WorldWideScience

Sample records for temperature supercritical pressure

  1. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  2. Startup of a high-temperature reactor cooled and moderated by supercritical-pressure light water

    International Nuclear Information System (INIS)

    Yi, Tin Tin; Ishiwatari, Yuki; Koshizuka, Seiichi; Oka, Yoshiaki

    2003-01-01

    The startup schemes of high-temperature reactors cooled and moderated by supercritical pressure light water (SCLWR-H) with square lattice and descending flow type water rods are studied by thermal-hydraulic analysis. In this study, two kinds of startup systems are investigated. In the constant pressure startup system, the reactor starts at a supercritical pressure. A flash tank and pressure reducing valves are necessary. The flash tank is designed so that the moisture content in the steam is less than 0.1%. In sliding pressure startup system, the reactor starts at a subcritical pressure. A steam-water separator and a drain tank are required for two-phase flow at startup. The separator is designed by referring to the water separator used in supercritical fossil-fired power plants. The maximum cladding surface temperature during the power-raising phase of startup is restricted not to exceed the rated value of 620degC. The minimum feedwater flow rate is 25% for constant pressure startup and 35% for sliding pressure startup system. It is found that both constant pressure startup system and sliding pressure startup system are feasible in SCLWR-H from the thermal hydraulic point of view. The core outlet temperature as high as 500degC can be achieved in the present design of SCLWR-H. Since the feedwater flow rate of SCLWR-H (1190 kg/s) is lower than that of the previous SCR designs the weight of the component required for startup is reduced. The sliding pressure startup system is better than constant pressure startup system in order to reduce the required component weight (and hence material expenditure) and to simplify the startup plant system. (author)

  3. Temperature and pressure effects on solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1997-01-01

    Solubilities of some polycyclic aromatic hydrocarbons (PAHs) in supercritical carbon dioxide were measured with a procedure based on a direct on-line combination of a saturation cell to a flame ionization detector. Acenaphthene, anthrance and chrysene were selected as the test solutes. A method was

  4. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  5. Pulse radiolysis study on temperature and pressure dependence of the yield of solvated electron in methanol from room temperature to supercritical condition

    International Nuclear Information System (INIS)

    Han, Zhenhui; He, Hui; Lin, Mingzhang; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    A new concept of nuclear reactor, supercritical water-cooled reactor (SCWR), has been proposed, which is based on the success of the use of supercritical water (SCW) in fossil fuel power plants for more than three decades. This new concept reactor has advantages of higher thermal conversion efficiency, simplicity in structure, safety, etc, and it has been selected as one of the reactor concepts for the next generation nuclear reactor systems. In these reactors, the same as in boiling water reactors (BWR) and pressurized water reactors (PWR), water is used not only as a coolant but also as a moderator. It is very important to understand the behavior of the radiolysis products of water under the supercritical condition, since the water is exposed to a strong radiation field under very high temperature condition. Usually, in order to predict the concentrations of water decomposition products with carrying out some kinds of computer simulations, knowledge of the temperature and/or pressure dependent G-values (denoting the experimentally measured radiolytic yields) as well as of the rate constants of a set of reactions becomes very important. Therefore, in recent years, two groups from Argonne National Laboratory and The University of Tokyo, simultaneously conducted two projects aimed at obtaining basic data on radiolysis of SCW. However, it is still lack of reliable radiolytic yields of water decomposition products in very high temperature region. As we known, the properties of solvated electrons in polar liquid are very helpful for our understanding how they play a central role in many processes, such as solvation and reducing reactions. The solvated electron can also be used as a probe to determine the dynamic nature of the polar liquid systems. Comparing to water, the primary alcohols have much milder critical points, for example, for water and methanol, the critical temperature and pressure are 374 deg. C and 22.1 MPa and 239.5 deg. C and 8.1 MPa, respectively

  6. Effects of Nozzle Configuration on Rock Erosion Under a Supercritical Carbon Dioxide Jet at Various Pressures and Temperatures

    Directory of Open Access Journals (Sweden)

    Man Huang

    2017-06-01

    Full Text Available The supercritical carbon dioxide (SC-CO2 jet offers many advantages over water jets in the field of oil and gas exploration and development. To take better advantage of the SC-CO2 jet, effects of nozzle configuration on rock erosion characteristics were experimentally investigated with respect to the erosion volume. A convergent nozzle and two Laval nozzles, as well as artificial cores were employed in the experiments. It was found that the Laval nozzle can enhance rock erosion ability, which largely depends on the pressure and temperature conditions. The enhancement increases with rising inlet pressure. Compared with the convergent nozzle, the Laval-1 nozzle maximally enhances the erosion volume by 10%, 21.2% and 30.3% at inlet pressures of 30, 40 and 50 MPa, respectively; while the Laval-2 nozzle maximally increases the erosion volume by 32.5%, 49.2% and 60%. Moreover, the enhancement decreases with increasing ambient pressure under constant inlet pressure or constant pressure drop. The growth of fluid temperature above the critical value can increase the enhancement. In addition, the jet from the Laval-2 nozzle with a smooth inner profile always has a greater erosion ability than that from the Laval-1 nozzle.

  7. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    Energy Technology Data Exchange (ETDEWEB)

    Pastouret, Alan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Gooijer, Frans [Draka Cableteq USA, Inc., North Dighton, MA (United States); Overton, Bob [Draka Cableteq USA, Inc., North Dighton, MA (United States); Jonker, Jan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Curley, Jim [Draka Cableteq USA, Inc., North Dighton, MA (United States); Constantine, Walter [Draka Cableteq USA, Inc., North Dighton, MA (United States); Waterman, Kendall Miller [Draka Cableteq USA, Inc., North Dighton, MA (United States)

    2015-11-13

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High-temperature

  8. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  9. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.

    Science.gov (United States)

    Tabaraki, R; Khayamian, T; Ensafi, A A

    2006-09-01

    A wavelet neural network (WNN) model in quantitative structure property relationship (QSPR) was developed for predicting solubility of 25 anthraquinone dyes in supercritical carbon dioxide over a wide range of pressures (70-770 bar) and temperatures (291-423 K). A large number of descriptors were calculated with Dragon software and a subset of calculated descriptors was selected from 18 classes of Dragon descriptors with a stepwise multiple linear regression (MLR) as a feature selection technique. Six calculated and two experimental descriptors, pressure and temperature, were selected as the most feasible descriptors. The selected descriptors were used as input nodes in a wavelet neural network (WNN) model. The wavelet neural network architecture and its parameters were optimized simultaneously. The data was randomly divided to the training, prediction and validation sets. The predictive ability of the model was evaluated using validation data set. The root mean squares error (RMSE) and mean absolute errors were 0.339 and 0.221, respectively, for the validation data set. The performance of the WNN model was also compared with artificial neural network (ANN) model and the results showed the superiority of the WNN over ANN model.

  10. Supercritical impregnation of polymer matrices spatially confined in microcontainers for oral drug delivery: Effect of temperature, pressure and time

    DEFF Research Database (Denmark)

    Marizza, Paolo; Pontoni, L.; Rindzevicius, Tomas

    2016-01-01

    sol-ubility in water. In a previous study we introduced a novel technique for drug loading of microcontainers,based on inkjet printing and supercritical impregnation (SCI). We showed that SCI produces accurate andreproducible drug loading for large arrays of microcontainers. In the attempt...... of enhancing the throughputof the loading methods, we propose the replacement of polymer inkjet printing with an easier man-ual compression of the PVP powder into the microcontainers. As the second step, the polymer powderfilled-microcontainers were submitted to SCI. The separate role of different impregnation...

  11. Subchannel analysis with turbulent mixing rate of supercritical pressure fluid

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2015-01-01

    Highlights: • Subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out. • Turbulent mixing rate is enhanced, compared with that calculated by the law of pressurized water reactor (PWR). • Increase in maximum cladding surface temperature (MCST) is smaller comparing with PWR model. • The sensitivities of MCST on non-uniformity of subchannel area and power peaking are reduced by using SPF model. - Abstract: The subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out for supercritical-pressurized light water cooled and moderated reactor (Super LWR). It is different from the turbulent mixing rate law of pressurized water reactor (PWR), which is widely adopted in Super LWR subchannel analysis study, the density difference between adjacent subchannels is taken into account for turbulent mixing rate law of SPF. MCSTs are evaluated on three kinds of fuel assemblies with different pin power distribution patterns, gap spacings and mass flow rates. Compared with that calculated by employing turbulent mixing rate law of PWR, the increase in MCST is smaller even when peaking factor is large and gap spacing is uneven. The sensitivities of MCST on non-uniformity of the subchannel area and power peaking are reduced

  12. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  13. Pressure drop and friction factor correlations of supercritical flow

    International Nuclear Information System (INIS)

    Fang Xiande; Xu Yu; Su Xianghui; Shi Rongrong

    2012-01-01

    Highlights: ► Survey and evaluation of friction factor models for supercritical flow. ► Survey of experimental study of supercritical flow. ► New correlation of friction factor for supercritical flow. - Abstract: The determination of the in-tube friction pressure drop under supercritical conditions is important to the design, analysis and simulation of transcritical cycles of air conditioning and heat pump systems, nuclear reactor cooling systems and some other systems. A number of correlations for supercritical friction factors have been proposed. Their accuracy and applicability should be examined. This paper provides a comprehensive survey of experimental investigations into the pressure drop of supercritical flow in the past decade and a comparative study of supercritical friction factor correlations. Our analysis shows that none of the existing correlations is completely satisfactory, that there are contradictions between the existing experimental results and thus more elaborate experiments are needed, and that the tube roughness should be considered. A new friction factor correlation for supercritical tube flow is proposed based on 390 experimental data from the available literature, including 263 data of supercritical R410A cooling, 45 data of supercritical R404A cooling, 64 data of supercritical carbon dioxide (CO 2 ) cooling and 18 data of supercritical R22 heating. Compared with the best existing model, the new correlation increases the accuracy by more than 10%.

  14. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  15. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  16. Heat transfer study under supercritical pressure conditions

    International Nuclear Information System (INIS)

    Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji

    2003-01-01

    Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)

  17. Simulation of Thermal Hydraulic at Supercritical Pressures with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Joona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI02044 VTT (Finland)

    2008-07-01

    The proposed concepts for the fourth generation of nuclear reactors include a reactor operating with water at thermodynamically supercritical state, the Supercritical Water Reactor (SCWR). For the design and safety demonstrations of such a reactor, the possibility to accurately simulate the thermal hydraulics of the supercritical coolant is an absolute prerequisite. For this purpose, the one-dimensional two-phase thermal hydraulics solution of APROS process simulation software was developed to function at the supercritical pressure region. Software modifications included the redefinition of some parameters that have physical significance only at the subcritical pressures, improvement of the steam tables, and addition of heat transfer and friction correlations suitable for the supercritical pressure region. (author)

  18. Large Eddy Simulations of turbulent flows at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)

    2011-07-01

    A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)

  19. Characteristics of turbulent heat transfer in an annulus at supercritical pressure

    NARCIS (Netherlands)

    Peeters, J.W.R.; Pecnik, R.; Rohde, M.; van der Hagen, T.H.J.J.; Boersma, B.J.

