaway model adopted for n-type GaN at high temperatures was developed in order to explain such unusual behavior. The experimental data was analyzed with examination of the contributions of all relevant phonon scattering processes. A reasonable match between the measured and theoretically predicted thermal conductivity was obtained. It was found that in n-type GaN with low dislocation densities the phonon-free-electron scattering becomes an important resistive process at higher temperatures. At the highest free electron concentrations, the electronic thermal conductivity was suggested to play a role in addition to the lattice thermal conductivity and compete with the effect of the phonon-point-defect and phonon-free-electron scattering.

  6. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.

    Science.gov (United States)

    Wang, Zhi-Hua; Zhou, Jun-Hu; Zhang, Yan-Wei; Lu, Zhi-Min; Fan, Jian-Ren; Cen, Ke-Fa

    2005-03-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15% approximately 25% reburn heat input, temperature range from 1100 degrees C to 1400 degrees C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 degrees C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 degrees C approximately 1100 degrees C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NO(x) Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.

  7. Measurement of Bitumen Viscosity in a Room-Temperature Drop Experiment: Student Education, Public Outreach and Modern Science in One

    Science.gov (United States)

    Widdicombe, A. T.; Ravindrarajah, P.; Sapelkin, A.; Phillips, A. E.; Dunstan, D.; Dove, M. T.; Brazhkin, V. V.; Trachenko, K.

    2014-01-01

    The slow flow of a viscous liquid is a thought-provoking experiment that challenges students, academics and the public to think about some fundamental questions in modern science. In the Queensland demonstration--the world's longest-running experiment, which has earned the Ig Nobel prize--one drop of pitch takes about ten years to fall, leading to…

  8. Two-photon LIF on the HIT-SI3 experiment: Absolute density and temperature measurements of deuterium neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Drew, E-mail: dbelliott@mix.wvu.edu; Siddiqui, Umair; Scime, Earl [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056 (United States); Sutherland, Derek; Everson, Chris; Morgan, Kyle; Hossack, Aaron; Nelson, Brian; Jarboe, Tom [Department of Aerospace Engineering, University of Washington, Seattle, Washington 98105 (United States)

    2016-11-15

    Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 10{sup 17} m{sup −3}. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.

  9. Reducing the loss of vaccines from accidental freezing in the cold chain: the experience of continuous temperature monitoring in Tunisia.

    Science.gov (United States)

    Lloyd, John; Lydon, Patrick; Ouhichi, Ramzi; Zaffran, Michel

    2015-02-11

    Accidental freezing of vaccines is a growing threat and a real risk for national immunization programs when the potency of many vaccines can be compromised if these are exposed to sub-zero temperatures in the cold chain. In Tunisia, this issue is compounded by using sub-standard domestic cold chain equipment instead of equipping the program with medical refrigerators designed specifically for storing vaccines and temperature sensitive pharmaceuticals. Against this backdrop, this paper presents the findings of a demonstration project conducted in Tunisia in 2012 that tested the impact of introducing several freeze prevention solutions to mitigate the risk of accidental freezing of vaccines. The main finding is that, despite the continued use of underperforming domestic refrigerators, continuous temperature monitoring using new technologies combined with other technological interventions significantly reduced the prevalence of accidental exposure to freezing temperatures. These improvements were noticed for cold chain storage at regional, district and health center levels, and during the transport legs that were part of the demonstration conducted in the regions of Kasserine in the South-Eastern part of Tunisia. Subsequent to introducing these freeze prevention solutions, the incidence of freeze alarms was reduced and the percent of time the temperatures dropped below the 2 °C recommended threshold. The incidence of freeze alarms at health center level was reduced by 40%. Lastly, the solutions implemented reduced risk of freezing during transport from 13.8% to 1.7%. Although the solution implemented is not optimal in the longer term because domestic refrigerators are used extensively in district stores and health centers, the risk of accidental freezing is significantly reduced by introducing the practice of continuous temperature monitoring as a standard. The management of the cold chain equipment was strengthened as a result which helps protect the potency of

  10. Testing the {rho}* scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test Reactor dimensionless scaling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Scott, S.D. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Dorland, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1997-04-01

    Theoretical predictions of ion and electron thermal diffusivities are tested by comparing calculated and measured temperatures in low (L) mode plasmas from the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25 , 1167 (1985)] nondimensional scaling experiments. The DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8 , 441 (1985)] L-mode {rho}* scalings, the transport models of Rebut-Lallia-Watkins (RLW), Boucher`s modification of RLW, and the Institute for Fusion Studies-Princeton Plasma Physics Laboratory (IFS-PPPL) model for transport due to ion temperature gradient modes are tested. The predictions use the measured densities in order to include the effects of density profile shape variations on the transport models. The uncertainties in the measured and predicted temperatures are discussed. The predictions based on the DIII- D scalings are within the measurement uncertainties. All the theoretical models predict a more favorable {rho}* dependence for the ion temperatures than is seen. Preliminary estimates indicate that sheared ow stabilization is important for some discharges, and that inclusion of its effects may bring the predictions of the IFS-PPPL model into agreement with the experiments.

  11. Note: A simple system for low-temperature experiments in a large-volume multi-anvil press

    Science.gov (United States)

    Yong, W.; Secco, R. A.

    2017-10-01

    A simple cooling system for a 3000-ton multi-anvil press was developed for temperatures below room temperature at high pressures. It is much simpler in design, easier to make and use, and has the same cooling capability as the previous design. The new system uses a steel ring surrounding the module wedges, which contains liquid nitrogen (LN2) that flows freely through a port to flood the interior of the pressure module. O-rings on the steel ring seal in LN2 while permitting compression. Two different cooling systems reach ˜220 K which suggests that thermal equilibrium for this press is reached between the removal and influx of heat.

  12. Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation.

    Science.gov (United States)

    Wick, Collin D; Siepman, J Ilja; Klotz, Wendy L; Schure, Mark R

    2002-04-19

    Experiments and molecular simulations were carried out to study temperature effects (in the range of 323 to 383 K) on the absolute and relative retention of n-hexane, n-heptane, n-octane, benzene, toluene and the three xylene isomers in gas-liquid chromatography. Helium and squalane were used as the carrier gas and retentive phase, respectively. Both the experiments and the simulations show a markedly different temperature dependence of the retention for the n-alkanes compared to the arenes. For example, over the 60 K temperature range studied, the Kovats retention index of benzene is found to increase by about 16 or 18+/-10 retention index units determined from the experiments or simulations, respectively. For toluene and the xylenes, the experimentally measured increases are similar in magnitude and range from 14 to 17 retention index units for m-xylene to o-xylene. The molecular simulation data provide an independent method of obtaining the transfer enthalpies and entropies. The change in retention indices is shown to be the result of the larger entropic penalty and the larger heat capacity for the transfer of the alkane molecules.

  13. High-temperature hot spots on Io as seen by the Galileo solid state imaging (SSI) experiment

    Science.gov (United States)

    McEwen, A.S.; Simonelli, D.P.; Senske, D.R.; Klaasen, K.P.; Keszthelyi, L.; Johnson, T.V.; Geissler, P.E.; Carr, M.H.; Belton, M.J.S.

    1997-01-01

    High-temperature hot spots on Io have been imaged at ???50 km spatial resolution by Galileo's CCD imaging system (SSI). Images were acquired during eclipses (Io in Jupiter's shadow) via the SSI clear filter (???0.4-1.0 ??m), detecting emissions from both small intense hot spots and diffuse extended glows associated with Io's atmosphere and plumes. A total of 13 hot spots have been detected over ???70% of Io's surface. Each hot spot falls precisely on a low-albedo feature corresponding to a caldera floor and/or lava flow. The hot-spot temperatures must exceed ???700 K for detection by SSI. Observations at wavelengths longer than those available to SSI require that most of these hot spots actually have significantly higher temperatures (???1000 K or higher) and cover small areas. The high-temperature hot spots probably mark the locations of active silicate volcanism, supporting suggestions that the eruption and near-surface movement of silicate magma drives the heat flow and volcanic activity of Io. Copyright 1997 by the American Geophysical Union.

  14. Seasonal migration, vertical activity and winter temperature experience of Greenland halibut Reinhardtius hippoglossoides (Walbaum) in West Greenland waters

    DEFF Research Database (Denmark)

    Boje, Jesper; Neuenfeldt, Stefan; Sparrevohn, Claus Reedtz

    2014-01-01

    resident in Disko Bay (mean range 2.6°C) than when resident in the ice fjord (mean range 1.4°C). Using the tagged halibut as a 'live tool,' we show that parts of the ice fjord are hundreds of meters deeper than previously thought. We also document the first seawater temperature measurements made beneath...

  15. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  16. Biophysical insight into structure-function relation of Allium sativum Protease Inhibitor by thermal, chemical and pH-induced modulation using comprehensive spectroscopic analysis.

    Science.gov (United States)

    Shamsi, Tooba Naz; Parveen, Romana; Naz, Huma; Haque, Md Anzarul; Fatima, Sadaf

    2017-10-01

    In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. Tm (midpoint of denaturation), ΔCp (constant pressure heat capacity change) and ΔHm (van't Hoff enthalpy change at Tm were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol(-1)K(-1) and 61±2kcalmol(-1) respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation

    Science.gov (United States)

    Huang, F.; Lundstrom, C. C.; Glessner, J.; Ianno, A.; Boudreau, A.; Li, J.; Ferré, E. C.; Marshak, S.; DeFrates, J.

    2009-02-01

    Piston-cylinder experiments were conducted to investigate the behavior of partially molten wet andesite held within an imposed temperature gradient at 0.5 GPa. In one experiment, homogenous andesite powder (USGS rock standard AGV-1) with 4 wt.% H 2O was sealed in a double capsule assembly for 66 days. The temperature at one end of this charge was held at 950 °C, and the temperature at the other end was kept at 350 °C. During the experiment, thermal migration (i.e., diffusion in a thermal gradient) took place, and the andesite underwent compositional and mineralogical differentiation. The run product can be broadly divided into three portions: (1) the top third, at the hot end, contained 100% melt; (2) the middle-third contained crystalline phases plus progressively less melt; and (3) the bottom third, at the cold end, consisted of a fine-grained, almost entirely crystalline solid of granitic composition. Bulk major- and trace-element compositions change down temperature gradient, reflecting the systematic change in modal mineralogy. These changes mimic differentiation trends produced by fractional crystallization. The change in composition throughout the run product indicates that a fully connected hydrous silicate melt existed throughout the charge, even in the crystalline, cold bottom region. Electron Backscatter Diffraction analysis of the run product indicates that no preferred crystallographic orientation of minerals developed in the run product. However, a significant anisotropy of magnetic susceptibility was observed, suggesting that new crystals of magnetite were elongated in the direction of the thermal gradient. Further, petrographic observation reveals alignment of hornblende parallel to the thermal gradient. Finally, the upper half of the run product shows large systematic variations in Fe-Mg isotopic composition reflecting thermal diffusion, with the hot end systematically enriched in light isotopes. The overall δ 56Fe IRMM-14 and δ 26Mg DSM-3

  18. High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment

    DEFF Research Database (Denmark)

    Kongstad, J.; Schmidt, Inger K.; Riis-Nielsen, Torben

    2012-01-01

    the standingbiomass for either D. flexuosa or the ecosystem asmore litter was produced. Treatment combinationsshowed little interactions on the measuredparameters and in particular elevated CO2 did notcounterbalance the drought effect on plant growth,as we had anticipated. The plant community didnot show any......Climate change scenarios predict simultaneouslyincrease in temperature, altered precipitation patternsand elevated atmospheric CO2 concentration,which will affect key ecosystem processes and plantgrowth and species interactions. In a large-scaleexperiment, we investigated the effects...... of in situexposure to elevated atmospheric CO2 concentration,increased temperature and prolonged droughtperiods on the plant biomass in a dry heathland(Brandbjerg, Denmark). Results after 3 yearsshowed that drought reduced the growth of thetwo dominant species Deschampsia flexuosa and Callunavulgaris. However, both...

  19. Cryogenic electrical insulation of superconducting power transmission lines: transfer of experience learned from metal superconductors to high critical temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, J. [Technical University of Graz (Austria). Inst. fuer Electrische Maschinen und Antrisbechnik; Tanaka, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1998-11-01

    Superconducting power transmission lines have found renewed interest after the discovery of a superconductor with high critical temperature. Cooling by liquid nitrogen instead of helium has in fact a great impact on economics. The existing wide spread knowhow about dielectric performance in helium cooled transmission lines which were already developed up to a prototype stage can be used with benefit for the design of liquid nitrogen cooled lines. (author)

  20. Patterns of Convective Influence and Temperatures in the Tropical Tropopause Layer during the Airborne Tropical TRopopause EXperiment (ATTREX)

    Science.gov (United States)

    Pfister, L.; Jensen, E. J.; Ueyama, R.; Bergman, J. W.

    2014-12-01

    The Tropical Tropopause Layer, a zonal torus of air around 13-18km altitude and -30 to 30 latitude,is the gatekeeper for air entering the stratosphere from the troposphere. The overall speed of the upward motion affects the input of all the trace constituents, but how the upward transfer is distributedbetween convective injection and slow ascent indirectly driven by breaking waveshas a critical effect on both water and some short-lived species (e.g., bromine compounds). Convection'spotential ability to bypass the cold trap in the center of the TTL torus can contribute to stratospherichydration. Convection can also quickly move short-lived tracers to higher altitudes (and higher ozonevalues), and contribute to ozone destruction. This presentation focusses on the relationship of convectively influenced air to temperature in the TTL, withan emphasis on the qualitative evolution during ATTREX. We use a technique of obtaining global, high resolution distributions of convective cloud tops at 3-hourly intervals to derive distributions ofconvectively influenced air in the TTL, and examine its relationship to TTL temperature. TTL temperaturedistributions are often affected directly by convection, but equatorial and other gravity waves having a varietyof space and time scales are also important. The relationship of these temperature patterns to outputfrom convection will determine whether hydrated air remains in the TTL, or whether it is stripped of itswater soon after injection.

  1. Silica–silica Polyimide Buffered Optical Fibre Irradiation and Strength Experiment at Cryogenic Temperatures for 355 nm Pulsed Lasers

    CERN Document Server

    Takala, E; Bordini, B; Bottura, L; Bremer, J; Rossi, L

    2012-01-01

    A controlled UV-light delivery system is envisioned to be built in order to study the stability properties of superconducting strands. The application requires a wave guide from room temperature to cryogenic temperatures. Hydrogen loaded and unloaded polyimide buffered silica–silica 100 microm core fibres were tested at cryogenic temperatures. A thermal stress test was done at 1.9 K and at 4.2 K which shows that the minimal mechanical bending radius for the fibre can be 10 mm for testing (transmission was not measured). The cryogenic transmission loss was measured for one fibre to assess the magnitude of the transmission decrease due to microbending that takes place during cooldown. UV-irradiation degradation measurements were done for bent fibres at 4.2 K with a deuterium lamp and 355 nm pulsed lasers. The irradiation tests show that the fibres have transmission degradation only for wavelengths smaller than 330 nm due to the two photon absorption. The test demonstrates that the fibres are suitable for the ...

  2. Upper atmosphere wind and temperature structure at sonmiani derived from the rocket grenade experiments conducted during 1965 - 1967

    Science.gov (United States)

    Rahmatullah, M.

    1972-01-01

    The grenade-TMA firing conducted in 1965-1967 bring out the following important features regarding the stratospheric circulation in the subtropics: (1) The temperature pattern during the month of March/April at Sonmiani is characterized by higher temperature than the corresponding CIRA 1965 value. (2) Double maxima in temperature has often been observed during spring. (3) In March the zonal wind is predominantly westerly reaching a maximum value of about 45 m/s at 55 km. (4) The meridional component exhibits oscillatory character between 45 and 60 kms. (5) The change from winter westerlies to summer easterlies first occurred around 50 km during April and gradually affected higher levels as the month progressed. (6) The height of the principal maxima at Sonmiani is located at 105 + or - 5 km. In autumn the wind at the principal maxima is below 100 m/s and is directed to NW, in spring it is of the order of 118 m/s but directed to E or NE.

  3. Temperature dependent effects of elevated CO2 on shell composition and mechanical properties of Hydroides elegans: insights from a multiple stressor experiment.

    Directory of Open Access Journals (Sweden)

    Vera B S Chan

    Full Text Available The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8, salinity (34 and 27‰, and temperature (23°C and 29°C on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.

  4. Temperature dependent effects of elevated CO2 on shell composition and mechanical properties of Hydroides elegans: insights from a multiple stressor experiment.

    Science.gov (United States)

    Chan, Vera B S; Thiyagarajan, Vengatesen; Lu, Xing Wen; Zhang, Tong; Shih, Kaimin

    2013-01-01

    The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27‰), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.

  5. Inactivation of Bacillus sporothermodurans spores by nisin and temperature studied by design of experiments in water and milk.

    Science.gov (United States)

    Aouadhi, Chedia; Rouissi, Zeineb; Mejri, Slah; Maaroufi, Abderrazak

    2014-04-01

    Spores of Bacillus sporothermodurans are known to be a contaminant of dairy products and to be extremely heat-resistant. A central composite experimental design with three factors using response surface methodology was used to evaluate the effect of nisin (50-150 UI/mL), temperature (80-100 °C), and temperature-holding time (10-20 min) on the inactivation of B. sporothermodurans LTIS27 spores in distilled water, in skim milk and in chocolate milk. The experimental values were shown to be significantly in good agreement with the values predicted by the quadratic equation since the adjusted determination coefficients (Radj(2)) were around 0.97. By analyzing the response surfaces plots, the inactivation was shown to be higher in distilled water than in skim milk under all the conditions tested. Five-log cycle reductions of B. sporothermodurans spores were obtained after a treatment at 95 °C for 12 min in presence of 125 UI of nisin/mL in distilled water or at 100 °C for 13 min in presence of 134 UI of nisin/mL in skim milk or at 100 °C for 15 min in presence of 135 UI of nisin/mL in chocolate milk. This study showed the efficiency of nisin (15-184 UI/mL) in combination with temperature (73-106 °C) to inactivate spores of B. sporothermodurans in milk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  7. High-pressure high-temperature experiments: Windows to the Universe; Experimentos a alta presion y alta temperatura: Ventanas al universo

    Energy Technology Data Exchange (ETDEWEB)

    Santaria-Perez, D.

    2011-07-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  8. Initial stage sintering of polymer particles – Experiments and modelling of size-, temperature- and time-dependent contacts

    Directory of Open Access Journals (Sweden)

    Fuchs Regina

    2017-01-01

    Full Text Available The early-stage sintering of thin layers of micron-sized polystyrene (PS particles, at sintering temperatures near and above the glass transition temperature Tg (~ 100°C, is studied utilizing 3D tomography, nanoindentation and confocal microscopy. Our experimental results confirm the existence of a critical particle radius (rcrit ~ 1 μm below which surface forces need to be considered as additional driving force, on top of the usual surfacetension driven viscous flow sintering mechanism. Both sintering kinetics and mechanical properties of particles smaller than rcrit are dominated by contact deformation due to surface forces, so that sintering of larger particles is generally characterized by viscous flow. Consequently, smaller particles require shorter sintering. These experimental observations are supported by discrete particle simulations that are based on analytical models: for small particles, if only viscous sintering is considered, the model under-predicts the neck radius during early stage sintering, which confirms the need for an additional driving mechanism like elastic-plastic repulsion and surface forces that are both added to the DEM model.

  9. Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.; Kobza, Robert M.; Cook, Mark I.; Slone, Daniel H.

    2010-01-01

    The cold tolerance of two non-native cichlids (Hemichromis letourneuxi and Cichlasoma urophthalmus) that are established in south Florida was tested in the field and laboratory. In the laboratory, fishes were acclimated to two temperatures (24 and 28°C), and three salinities (0, 10, and 35 ppt). Two endpoints were identified: loss of equilibrium (11.5–13.7°C for C. urophthalmus; 10.8–12.5°C for H. letourneuxi), and death (9.5–11.1°C for C. urophthalmus; 9.1–13.3°C for H. letourneuxi). In the field, fishes were caged in several aquatic habitats during two winter cold snaps. Temperatures were lowest (4.0°C) in the shallow marsh, where no fish survived, and warmest in canals and solution-holes. Canals and ditches as shallow as 50 cm provided thermal refuges for these tropical fishes. Because of the effect on survival of different habitat types, simple predictions of ultimate geographic expansion by non-native fishes using latitude and thermal isoclines are insufficient for freshwater fishes.

  10. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (an update of control group results)

    Science.gov (United States)

    Braen, C.

    1978-01-01

    The economic experiment, the results obtained to date and the work which still remains to be done are summarized. Specifically, the experiment design is described in detail as are the developed data collection methodology and procedures, sampling plan, data reduction techniques, cost and loss models, establishment of frost severity measures, data obtained from citrus growers, National Weather Service and Federal Crop Insurance Corp. Resulting protection costs and crop losses for the control group sample, extrapolation of results of control group to the Florida citrus industry and the method for normalization of these results to a normal or average frost season so that results may be compared with anticipated similar results from test group measurements are discussed.

  11. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Science.gov (United States)

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  12. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Directory of Open Access Journals (Sweden)

    Jonathan C P Reum

    Full Text Available Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall. pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm at all depths and seasons sampled except for the near-surface waters (< 10 m in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1. We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31, was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight

  13. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  14. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    Science.gov (United States)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  15. Exploration of relative skill of individual CORDEX South Asia domain experiments (GCM/RCM combinations) for spatiotemporal simulation of temperature and precipitation over the Karakoram sub-region

    Science.gov (United States)

    Forsythe, N. D.; Fowler, H.; Pritchard, D.