    2017-01-01

    Heat transfer to fluids at supercritical pressure is different from heat transfer at lower pressures due to strong variations of the thermophysical properties with the temperature. We present and analyze results of direct numerical simulations of heat transfer to turbulent CO2 at 8 MPa in an

  20. Direct numerical simulation of heat transfer to CO2 at supercritical pressure in a vertical tube

    International Nuclear Information System (INIS)

    Bae, Joong-Hun; Yoo, Jung-Yul; Choi, Hae-Cheon

    2003-01-01

    In the present study, the turbulent heat transfer to CO 2 at supercritical pressure in a vertical tube is investigated using Direct Numerical Simulation (DNS), where no turbulence model is adopted. Heat transfer to the supercritical pressure fluids is characterized by rapid variation of thermodynamic/ thermo-physical properties in the fluids. This change in properties occurs within a very narrow range of temperature across the so-called pseudo-critical temperature, causing a peculiar behavior of heat transfer characteristics. The buoyancy effects associated with very large changes in density proved to play a major role in turbulent heat transfer to supercritical pressure fluids. Depending on the degree of buoyancy effects, turbulent heat transfer may increase or significantly decrease, resulting in a local hot spot along the wall. Based on the results of the present DNS study combined with theoretical considerations for turbulent mixed convection heat transfer, the basic mechanism of this local heat transfer deterioration is explained

  1. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  2. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada

    2012-07-01

    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  3. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  4. Once-through cycle, supercritical-pressure light water cooled reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Koshizuka, S. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2001-07-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  5. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  6. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  7. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  8. Thermo hydraulic analysis of narrow channel effect in supercritical-pressure light water reactor

    International Nuclear Information System (INIS)

    Zhou Tao; Chen Juan; Cheng Wanxu

    2012-01-01

    Highlights: ► Detailed thermal analysis with different narrow gaps between fuel rods is given. ► Special characteristics of narrow channels effect on heat transfer in supercritical pressure are shown. ► Reasonable size selection of gaps between fuel rods is proposed for SCWR. - Abstract: The size of the gap between fuel rods has important effects on flow and heat transfer in a supercritical-pressure light water reactor. Based on thermal analysis at different coolant flow rates, the reasonable value range of gap size between fuel rods is obtained, for which the maximum cladding temperature safety limits and installation technology are comprehensively considered. Firstly, for a given design flow rate of coolant, thermal hydraulic analysis of supercritical pressure light water reactor with different gap sizes is provided by changing the fuel rod pitch only. The results show that, by means of reducing the gap size between fuel rods, the heat transfer coefficients between coolant and fuel rod, as well as the heat transfer coefficient between coolant and water rod, would both increase noticeably. Furthermore, the maximum cladding temperature will significantly decrease when the moderator temperature is decreased but coolant temperature remains essentially constant. Meanwhile, the reduction in the maximum cladding temperature in the inner assemblies is much larger than that in the outer assemblies. In addition, the maximum cladding temperature could be further reduced by means of increasing coolant flow rate for each gap size. Finally, the characteristics of narrow channels effect are proposed, and the maximum allowable gap between fuel rods is obtained by making full use of the enhancing narrow channels effect on heat transfer, and concurrently considering installation. This could provide a theoretical reference for supercritical-pressure light water reactor design optimization, in which the effects of gap size and flow rate on heat transfer are both considered.

  9. Heat transfer test in a vertical tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2007-01-01

    Heat transfer test facility, SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), was constructed at KAERI (Korea Atomic Energy Research Institute) for an investigation of the thermal-hydraulic behaviors of supercritical CO 2 at the various geometries of the test section. The test data will be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). As a working fluid, CO 2 was selected to make use of the low critical pressure and temperature of CO 2 compared with water. An experimental study was carried out in the SPHINX to investigate the characteristics of heat transfer and pressure drop at a vertical single tube with an inside diameter of 4.4 mm in case of an upward flow of supercritical CO 2 . The heat and mass fluxes were varied at a given pressure. The mass flux was in the range of 400-1,200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75, 8.12, and 8.85 MPa. A heat transfer deterioration occurred at the lower mass fluxes. The experimental heat transfer coefficients were compared with the ones predicted by several existing correlations. The standard deviation was about 20% for each correlation and an apparent discrepancy was not found among the correlations. The major components of the pressure drop were a gravitational pressure drop and a frictional pressure drop. The frictional pressure drop increases as the mass flux and heat flux increase. (author)

  10. Heat transfer test in a tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2005-01-01

    Heat transfer test facility, which is named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), has been constructed in KAERI for the study of heat transfer and pressure drop characteristics in a single tube, single rod and rod bundle at supercritical CO 2 conditions. The tests with supercritical water are difficult it terms of cost and effort, since the critical pressure and temperature of water are as high as 22.12 MPa and 374.14degC. As a substitute for water, CO 2 is selected for the test since the critical pressure and temperature of CO 2 are 7.38 MPa and 31.05degC that are much lower than those of water. This paper describes the design characteristics of the SPHINX and the experimental investigations on the heat transfer and pressure drop of a vertical single tube with an inside diameter of 4.4 mm with upward flow of supercritical CO 2 . The geometry of the single tube is the same as that of Kyushu University test performed with Freon (R22) for the direct comparison of a medium effect. The tests were performed with various heat and mass fluxes at a given pressure. The range of mass flux is 400∼1200 kg/m 2 s and the heat flux is chosen up to 150 kW/m 2 . The selected pressure are 7.75, 8.12, and 8.85 MPa. The test results are investigated and compared with the previous tests. (author)

  11. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tylczak, Joseph [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carney, Casey [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dogan, Omer N. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  12. Correlations of CO2 at supercritical pressures in a vertical circular tube

    International Nuclear Information System (INIS)

    Li Zhihui; Jiang Peixue

    2010-01-01

    The experiment results of convection heat transfer of CO 2 at supercritical pressures in a 2 mm diameter vertical circular tube for upward flow and downward flow were analyzed for pressures ranging from 78 to 95 bar, inlet temperatures from to 25 to 40 degree C, and inlet Re numbers from 3000 to 20000. The results were compared with some well known empirical correlations for the heat transfer without buoyancy effects and the heat transfer with strong buoyancy effects. It is found that there is a big deviation between the experiment results and empirical correlations. Based on the experiment data, correlations are developed for the local Nusselt correlations of CO 2 at supercritical pressures in vertical circular tubes.(authors)

  13. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  14. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    Science.gov (United States)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  15. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    Science.gov (United States)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  16. Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models

    International Nuclear Information System (INIS)

    Sharabi, Medhat; Ambrosini, Walter

    2009-01-01

    The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them

  17. Two Dimensional CFD Analyses on the Heat Transfer for a Supercritical Pressure CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The Supercritical Water Cooled Reactor(SCWR) operates in a pressure around 25MPa and temperature of 293{approx}510 .deg. C. In order to study the heat transfer behaviors and good comparisons between the various fluids, a heat transfer test loop(SPHINX) using CO{sub 2} has been constructed in KAERI as a part of international research program, I-NERI. At a supercritical pressure, the heat transfer coefficient is much larger than that estimated from the Dittus-Boelter correlation for a relatively large flow rate with moderate wall heat flux conditions. This phenomenon was explained by the rapid variations of the physical properties near the wall with the temperature. On the contrary, the heat transfer becomes worse when the bulk fluid enthalpy is below the pseudo-critical enthalpy under a low flow rate with large heat flux conditions. This phenomenon is called 'deteriorated heat transfer', and which is explained as the modification of the shear stress distribution across the tube to a buoyancy and/or acceleration in a low density layer near the wall, with the consequence of a turbulence. The upward vertical flow of CO{sub 2} through a uniformly heated tube of 4.4 mm in diameter and 3m long(heated length is 2.1m) was investigated numerically using the CFD code, FLUENT. Through the numerical simulations, we have attempted to obtain a physically meaningful insight into the heat transfer mechanisms at a supercritical pressure.

  18. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    International Nuclear Information System (INIS)

    Lei, Xianliang; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-01-01

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  19. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Edward Shitsi

    2017-11-01

    Full Text Available Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated.An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature values in the NHT (normal heat transfer, EHT (enhanced heat transfer, DHT (deteriorated heat transfer and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the

  20. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    Science.gov (United States)

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The

  1. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  2. Plastic reactor suitable for high pressure and supercritical fluid electrochemistry

    DEFF Research Database (Denmark)

    Branch, Jack; Alibouri, Mehrdad; Cook, David A.

    2017-01-01

    The paper describes a reactor suitable for high pressure, particularly supercritical fluid, electrochemistry and electrodeposition at pressures up to 30 MPa at 115◦C. The reactor incorporates two key, new design concepts; a plastic reactor vessel and the use of o-ring sealed brittle electrodes...... by the deposition of Bi. The application of the reactor to the production of nanostructures is demonstrated by the electrodeposition of ∼80 nm diameter Te nanowires into an anodic alumina on silicon template. Key advantages of the new reactor design include reduction of the number of wetted materials, particularly...... glues used for insulating electrodes, compatability with reagents incompatible with steel, compatability with microfabricated planar multiple electrodes, small volume which brings safety advantages and reduced reagent useage, and a significant reduction in experimental time....

  3. Pressure drop effects on selectivity and resolution in packed-column supercritical fluid chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.M.G.

    1996-01-01

    The influence of pressure drop on retention, selectivity, plate height and resolution was investigated systematically in packed supercritical fluid chromatography (SFC) using pure carbon dioxide as the mobile phase. Numerical methods developed previously which enabled the prediction of pressure

  4. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe

    International Nuclear Information System (INIS)

    Adebiyi, G.A.; Hall, W.B.

    1976-01-01

    Results obtained in an experimental investigation of heat transfer to supercritical and subcritical pressure CO 2 flowing through a uniformly heated 22.14 mm I.D. horizontal pipe are presented. The experimental work covers a flow inlet Reynolds number range of about 2 x 10 4 to 2 x 10 5 . Marked peripheral temperature variations are obtained which represent the influence of buoyancy. Comparison with buoyancy free data shows that heat transfer at the bottom of the pipe in enhanced and at the top is reduced by buoyancy. Criteria proposed by Jackson and Petukhov indicate that buoyancy effects would be expected under the conditions of all the experiments. (autho)

  5. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  6. Heat transfer in vertical pipe flow at supercritical pressures of water

    International Nuclear Information System (INIS)

    Loewenberg, M.F.