    2016-12-01

    High mountain Asia (HMA) constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area will experience rapid demographic growth and socio-economic development for the next few decades compounding pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. HMA falls within the South Asia domain of the Coordinated Regional Downscaling Experiment (CORDEX) initiative. Multiple international modelling centres have contributed RCM experiments for the CORDEX South Asia domain. This substantial multi-model ensemble provides a valuable opportunity to explore the spread in model skill at simulation of key characteristics of the present HMA climate. This study focuses geographically on the northwest Upper Indus basin (NW UIB) which covers the bulk of the Karakoram range. Within this subdomain we use climatologies derived from local observations and meteorological reanalyses (ERA-Interim, NASA MERRA-2, HAR)as benchmarks for inter-comparison of individual CORDEX South Asia ensemble members skill in reproducing seasonality and spatial gradients (orographic precipitation profile, temperature lapse rates). Validation of individual CORDEX South Asia ensemble members to this level of detail is indispensable because discontinuities - e.g. differences in latent heat regimes (fusion versus vaporisation) - abound in

  16. Experiment and analysis for a small-sized flywheel energy storage system with a high-temperature superconductor bearing

    Science.gov (United States)

    Kim, Bongsu; Ko, Junseok; Jeong, Sangkwon; Lee, Seung S.

    2006-02-01

    This paper presents a small-sized flywheel energy storage system that uses a high-temperature superconductor (HTS) bearing characterized by a non-contacting bearing with no active control. The small-sized flywheel is made up several magnets for a motor/generator as well as an HTS bearing, and they are fitted into a 34 mm diameter, 3 mm thick aluminium disc. For simplicity and miniaturization of the whole system, the small-sized flywheel takes torque directly from a planar stator, which consists of an axial flux-type brushless DC motor/generator. The small-sized flywheel successfully rotated up to 38 000 rpm in a vacuum while levitated above the stator with a gap of about 1 mm. However, there are some eddy current losses in the stator and non-axisymmetry in the magnetic field causing large drag torque. In order to solve these problems, an improved magnet array in the flywheel, including magnetic screening, is proposed and 3D electromagnetic simulations have been conducted.

  17. Shock experiments in support of the Lithopanspermia theory: The influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms

    Science.gov (United States)

    Meyer, Cornelia; Fritz, Jörg; Misgaiski, Martin; Stäffler, Dieter; Artemieva, Natalia A.; Hornemann, Ulrich; Moeller, Ralf; de Vera, Jean-Pierre; Cockell, Charles; Horneck, Gerda; Ott, Sieglinde; Rabbow, Elke

    2011-05-01

    Shock recovery experiments were performed with an explosive set-up in which three types of microorganisms embedded in various types of host rocks were exposed to strong shock waves with pressure pulse lengths of lower than 0.5 μs: spores of the bacterium Bacillus subtilis, Xanthoria elegans lichens, and cells of the cyanobacterium Chroococcidiopsis sp. 029. In these experiments, three fundamental parameters were systematically varied (1) shock pressures ranging from 5 to 50 GPa, (2) preshock ambient temperature of 293, 233 and 193 K, and (3) the type of host rock, including nonporous igneous rocks (gabbro and dunite as analogs for the Martian shergottites and chassignites, respectively), porous sandstone, rock salt (halite), and a clay-rich mineral mixture as porous analogs for dry and water-saturated Martian regolith. The results show that the three parameters have a strong influence on the survival rates of the microorganisms. The most favorable conditions for the impact ejection from Mars for microorganisms would be (1) low porosity host rocks, (2) pressures <10-20 GPa, and (3) low ambient temperature of target rocks during impact. All tested microorganisms were capable of surviving to a certain extent impact ejection in different geological materials under distinct conditions.

  18. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures

    Science.gov (United States)

    Watanabe, Hiromichi; Yamashita, Yuichiro

    2012-01-01

    A modified pulse-heating method is proposed to improve the accuracy of measurement of the hemispherical total emissivity, specific heat capacity, and electrical resistivity of electrically conductive materials at high temperatures. The proposed method is based on the analysis of a series of rapid resistive self-heating experiments on a sample heated at different temperature rates. The method is used to measure the three properties of the IG-110 grade of isotropic graphite at temperatures from 850 to 1800 K. The problem of the extrinsic heating-rate effect, which reduces the accuracy of the measurements, is successfully mitigated by compensating for the generally neglected experimental error associated with the electrical measurands (current and voltage). The results obtained by the proposed method can be validated by the linearity of measured quantities used in the property determinations. The results are in reasonably good agreement with previously published data, which demonstrate the suitability of the proposed method, in particular, to the resistivity and total emissivity measurements. An interesting result is the existence of a minimum in the emissivity of the isotropic graphite at around 1120 K, consistent with the electrical resistivity results.

  19. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks.

    Science.gov (United States)

    Rodríguez, R; Espinosa, G; Gil, J M; Stehlé, C; Suzuki-Vidal, F; Rubiano, J G; Martel, P; Mínguez, E

    2015-05-01

    This work is divided into two parts. In the first one, a study of radiative properties (such as monochromatic and the Rosseland and Planck mean opacities, monochromatic emissivities, and radiative power loss) and of the average ionization and charge state distribution of xenon plasmas in a range of plasma conditions of interest in laboratory astrophysics and extreme ultraviolet lithography is performed. We have made a particular emphasis in the analysis of the validity of the assumption of local thermodynamic equilibrium and the influence of the atomic description in the calculation of the radiative properties. Using the results obtained in this study, in the second part of the work we have analyzed a radiative shock that propagated in xenon generated in an experiment carried out at the Prague Asterix Laser System. In particular, we have addressed the effect of plasma self-absorption in the radiative precursor, the influence of the radiation emitted from the shocked shell and the plasma self-emission in the radiative precursor, the cooling time in the cooling layer, and the possibility of thermal instabilities in the postshock region.

  20. Adsorptive Removal of Trichloroethylene in Water by Crop Residue Biochars Pyrolyzed at Contrasting Temperatures: Continuous Fixed-Bed Experiments

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-01-01

    Full Text Available Biochar (BC has attracted great attention as an alternative sorbent to activated carbon (AC. Objective of this study was to determine trichloroethylene (TCE removal by soybean stover BC pyrolyzed at 300 (BC300 and 700°C (BC700 in continuous fixed-bed column. Columns packed with BC300, BC700, and AC reached breakthrough time in 1.1, 27.0, and 50.7 h, respectively. BC700 had higher TCE adsorption capacity than BC300 due to its higher surface area, nonpolarity, and aromaticity. The sorption capacities of AC (774.0 mg g−1 and BC700 (515.1 mg g−1 were 21.6 and 14.4 times higher than that of BC300 (35.9 mg g−1. The lower desorption rate of TCE from BC300 than BC700 and AC may be attributed to the strong binding/partition of TCE to the noncarbonized part of BC. Thomas model also adequately described the adsorption data indicating interphase mass transfer. Overall, AC showed best efficiency for removing TCE from water in column experiments. However, although sorption and desorption capabilities of BC700 were a little lower than AC, it is still a good alternative for AC to remove organic contaminants such as TCE from water due to its cost-effectiveness.

  1. Moisture and temperature in a proppant-enveloped silt block of a recharge dam reservoir: Laboratory experiment and 1-D mathematical modelling

    Directory of Open Access Journals (Sweden)

    Anvar Kacimov

    2018-01-01

    Full Text Available Mosaic 3-D cascade of parallelepiped-shaped silt blocks, which sandwich sand- lled cracks, has been discovered in the eld and tested in lab experiments. Controlled wetting-drying of these blocks, collected from a dam reservoir, mimics field ponding-desiccation conditions of the topsoil layer subject to caustic solar radiation, high temperature and wind, typical in the Batinah region of Oman. In 1-D analytical modelling of a transient Richards’ equation for vertical evaporation, the method of small perturbations is applied, assuming that the relative permeability is Avery-anov’s 3.5-power function of the moisture content and capillary pressure is a given (measured function. A linearized advective dispersion equation is solved with respect to the second term in the series expansion of the moisture content as a function of spatial coordinates and time. For a single block of a nite thickness we solve a boundary value problem with a no- ow condition at the bottom and a constant moisture content at the surface. Preliminary comparisons with theta-, TDR- probes measuring the moisture content and temperature at several in-block points are made. Results corroborate that a 3-D heterogeneity of soil physical properties, in particular, horizontal and vertical capillary barriers emerging on the interfaces between silt and sand generate eco-niches with stored soil water compartments favourable for lush vegetation in desert conditions. Desiccation significantly increases the temperature in the blocks and re-wetting of the blocks reduces the daily average and peak temperatures, the latter by almost 15°C. This is important for planning irrigation in smartly designed soil substrates and sustainability of wild plants in the region where the top soil peak temperature in the study area exceeds 70°C in Summer but smartly structured soils maintain lash vegetation. Thee layer of dry top-blocks acts as a thermal insulator for the subjacent layers of wet blocks that

  2. Multi-parameter brain tissue microsensor and interface systems: calibration, reliability and user experiences of pressure and temperature sensors in the setting of neurointensive care.

    Science.gov (United States)

    Childs, Charmaine; Wang, Li; Neoh, Boon Kwee; Goh, Hok Liok; Zu, Mya Myint; Aung, Phyo Wai; Yeo, Tseng Tsai

    2014-10-01

    The objective was to investigate sensor measurement uncertainty for intracerebral probes inserted during neurosurgery and remaining in situ during neurocritical care. This describes a prospective observational study of two sensor types and including performance of the complete sensor-bedside monitoring and readout system. Sensors from 16 patients with severe traumatic brain injury (TBI) were obtained at the time of removal from the brain. When tested, 40% of sensors achieved the manufacturer temperature specification of 0.1 °C. Pressure sensors calibration differed from the manufacturers at all test pressures in 8/20 sensors. The largest pressure measurement error was in the intraparenchymal triple sensor. Measurement uncertainty is not influenced by duration in situ. User experiences reveal problems with sensor 'handling', alarms and firmware. Rigorous investigation of the performance of intracerebral sensors in the laboratory and at the bedside has established measurement uncertainty in the 'real world' setting of neurocritical care.

  3. Multiwalled carbon nanotubes sensor for organic liquid detection at room temperature

    Science.gov (United States)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-04-01

    We have explored the possibility of using multiwalled carbon nanotubes (MWCNTs) as room temperature chemical sensor for the detection of organic liquids such as ethanol, propanol, methanol and toluene. MWCNTs were synthesized by thermal chemical vapor deposition (TCVD) technique. The interdigitated electrodes were fabricated by conventional photolithography technique. The sensor was fabricated by drop depositing MWCNT suspension onto the interdigitated electrodes. The sensing properties of MWCNTs sensor was studied for organic liquids detection. The resistance of sensor was found to increase upon exposure to these liquids. Sensor shows good reversibility and fast response at room temperature. Charge transfer between the organic liquid and sensing element is the dominant sensing mechanism.

  4. Water temperatures in select nearshore environments of the Colorado River in Grand Canyon, Arizona, during the Low Steady Summer Flow experiment of 2000

    Science.gov (United States)

    Vernieu, William S.; Anderson, Craig R.

    2013-01-01

    Water releases from Glen Canyon Dam, Arizona, are the primary determinant of streamflow, sediment transport, water quality, and aquatic and riparian habitat availability in the Colorado River downstream of the dam in Grand Canyon. The presence and operation of the dam have transformed the seasonally warm Colorado River into a consistently cold river because of hypolimnetic, or deep-water, releases from the penstock withdrawal structures on the dam. These releases have substantially altered the thermal regime of the downstream riverine environment. This, in turn, has affected the biota of the river corridor, particularly native and nonnative fish communities and the aquatic food web. In the spring and summer of 2000, a Low Steady Summer Flow experiment was conducted by the U.S. Geological Survey and the Bureau of Reclamation to evaluate the effects of the experimental flow on physical and biological resources of the Colorado River ecosystem downstream from Glen Canyon Dam to Lake Mead on the Arizona-Nevada border. This report describes the water temperatures collected during the experimental flow from 14 nearshore sites in the river corridor in Grand Canyon to assess the effects of steady releases on the thermal dynamics of nearshore environments. These nearshore areas are characterized by low-velocity flows with some degree of isolation from the higher velocity flows in the main channel and are hypothesized to be important rearing environments for young native fish. Water-temperature measurements were made at 14 sites, ranging from backwater to open-channel environments. Warming during daylight hours, relative to main-channel temperatures, was measured at all sites in relation to the amount of isolation from the main-channel current. Boat traffic, amount of direct solar radiation, and degree of isolation from the main-channel current appear to be the primary factors affecting the differential warming of the nearshore environment.

  5. High temperature engineering research facilities and experiments. Proceedings of an OECD/NEA Workshop held in Petten, Netherlands, 12-14 November 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, B.R.W. [ed.] [ECN Nuclear Research, Petten (Netherlands)

    1998-09-01

    At the workshop on the title subject a number of innovative HTGR related research programmes and experiments has been discussed. Fifteen papers were presented in four sessions: four papers in the first session Safety Research, four papers in the session Nuclear Fuel and Carbon Material Research, three papers in session 3 on Irradiation Research by HTTR and four papers in the last session on Other HTGR Research. A panel discussion was held at the end of the workshop. Topics for possible international co-operation on high temperature engineering research were identified and recommended to the NEA Nuclear Science Committee. The workshop was attended by 44 participants from eight countries all over the world. Representatives from the International Atomic Energy Agency (IAEA) and the European Commission also attended this workshop. In conjunction with the NEA workshop, the IAEA organised a Technical Committee Meeting (TCM) on High Temperature Gas Cooled Reactor Applications and Future Prospects, from 10-12 of November 1997. For most of the papers in this report separate abstracts have been prepared. The proceedings of this TCM have also been published by ECN as report ECN-R--98-004 for which a separate abstract has been prepared

  6. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO{sub 2} immobilized on porous titanium sheets via thermal-chemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Arlos, Maricor J., E-mail: mjarlos@uwaterloo.ca [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Liang, Robert; Hatat-Fraile, Melisa M. [Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bragg, Leslie M. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Zhou, Norman Y. [Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Servos, Mark R. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Andrews, Susan A. [Civil Engineering Department, University of Toronto, Toronto, Ontario M5S 1A4 (Canada)

    2016-11-15

    Highlights: • TiO{sub 2} self-assembled on oxidized porous titanium sheets. • UV-LED/TiO{sub 2} membrane treatment reduced the concentrations of estrogens. • Different pH conditions affect treatment efficiency. • The estrogenic activity removal was similar to the chemical disappearance. - Abstract: The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment. Risks associated with these compounds are not clearly defined and it is important that the water industry has additional options to increase the resiliency of water treatment systems. Titanium dioxide (TiO{sub 2}) has potential applications for the removal of EDCs from water. TiO{sub 2} has been immobilized on supports using a variety of synthesis methods to increase its feasibility for water treatment. In this study, we immobilized TiO{sub 2} through the thermal-chemical oxidation of porous titania sheets. The efficiency of the material to degrade target EDCs under UV-LED irradiation was examined under a wide range of pH conditions. A yeast-estrogen screen assay was used to complement chemical analysis in assessing removal efficiency. All compounds but 17β-estradiol were degraded and followed a pseudo first-order kinetics at all pH conditions tested, with pH 4 and pH 11 showing the most and the least efficient treatments respectively. In addition, the total estrogenic activity was substantially reduced even with the inefficient degradation of 17β-estradiol. Additional studies will be required to optimize different treatment conditions, UV-LED configurations, and membrane fouling mitigation measures to make this technology a more viable option for water treatment.

  7. Temperature, radiation and aging analysis of the DORIS Ultra Stable Oscillator by means of the Time Transfer by Laser Link experiment on Jason-2

    Science.gov (United States)

    Belli, Alexandre; Exertier, P.; Samain, E.; Courde, C.; Vernotte, F.; Jayles, C.; Auriol, A.

    2016-12-01

    The Time Transfer by Laser Link (T2L2) experiment on-board the Jason-2 satellite was launched in June 2008 at 1335 km altitude. It has been designed to use the Satellite Laser Ranging (SLR) space technique as an optical link between ground and space clocks. T2L2, as all the instruments aboard Jason-2, is referenced to the Ultra Stable Oscillator (USO) provided by the Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) system. A complex data processing has been developed in order to extract time & frequency products as the relative frequency bias of the USO from ground-to-space time transfer passages. The precision of these products was estimated of a few parts in 10-13 given the very good in-flight performance of T2L2 with a ground-to-space time stability of a few picoseconds (ps) over 100 s. Frequency bias from T2L2 were compared with results from operational orbit computation, notably with the DIODE (Détermination Immédiate d'Orbite par Doris Embarqué) outputs (see Jayles et al. (2016) same issue) at the level of 1 · 10-12. The present paper is focusing on the main physical effects which drive the frequency variations of the Jason-2 USO during its flight, notably over the South Atlantic Anomaly (SAA) area. In addition to the effects of radiation we studied the effect of the residual temperature variations, in the range 8-11 °C (measured on-board). A model was established to represent these effects on the short term with empirical coefficients (sensitivities of the USO) to be adjusted. The results of fitting the model over ∼200 10-day periods, from 2008 to 2014, show the sensitivities of the Jason-2 USO to temperature and radiation. The analysis of the 6-year output series of empirical coefficients allows us to conclude that: (i) the temperature to frequency dependence is very stable along time at the level of around -1.2 · 10-12 per °C, (ii) the radiation effects are much lower than those previously detected on the Jason-1 USO with

  8. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain: in vivo experiments and modeling in native and coagulated tissues.

    Science.gov (United States)

    N'Djin, W A; Burtnyk, M; Lipsman, N; Bronskill, M; Kucharczyk, W; Schwartz, M L; Chopra, R

    2014-09-01

    The recent clinical emergence of minimally invasive image-guided therapy has demonstrated promise in the management of brain metastasis, although control over the spatial pattern of heating currently remains limited. Based on experience in other organs, the delivery of high-intensity contact ultrasound energy from minimally invasive applicators can enable accurate spatial control of energy deposition, large treatment volumes, and high treatment rate. In this acute study, the feasibility of active MR-Temperature feedback control of dynamic ultrasound heat deposition for interstitial thermal ablation in brain was evaluatedin vivo. A four-element linear ultrasound transducer (f=8.2 MHz) originally developed for transurethral ultrasound therapy was used in a porcine model for generating thermal ablations in brain interstitially. First, the feasibility of treating and retreating preciselyin vivo brain tissues using stationary (non-rotating device) ultrasound exposures was studied in two pigs. Experimental results were compared to numerical simulations for maximum surface acoustic intensities ranging from 5 to 20 W cm(-2). Second, active MRT feedback-controlled ultrasound treatments were performed in three pigs with a rotating device to coagulate target volumes of various shapes. The acoustic power and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary. Modeling of in vivo treatments were performed and compared to observed experimental results. Overall, the time-space evolution of the temperature profiles observedin vivo could be well estimated from numerical simulations for both stationary and dynamic interstitial ultrasound exposures. Dynamic exposures performed under closed-loop temperature control enabled accurate elevation of the brain tissues within the targeted region above the 55 °C threshold necessary for the creation of irreversible thermal damage. Treatment

  9. Hot pressing and lithification of gouge during the Mount St. Helens 2004-2008 eruption: insights from high temperature deformation experiments

    Science.gov (United States)

    Ryan, Amy G.; Russell, James K.; Heap, Michael J.

    2017-04-01

    We present results from an experimental program designed to investigate the timescales, conditions and mechanisms responsible for the densification and lithification of volcanic gouge at Mount St. Helens (MSH). From 2004-2008, MSH produced a series of lava domes/spines that were mantled by thick layers of gouge resulting from fracturing and cataclasis at the conduit-wall rock interface. The gouge comprises fine crystal-rich rock powder containing little to no glass. The erupted gouge carapace is texturally diverse, and varies from loose granular material to moderately indurated coherent rock to fine-grained cataclasite within tens of centimeters. The spatial association of these materials suggests that the originally unconsolidated conduit-fault gouge is densified and lithified during ascent to the surface. At present the conditions, timescales and mechanisms for lithification of the glass-poor materials are unknown. Here, we present results from a series of high-temperature (T) uniaxial deformation experiments performed on natural gouge collected from MSH (spine 5). The experiments are intended to (1) establish the feasibility of experimentally densifying/lithifying natural gouge materials at laboratory conditions approximating those within the MSH conduit, and to (2) constrain the effects of T, load and time on the extents, rates and mechanisms of densification. Our experimental conditions include T up to 800°C (Tspines 4, 5 and 7 at MSH, tying the results from the lab to the natural system. Initial results show an increase in the amount and rate of densification with increasing experimental T, with an increase in sample shortening (axial strain) between experiments completed at 650 and 850°C. This change in axial strain-time curves with increasing T suggests the inclusion of a second densification process, aside from mechanical compaction, at elevated T. It is our hypothesis that solid-state sintering, a process wherein crystalline particles are fused together

  10. Research and Service Experience with Environmentally-Assisted Cracking in Carbon and Low-Alloy Steels in High-Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Hans-Peter; Ritter, Stefan [Paul Scherrer Inst., Laboratory for Materials Behaviour, Villigen (Switzerland). Nuclear Energy and Safety Research Dept.

    2005-11-15

    The most relevant aspects of research and service experience with environmentally-assisted cracking (EAC) of carbon (C) and low-alloy steels (LAS) in high-temperature (HT) water are reviewed, with special emphasis on the primary pressure boundary components of boiling water reactors (BWRs). The main factors controlling the susceptibility to EAC under light water reactor (LWR) conditions are discussed with respect to crack initiation and crack growth. The adequacy and conservatism of the current BWRVIP-60 stress corrosion cracking (SCC) disposition lines (DLs), ASME III fatigue design curves, and ASME XI reference fatigue crack growth curves, as well as of the GE EAC crack growth model are evaluated in the context of recent research results. The operating experience is summarized and compared to the experimental/mechanistic background knowledge. Finally, open questions and possible topics for further research are identified. Laboratory investigations revealed significant effects of simulated reactor environments on fatigue crack initiation/growth, as well as the possibility of SCC crack growth for certain specific critical combinations of environmental, material and loading parameters. During the last three decades, the major factors of influence and EAC susceptibility conditions have been readily identified. Most parameter effects on EAC initiation and growth are adequately known with acceptable reproducibility and reasonably understood by mechanistic models. Tools for incorporating environmental effects in ASME III fatigue design curves have been developed/qualified and should be applied in spite of the high degree of conservatism in fatigue evaluation procedures. The BWRVIP-60 SCC DLs and ASME XI reference fatigue crack growth curves are usually conservative and adequate under most BWR operation circumstances. The operating experience of C and LAS primary pressure-boundary components in LWRs is very good worldwide. However, isolated instances of EAC have occurred

  11. Dzyaloshinskii-Moriya interaction in Pt/Co/Pt films prepared by chemical vapor deposition with various substrate temperatures

    Directory of Open Access Journals (Sweden)

    M. Quinsat

    2017-05-01

    Full Text Available We deposited perpendicularly magnetized Co(∼1nm/Pt(6nm bilayers by thermal chemical vapor deposition (CVD on top of 3nm thick Pt layer using various deposition temperature. Observed Ms increased with the increase of deposition temperature Ts, and reached the value of pure-Co at Ts = 500°C. We measured a (left-handed negative Dzyaloshinskii-Moriya interaction in CVD films indicating a dominant role of the bottom Pt/Co interface.

  12. Interpretive Experiments

    Science.gov (United States)

    DeHaan, Frank, Ed.

    1977-01-01

    Describes an interpretative experiment involving the application of symmetry and temperature-dependent proton and fluorine nmr spectroscopy to the solution of structural and kinetic problems in coordination chemistry. (MLH)

  13. A Process-Based Assessment of Decadal-Scale Surface Temperature Evolutions in the NCAR CCSM4's 25-Year Hindcast Experiments

    Science.gov (United States)

    Deng, Yi; Chen, Junwen

    2017-04-01

    This study represents an initial effort in the context of the coupled atmosphere-surface climate feedback-response analysis method (CFRAM) to partition the temporal evolution of the global surface temperature from 1981 to 2005 into components associated with individual radiative and non-radiative (dynamical) processes in the NCAR CCSM4's decadal hindcasts. When compared with the observation (ERA-Interim), the CCSM4 is able to predict an overall warming trend as well as the transient cooling occurring during the period 1989-1994. However, while the model captures fairly well the positive contributions of the CO2 and surface albedo change to the temperature evolution, it has an overly strong water vapor effect that dictates the temperature evolution in the hindcast. This is in contrast with the observation where changes in surface dynamics (mainly ocean circulation and heat content change) dominates the actual temperature evolution. Atmospheric dynamics in both the observation and model works against the surface temperature tendency through turbulent and convective heat transport, leading to an overall negative contribution to the evolution of the surface temperature. Impacts of solar forcing and ozone change on the surface temperature change are relatively weak during this period. The magnitude of cloud effect is considerably smaller compared to that in the observation and the spatial distribution of the cloud effect is also significantly different between the two especially over the equatorial Pacific. The value and limitations of this process-based temperature decomposition are discussed.

  14. Low temperature EPR investigation of Co{sup 2+} ion doped into rutile TiO{sub 2} single crystal: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zerentürk, A. [Department of Physics, Marmara University, 34722 Kadıköy, Istanbul (Turkey); Açıkgöz, M., E-mail: muhammed.acikgoz@eng.bau.edu.tr [Bahcesehir University, Faculty of Engineering and Natural Sciences, Besiktas Campus, 34349 Besiktas, Istanbul (Turkey); Kazan, S.; Yıldız, F.; Aktaş, B. [Department of Physics, Gebze Technical University, 41400 Gebze, Kocaeli (Turkey)

    2017-02-01

    In this paper, we present the results of X-band EPR spectra of Co{sup 2+} ion doped rutile (TiO{sub 2}) which is one of the most promising memristor material. We obtained the angular variation of spectra in three mutually perpendicular planes at liquid helium (7–13 K) temperatures. Since the impurity ions have ½ effective spin and 7/2 nuclear spin, a relatively simple spin Hamiltonian containing only electronic Zeeman and hyperfine terms was utilized. Two different methods were used in theoretical analysis. Firstly, a linear regression analysis of spectra based on perturbation theory was studied. However, this approach is not sufficient for analyzing Co{sup +2} spectra and leads to complex eigenvectors for G and A tensors due to large anisotropy of eigenvalues. Therefore, all spectra were analyzed again with exact diagonalization of spin Hamiltonian and the high accuracy eigenvalues and eigenvectors of G and A tensors were obtained by taking into account the effect of small sample misalignment from the exact crystallographic planes due to experimental conditions. Our results show that eigen-axes of g and A tensors are parallel to crystallographic directions. Hence, our EPR experiments proves that Co{sup 2+} ions substitute for Ti{sup 4+} ions in lattice. The obtained principal values of g tensor are g{sub x}=2.110(6), g{sub y}=5.890(2), g{sub z}=3.725(7) and principal values of hyperfine tensor are A{sub x}=42.4, A{sub y}=152.7, A{sub z}=26 (in 10{sup −4}/cm). - Highlights: • X-band EPR spectra of Co{sup 2+} ion doped rutile (TiO{sub 2}) investigated at 7–13 K. • Two different methods were used in theoretical analysis. • The presence of two structurally equivalent centers for Co{sup 2+} ions observed. • It is concluded that impurity ions substitute for Ti{sup 4+} ion.

  15. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  16. Temperature, salinity, conductivity, and other measurements collected in the Northern Ocean as part of the Arctic Experiment in 1994 (NODC Accession 0002728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Investigation of thermohaline circulation in Nordic Seas, hydrography and pathways of Atlantic water summer Arctic experiments

  17. Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer

    Directory of Open Access Journals (Sweden)

    Ruohan Gong

    2017-07-01

    Full Text Available This paper presents a fluid-thermal coupled analysis method to compute the temperature distribution in a 31.5 MVA/110 kV oil natural air natural (ONAN three-phase three-limb transformer. The power losses of windings and core are measured by load-loss test and no-load test respectively. The convective heat transfer process, radiation and oil flow inside the transformer are investigated by finite volume method (FVM. In order to validate the feasibility and accuracy of the presented method, the temperature measuring system based on fiber Brag grating (FBG sensor is constructed for the temperature rise test of the 31.5 MVA/110 kV ONAN transformer. The simulation results deduced from the proposed method agree well with experimental data. This model can be applied to optimizing design and load scheduling.

  18. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment

    Science.gov (United States)

    Fisher, Elizabeth A.; Lucey, Paul G.; Lemelin, Myriam; Greenhagen, Benjamin T.; Siegler, Matthew A.; Mazarico, Erwan; Aharonson, Oded; Williams, Jean-Pierre; Hayne, Paul O.; Neumann, Gregory A.; Paige, David A.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    We find that the reflectance of the lunar surface within 5° of latitude of the South Pole increases rapidly with decreasing temperature, near ∼110 K, behavior consistent with the presence of surface water ice. The North polar region does not show this behavior, nor do South polar surfaces at latitudes more than 5° from the pole. This South pole reflectance anomaly persists when analysis is limited to surfaces with slopes less than 10° to eliminate false detection due to the brightening effect of mass wasting, and also when the very bright south polar crater Shackleton is excluded from the analysis. We also find that south polar regions of permanent shadow that have been reported to be generally brighter at 1064 nm do not show anomalous reflectance when their annual maximum surface temperatures are too high to preserve water ice. This distinction is not observed at the North Pole. The reflectance excursion on surfaces with maximum temperatures below 110 K is superimposed on a general trend of increasing reflectance with decreasing maximum temperature that is present throughout the polar regions in the north and south; we attribute this trend to a temperature or illumination-dependent space weathering effect (e.g. Hemingway et al., 2015). We also find a sudden increase in reflectance with decreasing temperature superimposed on the general trend at 200 K and possibly at 300 K. This may indicate the presence of other volatiles such as sulfur or organics. We identified and mapped surfaces with reflectances so high as to be unlikely to be part of an ice-free population. In this south we find a similar distribution found by Hayne et al. (2015) based on UV properties. In the north a cluster of pixels near that pole may represent a limited frost exposure.

  19. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment

    Science.gov (United States)

    Groskreutz, Stephen R.; Weber, Stephen G.

    2016-01-01

    In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A’s temperature rise, TEC B’s temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25–75 °C) at each of twelve mobile phases compositions (0.05–0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF

  20. Application of a temperature selective storage tank solar system. Part 4. Fundamental experiment under a solar simulator; Ondo sentaku chikunetsuso no solar system eno tekiyo. 4. Solar simulator ni yoru kiso jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K.; Endo, N.; Baba, H.; Okamoto, A. [Kitami Institute of Technology, Hokkaido (Japan); Kamiya, Y. [Kanto Gakuin University, Yokohama (Japan)

    1996-10-27

    The storage tank is classified into a mixed type and stratified type. The stratified type is judged to be more advantageous from a viewpoint of the effective energy utilization. An experiment was made using a solar simulator to put the system, consisting of a vacuum double-glass tube collector and temperature selective storage tank, to practical use. The ejection position of the storage tank at the top is superior to that at the bottom, in the 60{degree}C layer of three layers (60, 40, and 20{degree}C). The ejection position hardly varies with the shape (straight or elbow) of an ejection port. When the temperature stratified layer is formed in two layers (40 {times} 2, 20{degree}C) to three layers (60, 40, and 20{degree}C), heat can be stably stored as the flow rate is higher. The stratified storage tank is inferior to the mixed storage tank in heat collection efficiency, but the specific exergy increases. By increasing the number of heat storage layers, the result of this experiment can also be applied to the linear temperature gradient layer obtained in the practical use. As a result of the above experiment, the basic data for an automated system design during practical application was obtained. 3 refs., 15 figs.

  1. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital.

    Science.gov (United States)

    Blanc, D S; Carrara, Ph; Zanetti, G; Francioli, P

    2005-05-01

    The efficacy of ozonation, copper-silver ionization and increased temperature in controlling Legionella spp. in the hot water distribution networks of a university hospital was evaluated. Two separate water distribution networks were studied; network 1 which supplies the surgical intensive care units, and network 2 which supplies the medical intensive care units and the emergency room. Network 1 has been disinfected by ozonation since 1995, and network 2 has been disinfected by ionisation since 1999. The hot water temperature was increased from 50 to 65 degrees C in 1998 and 2000 in networks 1 and 2, respectively. Water samples and swabs of the water outlets were cultured for Legionella spp. between four and six times each year, providing data before and after implementation of the disinfection procedures. There was no significant difference in the proportion of samples positive for Legionella spp. after ozonation in network 1 or after ionization in network 2. In both networks, there was a significant reduction in legionella isolates after increasing the hot water temperature to 65 degrees C. Maintaining the hot water temperature above 50 degrees C throughout both networks proved to be the most effective control measure in our hospital.

  2. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation...

  3. Impact of temperature and nutrients on carbon:nutrient tissue stoichiometry of submerged aquatic plants: an experiment and meta-analysis

    NARCIS (Netherlands)

    Velthuis, M.; van Deelen, Emma; van Donk, E.; Zhang, P.; Bakker, E.S.

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource

  4. Mesocosms to assess mitigation strategies in the Kemano Completion Project: preliminary results from an initial study and recommendations for temperature control in future experiments

    National Research Council Canada - National Science Library

    Perrin, C.J; Richardson, J.S

    1995-01-01

    In summer, 1993, a mesocosm-scale experiment was run on the banks of the Nechako River to quantify effects of cooling flows and fertilization on periphyton and invertebrate composition and abundance...

  5. Arrangement of experiments for simulating the effects of elevated temperatures and elevated CO2 levels on field-sown crops in Finland

    Directory of Open Access Journals (Sweden)

    K. HAKALA

    2008-12-01

    Full Text Available The experimental plants: spring wheat, winter wheat, spring barley, meadow fescue, potato, strawberry and black currant were sown or planted directly in the field, part of which was covered by an automatically controlled greenhouse to elevate the temperature by 3°C. The temperature of the other part of the field (open field was not elevated, but the field was covered with the same plastic film as the greenhouse to achieve radiation and rainfall conditions comparable to those in the greenhouse. To elevate the CO2 concentrations, four open top chambers (OTC were built for the greenhouse, and four for the open field. Two of these, both in the greenhouse and in the open field, were supplied with pure CO2 to elevate their CO2 level to 700 ppm. The temperatures inside the greenhouse followed accurately the desired level. The relative humidity was somewhat higher in the greenhouse and in the OTC:s than in the open field, especially after the modifications in the ventilation of the greenhouse and in the OTC:s in 1994. Because the OTC:s were large (3 m in diameter, the temperatures inside them differed very little from the surrounding air temperature. The short-term variation in the CO2 concentrations in the OTC:s with elevated CO2 was, however, quite high. The control of the CO2 concentrations improved each year from 1992 to 1994, as the CO2 supplying system was modified. The effects of the experimental conditions on plant growth and phenology are discussed.;

  6. Ex Vivo Liver Experiment of Hydrochloric Acid-Infused and Saline-Infused Monopolar Radiofrequency Ablation: Better Outcomes in Temperature, Energy, and Coagulation.

    Science.gov (United States)

    Jiang, Xiong-ying; Gu, Yang-kui; Huang, Jin-hua; Gao, Fei; Zou, Ru-hai; Zhang, Tian-qi

    2016-04-01

    To compare temperature, energy, and coagulation between hydrochloric acid-infused radiofrequency ablation (HAIRFA) and normal saline-infused radiofrequency ablation (NSIRFA) in ex vivo porcine liver model. 30 fresh porcine livers were excised in 60 lesions, 30 with HAIRFA and the other 30 with NSIRFA. Both modalities used monopolar perfusion electrode connected to a RF generator set at 103 °C and 30 W. In each group, ablation time was set at 10, 20, or 30 min (10 lesions from each group at each time). We compared tissue temperatures (at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 cm away from the electrode tip), average power, deposited energy, deposited energy per coagulation volume (DEV), coagulation diameters, coagulative volume, and spherical ratio between the two groups. Temperature-time curves showed that HAIRFA provided progressively greater heating than that of NSIRFA. At 30 min, mean average power, deposited energy, coagulation volumes (113.67 vs. 12.28 cm(3)) and diameters, and increasing in tissue temperature were much greater with HAIRFA (P < 0.001 for all), except DEV was lower (456 vs. 1396 J/cm(3), P < 0.001). The spherical ratio was closer to 1 with HAIRFA (1.23 vs. 1.46). Coagulation diameters, volume, and average power of HAIRFA increased significantly with longer ablation times. While with NSIRFA, these characteristics were stable till later 20 min, except the power decreased with longer ablation times. HAIRFA creates much larger and more spherical lesions by increasing overall energy deposition, modulating thermal conductivity, and transferring heat during ablation.

  7. Phase Behaviour of 1-Ethyl-3-methylimidazolium Thiocyanate Ionic Liquid with Catalytic Deactivated Compounds and Water at Several Temperatures: Experiments and Theoretical Predictions

    Directory of Open Access Journals (Sweden)

    Ramalingam Anantharaj

    2011-01-01

    Full Text Available Density, surface tension and refractive index were determined for the binary mixture of catalytic deactivated compounds with 1-ethyl-3-methylimidazolium thiocyanate {[EMIM][SCN]} at temperature of (298.15 to 323.15 K. For all the compounds with ILs, the densities varied linearly in the entire mole fraction with increasing temperature. From the obtained data, the excess molar volume and deviation of surface tension and refractive index have been calculated. A strong interaction was found between similar (cation-thiophene or cation-pyrrole compounds. The interaction of IL with dissimilar compounds such as indoline and quinoline and other multiple ring compounds was found to strongly depend on the composition of IL at any temperatures. For the mixtures, the surface tension decreases in the order of: thiophene > quinoline > pyridine > indoline > pyrrole > water. In general from the excess volume studies, the IL-sulphur/nitrogen mixture has stronger interaction as compared to IL-IL, thiophene-thiophene or pyrrole-pyrrole interaction. The deviation of surface tension was found to be inversely proportional to deviation of refractive index. The quantum chemical based COSMO-RS was used to predict the non-ideal liquid phase activity coefficient for all mixtures. It indicated an inverse relation between activity coefficient and excess molar volumes.

  8. Experience-based learning on determining the frictional coefficients of thermoset polymers incorporated with silicon carbide whiskers and chopped carbon fibers at different temperatures

    Science.gov (United States)

    Harrison, Edward; Alamir, Mohammed; Alzahrani, Naif; Asmatulu, Ramazan

    2017-04-01

    High temperature applications of materials have been increasing for various industrial applications, such as automobile brakes, clutches and thrust pads. The big portion of these materials are made out of the polymeric materials with various reinforcements. In the present study, high temperature polymeric materials were incorporated with SiC whiskers and chopped carbon fibers at 0, 5, 10 and 20wt.% and molded into desired size and shape prior to the curing process. These inclusions were selected because of their high mechanical strengths and thermal conductivity values to easily dissipate the frictional heat energy and sustain more external loads. The method of testing involves a metal ramp with an adjustable incline to find the coefficients of static and kinetic frictions by recording time and the angle of movement at various temperatures (e.g., -10°C and 50°C). The test results indicated that increasing the inclusions made drastic improvements on the coefficients of static and kinetic frictions. The undergraduate students were involved in the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the composite, automobile and other manufacturing industries.

  9. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments

    Science.gov (United States)

    Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.

    2008-01-01

    A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.

  10. Simulating thermal explosion of RDX-based explosives: Model comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yoh, J J; McClelland, M A; Maienschein, J L; Wardell, J F; Tarver, C M

    2004-10-11

    We compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two RDX-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in large scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 5 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  11. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  12. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  13. Comparison of airborne passive and active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP validation experiment 2012 (SMAPVEX12)

    Science.gov (United States)

    The purpose of SMAP (Soil Moisture Active Passive) Validation Experiment 2012 (SMAPVEX12) campaign was to collect data for the pre-launch development and validation of SMAP soil moisture algorithms. SMAP is a National Aeronautics and Space Administration’s (NASA) satellite mission designed for the m...

  14. Adsorption in single-walled carbon nanotubes by experiments and molecular simulation II: Effect of morphology and temperature on organic adsorption

    Science.gov (United States)

    Agnihotri, S.; Rostam-Abadi, M.; Mota, J.P.B.; Rood, M.J.

    2005-01-01

    Hexane adsorption on single-walled carbon nanotube (SWNT) bundles was studied. Hexane adsorption capacities of two purified SWNT samples was gravimetrically determined at isothermal conditions of 25??, 37??, and 50??C for 10-4 Simulation of hexane adsorption under similar temperature and pressure conditions were performed on the external and internal sites of nanotube bundles of diameters same as those in experimental samples. The simulations could predict isotherms for a hypothetical scenario where all nanotubes in a sample would be open. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).

  15. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: a pilot-scale experience.

    Science.gov (United States)

    Esparza Soto, M; Solís Morelos, C; Hernández Torres, J J

    2011-01-01

    The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.

  16. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments

    Science.gov (United States)

    Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl

    2014-01-01

    Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions. PMID:25035801

  17. BASIC experiment on the sodium leak combustion. Examination of sodium combustion and liner material damage by sodium continuously dropped into the high-temperature NaOH molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiichi; Furukawa, Tomohiro; Aoto, Kazumi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-10-01

    The purpose of this basic experiments to clarify the cause of damage of the liner material, which recognized by the Sodium Leak and Combustion Test II. In this experiment, the liquid sodium continuously dropped into the high-temperature NaOH molten pool, to investigate sodium combustion phenomenon in the NaOH pool and damage of the liner material (carbon steel, JIS, G3106, SM400B). The drop temperature of sodium is 496degC, and the amount of dropped sodium is about 1200g. The temperature of NaOH molten pool is 660-690degC in the initial stage, and the amount of NaOH is about 2500g. The average drop (leak) rate is 1.8g/sec, and the height of above the NaOH molten pool is about 700 mm. The following results were obtained. The fallen sodium continued to burn during floating on the NaOH molten pool. In this case, the NaOH molten pool was not totally covered with the combustion products, and the molten pool always had the atmosphere interface. The combustion products were mixed and melted in the NaOH molten pool. The maximum reduction of thickness was occurred in the level vicinity of NaOH molten pool. Plate test specimens of 3 mm thickness were separated in the level vicinity during periods of combustion. And, in the NaOH container, the metal loss of largest about 2.5 mm was recognized at the level vicinity. It is considered that the remarkable metal loss in the level vicinity indicates the involvement of molten salt-type corrosion mechanism with the atmosphere interface. The above mentioned results were obtained from the basic experiment. These results gave the important information to evaluate the damage mechanism of the floor liner material. (author)

  18. Luminescence of the (O2(a(1)Δ(g)))2 collisional complex in the temperature range of 90-315 K: Experiment and theory.

    Science.gov (United States)

    Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.

  19. Selection of support structure materials for irradiation experiments in the HFIR (High Flux Isotope Reactor) at temperatures up to 500 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500{degree}C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs.