    2007-05-01

    A new reactor concept with light water at supercritical conditions is investigated in the framework of the European project ''High Performance Light Water Reactor'' (HPLWR). Characteristics of this reactor are the system pressure and the coolant outlet temperature above the critical point of water. Water is regarded as a single phase fluid under these conditions with a high energy density. This high energy density should be utilized in a technical application. Therefore in comparison with up to date nuclear power plants some constructive savings are possible. For instance, steam dryers or steam separators can be avoided in contrast to boiling water reactors. A thermal efficiency of about 44% can be accomplished at a system pressure of 25MPa through a water heat-up from 280 C to 510 C. To ensure this heat-up within the core reliable predictions of the heat transfer are necessary. Water as the working fluid changes its fluid properties dramatically during the heat up in the core. As such; the density in the core varies by the factor of seven. The motivation to develop a look-up table for heat transfer predications in supercritical water is due to the significant temperature dependence of the fluid properties of water. A systematic consolidation of experimental data was performed. Together with further developments of the methods to derive a look-up table made it possible to develop a look-up table for heat transfer in supercritical water in vertical flows. A look-up table predicts the heat transfer for different boundary conditions (e.g. pressure or heat flux) with tabulated data. The tabulated wall temperatures for fully developed turbulent flows can be utilized for different geometries by applying hydraulic diameters. With the developed look-up table the difficulty of choosing one of the many published correlations can be avoided. In general, the correlations have problems with strong fluid property variations. Strong property variations combined with high heat

  7. Development of an Accelerated Methodology to Study Degradation of Materials in Supercritical Water for Application in High Temperature Power Plants

    Science.gov (United States)

    Rodriguez, David

    The decreasing supply of fossil fuel sources, coupled with the increasing concentration of green house gases has placed enormous pressure to maximize the efficiency of power generation. Increasing the outlet temperature of these power plants will result in an increase in operating efficiency. By employing supercritical water as the coolant in thermal power plants (nuclear reactors and coal power plants), the plant efficiency can be increased to 50%, compared to traditional reactors which currently operate at 33%. The goal of this dissertation is to establish techniques to characterize the mechanical properties and corrosion behavior of materials exposed to supercritical water. Traditionally, these tests have been long term exposure tests spanning months. The specific goal of this dissertation is to develop a methodology for accelerated estimation of corrosion rates in supercritical water that can be sued as a screening tool to select materials for long term testing. In this study, traditional methods were used to understand the degradation of materials in supercritical water and establish a point of comparison to the first electrochemical studies performed in supercritical water. Materials studied included austenitic steels (stainless steel 304, stainless steel 316 and Nitronic 50) and nickel based alloys (Inconel 625 and 718). Surface chemistry of the oxide layer was characterized using scanning electron microscopy, X-ray diffraction, FT-IR, Raman and X-ray photoelectron spectroscopies. Stainless steel 304 was subjected to constant tensile load creep tests in water at a pressure of 27 MPa and at temperatures of 200 °C, 315 °C and supercritical water at 450 °C for 24 hours. It was determined that the creep rate for stainless steel 304 exposed to supercritical water would be unacceptable for use in service. It was observed that the formation of hematite was favored in subcritical temperatures, while magnetite was formed in the supercritical region. Corrosion of

  8. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  9. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    Science.gov (United States)

    Oefelein, Joseph C.

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  10. Phase behavior for the poly(alkyl methacrylate)+supercritical CO2+DME mixture at high pressures

    International Nuclear Information System (INIS)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo

    2016-01-01

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO 2 , as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO 2 . The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO 2 at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO 2 +20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO 2 +DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO 2 shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  11. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  12. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube

    International Nuclear Information System (INIS)

    Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan

    2009-01-01

    In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was

  13. Research and development of the supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Oka, Yoshiaki

    2003-01-01

    The concept of high temperature reactor cooled by light water (SCR) has been developed at the University of Tokyo since 1989. Major elements of reactor conceptual design and safety were studied. It includes fuel rod design, core design of thermal and fast reactors, plant heat balance, safety design, accident and transient analysis, LOCA, PSA, plant control, start-up and stability. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical FPP in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil Fired Power Plants (FPP) will be fully utilized for SCR. Although the concept was developed at the University of Tokyo mostly with our own funds and resources, four funding was/is provided for the research in Japan so far. Those are TEPCO studies with Japanese vendors in 1994 and 1995. JSPS (Monbusho) funding of pulse radiolysis of supercritical water to the University of Tokyo, Japanese-NERI program of METI to Toshiba team on thermal hydraulics, corrosion and plant system and Japanese-NERI program of MEXT on water chemistry to the University of Tokyo. The concept was taken as the reference of HPLWR study in Europe with funding of EU in 2000 and 2001. The concept was evaluated in the Generation 4 reactor program in USA. It was selected as only one water-cooled Generation 4 reactor. This paper describes the overview of the conceptual design at the University of Tokyo and R and D in the world

  14. Oxidation performance of high temperature steels and coatings for future supercritical power plants

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma; Toivonen, Aki; Penttilae, Sami [VTT, Espoo (Finland); Haekkilae, Juha [Foster Wheeler Energia, Varkaus (Finland); Aguero, Alina; Gutierrez, Marcos; Muelas, Raul [INTA, Madrid (Spain); Fry, Tony [NPL (United Kingdom)

    2010-07-01

    The operating efficiency of current and future thermal power plants is largely dependent on the applied temperature and pressure, which are in part limited by the internal oxidation resistance of the structural materials in the steam systems. Alternative and reference materials for such systems have been tested within the COST 536 (ACCEPT) project, including bulk reference materials (ferritic P92 and austenitic 316 LN steels) and several types of coatings under supercritical combined (oxygen) water chemistry (150 ppb DO) at 650 C/300 bar. The testing results from a circulating USC autoclave showed that under such conditions the reference bulk steels performed poorly, with extensive oxidation already after relatively short term exposure to the supercritical medium. Better protection was attained by suitable coatings, although there were clear differences in the protective capabilities between different coating types, and some challenges remain in applying (and repairing) coatings for the internal surfaces of welded structures. The materials performance seems to be worse in supercritical than in subcritical conditions, and this appears not to be only due to the effect of temperature. The implications are considered from the point of view of the operating conditions and materials selection for future power plants. (orig.)

  15. Elements of Design Consideration of Once-Through Cycle, Supercritical-Pressure Light Water Cooled Reactor

    International Nuclear Information System (INIS)

    Yoshiaki Oka; Sei-ichi Koshizuka; Yuki Ishiwatari; Akifumi Yamaji

    2002-01-01

    The paper describes elements of design consideration of supercritical-pressure, light water cooled reactors as well as the status and prospects of the research and development. It summarizes the results of the conceptual design study at the University of Tokyo from 1989. The research and development started in Japan, Europe and USA. The major advantages of the reactors are 1. Compact reactor and turbines due to high specific enthalpy of supercritical water 2.Simple plant system because of the once-through coolant cycle 3.Use of the experience of LWR and fossil-fired power plants. The temperatures of the major components such as reactor pressure vessel, coolant pipes, pumps and turbines are within the experience, in spite of the high outlet coolant temperature. 4.Similarity to LWR safety design and criteria, but no burnout phenomenon 5.Potential cost reduction due to smaller material expenditure and short construction period 6.The smallest reactor not in power rating, but in plant sizes. 7.High-thermal efficiency and low coolant flow rate because of high enthalpy rise. 8.Water cooled reactors potentially free from SCC (stress corrosion cracking) problems. 9.Compatibility of tight-fuel-lattice fast reactor core due to small coolant flow rate, potentially easy shift to fast breeder reactor without changing coolant technology. 10.Potential of producing energy products such as hydrogen and high quality hydro carbons. (authors)

  16. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Tao Zhi

    2016-10-01

    Full Text Available A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux ranging from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy-influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models.

  17. Measurements of convective heat transfer to vertical upward flows of CO{sub 2} in circular tubes at near-critical and supercritical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Zahlan, H., E-mail: hussamzahlan@gmail.com [Canadian Nuclear Laboratories, Chalk River, K0J 1J0 (Canada); Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5 (Canada); Groeneveld, D. [Canadian Nuclear Laboratories, Chalk River, K0J 1J0 (Canada); Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5 (Canada); Tavoularis, S. [Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2015-08-15

    downstream sections of the tubes. The collected data were reduced and compiled. The reported heat transfer database consists of more than 17,000 data points in the 8 and 22 mm tubes, along with pressure drop data for the 8 mm tube. The tables of heat transfer and pressure drop data are provided as separate files in electronic format. The results are presented in plots of wall temperature and heat transfer coefficient vs. bulk fluid enthalpy. The parametric trends of diameter, mass flux, pressure and heat flux on these wall temperature and heat transfer coefficient profiles have been plotted and discussed. The present supercritical heat transfer measurements are in good agreement with corresponding results reported by other investigators.

  18. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor

    NARCIS (Netherlands)

    Benito-Lopez, F.; Tiggelaar, Roald M.; Salblut, K.; Huskens, Jurriaan; Egberink, Richard J.M.; Reinhoudt, David; Gardeniers, Johannes G.E.; Verboom, Willem

    2007-01-01

    The esterification reaction of phthalic anhydride with methanol was performed at different temperatures in a continuous flow glass microreactor at pressures up to 110 bar and using supercritical CO2 as a co-solvent. The design is such that supercritical CO2 can be generated inside the microreactor.

  19. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  20. Development of out-of-core concepts for a supercritical-water, pressure-tube reactor

    International Nuclear Information System (INIS)

    Diamond, W.T.

    2010-01-01

    One of the Generation IV programs at Chalk River Laboratories has as its prime focus the development of out-of-core concepts for the SuperCritical Water (SCW) pressure tube reactor under development in Canada. A number of technical issues associated with the interface of out-of-core components and the pressure tubes of a SCW pressure tube reactor are being investigated. This article focuses on several aspects of out-of-core components and layouts, building upon concepts that have been developed during the past few years. The efforts are strongly focused on concepts for a fuel channel that can be fabricated with the tight lattice pitch (typically 230 to 250 mm) that may be required for some applications such as utilization of a thorium fuel cycle. It is not practical to adapt concepts with a tight lattice pitch while using the thicker materials required for the higher temperatures and pressures required for supercritical operation. A change in lattice pitch or configuration is required to accommodate the component size increases. This presentation will cover a number of new concepts developed to produce feeders and end fittings for the harsh conditions of a SCW pressure tube reactor. These components are then developed into conceptual models of a Gen IV pressure tube reactor mounted in both horizontal and vertical orientations. Full 3-D solid models of both concepts will be demonstrated as well as a 1/10th-scale model of one face of a horizontal concept that has been built from components made with a 3-D printer. (author)

  1. Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications

    Directory of Open Access Journals (Sweden)

    Bruce Chehroudi

    2012-01-01

    Full Text Available Pressure and temperature of the liquid rocket thrust chambers into which propellants are injected have been in an ascending trajectory to gain higher specific impulse. It is quite possible then that the thermodynamic condition into which liquid propellants are injected reaches or surpasses the critical point of one or more of the injected fluids. For example, in cryogenic hydrogen/oxygen liquid rocket engines, such as Space Shuttle Main Engine (SSME or Vulcain (Ariane 5, the injected liquid oxygen finds itself in a supercritical condition. Very little detailed information was available on the behavior of liquid jets under such a harsh environment nearly two decades ago. The author had the opportunity to be intimately involved in the evolutionary understanding of injection processes at the Air Force Research Laboratory (AFRL, spanning sub- to supercritical conditions during this period. The information included here attempts to present a coherent summary of experimental achievements pertinent to liquid rockets, focusing only on the injection of nonreacting cryogenic liquids into a high-pressure environment surpassing the critical point of at least one of the propellants. Moreover, some implications of the results acquired under such an environment are offered in the context of the liquid rocket combustion instability problem.

  2. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  3. Heat transfer in CO{sub 2} at supercritical pressures in an eccentric annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon-Yeong, E-mail: yybae@kaeri.re.kr

    2013-12-15

    Highlights: • Heat transfer under supercritical pressure in an eccentric annular channel pressure was studied. • The studied geometry was an eccentric annular channel with an eccentricity of 0.33. • The effect of spacer as a turbulence generator was investigated. • The effects of the mass flux, heat flux, and pressure were investigated. • The obtained data were evaluated against the correlation. - Abstract: An experimental investigation of a supercritical heat transfer in an eccentric annular channel was performed using a supercritical heat transfer test facility, SPHINX, at the Korea Atomic Energy Research Institute (KAERI). The eccentric channel was built by placing a 9.5 mm outer diameter heater rod in a 12.5 mm inner diameter tube with an eccentricity of 0.33. The narrowest gap was 1 mm, and the widest gap was 2 mm. The rod was heated indirectly by an imbedded Nickel Chrome heating wire made of NCHW1. Three simple spacers were installed to see their effect, if any, on the heat transfer. The mass fluxes were 400 and 1200 kg/m{sup 2} s, and the heat flux was varied between 30 and 150 kW/m{sup 2} such that the pseudo-critical point was located within the test section as long as possible. When this was not the case, several tests with stepwise increased inlet temperatures were performed so that at least one of them included the pseudo-critical point. The tests were performed at two different pressures of 7.75 and 8.12 MPa to check the pressure effect. The influence of the gap size was clearly seen with the eccentric channel, if not significant. The wall temperatures along the narrowest gap were higher than those along the widest gap as expected, while it was reversed at the end part of the test section. The test results for the eccentric channel were not much different from those for the concentric channel of a similar gap size. As we have seen from the plain tube test, the diameter effect on the heat transfer was also not significant in this test. On the

  4. Control of temperature distribution in a supercritical gas extraction tower

    International Nuclear Information System (INIS)

    Yoshida, M.; Matsumoto, S.; Honda, G.; Iwama, T.; Suzuki, Y.; Odagiri, S.

    1989-01-01

    A control scheme recently proposed by the authors is applied to the control of axial temperature distribution in a bench-scale supercritical-gas extractor. The extraction unit is constructed from a packed column 3 m long covered by a coaxial cylindrical casing. Although the actual structure of the extractor is very complicated, it is modeled by a simple double-pipe and therefore its mathematical model can be described by a pair of partial differential equations. The models are reduced to a lumped parameter system with a finite dimension by use of the finite Fourier transform technique. The controller is designed on the basis of the reduced model. An extended Kalman filter is used to estimate simultaneously the state variables and the unknown parameters. The results demonstrate that both the state estimation and the controller performance are satisfactory. This implies that the control scheme is very robust in spite of the incompleteness of the model used

  5. γ-Radiolysis of benzophenone aqueous solution at elevated temperatures up to supercritical condition

    International Nuclear Information System (INIS)

    Miyazaki, Toyoaki; Katsumura, Yosuke; Lin Mingzhang; Muroya, Yusa; Kudo, Hisaaki; Asano, Masaharu; Yoshida, Masaru

    2006-01-01

    A product analysis study of γ-irradiated benzophenone aqueous solutions from room temperature to 400 deg. C has been carried out by the combination of a flow irradiation system and a liquid chromatographic method. At room temperature, the main decomposition products are phenol and hydroxybenzophenone isomers. In high temperature and supercritical water solutions, 9-fluorenone appears as an important product and the G-value of benzophenone consumption depends significantly on the water density under supercritical conditions

  6. Development status and application prospect of supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Li Manchang; Wang Mingli

    2006-01-01

    The Supercritical-pressure Light Water Cooled Reactor (SCWR) is selected by the Generation IV International Forum (GIF) as one of the six Generation IV nuclear systems that will be developed in the future, and it is an innovative design based on the existing technologies used in LWR and supercritical coal-fired plants. Technically, SCWR may be based on the design, construction and operation experiences in existing PWR and supercritical coal-fired plants, which means that there is no insolvable technology difficulties. Since PWR technology will be adopted in the near term and medium term projects in China, and considering the sustainable development of the technology, it is an inevitable choice to research and develop the nuclear system of supercritical light water cooled reactor. (authors)

  7. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Ravula, Jeswanth [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Thadela, S. [Department of Mechanical Engineering, Andhra University, Visakhapatnam, Andhra Pradesh (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, P.V.K. Institute of Technology, Anantapur, Andhra Pradesh (India)

    2015-12-15

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T{sub C} + 10 K) and pressure (P{sub C} + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  8. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-01-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T_C + 10 K) and pressure (P_C + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  9. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  10. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R.

    2011-01-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  11. Heat transfer in a seven-rod test bundle with supercritical pressure water (1). Experiments

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Seki, Yohji; Dairaku, Masayuki; Suzuki, Satoshi; Enoeda, Mikio; Akiba, Masato; Mori, H.; Oka, Y.

    2009-01-01

    Heat transfer experiments in a seven-rod test bundle with supercritical pressure water has been carried out. The pressure drop and heat transfer coefficients (HTCs) in the test section are evaluated. In the present limited conditions, difference between HTCs at the surface facing the sub-channel center and those at the surface in the narrowest region between rods is not observed. (author)

  12. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    International Nuclear Information System (INIS)

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-01-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO 2 ) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO 2 Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO 2 Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO 2 flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  13. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube at high Re

    International Nuclear Information System (INIS)

    Li Zhihui; Jiang Peixue

    2008-01-01

    Convection heat transfer during the upward flow of CO 2 at supercritical pressures in a vertical circular tube (d in = 2 mm) at high Reynolds numbers was investigated experimentally, and the effects of heat fluxes, mass fluxes, inlet temperatures, pressures, buoyancy and thermal acceleration on the convection heat transfer was analyzed. The results show that the tube wall temperature occurs abnormally distribution for high heat-fluxes with upward flow. The degree of deteriorated heat transfer increases with increasing heat flux. Increasing of the mass flux delays the occurrence of the deterioration of heat transfer and weakens the deterioration of heat transfer down-stream section. The inlet temperature strongly influences the heat transfer. The deterioration degree of heat transfer decreases with increasing pressure. (authors)

  14. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    Science.gov (United States)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  15. Stability analysis of fluid at supercritical pressure in a heated channel

    International Nuclear Information System (INIS)

    Gallaway, T.; Podowski, M. Z.

    2010-01-01

    The Supercritical Water Reactor (SCWR) is one of several reactor design concepts included in the Generation IV International Advanced Reactor Design Program. This reactor design is based upon current light water reactors and supercritical fossil-fuel power plants. Water at supercritical pressures is used as the reactor coolant. At these conditions, there is no phase change in the coolant; however the fluid properties undergo significant variation, particularly in the pseudo-critical region. The fluid density may decrease by a factor of six with increasing temperature. It has been seen before that variations in fluid density can lead to density-wave oscillations in two-phase flow systems in general and boiling water reactors in particular. Such instabilities may cause many undesired problems for reactor operation and safety. Similar issues must be addressed in the design and safety analysis of SCWRs. The objective of the present work has been the development of a detailed one-dimensional model of instabilities in a heated channel corresponding to the geometry and flow conditions in the proposed typical SCWRs. The new model is capable of analyzing in detail transient effects of local property variations in parallel channels subject to a constant pressure drop boundary condition. In particular, such a model can be used to establish SCWR power limits imposed by the onset of instabilities in the hot channel of the reactor. Both time and frequency-domain methods of stability analysis have been developed. The latter method is particularly important since it is not associated with any numerical issues, is very accurate, and allows for establishing general stability boundaries in a computationally effective manner. Model testing has included a study of dependence of the proposed spatial discretization scheme on the accuracy of calculations. A parametric study has also been performed on the effect of channel operating conditions on flow oscillations. Finally, a stability map

  16. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO{sub 2} in a Vertical Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji

    2008-02-15

    The SCWR(Super Critical Water-cooled Reactor) is one of the feasible options for the 4th generation nuclear power plant, which is being pursued by an international collaborative organization, the Gen IV International Forum(GIF). The major advantages of the SCWR include a high thermal efficiency and a maximum use of the existing technologies. In the SCWR, the coolant(water) of a supercritical pressure passes the pseudo-critical temperature as it flows upward through the sub-channels of the fuel assemblies. At certain conditions a heat transfer deterioration occurs near the pseudo-critical temperature and it may cause an excessive rise of the fuel surface temperature. Therefore, an accurate estimation of the heat transfer coefficient is necessary for the thermal-hydraulic design of the reactor core. A test facility, SPHINX(Supercritical Pressure Heat Transfer Investigation for the Next Generation), dedicated to produce heat transfer data and study flow characteristics, uses supercritical pressure CO{sub 2} as a surrogate medium to take advantage of the relatively low critical temperature and pressure: and similar physical properties with water. The produced data includes the temperature of the heating surface and the heat transfer coefficient at varying mass fluxes, heat fluxes, and operating pressures. The test section is a circular tube of ID 6.32 mm: it is almost the same as the hydraulic diameter of the sub-channel in the conceptional design presented by KAERI. The test range of the mass flux is 285 to 1200 kg/m{sup 2}s and the maximum heat flux is 170 kW/m{sup 2}. The tests were mainly performed for an inlet pressure of 8.12 MPa which is 1.1 times of critical pressure. With the test results of the wall temperature and the heat transfer coefficient, effects of mass flux, heat flux, inlet pressure, and the tube diameter on the heat transfer were studied. And the test results were compared with the existing correlations of the Nusselt number. In addition, New

  17. Heat Transfer Characteristics of CO2 at Supercritical Pressure in a Vertical Circular Tube

    International Nuclear Information System (INIS)

    Yoo, Tae Ho; Bae, Yoon Yong; Kim, Hwan Yeol

    2011-01-01

    At supercritical pressure, the physical properties of fluid change substantially and the heat transfer at a temperature similar to the critical or pseudo-critical temperature improves considerably: however, the heat transfer may deteriorate due to a sudden increase in the wall temperature at a certain condition of a mass and heat flux. In this study, the heat transfer rates in CO 2 flowing vertically upward and downward in a circular tube with a diameter of 4.57 mm under various conditions were calculated by measuring the temperature of the outer wall of the tube. The published heat transfer correlations(6,7) were analyzed by comparing their prediction values with 7,250 experimental data. By introducing a buoyancy parameter, a heat transfer correlation, which could be applied only to a normal heat transfer regime, was extended such that it can be applied to regime of heat transfer deterioration. The published criteria for heat transfer deterioration(9-12) were evaluated against the conditions obtained from the experiment in this study

  18. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  19. Extension of the supercritical carbon dioxide Brayton cycle for application to the Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J. J.