  20. Progress report on neutron beam experiments in Thailand: effects of antimony substitutions on the critical temperature of Bi-Pb-Sr-Ca-Cu-O compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sangariyavanich, A.; Ampornrat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Effects of systematic substitutions of antimony for bismuth in Bi{sub 1.8-x}Pb{sub 0.2}Sb{sub x}Sr{sub 2}Ca{sub 3}Cu{sub 4}O{sub 10} have been investigated. Fabrication of the specimens has been performed by solid state reaction in air. The samples were sintered between 820degC - 843degC for 65 hours and subsequently quenched in liquid nitrogen. The critical temperatures of most specimens as determined by standard four-probe technique was higher than 100 K. Phase identification by X-ray diffraction technique indicated that `2223` and `2234` were the predominant phases in these samples. (author)

  1. Arctic Ice Dynamics Joint Experiment 1975-1976. Physical Oceanography Data Report, Salinity, Temperature and Depth Data, Camp Big Bear. Volume IV.

    Science.gov (United States)

    1980-02-01

    STATIONT ER ALNT LECRMotc AT LOG WLE SAMPLE LEVELS L__r MMTR/S ANLO MAG.nETICSEORDT CHARTSTAPE TD calibration data SCREEN AND SMOOTH D C T MANUALLY mutwINT...AT CAMP BIG BEAR MAY 19 1975 TO MAY 319 1975 I’d 3 L4 is V5 1. B 1.9 ED l. 2 23 24 2 -i j -j 21 2 a 24 25C7 23 cm 30 31 S.. u N ri r tD 0 ca 0 a CA -4...DIVISION MARK (- jeB DEGeC.) * TEMP’ERATURE SCALE SHIFTS RIGH-T ± DIVISIONJ 0.5 DEG- C.) PER HALF DAY BAY 2 4 6 7 9 9 :L0 1 12 Im 15D- - TEMPERATURE PROF

  2. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    Science.gov (United States)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality

  3. Temperature measurement

    Science.gov (United States)

    ... an oral temperature. Other factors to take into account are: In general, rectal temperatures are considered to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  4. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    Science.gov (United States)

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  5. Ionic/Electronic Conductivity, Thermal/Chemical Expansion and Oxygen Permeation in Pr and Gd Co-Doped Ceria PrxGd0.1Ce0.9-xO1.95-δ

    DEFF Research Database (Denmark)

    Cheng, Shiyang; Chatzichristodoulou, Christodoulos; Søgaard, Martin

    2017-01-01

    The oxygen permeation flux of Ce0.9Gd0.1O1.95-δ (CGO)-based oxygen transport membranes under oxidizing conditions is limited by the electronic conductivity of the material. This work aims to enhance the bulk ambipolar conductivity of CGO by partial substitution of Ce with the redox active element...... Pr. A series of compositions of PrxGd0.1Ce0.9-xO1.95-δ (x = 0, 0.02, 0.05, 0.08, 0.15, 0.25, 0.3 and 0.4) was prepared by solid state reaction. X-ray powder diffraction (XPD) indicates that Pr is completely dissolved in the fluorite structure up to 40 at.%. Pronounced nonlinear thermal expansion...... behavior was observed as a function of temperature, due to the simultaneous contributions of both thermal and chemical expansion. The electronic and ionic conductivities were measured as a function of temperature and oxygen partial pressure. Within the range from 10 to 15 at.% Pr, a drastic drop...

  6. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    Science.gov (United States)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  7. Responses of enchytraeids to increased temperature, drought and atmospheric CO2: Results of an eight-year field experiment in dry heathland

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Schmelz, Rüdiger M.; Carrera, Noela

    2015-01-01

    In a long-term field trial we investigated the responses of enchytraeids to simulated future climatic conditions predicted for Denmark. At a semi-natural Danish heathland site we exposed 9.1 m2 plots to elevated atmospheric CO2 concentration (510 ppm), extended summer drought and passive night...... in spring 2013, perhaps indicating that warming stimulates fragmentation (reproduction) rates at this time of the year. Increased drought in MayeJune 2012 did not have lasting effects on abundance or biomass 3 months after the termination of drought treatment. However, comparison with earlier assessments...... of enchytraeids in the CLIMAITE experiment shows that the severity of drought and the time elapsed since the last drought is the best predictor of the biovolume (or biomass) of enchytraeids. Moreover, species richness was significantly impacted by the average soil water content experienced by enchytraeids during...

  8. Effect of Mantle Wedge Hybridization by Sediment Melt on Geochemistry of Arc Magma and Arc Mantle Source - Insights from Laboratory Experiments at High Pressures and Temperatures

    Science.gov (United States)

    Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.

    2015-12-01

    Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also

  9. The Outcomes of Targeted Temperature Management After Cardiac Arrest at Emergency Department: A Real-World Experience in a Developing Country.

    Science.gov (United States)

    Srivilaithon, Winchana; Muengtaweepongsa, Sombat

    2017-03-01

    Targeted temperature management (TTM) is indicated for comatose survivors of cardiac arrest to improve outcomes. However, the benefit of TTM was verified by rigid controlled clinical trials. This study aimed at evaluating its effects in real-world practices. A prospective observational study was done at the emergency department of tertiary care, Thammasat Hospital, from March 2012 until October 2015. We included all who did not obey verbal commands after being resuscitated from cardiac arrest regardless of initial cardiac rhythm. We excluded patients with traumatic arrest, uncontrolled bleeding, younger than 15 years old, and of poor neurological status (Glasgow coma scale below 14) before cardiac arrest. Primary and secondary outcomes were survival to hospital discharge and favorable neurological outcome (Cerebral Performance Categories 1 or 2 within 30 days). We used the logistic regression model to estimate the propensity score (PS) that will be used as a weight in the analysis. To analyze outcomes, the PS was introduced as a factor in the final logistic regression model in conjunction with other factors. A total of 192 cases, 61 and 131 patients, were enrolled in TTM and non-TTM groups, respectively. Characteristics believed to be related to initiation of TTM: gender, age, cardiac etiology, out-of-hospital cardiac arrest, witness arrest, collapse time, initial rhythm, received defibrillation, and advanced airway insertion, were included in multivariable analysis and estimated PS. After adjusted regression analysis with PS, the TTM group had a better result in survival to hospital discharge (34.43% vs. 12.21%; adjusted incidence risk ratio (IRR), 2.95; 95% confidence interval (CI), 1.49-5.84; p = 0.002). For neurological outcome, the TTM group had a higher number of favorable neurological outcomes (24.59% vs. 6.87%; IRR, 3.96; 95% CI, 1.67-9.36; p = 0.002). In real-world practices without a strictly controlled environment, TTM can improve survival and

  10. Temperature estimation with ultrasound

    Science.gov (United States)

    Daniels, Matthew

    Hepatocelluar carcinoma is the fastest growing type of cancer in the United States. In addition, the survival rate after one year is approximately zero without treatment. In many instances, patients with hepatocelluar carcinoma may not be suitable candidates for the primary treatment options, i.e. surgical resection or liver transplantation. This has led to the development of minimally invasive therapies focused on destroying hepatocelluar by thermal or chemical methods. The focus of this dissertation is on the development of ultrasound-based image-guided monitoring options for minimally invasive therapies such as radiofrequency ablation. Ultrasound-based temperature imaging relies on relating the gradient of locally estimated tissue displacements to a temperature change. First, a realistic Finite Element Analysis/ultrasound simulation of ablation was developed. This allowed evaluation of the ability of ultrasound-based temperature estimation algorithms to track temperatures for three different ablation scenarios in the liver. It was found that 2-Dimensional block matching and a 6 second time step was able to accurately track the temperature over a 12 minute ablation procedure. Next, a tissue-mimicking phantom was constructed to determine the accuracy of the temperature estimation method by comparing estimated temperatures to that measured using invasive fiber-optic temperature probes. The 2-Dimensional block matching was able to track the temperature accurately over the entire 8 minute heating procedure in the tissue-mimicking phantom. Finally, two separate in-vivo experiments were performed. The first experiment examined the ability of our algorithm to track frame-to-frame displacements when external motion due to respiration and the cardiac cycle were considered. It was determined that a frame rate between 13 frames per second and 33 frames per second was sufficient to track frame-to-frame displacements between respiratory cycles. The second experiment examined

  11. Development of a High-Temperature Smart Transducer Interface Node and Telemetry System (HSTINTS)

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.A. et al.

    2006-11-03

    Halliburton Energy Services and Oak Ridge National Laboratory established a CRADA to conduct applied research to develop a general purpose, High-Temperature, Smart Transducer Interface Node and Telemetry System (HSTINTS) capable of temporally-coherent multiple-channel, high speed, high-resolution data transuction and acquisition while operating in a hostile thermal, chemical, and pressure environment for extended periods of time over a single coaxial cable. This ambitious, high-risk effort required development of custom dielectric isolated integrated circuits, amplified hybrid couplers for telemetry and an audio-frequency based power supply and distribution system using an engineered application of standing waves to compensate voltage drop along a 2 mile long cable. Several goals were achieved but underestimated challenges and a couple of mistakes hampered progress. When it was determined that an additional year of concerted effort would be required to complete the system demonstration, the sponsor withdrew funding and terminated the effort.

  12. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.

    Science.gov (United States)

    Tao, Li; Lee, Jongho; Chou, Harry; Holt, Milo; Ruoff, Rodney S; Akinwande, Deji

    2012-03-27

    We report new findings on the chemical vapor deposition (CVD) of monolayer graphene with negligible defects (≥95% negligible defect-peak over 200 μm × 200 μm areas) on evaporated copper films. Compared to copper foils used in the CVD of graphene, several new unexpected results have been observed including high-quality monolayer synthesis at temperatures graphene grains on underlying copper grains. These thermal, chemical, and physical growth characteristics of graphene on copper films can be attributed to the distinct differences in the dominant crystal orientation of copper films (111) versus foils (100), and consequent dissimilar interplay with the precursor gas. This study suggests that reduced temperature, hydrogen-free synthesis of defect-negligible monolayer graphene is feasible, with the potential to shape and scale graphene grains by controlling the size and crystal orientation of the underlying copper grains. © 2012 American Chemical Society

  13. Fuzzy Logic Controller for Low Temperature Application

    Science.gov (United States)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  14. Synthesis graphene layer at different waste cooking palm oil temperatures

    Science.gov (United States)

    Robaiah, M.; Rusop, M.; Abdullah, S.; khusaimi, Z.; Azhan, H.; Asli, N. A.

    2017-09-01

    Graphene is one of the most recent carbon nanomaterials that has attracted attention because of its superior properties. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. The growth of graphene at different waste cooking palm oil (WCPO) temperatures using double thermal chemical vapour deposition method (DTCVD) was investigated. The samples were prepared at various vaporization temperatures of WCPO is range from 250 °C to 450 °C by increment 50 °C and the temperature of Ni substrate constant at 900 °C. The structural of the graphene were characterized by using field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray (EDX) Spectroscopy, UV-Visible and Raman's spectroscopy. FESEM images at optimum temperature (350 °C) display hexagonal shapes since the graphene layers were formed after precipitation of the carbon. It the meantime, UV-Visible spectra shows the sharp peak at 250 nm whereupon the highest of reflectivity value. This peak is an indication the presence of the graphene layers on Ni substrate. The position and half width 2D peak of the Raman spectra were subjected to detail analyses in order to determine the quantity and quality of the graphene layer. At the temperature 350°C, the Raman's spectroscopy result shown the multilayer of the graphene based on I2D/IG ratio is approximately constant (equal to˜0.43).

  15. Sensing temperature.

    Science.gov (United States)

    Sengupta, Piali; Garrity, Paul

    2013-04-22

    Temperature is an omnipresent physical variable reflecting the rotational, vibrational and translational motion of matter, what Richard Feynman called the "jiggling" of atoms. Temperature varies across space and time, and this variation has dramatic effects on the physiology of living cells. It changes the rate and nature of chemical reactions, and it alters the configuration of the atoms that make up nucleic acids, proteins, lipids and other biomolecules, significantly affecting their activity. While life may have started in a "warm little pond", as Charles Darwin mused, the organisms that surround us today have only made it this far by devising sophisticated systems for sensing and responding to variations in temperature, and by using these systems in ways that allow them to persist and thrive in the face of thermal fluctuation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Core temperature affects scalp skin temperature during scalp cooling.

    Science.gov (United States)

    Daanen, Hein A M; Peerbooms, Mijke; van den Hurk, Corina J G; van Os, Bernadet; Levels, Koen; Teunissen, Lennart P J; Breed, Wim P M

    2015-08-01

    The efficacy of hair loss prevention by scalp cooling to prevent chemotherapy induced hair loss has been shown to be related to scalp skin temperature. Scalp skin temperature, however, is dependent not only on local cooling but also on the thermal status of the body. This study was conducted to investigate the effect of body temperature on scalp skin temperature. We conducted experiments in which 13 healthy subjects consumed ice slurry to lower body temperature for 15 minutes after the start of scalp cooling and then performed two 12-minute cycle exercise sessions to increase body core temperature. Esophageal temperature (Tes ), rectal temperature (Tre ), mean skin temperature (eight locations, Tskin ), and mean scalp temperature (five locations, Tscalp ) were recorded. During the initial 10 minutes of scalp cooling, Tscalp decreased by >15 °C, whereas Tes decreased by 0.2 °C. After ice slurry ingestion, Tes , Tre , and Tskin were 35.8, 36.5, and 31.3 °C, respectively, and increased after exercise to 36.3, 37.3, and 33.0 °C, respectively. Tscalp was significantly correlated to Tes (r = 0.39, P scalp cooling contributes to the decrease in scalp temperature and may improve the prevention of hair loss. This may be useful if the desired decrease of scalp temperature cannot be obtained by scalp cooling systems. © 2015 The International Society of Dermatology.

  17. Low temperature (

    NARCIS (Netherlands)

    Rath, J.K.; de Jong, M.; Schropp, R.E.I.

    2008-01-01

    Amorphous silicon films have been made by HWCVD at a very low substrate temperature of ≤ 100 °C (in a dynamic substrate heating mode) without artificial substrate cooling, through a substantial increase of the filament–substrate distance ( 80 mm) and using one straight tantalum filament. The

  18. Evaluation of Pore Networks in Caprocks at Geologic Storage Sites: A Combined Study using High Temperature and Pressure Reaction Experiments, Small Angle Neutron Scattering, and Focused Ion Beam-Scanning Electron Microscopy

    Science.gov (United States)

    Mouzakis, K. M.; Sitchler, A.; Wang, X.; McCray, J. E.; Kaszuba, J. P.; Rother, G.; Dewers, T. A.; Heath, J. E.

    2011-12-01

    Low permeability rock units, often shales or mudstones, that overlie geologic formations under consideration for CO2 sequestration will help contain injected CO2. CO2 that does flow through these rocks will dissolve into the porewaters, creating carbonic acid lowering the pH. This perturbation of the system may result in mineral dissolution or precipitation, which can change the pore structure and impact the flow properties of the caprocks. In order to investigate the impacts that reaction can have on caprock pore structure, we performed a combination of high pressure high temperature reaction experiments, small angle neutron scattering (SANS) experiments and high resolution focused ion beam-scanning electron microscope (FIB-SEM) imaging on samples from the Gothic shale and Marine Tuscaloosa Group. Small angle neutron scattering was performed on unreacted and reacted caprocks at the High Flux Isotope Reactor at Oak Ridge National Laboratory. New precipitates and pores are observed in high-resolution images of the reacted samples. The precipitates have been preliminarily identified as gypsum or anhydrite, and sulfide minerals. Results from small angle neutron scattering, a technique that provides information about pores and pore/mineral interfaces at scales ~ 5 to 300 nm, show an increased porosity and specific surface area after reaction with brine and CO2. However, there appear to be differences in how the pore networks change between the two samples that are related to sample mineralogy and original pore network structure. Changes to pores and formation of new pores may lead to different capillary sealing behavior and permeability. This combination of controlled laboratory experiments, neutron scattering and high-resolution imaging provides detailed information about the geochemical processes that occur at the pore scale as CO2 reacts with rocks underground. Such information is integral to the evaluation of large-scale CO2 sequestration as a feasible technology

  19. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids

    Science.gov (United States)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.

    2017-04-01

    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the

  20. Predicting High Temperature Dislocation Physics in HCP Crystal Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Abigail [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carpenter, John S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-09

    This report applies models and experiments to answer key questions about the way materials deform; specifics regarding phase field dislocations dynamics; as well as high temperature rolling experiments.

  1. Analysis of Slip Activity and Deformation Modes in Tension and Tension-Creep Tests of Cast Mg-10Gd-3Y-0.5Zr (Wt Pct) at Elevated Temperatures Using In Situ SEM Experiments

    Science.gov (United States)

    Wang, Huan; Boehlert, Carl J.; Wang, Qudong; Yin, Dongdi; Ding, Wenjiang

    2016-05-01

    The tension and tension-creep deformation behavior at elevated temperatures of a cast Mg-10Gd-3Y-0.5Zr (wt pct, GW103) alloy was investigated using in situ scanning electron microscopy. The tests were performed at temperatures ranging from 473 K to 598 K (200 °C to 325 °C). The active slip systems were identified using an EBSD-based slip trace analysis methodology. The results showed that for all of the tests, basal slip was the most likely system to be activated, and non-basal slip was activated to some extent depending on the temperature. No twinning was observed. For the tension tests, non-basal slip consisted of ~35 pct of the deformation modes at low temperatures (473 K and 523 K (200 °C and 250 °C)), while non-basal slip accounted for 12 and 7 pct of the deformation modes at high temperatures (573 K and 598 K (300 °C and 325 °C)), respectively. For the tension-creep tests, non-basal slip accounted for 31 pct of the total slip systems at low temperatures, while this value decreased to 10 to 16 pct at high temperatures. For a given temperature, the relative activity for prismatic slip in the tension-creep tests was slightly greater than that for the tension tests, while the activity for pyramidal slip was lower. Slip-transfer in neighboring grains was observed for the low-temperature tests. Intergranular cracking was the main cracking mode, while some intragranular cracks were observed for the tension-creep tests at high temperature and low stress. Grain boundary ledges were prevalently observed for both the tension and tension-creep tests at high temperatures, which suggests that besides dislocation slip, grain boundary sliding also contributed to the deformation.

  2. Response of Fusarium solani to Fluctuating Temperatures

    Science.gov (United States)

    Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds

    1971-01-01

    The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...

  3. Currents, pressure, temperature, conductivity, salinity, and attenuation data collected from moorings during the Lydonia Canyon Dynamics Experiment deployed from platforms OCEANUS, LULU, and WHITEFOOT from October 24, 1980 to November 11, 1982 (NCEI Accession 0054154)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A major field experiment to determine the importance of submarine canyons in sediment transport along and across the continental margin. The experiment included...

  4. MISSE 1 and 2 Tray Temperature Measurements

    Science.gov (United States)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  5. Temperature profile data from STD/CTD casts from the MOANA WAVE from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 22 February to 1975-05-27 (NODC Accession 7800703)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MOANA WAVE in the Pacific Ocean from February 22, 1975 to May 27, 1975. Data were...

  6. Temperature, current meter, and other data from moored buoy as part of the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) project, 30 July 1974 - 14 August 1974 (NODC Accession 7601675)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, current meter, and other data were collected using moored buoy from the CAPRICORNE from July 30, 1974 to August 14, 1974. Data were collected as part of...

  7. Temperature profile data collected using XBT from the KANA KEOKI from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 1979-02-06 to 1980-06-14 (NCEI Accession 8100518)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, depth, and other data were collected using bathythermograph (BT/XBT) casts from KANA KEOKI in the Pacific Ocean from February 6, 1979 to June 14, 1980....

  8. Temperature and other data collected using moored buoy as part of the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project from 05 July 1976 to 31 January 1977 (NODC Accession 8200026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fluorescence, temperature, depth, east-west current component, north-south current component, pressure and other data were collected using moored buoy from July 5,...

  9. Temperature and current data collected as part of the CLIvar MOde Water Dynamic Experiment (CLIMODE) mooring data from 2005-11 to 2007-11 in the North Atlantic, south-east of the Gulf Stream (NCEI Accession 0127259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two years of temperature, salinity, current, and nutrient data were collected on four subsurface moorings as part of a two-year field component of the CLIMODE...

  10. Temperature profile data from STD/CTD casts from the HUNT from the Atlantic Ocean during the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment (IDOE/MODE) project, 25 April to 23 June 1973 (NODC Accession 7700552)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using SDT/CDT casts from HUNT in the Atlantic Ocean from April 25, 1973 to June 23, 1973. Data were submitted by...

  11. Temperature profile from NOAA Ship RESEARCHER and other platforms as part of the ARP (Global Atmospheric Research Program) Atlantic Tropical Experiment from 1974-08-28 to 1974-09-20 (NCEI Accession 7800314)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using BT and XBT from NOAA Ship RESEARCHER and other platforms in the TOGA area - Atlantic from 28 August 1974 to 20...

  12. Global distribution of temperature and salinity profiles from profiling floats as part of the World Ocean Circulation Experiment (WOCE) project, from 1994-11-07 to 2002-01-19 (NCEI Accession 0000936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-Salinity profile and pressure data were collected by using profiling floats in a world-wide distribution from 07 November 1994 to 19 January 2002. Data...

  13. Temperature profile data collected using current meter, mooring, thermistor casts from the Atlantic Ocean in part of the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment from 11 March 1973 to 01 July 1973 (NODC Accession 7700106)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using current meter, mooring, thermistor casts from March 11, 1973 to July 1, 1973. Data were submitted by Woods Hole Oceanographic...