    2010-01-01

    An investigation has been carried out of the feasibility of applying the supercritical carbon dioxide (S-CO 2 ) Brayton cycle to the Very High Temperature Reactor (VHTR). Direct application of the standard S-CO 2 recompression cycle to the VHTR was found to be challenging because of the mismatch in the inherent temperature drops across the He and CO 2 sides of the reactor heat exchanger resulting in a relatively low cycle efficiency of 45 % compared to 48 % for a direct helium cycle. Two approaches consisting of either a cascaded cycle arrangement with three separate cascaded S-CO 2 cycles or, alternately, operation of a single S-CO 2 cycle with the minimum pressure below the critical pressure and the minimum temperature above the critical temperature have been identified and shown to successfully enable the S-CO 2 Brayton cycle to be adapted to the VHTR such that the benefits of the higher S-CO 2 cycle efficiency can be realized. For both approaches, S-CO 2 cycle efficiencies in excess of 49 % are calculated. (authors)

  20. Model validation and parametric study of fluid flows and heat transfer of aviation kerosene with endothermic pyrolysis at supercritical pressure

    Directory of Open Access Journals (Sweden)

    Keke Xu

    2015-12-01

    Full Text Available The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems. A mathematical model has been used to examine fluid flows and heat transfer of the aviation kerosene RP-3 with endothermic fuel pyrolysis at a supercritical pressure of 5 MPa. A pyrolytic reaction mechanism, which consists of 18 species and 24 elementary reactions, is incorporated to account for fuel pyrolysis. Detailed model validations are conducted against a series of experimental data, including fluid temperature, fuel conversion rate, various product yields, and chemical heat sink, fully verifying the accuracy and reliability of the model. Effects of fuel pyrolysis and inlet flow velocity on flow dynamics and heat transfer characteristics of RP-3 are investigated. Results reveal that the endothermic fuel pyrolysis significantly improves the heat transfer process in the high fluid temperature region. During the supercritical-pressure heat transfer process, the flow velocity significantly increases, caused by the drastic variations of thermophysical properties. Under all the tested conditions, the Nusselt number initially increases, consistent with the increased flow velocity, and then slightly decreases in the high fluid temperature region, mainly owing to the decreased heat absorption rate from the endothermic pyrolytic chemical reactions.

  1. Titania aerogel prepared by low temperature supercritical drying

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Šubrt, Jan; Szatmáry, Lórant

    2006-01-01

    Roč. 91, 1-3 (2006), s. 1-6 ISSN 1387-1811 R&D Projects: GA MŠk(CZ) 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : aerogels * titanium oxide * supercritical drying Subject RIV: CA - Inorganic Chemistry Impact factor: 2.796, year: 2006

  2. Experimental investigation of heat transfer for supercritical pressure water flowing in vertical annular channels

    International Nuclear Information System (INIS)

    Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.

    2011-01-01

    Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.

  3. Experimental investigations on heat transfer to CO{sub 2} flowing upward in a narrow annulus at supercritical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Kim, Hyung Rae; Kang, Deog Ji; Song, Jin Ho; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-03-15

    Heat transfer experiments in an annulus passage were performed using SPHINX (Supercritical Pressure Heat transfer Investigation for NeXt generation), which was constructed at KAERI (Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical CO{sub 2}. CO{sub 2} was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 kg/m{sup 2} s and the heat flux was chosen at rates up to 150 kW/m{sup 2}. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

  4. Temperature feedback effects in a supercritical water reactor concept with multiple heat-up steps

    Energy Technology Data Exchange (ETDEWEB)

    Barragan-Martinez, A.M., E-mail: albrm29@yahoo.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria, Jiutepec, Mor (Mexico); Espinosa-Paredes, G.; Vazquez-Rodriguez, A., E-mail: gepe@xanum.uam.mx, E-mail: vara@xanum.uam.mx [Universidad Autonoma Metropolitana-Iztapalapa, Area de Ingenieria en Rescursos Energeticos, Col. Vicentina (Mexico); Martin-del-Campo, C.; Francois, J.L., E-mail: cecilia.martin.del.campo@gmail.com, E-mail: juan.louis.francois@gmail.com [Universidad Nacional Autonoma de Mexico, Departamento de Sistemas Energeticos, Facultad de Ingenieria, Jiutepec, Mor (Mexico)

    2014-07-01

    The Supercritical Water Cooled Reactor (SCWR) is one of the most promising and innovative designs selected by the Generation IV International Forum. One of the concepts being studied is the High Performance Light Water Reactor (HPLWR), which is the European version of the SCWR. In this paper we present the numerical analysis of the behavior of a HPLWR with temperature feedback effects. The neutronic process, the heat transfer in the fuel rod and the thermalhydraulics in the core of the HPLWR were considered in this study. The neutronic calculations were performed with HELIOS-2 and the obtained results were used to evaluate the reactivity due to fuel temperature and supercritical water density. (author)

  5. Temperature feedback effects in a supercritical water reactor concept with multiple heat-up steps

    International Nuclear Information System (INIS)

    Barragan-Martinez, A.M.; Espinosa-Paredes, G.; Vazquez-Rodriguez, A.; Martin-del-Campo, C.; Francois, J.L.

    2014-01-01

    The Supercritical Water Cooled Reactor (SCWR) is one of the most promising and innovative designs selected by the Generation IV International Forum. One of the concepts being studied is the High Performance Light Water Reactor (HPLWR), which is the European version of the SCWR. In this paper we present the numerical analysis of the behavior of a HPLWR with temperature feedback effects. The neutronic process, the heat transfer in the fuel rod and the thermalhydraulics in the core of the HPLWR were considered in this study. The neutronic calculations were performed with HELIOS-2 and the obtained results were used to evaluate the reactivity due to fuel temperature and supercritical water density. (author)

  6. Heat transfer to water at supercritical pressures in a circular and square annular flow geometry

    International Nuclear Information System (INIS)

    Licht, Jeremy; Anderson, Mark; Corradini, Michael

    2008-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. Operating conditions included mass velocities of 350-1425 kg/m 2 s, heat fluxes up to 1.0 MW/m 2 , and bulk inlet temperatures up to 400 o C; all at a pressure of 25 MPa. The accuracy and validity of selected heat transfer correlations and buoyancy criterion were compared with heat transfer measurements. Jackson's Nusselt correlation was able to best predict the test data, capturing 86% of the data within 25%. Watts Nusselt correlation showed a similar trend but under predicted measurements by 10% relative to Jackson's. Comparison of experimental results with results of previous investigators has shown general agreement with high mass velocity data. Low mass velocity data have provided some insight into the difficulty in applying these Nusselt correlations to a region of deteriorated heat transfer. Geometrical differences in heat transfer were seen when deterioration was present. Jackson's buoyancy criterion predicted the onset of deterioration while modifications were applied to Seo's Froude number based criterion

  7. A Heat Transfer Correlation in a Vertical Upward Flow of CO2 at Supercritical Pressures

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol

    2006-01-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations

  8. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  10. Development and validation of spectroscopic methods for monitoring density changes in pressurized gaseous and supercritical fluid systems.

    Science.gov (United States)

    Blatchford, Marc A; Wallen, Scott L

    2002-04-15

    The further development of new processes utilizing liquid or supercritical CO2 as a solvent will benefit from the rational design of new CO2-philes. Understanding solvation structures and mechanisms of these molecules is an important part of this process. In such studies, determining the change in density as a function of the measured thermodynamic conditions (pressure and temperature) provides an excellent means of directly monitoring the solution conditions in the detection volume for a given technique. By integrating spectroscopic peaks, changes in area can be used to determine changes in analyte concentration in the detection volume, and thus, it should be possible to monitor the system density in situ. In the present study, we examine the utility of Raman and NMR spectroscopy as a means of following changes in solution density conditions and validate this approach in pure fluids and gases (N2 and CO2) and supercritical fluid mixtures (acetaldehyde vapor in N2). In addition, we present the design of a simple, inexpensive cell for conducting Raman and NMR measurements under moderate pressure conditions.

  11. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  12. Safety analysis of high temperature reactor cooled and moderated by supercritical light water

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki; Oka, Yoshiaki; Koshizuka, Seiichi

    2003-01-01

    This paper describes 'Safety' of a high temperature supercritical light water cooled and moderated reactor (SCRLWR-H) with descending flow water rods. The safety system of the SCLWR-H is similar to that of a BWR. It consists of reactor scram, high pressure auxiliary feedwater system (AFS), low pressure core injection system (LPCI), safety relief valves (SRV), automatic depressurization system (ADS), and main steam isolation valves (MSIV). Ten types of transients and five types of accidents are analyzed using a plant transient analysis code SPRAT-DOWN. The sequences are determined referring to LWRs. At the 'Loss of load without turbine bypass' transient, the coolant density and the core power are increased by the over-pressurization, and at the same time the core flow rate is decreased by the closure of the turbine control valves. The peak cladding temperature increases to 727degC. The high temperature at this type of transient is one of the characteristics of the SCLWR-H. Conversely at 'feedwater-loss' events, the core power decrease to some extend by density feedback before the reactor scram. The peak cladding temperatures at the 'Partial loss of feedwater' transient and the 'Total loss of feedwater' accident are only 702degC and 833degC, respectively. The cladding temperature does not increase so much at the transients 'Loss of feedwater heating' and 'CR withdrawal' because of the operation of the plant control system. All the transients and accidents satisfy the satisfy criteria with good margins. The highest cladding temperatures of the transients and the accidents are 727degC and 833degC at the 'Loss of load without turbine bypass' and 'Total loss of feedwater', respectively. The duration of the high cladding temperature is very short at the transients. According to the parametric survey, the peak cladding temperature are sensitive to the parameters such as the pump coast-down time, delay of pump trip, AFS capacity, AFS delay, CR worth, and SRV setpoint

  13. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  14. High-pressure phase behavior of propyl lactate and butyl lactate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Cho, Dong Woo; Shin, Jungin; Shin, Moon Sam; Bae, Won; Kim, Hwayong

    2012-01-01

    Highlights: ► The phase behavior of propyl lactate and butyl lactate in scCO 2 was measured. ► Experimental data were correlated by the PR-EOS. ► The critical constants were estimated by the three group contribution methods. ► Acentric factor was estimated by the Lee–Kesler method. ► The Nannoolal–Rarey and Lee–Kesler method shows the best correlation results. - Abstract: Lactate esters synthesized with lactic acid and ester are used as solvents and reactants in various industries, including agricultural chemistry, pharmaceuticals, electronics, and fine chemicals. Among lactate esters, high purity propyl lactate and butyl lactate are used to produce fine chemicals and in the synthesis of chiral intermediates for use in pesticides and drugs. However, distillation for the removal of propyl lactate and butyl lactate alters or degenerates products due the high boiling points of these two lactate esters. This problem can be solved by supercritical fluid extraction (SCFE) at lower temperatures. SCFE process requires high-pressure phase behavior data on CO 2 and lactates for its design and operation. In this study, high-pressure phase behavior of propyl lactate and butyl lactate in CO 2 was measured from (323.2 to 363.2) K using a variable-volume view cell apparatus. Experimental data were well correlated by the Peng–Robinson equation of state using the van der Waals one-fluid mixing rules. The critical constants were estimated by the Joback method, the Constantinou–Gani method, and the Nannoolal–Rarey method. Acentric factor was estimated by the Lee–Kesler method.

  15. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW_t_h, while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  16. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  17. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO2 in a Vertical Annulus Passage

    International Nuclear Information System (INIS)

    Kang, Deog Ji; Kim, Sin; Kim, Hwan Yeol; Bae, Yoon Yeong

    2007-01-01

    Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical CO 2 . The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400 ∼1200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations

  18. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  19. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water

    International Nuclear Information System (INIS)

    Wang, Han; Bi, Qincheng; Yang, Zhendong; Wang, Linchuan

    2015-01-01

    Highlights: • Heat transfer of supercritical water in a narrow annulus is investigated. • Effects of system parameters and flow direction on heat transfer are studied. • Deteriorated heat transfer is analyzed both experimentally and numerically. - Abstract: Heat transfer characteristics of supercritical pressure water in a narrow annulus with vertically upward and downward flows were investigated experimentally and numerically. The outer diameter of the inner heated rod is 8 mm with an effective heated length of 620 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 400–1000 kg/m 2 s and heat flux on the outer surface of the heated rod from 200 to 1000 kW/m 2 . The general heat transfer behaviors were discussed with respect to various mass fluxes and pressures. According to the experimental data, it was found that the effect of flow direction on heat transfer depends on the heat-flux to mass-flux ratio (q/G). Heat transfer is much improved in the downward flow compared to that of upward flow at high q/G ratios. At the pressure of 25 MPa, low-mass-flux deteriorated heat transfer occurred in the upward flow but not in the downward flow. At the same test parameters, however, heat transfer deterioration was observed at both of the two flow directions when the pressure was lowered to 23 MPa. The experimental results indicate that buoyancy plays an important role for this type of deterioration, but is not the only mechanism that leads to the heat transfer deterioration. Three turbulence models were assessed against the annulus test data, it was found that the SST k-ω model gives a satisfying prediction of heat transfer deterioration especially for the case of downward flow. The mechanisms for the low-mass-flow heat transfer deterioration were investigated from the viewpoints of buoyancy and property variations of the supercritical water

  20. Mixing and phase separation at supercritical and transcritical pressures

    NARCIS (Netherlands)

    Hickel, S.; Matheis, Jan

    2017-01-01

    We have developed a thermodynamically consistent and tuning-parameter-free two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vaporliquid equilibrium calculations. It can represent the

  1. Prediction of wall friction for fluids at supercritical pressure with CFD models

    International Nuclear Information System (INIS)

    Angelucci, M.; Ambrosini, W.; Forgione, N.

    2011-01-01

    In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of friction factor observed in experimental data at supercritical pressures at various operating conditions. A short survey of available data and correlations for smooth pipe friction in circular pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-like and the gas-like regions and within the transitional region around the pseudo-critical temperature. For smooth pipes, a general decrease of the friction factor in the transitional region is reported, constituting one of the relevant effects to be predicted by the computational fluid-dynamic models. A limited number of low-Reynolds number models is adopted, making use of refined near-wall discretisations as required by the constraint y + < 1 at the wall. In particular, the Lien k-ε and the SST k-ω models are considered. The values of the wall shear stress calculated by the code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then the Darcy-Weisbach friction factors, basing on their classical definitions. The obtained values are compared with those provided by experimental tests and correlations, finding a reasonable qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, where fluid property changes are moderate, than in the transitional region, where the trends provided by available correlations are reproduced only in a qualitative way. (author)

  2. Heat transfer characteristics of supercritical pressure waster in vertical upward annular channels

    International Nuclear Information System (INIS)

    Wang Han; Bi Qincheng; Yang Zhendong; Wu Gang

    2013-01-01

    Within the range of pressure from 23 to 28 MPa, mass flux from 350 to 1000 kg/(m 2 · s), and outside wall heat flux from 200 to 1000 kW/m 2 , experimental investigation was conducted on the heat transfer characteristics of supercritical pressure water in vertical upward annular channels. The effects of heat flux, pressure, mass flux and spiral spacer on heat transfer were analyzed, and two types of heat transfer deterioration occurred in the experiments were compared. The experimental results show that the heat transfer of water can be enhanced by increasing the mass flux or decreasing the wall heat flux. The effect of pressure on heat transfer is not uniform and depends on heat transfer form. It was found that the spiral spacer not only enhances the heat transfer of water, but also delays the heat transfer deterioration which occurs in high heat flux and low mass flux conditions. (authors)

  3. Application of GC–MS chromatography for the analysis of the oil fractions extracted by supercritical CO2 at high pressure

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2013-01-01

    GC–MS chromatographic analysis has been applied for the investigation of the fractions of oil extracted by supercritical carbon dioxide at a temperature of 60 °C and at pressure values ranging from 22 to 56 MPa. The observations revealed, that the whole extraction process is clearly reflected...... in the chromatograms, demonstrating how the heavier hydrocarbon fractions were gradually involved in the extraction process. The shape of the chromatograms alters with increasing pressure from triangle to trapezoid, approaching the shape of the chromatogram of the crude oil. The observation of the fingerprints...

  4. Analysis of prompt supercritical process with heat transfer and temperature feedback

    Institute of Scientific and Technical Information of China (English)

    ZHU BO; ZHU Qian; CHEN Zhiyun

    2009-01-01

    The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.

  5. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  6. Supercritical transitiometry of polymers.

    Science.gov (United States)

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  7. Experiments on a forced convection heat transfer at supercritical pressures - 6.32 mm ID tube

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Kim, Hwan Yeol

    2009-08-15

    The size of a sub-channel of the conceptual SCWR core design studied at KAERI is 6.5 mm. In order to provide heat transfer information in such a narrow sub-channel at supercritical pressure, an experiment was performed with a test section made of Inconel 625 tube of 6.32 mm ID. The test pressures were 7.75 and 8.12 MPa corresponding to 1.05 and 1.1 times the critical pressure of CO{sub 2}, respectively. The mass flux and heat flux, which were in the range of 285 {approx} 1200 kg/m2s and 30 {approx} 170 kW/m2, were changed at a given system pressure. The corresponding Reynolds numbers are 1.8 x 10{sup 4} {approx} 7.5 x 10{sup 4}. The effect of mass flux and heat flux was dominant factor in the supercritical pressure heat transfer while the effect of pressure was negligible. The Bishop's correlation predicted the test result most closely and Bae and Kim's recent correlation was the next. The heat transfer deterioration occurred when GR)b/Re{sub b}{sup 2.7} > 2.0 x 10{sup -5}. As soon as the heat transfer was deteriorated, it entered a new regime and did not recover the normal heat transfer nevertheless Gr{sub b}/Re{sub b}{sup 2.7} reduced below 2.0 x 10{sup -5}. It may mean that the correlation must be developed for the normal and deterioration regime separately.

  8. Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.; Garrabos, Yves; Lecoutre, Carole; Zappoli, Bernard

    2013-01-01

    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground.

  9. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  10. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  11. Low Temperature Synthesis of Metal Oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process

    DEFF Research Database (Denmark)

    Jensen, Henrik; Brummerstedt Iversen, Steen; Joensen, Karsten Dan

    2006-01-01

    A novel method for producing crystalline nanosized metal oxides by a Supercritical Seed Enhanced Crystallization (SSEC) Process has been developed. The process is a modified sol-gel process taking place at temperatures as low as 95 ºC with supercritical CO2 as solvent and polypropylene as seeding...... material. The nanocrystalline product is obtained without having to resort to costly post-reaction processing and the product is obtained directly after the SSEC process. TiO2 powders produced by the SSEC process were shown to have a crystallinity of 60 % and a crystal size of 7.3 ± 2.6 nm....... The crystallinity can be controlled by changing the heating rate of the initial formation of the nanoparticles and the morphology can be altered by changing the process time....

  12. Study of high-pressure adsorption from supercritical fluids by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... the adsorbed and the gas phases. We have also evaluated the performance of the classical Soave-Redlich-Kwong (SRK) EoS. The fluid-solid interactions are described by simple Dubinin-Radushkevich-Astakhov (DRA) potentials. In addition, we test the performance of the 10-4-3 Steele potential. It is shown...... that application of sPC-SAFT slightly improves the performance of the MPTA and that in spite of its simplicity, the DRA model can be considered as an accurate potential, especially, for mixture adsorption. We show that, for the sets of experimental data considered in this work, the MPTA is capable of predicting...

  13. Fabrication of a Cu/Ni stack in supercritical carbon dioxide at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rasadujjaman, Md, E-mail: rasadphy@duet.ac.bd [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Department of Physics, Dhaka University of Engineering & Technology, Gazipur 1700 (Bangladesh); Watanabe, Mitsuhiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Sudoh, Hiroshi; Machida, Hideaki [Gas-Phase Growth Ltd., 2-24-16 Naka, Koganei, Tokyo 184-0012 (Japan); Kondoh, Eiichi [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2015-09-30

    We report the low-temperature deposition of Cu on a Ni-lined substrate in supercritical carbon dioxide. A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. From the temperature dependence of the growth rate, the activation energy for Cu growth on the Ni film was determined to be 0.19 eV. The films and interfaces were characterized by Auger electron spectroscopy. At low temperature (140 °C), we successfully deposited a Cu/Ni stack with a sharp Cu/Ni interface. The stack had a high adhesion strength (> 1000 mN) according to microscratch testing. The high adhesion strength originated from strong interfacial bonding between the Cu and the Ni. However, at a higher temperature (240 °C), significant interdiffusion was observed and the adhesion became weak. - Highlights: • Cu/Ni stack fabricated in supercritical CO{sub 2} at low temperature. • A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. • Adhesion strength of Cu/Ni stack improved dramatically. • Fabricated Cu/Ni stack is suitable for Cu interconnections in microelectronics.

  14. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  15. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure

    Science.gov (United States)

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k−ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729

  16. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    Directory of Open Access Journals (Sweden)

    Mei Yang

    Full Text Available Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared.