  14. Temperature profile data from CTD casts in the North Atlantic Ocean as part of the Mediterranean EDDY Experiment (MEDDY), from 1985-06-01 to 1985-06-23 (NODC Accession 9700179)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts from the R/V HUDSON in the North Atlantic Ocean from June 1, 1985 to June 23, 1985. Data were collected by...

  15. Certification testing at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Noss, P.W. [Packaging Technology, Tacoma, WA (United States); Ammerman, D.J. [Sandia National Labs., Albuquerque, NM (United States)

    2004-07-01

    Regulations governing the transport of radioactive materials require that most hypothetical accident condition tests or analyses consider the effects of the environmental temperature that most challenges package performance. For many packages, the most challenging temperature environment is the cold condition (-29 C according to U.S. regulations), primarily because the low temperature causes the highest free drop impact forces due to the higher strength of many energy-absorbing materials at this temperature. If it is decided to perform low temperature testing, it is only necessary that the relevant parts of the package have the required temperature prior to the drop. However, the details of performing a drop at low temperature can have a large influence on testing cost and technical effectiveness. The selection of the test site, the chamber and type of chilling equipment, instrumentation, and even the time of year are all important. Control of seemingly minor details such as the effect on internal pressure, placement of monitoring thermocouples, the thermal time constant of the test article, and icing of equipment are necessary to ensure a successful low temperature test. This paper will discuss these issues and offer suggestions based on recent experience.

  16. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  17. Assessing foot temperature using infrared thermography.

    Science.gov (United States)

    Sun, Pi-Chang; Jao, Shyh-Hua Eric; Cheng, Cheng-Kung

    2005-10-01

    Previous reports recommended using skin temperature as a guide to monitor neuropathic feet during their rehabilitation course. However, the diagnostic usefulness was limited because of poor thermal measurement and procedures. The purpose of this study was to propose a standardized protocol to quantify foot temperature. An infrared image system was used to measure skin temperature. The first experiment was conducted on 16 healthy volunteers to study temperature variation with respect to time. This study mapped out six subregions of anatomic interest over the sole, and average temperature values for each were studied. The second experiment was conducted on 62 diabetic patients, with and without sympathetic skin response (SSR), to study proposed sole temperature normalization with respect to forehead temperature for clinical diagnosis. In the first experiment, the temperature in each plantar subregion varied as a function of time. In the sole area, the highest temperature was noted in the arch region (29.3 +/- 0.9 degrees C). The toes had the lowest temperature value (26.2 +/- 1.2 degrees C) in all areas. Equilibrium was reached after 15 minutes for the mean plantar temperature (27.8 +/- 1.0 degrees C). In the second experiment, the diabetic patients without SSR had a slightly higher mean plantar temperature (27.6 +/- 1.8 degrees C) than those with SSR (26.8 +/- 2.2 degrees C), but the difference was not statistically significant (p > 0.05). The SSR-absent group (0.19) and the SSR-present group (0.24) had significant differences in their normalized temperatures as proposed (p diabetic feet. The mean plantar temperature, the wait time to start measurement, and the proposed normalization are believed to play important roles in neuropathic foot disorders.

  18. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  19. The impact of ocean acidification on the early life stages of surf clams and the interactive effects of feeding and temperature from laboratory experiment studies from 2011-07-12 to 2012-06-17 (NODC Accession 0123314)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains laboratory experiment data that were collected to examine the effects of ocean acidification on the Atlantic surfclam, Spisula...

  20. Currents, temperature, attenuation, and conductivity data collected during the Monterey Canyon Experiment from moorings deployed from platforms ROBERT GORDON SPROUL and NOAA Ship McARTHUR from 1993-08-03 to 1995-05-15 (NODC Accession 0067570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey Canyon experiment studied the mechanisms that govern the circulation within and the transport of sediment and water through Monterey Submarine Canyon....

  1. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  2. Temperature Scaling Law for Quantum Annealing Optimizers.

    Science.gov (United States)

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  3. Temperature characteristics modeling of Preisach theory

    Directory of Open Access Journals (Sweden)

    Chen Hao

    2017-01-01

    Full Text Available This paper proposes a modeling method of the temperature characteristics of Preisach theory. On the basis of the classical Preisach hysteresis model, the Curie temperature, the critical exponent and the ambient temperature are introduced after which the effect of temperature on the magnetic properties of ferromagnetic materials can be accurately reflected. A simulation analysis and a temperature characteristic experiment with silicon steel was carried out. The results are basically the same which proves the validity and the accuracy of the method.

  4. Experiments with Fluorescent Lamps

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-10-01

    The experiments described below show the irradiance and illuminance spectra of two fluorescent lamps in relation to their color temperatures, and the efficacy in comparison to that of an incandescent lamp. Spectra of "warm white" and "cool daylight" fluorescent lamps are demonstrated.

  5. Musical intonation of wind instruments and temperature

    Science.gov (United States)

    Zendri, G.; Valdan, M.; Gratton, L. M.; Oss, S.

    2015-05-01

    Wind musical instruments are affected in their intonation by temperature. We show how to account for these effects in a simple experiment, and provide results in languages accessible to both physics and music professionals.

  6. Hadrons at finite temperature

    CERN Document Server

    Mallik, Samirnath

    2016-01-01

    High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...

  7. Superhigh Temperatures and Acoustic Cavitation

    CERN Document Server

    Belyaev, V B; Miller, M B; Sermyagin, A V; Topolnikov, A S

    2003-01-01

    The experimental results on thermonuclear synthesis under acoustic cavitation have been analyzed with the account of the latest data and their discussion. The analysis testifies that this avenue of research is a very promising one. The numerical calculations of the D(d, n)^{3}He reaction rate in the deuterated acetone (C_{3}D_{6}O) under the influence of ultrasound depending on T environment temperature within the range T=249-295 K have been carried out within the framework of hydrodynamic model. The results show that it is possible to improve substantially the effect/background relationship in experiments by decreasing the fluid temperature twenty-thirty degrees below zero.

  8. SMEX03 Surface and Soil Temperature Measurements: Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains land surface temperature and soil temperature data at depths of 1 cm, 5 cm, and 10 cm collected during the Soil Moisture Experiment 2003...

  9. Body temperature norms

    Science.gov (United States)

    Normal body temperature; Temperature - normal ... Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak ...

  10. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  11. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.

    Science.gov (United States)

    Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A

    2014-02-01

    would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (T opt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting T opt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis-temperature curve without shifting T opt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.

  12. Experiences in the use of an electronic tool to measure pressure, temperature and spinner logs in the Mexican geothermal fields; Experiencias en el uso de sondas electronicas de presion, temperatura y flujo en campos geotermicos de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly; Jaimes Maldonado, Guillermo [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    1999-08-01

    In this article are exposed the results of an electronic tool to measure pressure-temperature and spinner profiles in the geothermal wells of Mexico, utilized in order to identify unobservable phenomena with traditional Kuster type pressure and temperature logs. Some examples of the applications are the identifications of production zones, interaction from between two or more zones of contribution under several conditions of operation, casing damages and apparition of sink flow intervals into the formation in producer wells. It is also presented the quantitative method utilized to calculate the masic contribution of the intervals of interest. [Spanish] En este articulo se exponen los resultados obtenidos mediante el uso de una sonda electronica para la medicion de presion-temperatura y flujo en los pozos geotermicos de Mexico, utilizada para identificar fenomenos que no son observables con las mediciones tradicionales tipo Kuster de presion y temperatura. Se ejemplifican algunas de las aplicaciones hechas, tales como la identificacion de zonas de produccion, forma de interaccion entre dos o mas zonas de aporte bajo diferentes condiciones de operacion, roturas en tuberias y aparicion de zonas ladronas en pozos. Se presenta brevemente el metodo cuantitativo utilizado para calcular el aporte masico de las intervalos de interes.

  13. Matter and Methods at Low Temperatures

    CERN Document Server

    Pobell, F

    2007-01-01

    Matter and Methods at Low Temperatures contains a wealth of information essential for successful experiments at low temperatures, which makes it suitable as a reference and textbook. The first chapters describe the low-temperature properties of liquid and solid matter, including liquid helium. The major part of the book is devoted to refrigeration techniques and the physics on which they rely, the definition of temperature, thermometry, and a variety of design and construction techniques. The lively style and practical basis of this text make it easy to read and particularly useful to anyone beginning research in low-temperature physics. Low-temperature scientists will find it of great value due to its extensive compilation of materials data and relevant new results on refrigeration, thermometry, and materials properties. Problems are included as well. Furthermore, this third edition also describes newly developed low-temperature experimentation techniques and new materials properties; it also contains many a...

  14. Temperature and electrical memory of polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe [Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, Avenue Schweitzer, 33600 Pessac (France)

    2014-05-15

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  15. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  16. Brain temperature and exercise performance

    DEFF Research Database (Denmark)

    Nybo, Lars

    2012-01-01

    Events arising within the central nervous system seem to play a major factor in the aetiology of hyperthermia-induced fatigue. Thus, various studies with superimposed electrical nerve stimulation or transcranial magnetic stimulation have shown that both passive and exercise-induced hyperthermia...... will impair voluntary motor activation during sustained maximal contractions. In humans the brain temperature increases in parallel with that of the body core making it very difficult to evaluate the independent effect of the cerebral temperature. Experiments with separate manipulation of the brain...... temperature in exercising goats indicate that excessive brain hyperthermia will directly affect motor performance. However, several homeostatic changes arise in parallel with hyperthermia including factors that may influence both peripheral and central fatigue and it is likely that these changes interact...

  17. Temperature characterization of versatile transceivers

    CERN Document Server

    Olanterä, L.; Storey, S; Sigaud, C; Soos, C; Troska, J; Vasey, F

    2013-01-01

    The Versatile Transceiver is a part of the Versatile Link project, which is developing optical link architectures and components for future HL-LHC experiments. While having considerable size and weight constraints, Versatile Transceivers must work under severe environmental conditions. One such environmental parameter is the temperature: the operating temperature range is specified to be from -30 to +60°C. In this contribution we present the results of the temperature characterization of the VTRx transmitter and receiver. Several transmitter candidates from three different manufacturers have been characterized: multi-mode Vertical Cavity Surface-Emitting Lasers and a single-mode Edge-Emitter Laser. Also both single- and multi-mode receivers have been tested.

  18. Experience in public goods experiments

    OpenAIRE

    Conte, Anna; Levati, M. Vittoria; Montinari, Natalia

    2014-01-01

    We use information on students' past participation in economic experiments, as stored in our database, to analyze whether behavior in public goods games is affected by experience (i.e., previous participation in social dilemma-type experiments) and history (i.e., participation in experiments of a different class than the social dilemma). We have three main results. First, at the aggregate level, the amount subjects contribute and expect others to contribute decrease with experience. Second, a...

  19. Melting in temperature sensitive suspensions

    Science.gov (United States)

    Alsayed, Ahmed M.

    We describe two experimental studies about melting in colloidal systems. In particular we studied melting of 1-dimensional lamellar phases and 3-dimensional colloidal crystals. In the first set of experiments we prepared suspensions composed of rodlike fd virus and the thermosensitive polymer, poly(N-isopropylacrylamide). The phase diagram of this systems is temperature and concentration dependent. Using video microscopy, we directly observed melting of lamellar phases and single lamellae into nematic phase. We found that lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. In another set of experiments we prepared colloidal crystals from thermally responsive microgel spheres. The crystals are equilibrium close-packed three-dimensional structures. Upon increasing the temperature slightly above room temperature, particle volume fraction decreased from 0.74 to less than 0.5. Using video microscopy, we observed premelting at grain boundaries and dislocations within bulk colloidal crystals. Premelting is the localized loss of crystalline order at surfaces and defects at sample volume fractions above the bulk melting transition. Particle tracking revealed increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. In total these observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and in atomic scale crystals.

  20. Raspberry Pi Eclipse Experiments

    Science.gov (United States)

    Chizek Frouard, Malynda

    2018-01-01

    The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.

  1. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  2. Customer experience

    OpenAIRE

    Koperdáková, Zuzana

    2016-01-01

    Bachelor thesis deals with the theme of customer experience and terms related to this topic. The thesis consists of three parts. The first part explains the terms generally, as the experience or customer loyalty. The second part is dedicated to medotology used for Customer Experience Management. In the third part is described application of Customer Experience Management in practice, particularly in the context Touch Point Analyses in GE Money Bank.

  3. Quantum interferometric measurements of temperature

    Science.gov (United States)

    Jarzyna, Marcin; Zwierz, Marcin

    2015-09-01

    We provide a detailed description of the quantum interferometric thermometer, which is a device that estimates the temperature of a sample from the measurements of the optical phase. We rigorously analyze the operation of such a device by studying the interaction of the optical probe system prepared in a single-mode Gaussian state with a heated sample modeled as a dissipative thermal reservoir. We find that this approach to thermometry is capable of measuring the temperature of a sample in the nanokelvin regime. Furthermore, we compare the fundamental precision of quantum interferometric thermometers with the theoretical precision offered by the classical idealized pyrometers, which infer the temperature from a measurement of the total thermal radiation emitted by the sample. We find that the interferometric thermometer provides a superior performance in temperature sensing even when compared with this idealized pyrometer. We predict that interferometric thermometers will prove useful for ultraprecise temperature sensing and stabilization of quantum optical experiments based on the nonlinear crystals and atomic vapors.

  4. Temperature moments vs poison moments

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, U.M.

    1947-05-19

    The excess reactivity available in an operating pile is absorbed in poison columns and horizontal rods. The temperature distribution of the pile is determined by the relative strengths and locations of the poison columns and the configuration of control rods used. A method for adjusting poison columns and rods to improve upon the pile`s temperature distribution is given in Document {number_sign}7-2654, ``Procedure for Improving Temperature Distribution via Rods and Columns,`` Wheeler and Menegus to Jordan, September 9, 1945. A relationship between poison moment (inhour lattice units) and temperature moments (per coat) was theoretically derived in the above document and has since been measured on several occasions on the basis of operating experience. A survey of recent operating data for the F Pile has been made by H. A. Gauper, Jr. with the intent of improving the method for obtaining the temperature and poison moments and relating changes in the two. This study was concerned with only the horizontal and vertical dipole moments. The results of Mr. Gauper`s investigation are summarized in this memorandum.

  5. Comments on "Modified wind chill temperatures determined by a whole body thermoregulation model and human-based convective coefficients" by Ben Shabat, Shitzer and Fiala (2013) and "Facial convective heat exchange coefficients in cold and windy environments estimated from human experiments" by Ben Shabat and Shitzer (2012)

    Science.gov (United States)

    Osczevski, Randall J.

    2014-08-01

    Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.

  6. Chondrule Crystallization Experiments

    Science.gov (United States)

    Hweins, R. H.; Connolly, H. C., Jr.; Lofgren, G. E.; Libourel, G.

    2004-01-01

    Given the great diversity of chondrules, laboratory experiments are invaluable in yielding information on chondrule formation process(es) and for deciphering their initial conditions of formation together with their thermal history. In addition, they provide some critical parameters for astrophysical models of the solar system and of nebular disk evolution in particular (partial pressures, temperature, time, opacity, etc). Most of the experiments simulating chondrules have assumed formation from an aggregate of solid grains, with total pressure of no importance and with virtually no gain or loss of elements from or to the ambient environment. They used pressed pellets attached to wires and suffered from some losses of alkalis and Fe.

  7. The Archimedes experiment

    Energy Technology Data Exchange (ETDEWEB)

    Calloni, E. [University of Napoli Federico II and INFN Napoli (Italy); Caprara, S. [University of Roma Sapienza and INFN Roma (Italy); Laurentis, M. De; Esposito, G. [University of Napoli Federico II and INFN Napoli (Italy); Grilli, M.; Majorana, E. [University of Roma Sapienza and INFN Roma (Italy); Pepe, G.P. [University of Napoli Federico II and INFN Napoli (Italy); Petrarca, S. [University of Roma Sapienza and INFN Roma (Italy); Puppo, P., E-mail: paola.puppo@roma1.infn.it [University of Roma Sapienza and INFN Roma (Italy); Rapagnani, P.; Ricci, F. [University of Roma Sapienza and INFN Roma (Italy); Rosa, L. [University of Napoli Federico II and INFN Napoli (Italy); Rovelli, C. [University of Aix-Marseille (France); Ruggi, P. [European Gravitational Observatory (EGO), Cascina (Pisa) (Italy); Saini, N.L. [University of Roma Sapienza and INFN Roma (Italy); Stornaiolo, C.; Tafuri, F. [University of Napoli Federico II and INFN Napoli (Italy)

    2016-07-11

    Archimedes is an INFN-funded pathfinder experiment aimed at verifying the feasibility of measuring the interaction of vacuum fluctuations with gravity. The final experiment will measure the force exerted by the gravitational field on a Casimir cavity whose vacuum energy is modulated with a superconductive transition, by using a balance as a small force detector. Archimedes is two-year project devoted to test the most critical experimental aspects, in particular the balance resonance frequency and quality factor, the thermal modulation efficiency and the superconductive sample realization. - Highlights: • Weight of the vacuum. • Superconductive stacks studies. • Thermal behavior studies at cryogenic temperatures.

  8. Temperature Effects in the ATIC BGO Calorimeter

    Science.gov (United States)

    Isbert, J.; Wefel, J. P.; Atic Team

    The Advanced Thin Ionization Calorimeter ATIC Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals 18 radiation lengths deep to determine the particle energy Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal ATIC had successful flights in 2000 2001 and 2002 2003 from McMurdo Antarctica The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded In order to determine the temperature sensitivity of the ATIC calorimeter the instrument was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine TX The temperature dependence derived from the pulse height response to cosmic ray muons at various temperatures is discussed and compared to values in the literature

  9. Maine River Temperature Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

  10. High temperature measuring device

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  11. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  12. Experimentation and Prediction of Temperature Rise in Turning ...

    African Journals Online (AJOL)

    Experimentation and Prediction of Temperature Rise in Turning Process using Response Surface Methodology. ... Reducing the temperature rise during turning operation improves the quality of the product and reduces tool wear. Experiments are conducted as per the Design of Experiments (DoE) of Response Surface ...

  13. Temperature effects on quantum interference in molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    A number of experiments have demonstrated that destructive quantum interference (QI) effects in molecular junctions lead to very low conductances even at room temperature. On the other hand, another recent experiment showed increasing conductance with temperature which was attributed to decoherence...

  14. Dual-wavelengths photoacoustic temperature measurement

    Science.gov (United States)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  15. Rescaling Temperature and Entropy

    Science.gov (United States)

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  16. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path...

  17. Ionic/Electronic Conductivity, Thermal/Chemical Expansion and Oxygen Permeation in Pr and Gd Co-Doped Ceria PrxGd0.1Ce0.9-xO1.95

    DEFF Research Database (Denmark)

    Cheng, Shiyang; Chatzichristodoulou, Christodoulos; Søgaard, Martin

    2017-01-01

    Pr. A series of compositions of PrxGd0.1Ce0.9-xO1.95-δ (x = 0, 0.02, 0.05, 0.08, 0.15, 0.25, 0.3 and 0.4) was prepared by solid state reaction. X-ray powder diffraction (XPD) indicates that Pr is completely dissolved in the fluorite structure up to 40 at.%. Pronounced nonlinear thermal expansion...... behavior was observed as a function of temperature, due to the simultaneous contributions of both thermal and chemical expansion. The electronic and ionic conductivities were measured as a function of temperature and oxygen partial pressure. Within the range from 10 to 15 at.% Pr, a drastic drop...

  18. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...

  19. Choice experiments

    Science.gov (United States)

    Thomas P Holmes; Wiktor L Adamawicz; Fredrik Carlsson

    2017-01-01

    There has been an explosion of interest during the past two decades in a class of nonmarket stated-preference valuation methods known as choice experiments. The overall objective of a choice experiment is to estimate economic values for characteristics (or attributes) of an environmental good that is the subject of policy analysis, where...

  20. Collaborative experience

    DEFF Research Database (Denmark)

    Mortensen, Thomas Bøtker

    , that the largest effects from collaborative experience is from recent collaborative experience, since knowledge depreciates when it is not used. Methodologically contribution: The research project studies the dyad and aims at introducing, to this field of research, an established way of collecting data, a new...

  1. Improving calorimeter resolution using temperature compensation calculations

    Science.gov (United States)

    Smiga, Joseph; Purschke, Martin

    2017-01-01

    The sPHENIX experiment is an upgrade of the existing PHENIX apparatus at the Relativistic Heavy-Ion Collider (RHIC). The new detector improves upon measurements of various physical processes, such as jets of particles created during heavy-ion collisions. Prototypes of various calorimeter components were tested at the Fermilab Test Beam Facility (FTBF). This analysis tries to compensate the effects of temperature drifts in the silicon photomultipliers (SiPMs). Temperature data were used to calculate an appropriate compensation factor. This analysis will improve the achievable resolution and will also determine how accurately the temperature must be controlled in the final experiment. This will improve the performance of the calorimeters in the sPHENIX experiment. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  2. Midinfrared Temperature Measurement Technique Developed

    Science.gov (United States)

    Santosuosso, George R.

    2003-01-01

    Infrared thermography is the measuring of the temperature of an object by examining the spectral quantities of light emission. The microgravity combustion experiment Solid Inflammability Boundary at Low-Speeds (SIBAL) calls for full-field temperature measurements of a thin sheet of cellulosic fuel as a flame front moves across the fuel, and infrared thermography is the only technique that can accomplish this task. The thermography is accomplished by imaging the fuel with a midinfrared camera that is sensitive in the 3.0- to 5.0-microns wavelength region in conjunction with a 3.7 - to 4.1-microns bandpass filter to eliminate unwanted infrared radiation from components other than the fuel.