  17. Field-emitting Townsend regime of surface dielectric barrier discharges emerging at high pressure up to supercritical conditions

    International Nuclear Information System (INIS)

    Pai, David Z; Stauss, Sven; Terashima, Kazuo

    2015-01-01

    Surface dielectric barrier discharges (DBDs) in CO 2 from atmospheric pressure up to supercritical conditions generated using 10 kHz ac excitation are investigated experimentally. Using current–voltage and charge–voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy, we identify and characterize a field-emitting Townsend discharge regime that emerges above 0.7 MPa. An electrical model enables the calculation of the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The space-averaged Laplacian field is accounted for in the circuit model by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are demonstrated to fit the description of atmospheric-pressure Townsend DBDs (Naudé et al 2005 J. Phys. D: Appl. Phys. 38 530–8), i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron–neutral bremsstrahlung corresponding to an average electron temperature of 2600 K. Raman spectra of CO 2 near the critical point demonstrate that the average gas temperature increases by less than 1 K. (paper)

  18. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  19. Control-rod, pressure and flow-induced accident and transient analysis of a direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kitoh, Kazuaki; Koshizuka, Seiichi; Oka, Yoshiaki

    1996-01-01

    The features of the direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor (SCFBR) are high thermal efficiency and simple reactor system. The safety principle is basically the same as that of an LWR since it is a water-cooled reactor. Maintaining the core flow is the basic safety requirement of the reactor, since its coolant system is the one through type. The transient behaviors at control rod, pressure and flow-induced abnormalities are analyzed and presented in this paper. The results of flow-induced transients of SCFBR were reported at ICONE-3, though pressure change was neglected. The change of fuel temperature distribution is also considered for the analysis of the rapid reactivity-induced transients such as control rod withdrawal. Total loss of flow and pump seizure are analyzed as the accidents. Loss of load, control rod withdrawal from the normal operation, loss of feedwater heating, inadvertent start of an auxiliary feedwater pump, partial loss of coolant flow and loss of external power are analyzed as the transients. The behavior of the flow-induced transients is not so much different from the analyses assuming constant pressure. Fly wheels should be equipped with the feedwater pumps to prolong the coast-down time more than 10s and to cope with the total loss of flow accident. The coolant density coefficient of the SCFBR is less than one tenth of a BWR in which the recirculation flow is used for the power control. The over pressurization transients at the loss of load is not so severe as that of a BWR. The power reaches 120%. The minimum deterioration heat flux ratio (MDHFR) and the maximum pressure are sufficiently lower than the criteria; MDHFR above 1.0 and pressure ratio below 1.10 of 27.5 MPa, maximum pressure for operation. Among the reactivity abnormalities, the control rod withdrawal transient from the normal operation is analyzed

  20. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  1. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  2. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    Science.gov (United States)

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  3. Electron mobility in supercritical pentanes as a function of density and temperature

    International Nuclear Information System (INIS)

    Itoh, Kengo; Nakagawa, Kazumichi; Nishikawa, Masaru

    1988-01-01

    The excess electron mobility in supercritical n-, iso- and neopentane was measured isothermally as a function of density. The density-normalized mobility μN in all three isomers goes through a minimum at a density below the respective critical densities, and the mobility is quite temperature-dependent in this region, then goes through a minimum. The μN behavior around the minimum in n-pentane is well accounted for by the Cohen-Lekner model with the structure factor S(K) estimated from the speed of sound, while that in iso- and neopentane is not. (author)

  4. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  5. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  6. Supercritical solvent extraction of oil sand bitumen

    Science.gov (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  7. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  8. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    Science.gov (United States)

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  9. Fracture Initiation of an Inhomogeneous Shale Rock under a Pressurized Supercritical CO2 Jet

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2017-10-01

    Full Text Available Due to the advantages of good fracture performance and the application of carbon capture and storage (CCS, supercritical carbon dioxide (SC-CO2 is considered a promising alternative for hydraulic fracturing. However, the fracture initiation mechanism and its propagation under pressurized SC-CO2 jet are still unknown. To address these problems, a fluid–structure interaction (FSI-based numerical simulation model along with a user-defined code was used to investigate the fracture initiation in an inhomogeneous shale rock. The mechanism of fracturing under the effect of SC-CO2 jet was explored, and the effects of various influencing factors were analyzed and discussed. The results indicated that higher velocity jets of SC-CO2 not only caused hydraulic-fracturing ring, but also resulted in the increase of stress in the shale rock. It was found that, with the increase of perforation pressure, more cracks initiated at the tip. In contrast, the length of cracks at the root decreased. The length-to-diameter ratio and the aperture ratio distinctly affected the pressurization of SC-CO2 jet, and contributed to the non-linear distribution and various maximum values of the stress in shale rock. The results proved that Weibull probability distribution was appropriate for analysis of the fracture initiation. The studied parameters explain the distribution of weak elements, and they affect the stress field in shale rock.

  10. Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression

    International Nuclear Information System (INIS)

    Dayanand, S.

    2017-01-01

    Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension behaviors of complex supercritical carbon dioxide (sc-CO 2 ) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molecular weights and diffusion coefficients for various components present in the system). In the absence of measured data, often phase behavior packages are used for obtaining these input data for performing calculations. Very few researchers have used experimentally measured input data for performing parachor based modeling of the experimental interfacial tension behaviors of sc-CO 2 and crude oil systems that are of particular interest to CO 2 injection in porous media based enhanced oil recovery operations. This study presents the results of parachor based modeling performed to predict pressure dependence of interfacial tension behaviors of a complex sc-CO 2 and crude oil system for which experimentally measured data is available in public domain. Though parachor model based on calculated interfacial tension behaviors shows significant deviation from the measured behaviors in high interfacial tension region, difference between the calculated and the experimental behaviors appears to vanish in low interfacial tension region. These observations suggest that basic parachor expression based calculated interfacial tension behaviors in low interfacial tension region follow the experimental interfacial tension behaviors more closely. An analysis of published studies (basic and mechanistic parachor expressions based on modeling of pressure dependence of interfacial tension behaviors of both standard and complex sc-CO 2 and crude oil systems) and the results of this study reinforce the need of better description of gas-oil interactions for robust modeling of pressure dependence of

  11. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    Science.gov (United States)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  12. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Kalsia, Mohit [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, PVK Institute of Technology, Anantpur, 515 001 (India)

    2017-05-15

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T{sub c} > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific

  13. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Kalsia, Mohit; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-01-01

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T_c > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific heat

  14. Supercritical temperature synthesis of fluorine-doped VO2(M) nanoparticle with improved thermochromic property

    Science.gov (United States)

    Riapanitra, Anung; Asakura, Yusuke; Cao, Wenbin; Noda, Yasuto; Yin, Shu

    2018-06-01

    Fluorine-doped VO2(M) nanoparticles have been successfully synthesized using the hydrothermal method at a supercritical temperature of 490 °C. The pristine VO2(M) has the critical phase transformation temperature of 64 °C. The morphology and homogeneity of the monoclinic structure VO2(M) were adopted by the fluorine-doped system. The obtained particle size of the samples is smaller at the higher concentration of anion doping. The best reduction of critical temperature was achieved by fluorine doping of 0.13% up to 48 °C. The thin films of the fluorine-doped VO2(M) showed pronounced thermochromic property and therefore are suitable for smart window applications.

  15. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  16. Carbon nanotube temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  17. Carbon nanotube temperature and pressure sensors

    Science.gov (United States)

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  18. A Heat Transfer Correlation in a Vertical Upward Flow of CO{sub 2} at Supercritical Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations.

  19. Modeling the outflow of liquid with initial supercritical parameters using the relaxation model for condensation

    Directory of Open Access Journals (Sweden)

    Lezhnin Sergey

    2017-01-01

    Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.

  20. Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Sub- and Supercritical Pressures

    National Research Council Canada - National Science Library

    Chehroudi, B

    2001-01-01

    To better understand the nature of the interaction between acoustic waves and liquid fuel jets in rocket engines, cryogenic liquid nitrogen is injected into a room temperature high-pressure chamber...

  1. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    International Nuclear Information System (INIS)

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  2. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  3. Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure CO{sub 2} in a Vertical Annulus Passage

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National Univ., Cheju (Korea, Republic of); Kim, Hwan Yeol; Bae, Yoon Yeong [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical CO{sub 2}. The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400 {approx}1200 kg/m{sup 2}s and the heat flux was chosen up to 150 kW/m{sup 2}. The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations.

  4. 27.12 MHz plasma generation in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Toyota, Hiromichi; Nomura, Shinfuku; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro; Yamashita, Hiroshi

    2007-01-01

    An experiment was conducted for generating high-frequency plasma in supercritical carbon dioxide; it is expected to have the potential for applications in various types of practical processes. It was successfully generated at 6-20 MPa using electrodes mounted in a supercritical cell with a gap of 1 mm. Emission spectra were then measured to investigate the physical properties of supercritical carbon dioxide plasma. The results indicated that while the emission spectra for carbon dioxide and carbon monoxide could be mainly obtained at a low pressure, the emission spectra for atomic oxygen could be obtained in the supercritical state, which increased with the pressure. The temperature of the plasma in supercritical state was estimated to be approximately 6000-7000 K on the assumption of local thermodynamic equilibrium and the calculation results of thermal equilibrium composition in this state showed the increase of atomic oxygen by the decomposition of CO 2

  5. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  6. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  7. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    Science.gov (United States)

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  8. Development of a test facility for analyzing supercritical fluid blowdown

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2015-01-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO 2 ) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO 2 (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  9. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  10. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  11. Development of high temperature reference electrodes for potentiometric analyses in supercritical water environments

    International Nuclear Information System (INIS)

    Tung Yuming; Yeh Tsungkuang; Wang Meiya

    2014-01-01

    A specifically designed reference electrode was developed for analyzing the electrochemical behaviors of alloy materials in supercritical water (SCW) environments and identifying the associated electrochemical parameters. In this study, Ag/AgCl reference electrodes and Zr/ZrO 2 reference electrodes suitable for high-temperature applications were manufactured and adopted to measure the electrochemical corrosion potentials (ECPs) of 304L stainless steel (SS) and nickel-based alloy 625 in SCW environments with various amounts of dissolved oxygen (DO). The Ag/AgCl reference electrode made in this laboratory was used as a calibration base for the laboratory-made Zr/ZrO 2 reference electrode at high temperatures up to 400degC. The two reference electrodes were then used for ECP measurements of 304L SS and alloy 625 specimens in 400degC SCW with various DO levels of 300 ppb, 1 ppm, 8.3 ppm, and 32 ppm and under deaerated conditions. The outcome indicated that concentration increases in DO in the designated SCW environment would yield increases in ECP of the two alloys and they exhibited different ECP responses to DO levels. In addition, the laboratory-made Zr/ZrO 2 reference electrode was able to continuously operate for several months and delivered consistent and steady ECP data of the specimens in SCW environments. (author)

  12. Fundamental R and D program on water chemistry of supercritical pressure water under radiation field

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Kiuchi, Kiyoshi; Wada, Yoichi; Yotsuyanagi, Tadasu

    2003-01-01

    In a supercritical water-cooled reactor, property of water changes significantly around the critical point. It is expected that irradiation and change of water property will affect the chemistry and material corrosion. Deep understanding of interactions between supercritical water and materials under irradiation is important. However, comprehensive data on radiolysis, kinetics, corrosion and thermodynamics have not been obtained due to the severe experimental condition. To get such data by experiments and computer simulations, a national program funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT) has been started since December 2002. (author)

  13. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    Science.gov (United States)

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Computational Modeling of Supercritical and Transcritical Flows

    Science.gov (United States)

    2017-01-09

    Acentric factor I. Introduction Liquid rocket and gas turbine engines operate at high pressures . For gas turbines, the combustor pressurecan be 60 − 100...equation of state for several reduced pressures . The model captures the high density at very low temperatures and the supercritical behavior at high reduced...physical meaning. The temperature range over which the three roots are present is bounded by TL on the low side and TH on the high side. Figure 2: Roots

  15. Successful treatment with supercritical water oxidation

    International Nuclear Information System (INIS)

    Jensen, R.