  3. Temperature Dependent Molecular Dynamic Simulation of Friction

    OpenAIRE

    Dias, R. A.; Rapini, M.; Costa, B. V.; Coura, P. Z.

    2006-01-01

    In this work we present a molecular dynamics simulation of a FFM experiment. The tip-sample interaction is studied by varying the normal force in the tip and the temperature of the surface. The friction force, cA, at zero load and the friction coefficient, $\\mu$, were obtained. Our results strongly support the idea that the effective contact area, A, decreases with increasing temperature and the friction coefficient presents a clear signature of the premelting process of the surface.

  4. Classic experiments

    CERN Multimedia

    CERN. Geneva; Franklin, M

    2001-01-01

    These will be a set of lectures on classic particle physics experiments, with emphasis on how the emasurements are made. I will discuss experiments made to measure the electric charge distribution of particles, to measure the symmetries of the weak decays, to measure the magnetic moment of the muon. As well as experiments performed which discovered new particles or resonances, like the tAU2and the J/Psi. The coverage will be general and should be understandable to someone knowing little particle physics.

  5. Researching experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    for researching experiences in a variety of settings ranging from the museum, to news photography, and interactive media. The research led to the development of a set of methodological tools and approaches we term the reflexivity lab. The interaction in the experimental situation between the media and body......, dialogue, moods, values and narratives have been investigated qualitatively with more than sixty informants in a range of projects. The processual methodological insights are put into a theoretical perspective and also presented as pragmatic dilemmas. Researching Experiences is relevant not only...... for students and researchers in media and communication studies but also for practitioners within the fields of media, communication and experience design....

  6. Researching experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    , dialogue, moods, values and narratives have been investigated qualitatively with more than sixty informants in a range of projects. The processual methodological insights are put into a theoretical perspective and also presented as pragmatic dilemmas. Researching Experiences is relevant not only...... for students and researchers in media and communication studies but also for practitioners within the fields of media, communication and experience design....... for researching experiences in a variety of settings ranging from the museum, to news photography, and interactive media. The research led to the development of a set of methodological tools and approaches we term the reflexivity lab. The interaction in the experimental situation between the media and body...

  7. The experience of an experience

    DEFF Research Database (Denmark)

    Rasmussen, Alexandra Marie

    2016-01-01

    This paper examines a popular phenomenon that allows us to see ourselves from various perspectives, and allows us to perpetuate moments enabling us to relive experiences in a different state of mind or at a different time. To examine the phenomenon of experiencing an experience hermeneutic phenom...

  8. Experimenting with a design experiment

    NARCIS (Netherlands)

    Bakker, Judith; Denters, Sebastianus A.H.

    2012-01-01

    The design experiment is an experimental research method that aims to help design and further develop new (policy) instruments. For the development of a set of guidelines for the facilitation of citizens’ initiatives by local governments, we are experimenting with this method. It offers good

  9. Biogas upgrading by temperature swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Tamara; Url, Michael; Hofbauer, Hermann (Inst. of Chemical Engineering, Vienna Univ. of Technology, Vienna (Austria)), e-mail: tamara.mayer@tuwien.ac.at

    2010-07-15

    This paper presents a novel process for biogas upgrading by means of temperature swing adsorption. Temperature swing adsorption process experiments were carried out in a laboratory test rig focusing on the process step of desorption. Desorption experiments were performed using three different variations of regeneration. Further on, performance and efficiency of the applied desorption variations were investigated. As a result, desorption by any combination of direct and indirect heating is considered as the best and most efficient way. Referring to the adsorption step, separation performance is excellent, carbon dioxide is fully adsorbed and pure methane can be obtained. Keywords: biogas, upgrading, adsorbents

  10. The Low temperature CFB gasifier

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Fock, Martin W.

    2003-01-01

    The Low Temperature Circulating Fluidised Bed (LT-CFB) gasification process aims at avoiding problems due to ash deposition and agglomeration when using difficult fuels such as agricultural biomass and many waste materials. This, as well as very simple gas cleaning, is achieved by pyrolysing......W LT-CFB test plant located at the Technical University of Denmark. In the latest 10-hour experiment the fuel was wheat straw containing 1,3-1,6% potassium, 0,6% chlorine and 12,2% ash (dry basis), and the bed material was ordinary silica sand without additives. The bed material was reused from 45...

  11. Pixel Experiments

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve; Augustesen, Christina

    2015-01-01

    elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research......Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...

  12. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...... design it became relevant to investigate the use of LEDs as the physical equivalent of a pixel as a design approach. In this book our interest has been in identifying how the qualities of LEDs can be used in lighting applications. With experiences in the planning and implementation of architectural...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...

  13. Antimatter Experiments

    CERN Multimedia

    2004-01-01

    Antimatter should behave in identical fashion to matter if a form of spacetime symmetry called CPT invariance holds. Two experiments at CERN near Geneva are testing this hypothesis using antihydrogen atoms

  14. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  15. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  16. [Research on parameters of dynamic colorimetric temperature sensor and it's application to fuel air explosion temperature field detection].

    Science.gov (United States)

    Li, Lei; Liu, Qing-ming; Wang, Jian-ping

    2013-09-01

    According to the theory of colorimetric thermometry,the influences of center wavelength, wavelength bandwidth and solid angle on response speed and the precision of the sensor was analyzed systematically, and the operating parameters for transient high temperature measurement system were determined. A calculation method based on photoelectric conversion coefficient, and higher and lower operating wavelength of the colorimetric temperature sensor was given. At the optimal operating temperature, calibration experiment was conducted in a high temperature blackbody furnace. Based on the experimental results, the operating parameters of the sensor were determined and the colorimetric temperature response was calculated. The results show that the errors between the calculated response and the experiment one are less than 1%. By using the colorimetric temperature sensor, the temperature response of fuel air explosion field was detected and the variations of temperature with time and space in detonation field were obtained.

  17. Researching experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods for ...... for students and researchers in media and communication studies but also for practitioners within the fields of media, communication and experience design....... for researching experiences in a variety of settings ranging from the museum, to news photography, and interactive media. The research led to the development of a set of methodological tools and approaches we term the reflexivity lab. The interaction in the experimental situation between the media and body......In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods...

  18. Researching Experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods for ...... for students and researchers in media and communication studies but also for practitioners within the fields of media, communication and experience design....... for researching experiences in a variety of settings ranging from the museum, to news photography, and interactive media. The research led to the development of a set of methodological tools and approaches we term the ReflexivityLab. The interaction in the experimental situation between the media and body......In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods...

  19. Researching Experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods for ...... for students and researchers in media and communication studies but also for practitioners within the fields of media, communication and experience design.......In the beginning was - not the word - but the experience. This phenomenological approach provides the basis for this book, which focuses on how a person-in-situation experiences and constructs meaning from a variety of cultural visual events. This book presents video-based processual methods...... for researching experiences in a variety of settings ranging from the museum, to news photography, and interactive media. The research led to the development of a set of methodological tools and approaches we term the ReflexivityLab. The interaction in the experimental situation between the media and body...

  20. A possible temperature measurement model for fuel cell

    Science.gov (United States)

    Yu, Qiaoling; Zhang, Pu; Mao, Wenping; Liu, Wenzhong

    2017-11-01

    In this paper, an improved temperature measuring model for fuel cell temperature measurement is proposed based on the existed nanothermometer model, which is regarded as traditional temperature measuring model. With more realistic cases taken into consideration, the results of the improved model are more practical and accurate compared with the traditional one. Limited by the existed experimental conditions, this paper emphases on simulating the different conditions of the temperature distribution inside SOFC. As a result, the experiments are carried out with similar temperature distribution but under relatively lower temperatures, which can come to similar conclusions as by simulation.

  1. Effect of temperature on electromechanical instability of dielectric elastomers

    Science.gov (United States)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Wang, Yongquan; Qiang, Junhua

    2012-04-01

    The electromechanical behavior of dielectric elastomer is strongly affected by the temperature. Very few models accounting for the effects of temperature exist in the literature. A recent experiment showed that the variation of dielectric constant of the most widely used dielectric elastomer (VHB 4910, 3M) according to temperature is relatively significant. In this paper, we develop a thermodynamic model to study the influence of temperature on the instability in dielectric elastomer by involving deformation and temperature-dependent dielectric constant. The results indicate that the increase of temperature could improve the actuation stress and the electromechanical instability of the elastomer.

  2. Chapter 6: Temperature

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.

    2017-01-01

    Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.

  3. Automatic temperature adjustment apparatus

    Science.gov (United States)

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  4. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  5. Cardiac arrhythmogenesis and temperature.

    Science.gov (United States)

    Shah, Ujas; Bien, Harold; Entcheva, Emilia

    2006-01-01

    Fast processes in cardiac electrophysiology are often studied at temperatures lower than physiological. Extrapolation of values is based on widely accepted Q10 (Arrhenius) model of temperature dependence (ratio of kinetic properties for a 10 degrees C change in temperature). In this study, we set out to quantify the temperature dependence of essential parameters that define spatiotemporal behavior of cardiac excitation. Additionally, we examined temperature's effects on restitution dynamics. We employed fast fluorescence imaging with voltage-and calcium-sensitive dyes in neonatal rat cardiomyocyte sheets. Conduction velocity (CV), calcium transient duration (CTD), action potential duration (APD) and wavelength (W=CV*duration) change as functions of temperature were quantified. Using 24 degrees C as a reference point, we found a strong temperature-driven increase of CV (Q10=2.3) with smaller CTD and APD changes (Q10=1.33, 1.24, respectively). The spatial equivalents of voltage and calcium duration, wavelength, were slightly less sensitive to temperature with Q10=2.05 and 1.78, respectively, due to the opposing influences of decreasing duration with increased velocity. More importantly, we found that Q10 varies as a function of diastolic interval. Our results indicate the importance of examining temperature sensitivity across several frequencies. Armed with our results, experimentalists and modelers alike have a tool for reconciling different environmental conditions. In a broader sense, these data help better understand thermal influences on arrhythmia development or suppression such as during hibernation or cardiac surgery.

  6. Primate Experiments on SLS-1

    Science.gov (United States)

    Aochi, J.

    1985-01-01

    Experiments to study how certain body systems are affected by the space environment are described. These experiments are to be conducted on space shuttle flights. How weightlessness affects two body systems of primates are the prime concern. Thermoregulation and fluid and electrolyte homeostasis are the two systems concerned. The thermoregulation project will provide data on how body temperature and circadian rhythms are affected in a weightlessness environment and the homeostasis in fluids and electrolyte levels will address the problem of body fluid shifts.

  7. Researching Experiences

    DEFF Research Database (Denmark)

    Gjedde, Lisa; Ingemann, Bruno

    , dialogue, moods, values and narratives have been investigated qualitatively with more than sixty informants in a range of projects. The processual methodological insights are put into a theoretical perspective and also presented as pragmatic dilemmas.      Researching Experiences is relevant not only...... for students and researchers in media and communication studies but also for practitioners within the fields of media, communication and experience design....... for researching experiences in a variety of settings ranging from the museum, to news photography, and interactive media. The research led to the development of a set of methodological tools and approaches we term the ReflexivityLab. The interaction in the experimental situation between the media and body...

  8. Poetic Experience

    Directory of Open Access Journals (Sweden)

    Shahab Yar Khan

    2014-01-01

    Full Text Available Nature of poetic experience is hereby redefined. The present article initially deals with the perennial nature of true poetic experience and its essential relevance to the world. It attempts to elaborate the process through which a poet is uplifted in a creative moment beyond terrestrial boundaries and is aligned with the ‘state of Perfection'. The role of successive generations of audiences in rediscovering the meaning of a poetic image is defined as life principle of all great poetry. Shakespeare is discussed as the ultimate example of this principle since his popularity remains an irreversible phenomenon

  9. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W

    2004-08-01

    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  10. Overview of low temperature sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M.J.; McCright, R.D.

    1983-12-01

    A review of the literature on low temperature sensitization (LTS) has been conducted to determine if LTS-related microstructural changes can occur in Type 304L stainless steel within the times and temperatures associated with nuclear waste storage. It was found that Type 304L stainless steel is susceptible to sensitization and LTS, and that cold work plays an important role in determining the rate of LTS. Severely cold worked Type 304L stainless steel would clearly develop LTS-related microstructural changes within the times and temperatures associated with nuclear waste storage. These changes could lead to increased susceptibility to corrosion. Significant improvements in the long-term resistance to sensitization, LTS and corrosion can be achieved by modest changes in alloy composition and fabrication practices. Therefore, Type 304L would not be the preferred alloy of construction for nuclear waste storage canisters. The final qualification of an alternate canister alloy should involve corrosion experiments on actual canisters. Suggestions for alternate canister alloys are 316L, 316LN, 316ELC, 347, and XM-19. 47 references, 4 figures.

  11. A Binary Solid-Liquid Phase Diagram Experiment Including Determination of Purity, Enthalpy of Fusion and True Melting Point.

    Science.gov (United States)

    Meyer, Edwin F.; Meyer, Joseph A.

    1980-01-01

    Describes an experiment as an alternative to undergraduate experiments limited to high temperature metal systems or lower temperature systems involving objectionable or unstable materials. Lists six advantages of the experiment. (Author/JN)

  12. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  13. Brain surface temperature under a craniotomy.

    Science.gov (United States)

    Kalmbach, Abigail S; Waters, Jack

    2012-12-01

    Many neuroscientists access surface brain structures via a small cranial window, opened in the bone above the brain region of interest. Unfortunately this methodology has the potential to perturb the structure and function of the underlying brain tissue. One potential perturbation is heat loss from the brain surface, which may result in local dysregulation of brain temperature. Here, we demonstrate that heat loss is a significant problem in a cranial window preparation in common use for electrical recording and imaging studies in mice. In the absence of corrective measures, the exposed surface of the neocortex was at ∼28°C, ∼10°C below core body temperature, and a standing temperature gradient existed, with tissue below the core temperature even several millimeters into the brain. Cooling affected cellular and network function in neocortex and resulted principally from increased heat loss due to convection and radiation through the skull and cranial window. We demonstrate that constant perfusion of solution, warmed to 37°C, over the brain surface readily corrects the brain temperature, resulting in a stable temperature of 36-38°C at all depths. Our results indicate that temperature dysregulation may be common in cranial window preparations that are in widespread use in neuroscience, underlining the need to take measures to maintain the brain temperature in many physiology experiments.

  14. Finite Internal Temperature Slide for Use with Colloid Experiments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Light Microscopy Module (LMM), developed and managed by NASA Glenn Research Center (GRC), is producing fascinating results. LMM will yield even more astonishing...

  15. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

  16. Temperature and light - Elwha River salmon carcass addition experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dam removal and other fish-barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived...

  17. Measuring body temperature.

    Science.gov (United States)

    McCallum, Louise; Higgins, Dan

    Body temperature is one of the four main vital signs that must be monitored to ensure safe and effective care. Temperature measurement is recommended by the National Institute of Clinical Excellence a part of the initial assessment in acute illness in adults (NICE, 2007) and by the Scottish Intercollegiate Guidelines Network guidelines for post-operative management in adults (SIGN, 2004). Despite applying in all healthcare environments, wide variations exist on the methods and techniques used to measure body temperature. It is essential to use the most appropriate technique to ensure that temperature is measured accurately. Inaccurate results may influence diagnosis and treatment, lead to a failure to identify patient deterioration and compromise patient safety. This article explains the importance of temperature regulation and compares methods of its measurement.

  18. High temperature structural silicides

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  19. CMS Tracker operational experience

    CERN Document Server

    Fiori, Francesco

    2016-01-01

    The CMS Tracker was repaired, recalibrated and commissioned successfully for the second run of Large Hadron Collider. In 2015 the Tracker performed well with improved hit efficiency and spatial resolution compared to Run I. Operations successfully transitioned to lower temperatures after commissioning environmental control and monitoring. This year the detector is expected to withstand luminosities that are beyond its design limits and will need a combined effort of both online and offline team to yield the high quality data that is required to reach our physics goals. We present the experience gained during the second run of the LHC and show the latest performance results of the CMS Tracker.

  20. Low-temperature gas from marine shales

    Science.gov (United States)

    2009-01-01

    Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible. PMID:19236698

  1. Low-temperature gas from marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-02-01

    Full Text Available Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas. Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen in a Mississippian marine shale decomposed to gas (C1–C5. The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour, nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock than at 350°C by thermal cracking (12 μg C1–C5/g rock. The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.

  2. Media experiences

    DEFF Research Database (Denmark)

    Buhl, Mie

    2010-01-01

    The paper discusses mediated experiences from the perspective of the visual modality in combination with the multimodal interaction. ICT-studies has a rapid influx of new words and concepts. Digital technology led to a need to describe the convergence of images, text and sound has taken various w...

  3. Experiences matter

    NARCIS (Netherlands)

    2017-01-01

    Social work has long neglected the experiences of people as an important source of knowledge. This creates gaps between social workers and people in need of social work support. The gaps are evident and hinder people to get the help they need for recovery. This exhibition intends to show how the

  4. Distance and temperature effects on pika forage

    Science.gov (United States)

    Jim F. Fowler; Barbara Smith; Steve Overby

    2014-01-01

    The American pika, Ochotona princeps, has been referred to as a 'canary in the coal mine' when it comes to climate change. This small rabbit relative inhabits cool alpine and subalpine mountain areas and has been shown to be sensitive to higher temperatures from both physiological experiments (Smith 1974) and from past climate transitions in the late...

  5. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  6. Global perceptions of local temperature change

    Science.gov (United States)

    Howe, Peter D.; Markowitz, Ezra M.; Lee, Tien Ming; Ko, Chia-Ying; Leiserowitz, Anthony

    2013-04-01

    It is difficult to detect global warming directly because most people experience changes only in local weather patterns, which are highly variable and may not reflect long-term global climate trends. However, local climate-change experience may play an important role in adaptation and mitigation behaviour and policy support. Previous research indicates that people can perceive and adapt to aspects of climate variability and change based on personal observations. Experience with local weather may also influence global warming beliefs. Here we examine the extent to which respondents in 89 countries detect recent changes in average local temperatures. We demonstrate that public perceptions correspond with patterns of observed temperature change from climate records: individuals who live in places with rising average temperatures are more likely than others to perceive local warming. As global climate change intensifies, changes in local temperatures and weather patterns may be increasingly detected by the global public. These findings also suggest that public opinion of climate change may shift, at least in part, in response to the personal experience of climate change.

  7. Shutter-Less Temperature-Dependent Correction for Uncooled Thermal Camera Under Fast Changing FPA Temperature

    Science.gov (United States)

    Lin, D.; Westfeld, P.; Maas, H.-G.

    2017-05-01

    Conventional temperature-dependant correction methods for uncooled cameras are not so valid for images under the condition of fast changing FPA temperature as usual, therefore, a shutter-less temperature-dependant correction method is proposed here to compensate for these errors and stabilize camera's response only related to the object surface temperature. Firstly, sequential images are divided into the following three categories according to the changing speed of FPA temperature: stable (0°C/min), relatively stable (0.5°C/min). Then all of the images are projected into the same level using a second order polynomial relation between FPA temperatures and gray values from stable images. Next, a third order polynomial relation between temporal differences of FPA temperatures and the above corrected images is implemented to eliminate the deviation caused by fast changing FPA temperature. Finally, radiometric calibration is applied to convert image gray values into object temperature values. Experiment results show that our method is more effective for fast changing FPA temperature data than FLIR GEV.

  8. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  9. Autonomous System for MISSE Temperature Measurements

    Science.gov (United States)

    Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.

    2001-01-01

    The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.

  10. About thermometers and temperature

    Science.gov (United States)

    Baldovin, M.; Puglisi, A.; Sarracino, A.; Vulpiani, A.

    2017-11-01

    We discuss a class of mechanical models of thermometers and their minimal requirements to determine the temperature for systems out of the common scope of thermometry. In particular we consider: (1) anharmonic chains with long time of thermalization, such as the Fermi-Pasta-Ulam (FPU) model; (2) systems with long-range interactions where the equivalence of ensembles does not always hold; (3) systems featuring absolute negative temperatures. We show that for all the three classes of systems a mechanical thermometer model can be designed: a temporal average of a suitable mechanical observable of the thermometer is sufficient to get an estimate of the system’s temperature. Several interesting lessons are learnt from our numerical study: (1) the long thermalization times in FPU-like systems do not affect the thermometer, which is not coupled to normal modes but to a group of microscopic degrees of freedom; (2) a thermometer coupled to a long-range system measures its microcanonical temperature, even at values of the total energy where its canonical temperature would be very different; (3) a thermometer to read absolute negative temperatures must have a bounded total energy (as the system), otherwise it heavily perturbs the system changing the sign of its temperature. Our study shows that in order to also work in a correct way in ‘non standard’ cases, the proper model of thermometer must have a special functional form, e.g. the kinetic part cannot be quadratic.

  11. Control of supply temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, H.; Nielsen, T.S.; Soegaard, H.T.

    1996-09-01

    For many district heating systems, e.g. the system in Hoeje Taastrup, it is desirable to minimize the supply temperature from the heat production unit(s). Lower supply temperature implies lower costs in connection with the production and distribution of heat. Factors having impact on the heat demand are for instance solar radiation, wind speed, wind direction and a climate independent part, which is a function of the time of the day/week/year. By applying an optimization strategy, which minimizes the supply temperature, it is assumed that optimal economical operation can be obtained by minimizing the supply temperature and thereby the heat losses in the system. The models and methods described in this report take such aspects into account, and can therefore be used as elements in a more efficient minimization of the supply temperature. The theoretical part of this report describes models and methods for optimal on-line control of the supply temperature in district heating systems. Some of the models and methods have been implemented - or are going to be implemented - in the computer program PRESS which is a tool for optimal control of supply temperature and forecasting of heat demand in district heating systems. The principles for using transfer function models are briefly described. The ordinary generalized predictive control (OGPC) method is reviewed, and several extensions of this method are suggested. New controller, which is called the extended generalized predictive controller (XGPC), is described. (EG) 57 refs.

  12. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  13. A Facile and Effective Chemiluminescence Demonstration Experiment

    Science.gov (United States)

    Mohan, Arthur G.; Turro, Nicholas J.

    1974-01-01

    Describes a chemiluminescence system which can be used to demonstrate the effects of certain factors which affect the rate of reaction (temperature, concentration, catalysis, solvent, etc.), and to perform experiments relevant to the mechanism of the system. (SLH)

  14. Extending Experiences

    DEFF Research Database (Denmark)

    A computer game's player is experiencing not only the game as a designer-made artefact, but also a multitude of social and cultural practices and contexts of both computer game play and everyday life. As a truly multidisciplinary anthology, Extending Experiences sheds new light on the mesh...... of possibilities and influences the player engages with. Part one, Experiential Structures of Play, considers some of the key concepts commonly used to address the experience of a computer game player. The second part, Bordering Play, discusses conceptual and practical overlaps of games and everyday life...... and the impacts of setting up, crossing and breaking the boundaries of game and non-game. Part three, Interfaces of Play, looks at games as technological and historical artefacts and commodities. The fourth part, Beyond Design, introduces new models for the practical and theoretical dimensions of game design....

  15. Experiment 7

    CERN Multimedia

    CERN PhotoLab

    1968-01-01

    Over-all view of the arrangement of counters around the polarized target in the kaon-polarized proton experiment. The beam enters through the quadrupole magnet on the left, and strikes the target placed in a 18.5 kG field (one pole of the magnet is just visible above the ring of counters). The scatterred kaon and recoil proton are detected by the counters on the ring and recorded onto magnetic tape.

  16. XMASS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Ko, E-mail: abe@icrr.u-tokyo.ac.jp [Kamioka observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu, 506-1205 (Japan); Kavl Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba, 277-8582 (Japan)

    2016-06-21

    XMASS is a single phase liquid xenon scintillator detector. The project is designed for multi purposes, dark matter, neutrinoless double beta decay and {sup 7}Be/pp solar neutrino. As the first step of project, XMASS-I detector with 832 kg sensitive volume started operation from Dec. 2010. In this paper, recent obtained physics results from commissioning data, refurbishment of detector and future step of experiment are presented.

  17. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...... results show that a shorter delay can be achieved using the proposed method. In addition, we also discuss the congestion and reliability issues as they are closely related to routing and temperature....

  18. Building a Cryogen Efficient Low Temperature Lab

    Science.gov (United States)

    Davis, John

    2015-03-01

    Over the past few years we have built a new low temperature laboratory at the University of Alberta to study quantum optomechanics and superfluids in confined geometries. With liquid helium at 11/liter in Alberta, helium consumption was a top concern, but so was vibration for optomechanics experiments and magnet stability for ultra-low temperature experiments. I will describe the wet system we have constructed, along with our automated helium recovery and delivery system. Currently our system runs, fully loaded with a sensitive optomechanics experiment at 9 mK, with a waste of one liquid liter equivalent per day of operation - with room for improvement. This may provide a model for both new laboratories and upgrades to existing wet systems.

  19. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2005-10-01

    The objectives of this project during this semi-annual reporting period are to test the effects of coating layer of the thermal couple on the temperature measurement and to screen out the significant factors affecting the temperature reading under different operational conditions. The systematic tests of the gasifier simulator on the high velocity oxygen fuel (HVOF) spray coated thermal couples were completed in this reporting period. The comparison tests of coated and uncoated thermal couples were conducted under various operational conditions. The temperature changes were recorded and the temperature differences were calculated to describe the thermal spray coating effect on the thermal couples. To record the temperature data accurately, the computerized data acquisition system (DAS) was adopted to the temperature reading. The DAS could record the data with the accuracy of 0.1 C and the recording parameters are configurable. In these experiments, DAS was set as reading one data for every one (1) minute. The operational conditions are the combination of three parameters: air flow rate, water/ammonia flow rate and the amount of fine dust particles. The results from the temperature readings show the temperature of uncoated thermal couple is uniformly higher than that of coated thermal couple for each operational condition. Analysis of Variances (ANOVA) was computed based on the results from systematic tests to screen out the significant factors and/or interactions. The temperature difference was used as dependent variable and three operational parameters (i.e. air flow rate, water/ammonia flow rate and amount of fine dust particle) were used as independent factors. The ANOVA results show that the operational parameters are not the statistically significant factors affecting the temperature readings which indicate that the coated thermal couple could be applied to temperature measurement in gasifier. The actual temperature reading with the coated thermal couple in

  20. Calculation of the technological parameters of electrofusion welding of polyethylene pipes at low temperatures

    Science.gov (United States)

    Starostin, N. P.; Ammosova, O. A.

    2017-12-01

    The thermal process of electrofusion welding of polyethylene gas pipelines at air temperatures below the standard is investigated. The mathematical model used in the research takes into account the heat of the phase transition in the temperature interval. Computational experiments show the possibility of regulating the temperature regime for welding at low ambient air temperatures and providing the same temperature field variation in the thermal zone as with the permissible air temperatures.

  1. High Temperature QCD

    CERN Document Server

    Lombardo, M P

    2012-01-01

    I review recent results on QCD at high temperature on a lattice. Steady progress with staggered fermions and Wilson type fermions allow a quantitative description of hot QCD whose accuracy in many cases parallels that of zero temperature studies. Simulations with chiral quarks are coming of age, and togheter with theoretical developments trigger interesting developments in the analysis of the critical region. Issues related with the universality class of the chiral transition and the fate of the axial symmetry are discussed in the light of new numerical and analytical results. Transport coefficients and analysis of bottomonium spectra compare well with results of heavy ion collisions at RHIC and LHC. Model field theories, lattice simulations and high temperature systematic expansions help building a coherent picture of the high temperature phase of QCD. The (strongly coupled) Quark Gluon Plasma is heavily investigated, and asserts its role as an inspiring theoretical laboratory.

  2. QUARKONIUM AT FINITE TEMPERATURE.

    Energy Technology Data Exchange (ETDEWEB)

    PETRECZKY,P.

    2003-07-21

    The author discusses quarkonium spectral functions at finite temperature reconstructed using the Maximum Entropy Method. The author shows in particular that the J/{psi} survives in the deconfined phase up to 1.5T{sub c}.

  3. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  4. Anisotropic Unruh temperatures

    Science.gov (United States)

    Arias, Raúl E.; Casini, Horacio; Huerta, Marina; Pontello, Diego

    2017-11-01

    The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.

  5. Sediment Temperature, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data table contains summary data for temperature time series in near-surface sediments in high and low tidal marsh at 7 sites during 2015. These data support...

  6. Temperatures of exploding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Serfling, V.; Schwarz, C.; Begemann-Blaich, M.; Fritz, S.; Gross, C.; Kleinevoss, U.; Kunze, W.D; Lynen, U.; Mahi, M.; Mueller, W.F.J.; Odeh, T.; Schnittker, M.; Trautmann, W.; Woerner, A.; Xi, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Bassini, R.; Iori, I.; Moroni, A.; Petruzzelli, F. [Milan Univ. (Italy). Ist. di Scienze Fisiche]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Gaff, S.J.; Kunde, G.J. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy]|[Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Imme, G.; Maddalena, V.; Nociforo, C.; Raciti, G.; Riccobene, G.; Romano, F.P.; Saija, A.; Sfienti, C.; Verde, G. [Catania Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Moehlenkamp, T.; Seidel, W. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Ocker, B.; Schuettauf, A. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Pochodzalla, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Trzcinski, A.; Zwieglinski, B. [Soltan Inst. for Nuclear Studies, Warsaw (Poland)

    1998-01-01

    Breakup temperatures in central collisions of {sup 197}Au+{sup 197}Au at bombarding energies E/A=50 to 200 MeV were determined with two methods. Isotope temperatures, deduced from double ratios of hydrogen, helium, and lithium isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12 MeV, in qualitative agreement with a scenario of chemical freeze-out after adiabatic expansion. Excited-state temperatures, derived from yield ratios of states in {sup 4}He, {sup 5,6}Li, and {sup 8}Be, are about 5 MeV, independent of the projectile energy, and seem to reflect the internal temperature of fragments at their final separation from the system. (orig.)

  7. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  8. Test of Taylor's Hypothesis with Distributed Temperature

    Science.gov (United States)

    Cheng, Y.; Gentine, P.; Sayde, C.; Tanner, E.; Ochsner, T. E.; Dong, J.

    2016-12-01

    Taylor's hypothesis[Taylor, 1938] assumes that mean wind speed carries the spatial pattern of turbulent motion past a fixed point in a "frozen" way, which has been widely used to relate streamwise wavenumber and angular frequency . Experiments[Fisher, 1964; Tong, 1996] have shown some deviation from Taylor's hypothesis at highly turbulent intensity flows and at high wavenumbers. However, the velocity or scalar measurements have always been fixed at a few spatial points rather than distributed in space. This experiment was designed for the first time to directly compare the time and spatial spectrum of temperature to test Taylor's hypothesis, measuring temperature with high resolution in both time and space by Distributed Temperature Sensing utilizing the attenuation difference of Raman scattering in the optic fiber at the MOISST site Oklahoma. The length of transact is 233 meters along the dominant wind direction. The temperature sampling distance is 0.127m and sampling time frequency is 1 Hz. The heights of the 4 fiber cables parallel to ground are 1m, 1.254m, 1.508m and 1.762m respectively. Also, eddy covariance instrument was set up near the Distributed Temperature Sensing as comparison for temperature data. The temperature spatial spectrum could be obtained with one fixed time point, while the temperature time spectrum could be obtained with one fixed spatial point in the middle of transact. The preliminary results would be presented in the AGU fall meeting. Reference Fisher, M. J., and Davies, P.O.A.L (1964), Correlation measurements in a non-frozen pattern of turbulence, Journal of fluid mechanics, 18(1), 97-116. Taylor, G. I. (1938), The spectrum of turbulence, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 164(919), 476-490. Tong, C. (1996), Taylor's Hypothesis and Two-point Coherence Measurements, Boundary-Layer Meteorology, 81(3), 399-410.

  9. Confinement at Finite Temperature

    Science.gov (United States)

    Cardoso, Nuno; Bicudo, Pedro; Cardoso, Marco

    2017-05-01

    We show the flux tubes produced by static quark-antiquark, quark-quark and quark-gluon charges at finite temperature. The sources are placed on the lattice with fundamental and adjoint Polyakov loops. We compute the squared strengths of the chromomagnetic and chromoelectric fields above and below the critical temperature. Our results are for pure gauge SU(3) gauge theory, they are invariant and all computations are done with GPUs using CUDA.

  10. Portable Body Temperature Conditioner

    Science.gov (United States)

    2014-12-01

    patients become hypothermic after severe injury due to environmental exposure during transport. These patients also have decreased thermoregulation due to...based on the load demand to conserve power consumption 4 Requires glycol solution to prevent H20 freezing at cold ambient temperatures 3. Product...three days. To encompass the range of the temperature to be used during the Patient Simulation testing (15oC – 40oC); cold (15oC), neutral (25oC

  11. NASA's atmospheric variability experiments /AVE/

    Science.gov (United States)

    Hill, K.; Turner, R. E.

    1977-01-01

    A series of seven mesoscale experiments were conducted under the NASA program, Atmospheric Variability Experiments (AVE). Rawinsonde, satellite, aircraft, and ground observations were recorded during specially selected meteorological periods lasting from 1 to 3 days. Details are presented for each AVE relative to observation times, experiment size and location, and significant weather. Some research results based on the use of these AVE data are referenced. These include contributions to regional numerical prediction; relations between wind shears, instability, and thunderstorm motion and development; relations between moisture and temperature and the probability of convection; retrieval of tropospheric temperature profiles from cloud-contaminated satellite data; variation of convection intensity as a result of atmospheric variability; and effects of cloud rotation on their trajectories.

  12. Influence of moderate cycling on scrotal temperature.

    Science.gov (United States)

    Jung, A; Strauss, P; Lindner, H J; Schuppe, H C

    2008-08-01

    Testicular temperature highly correlates with scrotal temperature. It has been postulated that cycling is associated with increased scrotal temperatures with time and consecutively with impaired semen quality. The aim of this study was to evaluate the influence of moderate cycling on scrotal temperature during highly standardized conditions in an experimental lab. A total of 25 volunteers without a history of infertility and normal andrological examination were included for scrotal temperature evaluation. Scrotal temperatures were measured every minute with a portable data recorder connected with two thermistor temperature sensors, which were attached on either side of the scrotum. A further thermistor sensor was attached on the central surface of the bicycle saddle. Ambient temperature in the study room was adjusted to 22 degrees C throughout the whole experiment. All volunteers started the experiment at the same daytime. Clothing of the volunteers consisted of standardized cotton wool trousers and shirts fitting to body size. After acclimatization to the study room in a sitting posture, each volunteer cycled on an exercise cycle for 60 min with a power of 25 Watt representing a speed of 25.45 km/h respectively. The saddle surface temperature reached in the median 35.59 degrees C after 60 min cycling. Median values of scrotal temperatures increased from 35.75 degrees C at the beginning to 35.82 degrees C after 60 min for the left side and from 35.50 to 35.59 degrees C for the right side. No correlation between cycling duration and scrotal temperatures could be found using multivariate anova for repeated measurements. However, scrotal temperatures during cycling were significantly lower (p < 0.001) compared with the last 10 min in sitting posture before starting cycling with a difference of 1.31 degrees C for the left and 1.46 degrees C for the right side. The present study suggests that moderate cycling under standardized conditions with a power of 25 Watt is not

  13. Modulation of taste processing by temperature.

    Science.gov (United States)

    Lemon, Christian H

    2017-10-01

    Taste stimuli have a temperature that can stimulate thermosensitive neural machinery in the mouth during gustatory experience. Although taste and oral temperature are sometimes discussed as different oral sensory modalities, there is a body of literature that demonstrates temperature is an important component and modulator of the intensity of gustatory neural and perceptual responses. Available data indicate that the influence of temperature on taste, herein referred to as "thermogustation," can vary across taste qualities, can also vary among stimuli presumed to share a common taste quality, and is conditioned on taste stimulus concentration, with neuronal and psychophysical data revealing larger modulatory effects of temperature on gustatory responding to weakened taste solutions compared with concentrated. What is more, thermogustation is evidenced to involve interplay between mouth and stimulus temperature. Given these and other dependencies, identifying principles by which thermal input affects gustatory information flow in the nervous system may be important for ultimately unravelling the organization of neural circuits for taste and defining their involvement with multisensory processing related to flavor. Yet thermal effects are relatively understudied in gustatory neuroscience. Major gaps in our understanding of the mechanisms and consequences of thermogustation include delineating supporting receptors, the potential involvement of oral thermal and somatosensory trigeminal neurons in thermogustatory interactions, and the broader operational roles of temperature in gustatory processing. This review will discuss these and other issues in the context of the literature relevant to understanding thermogustation. Copyright © 2017 the American Physiological Society.

  14. Temperature in the throat

    Directory of Open Access Journals (Sweden)

    Dariush Kaviani

    2016-09-01

    Full Text Available We study the temperature of extended objects in string theory. Rotating probe D-branes admit horizons and temperatures a la Unruh effect. We find that the induced metrics on slow rotating probe D1-branes in holographic string solutions including warped Calabi–Yau throats have distinct thermal horizons with characteristic Hawking temperatures even if there is no black hole in the bulk Calabi–Yau. Taking the UV/IR limits of the solution, we show that the world volume black hole nucleation depends on the deformation and the warping of the throat. We find that world volume horizons and temperatures of expected features form not in the regular confining IR region but in the singular nonconfining UV solution. In the conformal limit of the UV, we find horizons and temperatures similar to those on rotating probes in the AdS throat found in the literature. In this case, we also find that activating a background gauge field form the U(1 R-symmetry modifies the induced metric with its temperature describing two different classes of black hole solutions.

  15. Temperature in the throat

    Science.gov (United States)

    Kaviani, Dariush; Mosaffa, Amir Esmaeil

    2016-09-01

    We study the temperature of extended objects in string theory. Rotating probe D-branes admit horizons and temperatures a la Unruh effect. We find that the induced metrics on slow rotating probe D1-branes in holographic string solutions including warped Calabi-Yau throats have distinct thermal horizons with characteristic Hawking temperatures even if there is no black hole in the bulk Calabi-Yau. Taking the UV/IR limits of the solution, we show that the world volume black hole nucleation depends on the deformation and the warping of the throat. We find that world volume horizons and temperatures of expected features form not in the regular confining IR region but in the singular nonconfining UV solution. In the conformal limit of the UV, we find horizons and temperatures similar to those on rotating probes in the AdS throat found in the literature. In this case, we also find that activating a background gauge field form the U (1) R-symmetry modifies the induced metric with its temperature describing two different classes of black hole solutions.

  16. CRYOGENIC SYSTEM FOR PRECISE CALIBRATION OF TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. N. Solovyev

    2016-09-01

    Full Text Available A calibration technique for cryogenic temperature sensors is proposed and implemented. The experimental setup is based on the helium cryogenerator, providing calibration of the temperature sensors of various types in wide temperature range, including cryogenic band (25-100K. A condensation thermometer with hydrogen, neon, argon and xenon as working gases is used as a reference sensor. The experimental setup was successfully used for precise (0.1K precision calibration of platinum resistive temperature detectors (Pt-100 for international nuclear physics experiments MuSun and PolFusion. The setup can also be used for calibration of temperature sensors of the other types.

  17. Temperature variation makes ectotherms more sensitive to climate change.

    Science.gov (United States)

    Paaijmans, Krijn P; Heinig, Rebecca L; Seliga, Rebecca A; Blanford, Justine I; Blanford, Simon; Murdock, Courtney C; Thomas, Matthew B

    2013-08-01

    Ectotherms are considered to be particularly vulnerable to climate warming. Descriptions of habitat temperatures and predicted changes in climate usually consider mean monthly, seasonal or annual conditions. Ectotherms, however, do not simply experience mean conditions, but are exposed to daily fluctuations in habitat temperatures. Here, we highlight how temperature fluctuation can generate 'realized' thermal reaction (fitness) norms that differ from the 'fundamental' norms derived under standard constant temperatures. Using a mosquito as a model organism, we find that temperature fluctuation reduces rate processes such as development under warm conditions, increases processes under cool conditions, and reduces both the optimum and the critical maximum temperature. Generalizing these effects for a range of terrestrial insects reveals that prevailing daily fluctuations in temperature should alter the sensitivity of species to climate warming by reducing 'thermal safety margins'. Such effects of daily temperature dynamics have generally been ignored in the climate change literature. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  18. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  19. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    Science.gov (United States)

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  20. SMEX03 SSM/I Brightness Temperature Data, Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  1. SMEX03 SSM/I Brightness Temperature Data, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides brightness temperature data acquired during the Soil Moisture Experiment 2003 (SMEX03) by the Special Sensor Microwave/Imager (SSM/I). The...

  2. In-motion, non-contact rail temperature measurement sensor.

    Science.gov (United States)

    2012-12-01

    Preventing track buckling incidents (Figure 1) is important to the railroad industry. Track materials, rail steel, for example, experience thermal expansion, which refers to the increase in a materials volume as its temperature rises. Thermal expa...

  3. SMEX02 Soil Moisture and Temperature Profiles, Walnut Creek, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains rainfall, soil moisture, and soil temperature data collected for the Soil Moisture Experiment 2002 (SMEX02). The parameters measured are soil...

  4. Low-temperature Condensation of Carbon

    Science.gov (United States)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  5. Temperature effect on IG-11 graphite wear performance

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xiaowei [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: xwluo@mail.tsnghua.edu.cn; Yu Suyuan [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China); Sheng Xuanyu [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Shuyan [Institute of Nuclear Energy and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    IG-11 graphite, used in the 10 MW high temperature gas-cooled test reactor (HTR-10), was tested under different temperatures on an SRV standard wear performance tester. The experiment temperatures were room temperature, 100, 200, 300 and 400 deg C. According to the reactor structure, the experiments were designed to test graphite-graphite and graphite-stainless steel wear. The wear debris was collected, and the worn surfaces and debris were observed under scanning electronic microscope (SEM). It was found that there were different wear mechanisms at different temperatures. The main wear mechanism at room temperature was abrasive wear; at 200 deg C, it was fatigue wear; at 400 deg C, adhesive wear was observed. This difference was mainly due to the change of stress distribution at the contact area. The distribution of wear debris was also analyzed by EDX particle analysis software.

  6. The Effect of Temperature on Umami Taste.

    Science.gov (United States)

    Green, Barry G; Alvarado, Cynthia; Andrew, Kendra; Nachtigal, Danielle

    2016-07-01

    The effect of temperature on umami taste has not been previously studied in humans. Reported here are 3 experiments in which umami taste was measured for monopotassium glutamate (MPG) and monosodium glutamate (MSG) at solution temperatures between 10 and 37 °C. Experiment 1 showed that for subjects sensitive to MPG on the tongue tip, 1) cooling reduced umami intensity whether sampled with the tongue tip or in the whole mouth, but 2) had no effect on the rate of umami adaptation on the tongue tip. Experiment 2 showed that temperature had similar effects on the umami taste of MSG and MPG on the tongue tip but not in the whole mouth, and that contrary to umami taste, cooling to 10 °C increased rather than decreased the salty taste of both stimuli. Experiment 3 was designed to investigate the contribution of the hT1R1-hT1R3 glutamate receptor to the cooling effect on umami taste by using the T1R3 inhibitor lactisole. However, lactisole failed to block the umami taste of MPG at any temperature, which supports prior evidence that lactisole does not block umami taste for all ligands of the hT1R1-hT1R3 receptor. We conclude that temperature can affect sensitivity to the umami and salty tastes of glutamates, but in opposite directions, and that the magnitude of these effects can vary across stimuli and modes of tasting (i.e., whole mouth vs. tongue tip exposures). © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Temperature measurement: Thermocouples

    Science.gov (United States)

    1982-11-01

    This Data Item is available as part of the ESDU Sub-series on Heat Transfer. Background information and practical guidance on designing temperature measuring systems using thermocouples is provided. The nominal temperature range covered is -200 degrees C to 2000 degrees C but the comments apply, in general terms, to all thermocouple systems. The information is aimed at the user who wishes to design and install a practical thermocouple system using improved techniques that will allow temperatures to be measured within known tolerances. The selection, preparation, and installation of thermocouples, the use of compensating or extension cables, methods of referencing to a known temperature and measurement system are considered. The requirements for reliable systems operating to commercial tolerances are also described. Various factors that might impair the accuracy and stability of thermocouples are identified together with methods of reducing their effect. A check list for the design of a thermocouple system is given and a flow chart procedure for selecting appropriate thermocouple materials is provided as well. The employment of the techniques described will ensure that the temperature of the measuring junction is within known tolerances.

  8. Temperature Data Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, David

    2003-03-01

    Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

  9. Temperature variation makes ectotherms more sensitive to climate change

    OpenAIRE

    Paaijmans, Krijn P.; Heinig, Rebecca L; Seliga, Rebecca A; Blanford, Justine I.; Blanford, Simon; Murdock, Courtney C; Thomas, Matthew B

    2013-01-01

    Ectotherms are considered to be particularly vulnerable to climate warming. Descriptions of habitat temperatures and predicted changes in climate usually consider mean monthly, seasonal or annual conditions. Ectotherms, however, do not simply experience mean conditions, but are exposed to daily fluctuations in habitat temperatures. Here, we highlight how temperature fluctuation can generate ‘realized’ thermal reaction (fitness) norms that differ from the ‘fundamental’ norms derived under stan...

  10. Continuous selection pressure to improve temperature acclimation of Tisochrysis lutea

    OpenAIRE

    Hubert Bonnefond; Ghjuvan Grimaud; Judith Rumin; Gaël Bougaran; Amélie Talec; Manon Gachelin; Marc Boutoute; Eric Pruvost; Olivier Bernard; Antoine Sciandra

    2017-01-01

    International audience; Temperature plays a key role in outdoor industrial cultivation of microalgae. Improving the thermal tolerance of microalgae to both daily and seasonal temperature fluctuations can thus contribute to increase their annual productivity. A long term selection experiment was carried out to increase the thermal niche (temperature range for which the growth is possible) of a neutral lipid overproducing strain of Tisochrysis lutea. The experimental protocol consisted to submi...

  11. The Krafft temperature of surfactant solutions

    Directory of Open Access Journals (Sweden)

    Manojlović Jelena Ž.

    2012-01-01

    Full Text Available Our main motivation to revisit the solution properties of cetyltrimethylammonium bromide is related to the clear requirement for better control of the adsorption parameters to form uniform self-assembled monolayers on muscovite mica substrates. To readily monitor the temporal evolution of structural details in cetyltrimethylammonium bromide solutions, we realized a rather simple conductivity experiment. Conductivity measurements were carried out as a function of temperature, to look closer into the Krafft temperature behavior of this surfactant. We measured the electrical conductivity of different concentrations of aqueous cetyltrimethylammonium bromide solutions, below and above the critical micells concentration.

  12. TEACHING PHYSICS: Teaching about heat and temperature

    Science.gov (United States)

    Carlton, Kevin

    2000-03-01

    Students encountering thermal physics at introductory level often have difficulty distinguishing between heat and temperature. It has been found with teacher education students at Canterbury Christ Church University College that challenging misconceptions by experiment and through discussion can quickly enable them to acquire the necessary concepts to equip them to develop their understanding of thermal physics. The key concepts are those of thermal equilibrium, the notion of flow of heat energy and the ability to differentiate between heat and temperature. This paper outlines a possible combination of activities to illustrate how this may be accomplished.

  13. DETERMINING SURFACE TEMPERATURE AND CLOUD TEMPERATURE FROM METEOROLOGICAL EARTH SATELLITES,

    Science.gov (United States)

    ATMOSPHERIC TEMPERATURE, *METEOROLOGICAL SATELLITES), SURFACE TEMPERATURE , CLOUDS, BLACKBODY RADIATION, PERIODIC VARIATIONS, INTEGRALS, BOUNDARY LAYER, INTENSITY, ERRORS, CORRECTIONS, FUNCTIONS(MATHEMATICS), USSR

  14. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.

    1996-01-01

    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  15. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    Science.gov (United States)

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  16. Temperature driven transport of gold nanoparticles physisorbed inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, P.A.E.; Poulikakos, D.; Walther, Jens Honore

    2006-01-01

    We use molecular dynamics simulations to demonstrate the temperature driven mass transport of solid gold nanoparticles, physisorbed inside carbon nanotubes (CNTs). Our results indicate that the nanoparticle experiences a guided motion, in the direction opposite to the direction of the temperature...... affects the nanoparticle motion along the carbon lattice....

  17. DIY Soundcard Based Temperature Logging System. Part II: Applications

    Science.gov (United States)

    Nunn, John

    2016-01-01

    This paper demonstrates some simple applications of how temperature logging systems may be used to monitor simple heat experiments, and how the data obtained can be analysed to get some additional insight into the physical processes. [For "DIY Soundcard Based Temperature Logging System. Part I: Design," see EJ1114124.

  18. Experimental determination of a critical temperature for maximum anaerobic digester biogas production

    CSIR Research Space (South Africa)

    Sichilalu, S

    2017-08-01

    Full Text Available This paper presents an experiment anaerobic digester system. The objective was to evaluate the optimal temperature for maximization of the biogas production through optimal constraining of the mesophilic temperature between log phase for the best...

  19. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming.

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  20. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  1. The experience of an experience

    DEFF Research Database (Denmark)

    Rasmussen, Alexandra Marie

    2016-01-01

    found there was a residual quality to Exp2, which was malleable and unique to the individual. This element of malleability and the opportunity to design or redesign our memories is a marketable concept. The findings from the empirical data are comprised into a model, Path of Considerations (PoC), which...... is a tool to create a particular mindset, in the developer, to generate a new way of thinking. This model is dynamic by nature and although it is not completed in every branch, it is complete in relation to experiencing your own experience. A company can apply the PoC to gain insight into primary...

  2. Elevated temperature deformation analysis

    Science.gov (United States)

    Nelson, J. M.

    The paper demonstrates a novel nondestructive test and data analysis technique for quantitative measurement of circumferentially varying flexural moduli of 2D involute carbon-carbon tag rings containing localized wrinkles and dry plies at room and rocket nozzle operating temperatures. Room temperature computed tomography (CT) deformation tests were performed on 11 carbon-carbon rings selected from the cylinders and cones fabricated under the NDE data application program and two plexiglass rings fabricated under this program. This testing and analysis technique is found to have primary application in validation of analytical models for carbon-carbon performance modeling. Both effects of defects assumptions, the effects of high temperature environments, and failure-related models can be validated effectively. The testing and analysis process can be interwoven in a manner that increases the engineering understanding of the material behavior and permits rapid resolution of analysis questions. Specific recommendations for the development and implementation of this technique are provided.

  3. Do `negative' temperatures exist?

    Science.gov (United States)

    Lavenda, B. H.

    1999-06-01

    A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.

  4. Temperature-reflection I

    DEFF Research Database (Denmark)

    McGady, David A.

    2017-01-01

    -temperature path integrals for quantum field theories (QFTs) should be T-reflection invariant. Because multi-particle partition functions are equal to Euclidean path integrals for QFTs, we expect them to be T-reflection invariant. Single-particle partition functions though are often not invariant under T......In this paper, we revisit the claim that many partition functions are invariant under reflecting temperatures to negative values (T-reflection). The goal of this paper is to demarcate which partition functions should be invariant under T-reflection, and why. Our main claim is that finite...... that T-reflection is unrelated to time-reversal. Finally, we study the interplay between T-reflection and perturbation theory in the anharmonic harmonic oscillator in quantum mechanics and in Yang-Mills in four-dimensions. This is the first in a series of papers on temperature-reflections....

  5. Management Experiences

    Directory of Open Access Journals (Sweden)

    Gheorghe Popovici

    2016-12-01

    Full Text Available The paper presents the results of the survey about the changes in modern management, identified from the experience of Romanian managers. By this online study one presents both the obstacles encountered and the recommendations for such a type of management that the present and future mangers must take into account. What motivated the respondent Romanian managers most to open their own business is the independence it offered them. They work in the field they have liked since they were young. The second reason was the perspective to have an additional income from the business development. The third argument in favour of opening a business is the possibility to assure the balance between personal life and career.

  6. Fiber optic temperature sensor

    Science.gov (United States)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  7. Fluorescent temperature sensor

    Science.gov (United States)

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  8. Continuous selection pressure to improve temperature acclimation of Tisochrysis lutea.

    Science.gov (United States)

    Bonnefond, Hubert; Grimaud, Ghjuvan; Rumin, Judith; Bougaran, Gaël; Talec, Amélie; Gachelin, Manon; Boutoute, Marc; Pruvost, Eric; Bernard, Olivier; Sciandra, Antoine

    2017-01-01

    Temperature plays a key role in outdoor industrial cultivation of microalgae. Improving the thermal tolerance of microalgae to both daily and seasonal temperature fluctuations can thus contribute to increase their annual productivity. A long term selection experiment was carried out to increase the thermal niche (temperature range for which the growth is possible) of a neutral lipid overproducing strain of Tisochrysis lutea. The experimental protocol consisted to submit cells to daily variations of temperature for 7 months. The stress intensity, defined as the amplitude of daily temperature variations, was progressively increased along successive selection cycles. Only the amplitude of the temperature variations were increased, the daily average temperature was kept constant along the experiment. This protocol resulted in a thermal niche increase by 3°C (+16.5%), with an enhancement by 9% of the maximal growth rate. The selection process also affected T. lutea physiology, with a feature generally observed for 'cold-temperature' type of adaptation. The amount of total and neutral lipids was significantly increased, and eventually productivity was increased by 34%. This seven month selection experiment, carried out in a highly dynamic environment, challenges some of the hypotheses classically advanced to explain the temperature response of microalgae.

  9. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans

    Directory of Open Access Journals (Sweden)

    Andoni Mujika

    2017-12-01

    Full Text Available This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.

  10. Corrosion Behavior of L80Steel in Different Temperature and Sulfur Content

    Science.gov (United States)

    Qiu, Zhichao; Xiong, Chunming; Yi, Ran; Ye, Zhengrong

    2017-10-01

    To understand the corrosion behavior of L80 steel in different temperature and sulfur content, the experiment which simulated the downhole corrosive environment was conducted. From the experiment result, when other factors were constant, the lowest corrosion rate was appeared when the temperature was 90°C. The influence of sulfur was complex. When temperature was low, the corrosion rate was decreased with the increase of sulfur content and the experimental result was opposite when temperature was high.

  11. Glutaraldehyde crosslinking of collagen: effects of time, temperature, concentration and presoaking as measured by shrinkage temperature.

    Science.gov (United States)

    Ruijgrok, J M; de Wijn, J R; Boon, M E

    1994-01-01

    Experiments were carried out to study the effect on the degree of crosslinking of: (a) short term (1 or 5 min) high (50 degrees C) temperature glutaraldehyde (GA) fixation of native collagen membrane, (b) a combination of GA presoaking at low temperature [0 degree C or room temperature (rt)] followed by short time (collagen fleece in a multilayer diffusion model. As a measure for the degree of crosslinking the shrinkage temperature (Ts) was determined. Short time (1 or 5 min) high temperature (50 degrees C) fixation using 0.1% GA solution caused the shrinkage temperature to increase to 80% and 93% respectively, of the maximum attainable Ts employing GA crosslinking (ca 91 degrees C). Fixation with 0.01% GA for 5 min at 50 degrees C appeared equally as effective as 1 min with 0.1% GA. Although an elevated fixation temperature (from rt to 45 degrees C) was found to produce a substantial increase in Ts of the collagen sheets, a homogeneous distribution of cross links was not obtained by this method. Presoaking the samples at rt (1 h) or at 0 degree C (3 h) with subsequent short time heating to 45 degrees C caused an almost equal rise in shrinkage temperature in Ts throughout the collagen samples.

  12. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  13. Nimbus-7 SMMR Antenna Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The SMMR Antenna Temperatures (Nimbus-7) data set consists of antenna temperatures from passive microwave radiometers aboard NOAA's Nimbus-7 satellite. The...

  14. TEMPERATURE INDEPENDENT PHOTOLUMINESCENCE ...

    Indian Academy of Sciences (India)

    8

    [1] C.A.K. Gouvˆea, F. Wypych, S.G. Moraes, N. Dur´an, P. Peralta-Zamora, Semiconductor- assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere. 427(2000) 40. [2] D.C Look, Equation of state for the study of temperature dependence of volume thermal expansion of nanomaterials, Mater.

  15. Life at High Temperatures

    Indian Academy of Sciences (India)

    2005-09-15

    Sep 15, 2005 ... or more in the vicinity of geothermal vents in the deep sea and the plant Tidestromia oblongifolia (Amaranthaceae) found in Death. Valley in California, where the hottest temperature on earth ever recorded during 43 consecutive days in 1917 was >48 °C. (Guinness Book of W orId Records, 1999).

  16. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas

    1995-02-01

    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  17. Measuring Temperature: The Thermometer

    Science.gov (United States)

    Chamoun, Mirvette

    2005-01-01

    The author discusses the historical development of the thermometer with the view of helping children understand the role that mathematics plays in society. A model thermometer that is divided into three sections, each displaying one of the three temperature scales used today (Fahrenheit, Celsius and Kelvin) is highlighted as a project to allow…

  18. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  19. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  20. Low Temperature Plasma Medicine

    Science.gov (United States)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  1. Temperature responsive cooling apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Weker, M.L.; Stearns, R.M.

    1987-08-11

    A temperature responsive cooling apparatus is described for an air conditioner or refrigeration system in operative association with a reservoir of fluid, the air conditioner or refrigeration system having an air cooled coil and means for producing a current of air for cooling the coil, the temperature responsive cooling apparatus comprising: (a) means for transferring the fluid from the reservoir to the air conditioner temperature responsive cooling apparatus, (b) a fluid control device activated by the current of air for cooling the coil; (c) a temperature activated, nonelectrical device for terminating and initiating the flow of fluid therethrough in an intermittent fashion for enhancing the operability of the compressor associated with the refrigeration system and for reducing the quantity of fluid required to cool the coil of the refrigeration system, (d) a fluid treatment device for preventing, reducing or mitigating the deposition of nonevaporative components on the air cooled coil, and (e) means for dispersing the fluid to the air cooled coil from the fluid control device for cooling the coil and increasing the efficiency of the air conditioner thereby reducing the cost of operating and maintaining the air conditioner without damaging the air conditioner and without the deposition of nonevaporative components thereupon.

  2. Fast Air Temperature Sensors

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1998-01-01

    The note documents briefly work done on a newly developed sensor for making fast temperature measurements on the air flow in the intake ports of an SI engine and in the EGR input line. The work reviewed has been carried out in close cooperation with Civ. Ing. Michael Føns, the author (IAU...

  3. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/09/0023-0036. Keywords.

  4. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  5. Temperature differential detection device

    Science.gov (United States)

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  6. Temperature crossovers in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V. [Department of Physics, University of Wisconsin, Madison, WI (United States); Pines, David; Stojkovic, Branko P. [Department of Physics, University of Illinois, Urbana, IL (United States)

    1996-11-25

    We study the temperature crossovers seen in the magnetic and transport properties of cuprates using a nearly antiferromagnetic Fermi-liquid model (NAFLM). We distinguish between underdoped and overdoped systems on the basis of their low-frequency magnetic behaviour and so classify the optimally doped cuprates as a special case of the underdoped cuprates. For the overdoped cuprates, we find, in agreement with earlier work, mean-field z=2 behaviour of the magnetic variables associated with the fact that the damping rate of their spin fluctuations is essentially independent of temperature, while the resistivity exhibits a crossover from Fermi-liquid behaviour at low temperature to linear-in-T behaviour above a certain temperature T{sub o}. We demonstrate that above T{sub o} the proximity of the quasiparticle Fermi surface to the magnetic Brillouin zone boundary brings about the measured linear-in-T resistivity. For the underdoped cuprates we argue that the sequence of crossovers identified by Barzykin and Pines in the low-frequency magnetic behaviour (from mean-field z=2 behaviour at high temperatures, T>T{sub cr}, to non-universal z=1 scaling behaviour at intermediate temperatures, T{sub *}temperature-dependent spin damping and ends at T{sub *} where the Fermi surface has lost pieces near corners of the magnetic Brillouin zone. For T{sub *}

  7. Couleurs, etoiles, temperatures.

    Science.gov (United States)

    Spite, F.

    The eye is able to distinguish very tiny color differences of contiguous objects (at high light level, cones vision), but it is not a reliable colorimeter. Hot objects (a heated iron rod) emits some red light, a hotter object would provide a yellow-orange light (the filament of a bulb) and a still hotter one a white or even bluish light : this may be at reverse of common life codes, where "red" means hot water and/or danger, and "blue" cool water or cool air. Stars are a good illustration of the link between temperatures and colors. A heated iron rod has a temperature of about 800 K. Let us recall that K is a temperature unit (Kelvin) such that the Kelvin temperature is the Celsius temperature +273).The so called red stars (or cool stars) have temperature around 3000 K, higher than "white-hot iron". The Sun has a still higher temperature (5800 K) and its color is white : the solar light is by definition the "white light", and includes violet, blue, green, yellow, orange and red colors in balanced proportions (the maximum in the yellow-green). It is often said that the Sun is a yellow star. Admittedly, a brief glimpse at the Sun (take care ! never more than a VERY brief glimpse !) provides a perception of yellow light, but such a vision, with the eye overwhelmed by a fierce light, is not able to provide a good evaluation of the solar color : prefer a white sheet of paper illuminated by the Sun at noon and conclude that "the Sun is a white star". It is sometimes asked why red, white and bluish stars are seen in the sky, but no green stars : the solar light has its maximum intensity in the green, but such a dominant green light, equilibrated by some blue and some red light, is what we call "white", so that stars similar to the Sun, with a maximum in the green, are seen as white stars. Faint stars (rods vision of the eye) are also seen as white stars. Spots on the Sun (never look at the Sun ! let us say spots on "projected images of the Sun") appear as black spots

  8. OSQAR experiment

    CERN Multimedia

    2017-01-01

    The Optical Search for QED Vacuum Bifringence, Axions and Photon Regeneration (OSQAR) experiment at CERN searches for hypothetical particles called axions, and studies the properties of a vacuum. According to some theories, axions could be components of dark matter, and they could help to explain why there is more matter than antimatter in the universe today. OSQAR is set up in CERN’s magnet-testing facility on the border of France and Switzerland. It makes use of two superconducting dipole magnets of the type used in the Large Hadron Collider that contain a vacuum chamber measuring 55 metres long by 40 millimetres across. “Light shining through a wall” OSQAR looks for axions and axion-like particles by exposing a laser beam containing photons (particles that make up visible light) to a 9 Tesla magnetic field. This field – the strongest ever used in an axion search – causes some of the photons in the laser to turn into axions. The OSQAR researchers shine the laser into a vacuum chamber

  9. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Science.gov (United States)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  10. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenbiao; Zhang, Pu [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Wenzhong, E-mail: lwz7410@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  11. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  12. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  13. Temperature and prey capture: opposite relationships in two predator taxa

    DEFF Research Database (Denmark)

    Kruse, Peter Dalgas; Toft, Søren; Sunderland, Keith

    2008-01-01

    to catch swiftly moving prey. 2. The first experiment examined the spontaneous locomotor activity of the predators and of fruit flies at different temperatures (5, 10, 15, 20, 25, and 30 °C) and light conditions (light, dark). A second experiment examined the effect of temperature and light...... different prey groups within the set of potential prey at different times of the day or at different seasons. The ability of many carabid beetles to forage at low temperatures may have nutritional benefits and increases the diversity of interactions in terrestrial food webs....

  14. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton: e0140449

    National Research Council Canada - National Science Library

    Serena Rasconi; Andrea Gall; Katharina Winter; Martin J Kainz

    2015-01-01

    ...") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning...

  15. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  16. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    Science.gov (United States)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  17. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  18. Temperature Grid Sensor for the Measurement of Spatial Temperature Distributions at Object Surfaces

    Directory of Open Access Journals (Sweden)

    Uwe Hampel

    2013-01-01

    Full Text Available This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  19. Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.

    Science.gov (United States)

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-25

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  20. Temperature Measurement and Monitoring Devices

    Science.gov (United States)

    1988-08-01

    feasibility based on potential usefulness in clinical medicine ’ias explored. All information herein wasn obtained from literature rrv’iew only. No...measurements, applications for temperature measuring devices, and description of several modern body temperature monitoring devices (techniques). Finally...gynecology, drug therapy, and ophthalmology. TEMPERATURE SENSING DEVICES Hippocrates is believed to be the first person Lo associate body temperature as