    1994-01-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described

  16. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  17. The Effect of Pressure and Solvent on the Supercritical Fluid Chromatography Separation of Tocol Analogs in Palm Oil

    Directory of Open Access Journals (Sweden)

    Mei Han Ng

    2017-08-01

    Full Text Available There are six tocol analogs present in palm oil, namely α-tocopherol (α-T, α-tocomonoenol (α-T1, α-tocotrienol (α-T3, γ-tocotrienol (γ-T3, β-tocotrioenol (β-T3 and δ-tocotrienol (δ-T3. These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO2 modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.

  18. Flow rate control in pressure-programmed capillary supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A versatile and simple system is described that allows variation of the column flow rate in open-tubular capillary supercritical fluid chromatography using both on-column and postcolumn detection. The system is based on column-effluent splitting in a low-dead-volume T piece at the column exit just

  19. 179 Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Meyer

    Several extractions of coal-tar pitch were performed using supercritical fluid ..... pressure and temperature, unlike exhaustive extraction, which involves a change in ... mechanism that is operative on extracting coal-tar pitch components with.

  20. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  1. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  2. State of the art on the heat transfer experiments under supercritical pressure condition

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO 2 showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO 2 and Freon used for an alternating fluid are presented

  3. State of the art on the heat transfer experiments under supercritical pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO{sub 2} showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO{sub 2} and Freon used for an alternating fluid are presented.

  4. Supercritical Water Mixture (SCWM) Experiment

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  5. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  6. Selective free radical reactions using supercritical carbon dioxide.

    Science.gov (United States)

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  7. Materials challenges for the supercritical water-cooled reactor (SCWR)

    International Nuclear Information System (INIS)

    Baindur, S.

    2008-01-01

    This paper discusses the materials requirements of the Supercritical Water-cooled Reactor (SCWR) which arise from its severe expected operating conditions: (i) Outlet Temperature (to 650 C); (ii) Pressure of 25 MPa for the coolant containment, (iii) Thermochemical stress in the presence of supercritical water, and (iv) Radiative damage (up to 150 dpa for the fast spectrum variant). These operating conditions are reviewed; the phenomenology of materials in the supercritical water environment that create the materials challenges is discussed; knowledge gaps are identified, and efforts to understand material behaviour under the operating conditions expected in the SCWR are described. (author)

  8. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  9. Effects of Supercritical Environment on Hydrocarbon-fuel Injection

    Institute of Scientific and Technical Information of China (English)

    Bongchul Shin; Dohun Kim; Min Son; Jaye Koo

    2017-01-01

    In this study,the effects of environment conditions on decane were investigated.Decane was injected in subcritical and supercritical ambient conditions.The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions.For supercritical ambient conditions,the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K.The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method.A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions.Conversely,for supercritical injection in supercritical ambient conditions,a small density gradient was observed at the jet interface.In a manner similar to that observed in other cases,supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid.Additionally,there were changes in the interface,and the supercritical injection core width was thicker than that in the subcritical injection.Furthermore,in cases with the same injection conditions,the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface.Therefore,the interface was affected by the changing ambient condition.Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine,the effects of the ambient conditions were investigated experimentally.

  10. Effects of supercritical environment on hydrocarbon-fuel injection

    Science.gov (United States)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  11. Study of the effects of elevated pressure and temperature on the evaporation of a single fuel droplet

    International Nuclear Information System (INIS)

    Memon, A.A.; Memon, M.A.; Durrani, H.A.

    1991-01-01

    The experimental studies were made on the evaporation of single fuel droplet in high pressure and high temperature gaseous environments. The time history of the size and the temperature of an evaporating droplet suspended on a fine quartz thread was recorded using a movie camera and an oscilloscope. The fuel used was n-heptane. The experimental range of conditions consists of gas pressure from 0 atg to 50 atg, gas temperature from 100 c to 500 c which correspond to the subcritical, critical and supercritical state of a droplet. The evaporation rate, the life time and the wet-bulb temperature of a droplet were obtained. The results showed that the temperature of an evaporating droplet increased with an increase in gas pressure and temperature, through it did not reach the critical temperature of fuel even at supercritical environments. It was evident that with an increase in gas pressure, the evaporation rate increased at high gas temperature while it decreased at low gas temperature. (author)

  12. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  13. Experimental Adsorption Isotherm of Methane onto Activated Carbon at Sub- and Supercritical Temperatures

    KAUST Repository

    Rahman, Kazi Afzalur; Loh, Wai Soong; Yanagi, Hideharu; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon

    2010-01-01

    This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study

  14. Assessment of a general methodology for the analysis of natural circulation stability with water at supercritical pressure

    International Nuclear Information System (INIS)

    Debrah, K. S.

    2014-07-01

    To advance nuclear energy to meet future energy needs, the concept of Super Critical Water-Cooled Reactor (SCWR) as part or Generation IV (Gen IV) reactors was introduced with plans to deploy by 2030. Supercritical water-cooled reactors pose new challenges in stability and natural circulation phenomena at supercritical pressures because of the strong variability of thermodynamic and thermo-physical properties. ln this research, included in the frame work of the International Atomic Energy Agency (lAEA) fellowship and Coordinated Research Project (CRP) on H eat transfer Behavior and Thermo hydraulics Codes Testing for SCWRs , the natural circulation H 2 O experimental data at supercritical pressures of 25 MPa obtained at the China Institute of Atomic Energy (CIAE) of China, was used to evaluate the predictions of different system codes: RELAP5/MOD3.3, STAR-CCM+ as well as three (3) different and independent developed in-house codes (Ishii-sup loop, NCLoop T ran and NCLoop L ine). Stability analyses of an idealized loop (loop equivalent to CIAE natural circulation loop) of uniform diameter equivalent to the CIAE natural circulation loop at 25 MPa was performed using RELAP5 and an in-house code (Ishii-sup Loop). It was found for both RELAP and Ishii-sup Loop that, when heat structures are accounted for in models equipped with heat transfer and friction correlations for 'normal' fluids, the comparison with experimental data is not completely satisfactory because the observed experimental oscillations were delayed in simulation. It has also been found that the stability margin was slightly earlier than the peak of the flow rate-power curve at a given inlet enthalpy. Results from STAR-CCM+ was also compared with results obtained with RELAP5 and the in-house code of NCLoop. Even though STAR-CCM+ predicted a lower flow rate than the in-house codes, all codes exhibited the ability to predict the instability and results from all codes compared favorably. Stability

  15. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  16. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    Science.gov (United States)

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  17. Heat transfer experiments in a wire-inserted tube at supercritical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Kim, Hwan Yeol; Yoo, Tae Ho

    2009-07-15

    The hydraulic diameter of a subchannel in a core concept developed at KAERI is 6.5 mm. The sub-channel is much smaller than that of the conventional PWR, and naturally a helical wire was considered as one of the candidates for a spacer. For simplicity the subchannel is simulated by a commercially available Inconel 625 tube of 6.32 mm ID with a helically-coiled spring steel wire insert of 1.3 mm OD. The medium is CO{sub 2}. The test pressures are 7.75 and 8.12 MPa corresponding to 1.05 and 1.1 times the critical pressure of CO{sub 2}, respectively. The mass flux and heat flux, which were in the range of 400 {approx} 1200 kg/m{sup 2}s and 30 {approx} 90 kW/m{sup 2} respectively, were varied at a given system pressure. The corresponding Reynolds numbers at the inlet spans between 2.5 x 10{sup 4} and 7.5 x 10{sup 4}. It was observed that the heat transfer was enhanced by almost twice in most of the tested enthalpy range except for in the the region far from the pseudocritical point. The test results revealed that the wire effect was sustained in the downstream up to 40-60 times the wire diameter. The temperature decreased in the first half of the span between contact points and it increased in the second half of the span.

  18. A system for traceable measurement of the microwave complex permittivity of liquids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Dimitrakis, G A; Robinson, J; Kingman, S; Lester, E; George, M; Poliakoff, M; Harrison, I; Gregory, A P; Lees, K

    2009-01-01

    A system has been developed for direct traceable dielectric measurements on liquids at high pressures and temperatures. The system consists of a coaxial reflectometric sensor terminated by a metallic cylindrical cell to contain the liquid. It has been designed for measurements on supercritical liquids, but as a first step measurements on dielectric reference liquids were performed. This paper reports on a full evaluation of the system up to 2.5 GHz using methanol, ethanol and n-propanol at pressures up to 9 MPa and temperatures up to 273 °C. A comprehensive approach to the evaluation of uncertainties using Monte Carlo modelling is used

  19. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  20. CFD study of convective heat transfer to carbon dioxide and water at supercritical pressures in vertical circular pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Novog, D.R. [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Computational simulations of convective heat transfer of both carbon dioxide and water at supercritical pressures have been carried out using the commercial Computational Fluid Dynamics code STAR-CCM+. Detailed comparisons between four turbulence models, including two low-Reynolds k-ε models, SST k-ω model and the Reynolds Stress Transport (RST) model, are made under different flow conditions against two independent experiments on upward flow in vertical circular pipes. The heat-flux effect and mass-flux effect on the occurrence of heat transfer deterioration (HTD) are discussed, along with sensitivity studies of the boundary conditions and turbulent Prandtl number. The thresholds and mechanisms of HTD are also investigated using selected turbulence models. (author)

  1. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature.

    Directory of Open Access Journals (Sweden)

    Anne Bernhardt

    Full Text Available The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG. Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO₂ (scCO₂ treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO₂ treatment effectively inactivates microorganisms including bacterial spores. We established a scCO₂ sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD. These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO₂ sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO₂ treatment. Human

  2. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  3. High Pressure Vapor-Liquid Equilibrium of Supercritical Carbon Dioxide + n-Hexane System

    Institute of Scientific and Technical Information of China (English)

    YU Jinglin; TIAN Yiling; ZHU Rongjiao; LIU Zhihua

    2006-01-01

    Vapor-liquid equilibrium data of supercritical carbon dioxide + n-hexane system were measured at 313.15 K,333.15 K,353.15 K,and 373.15 K and their molar volumes and densities were measured both in the subcritical and supercritical regions ranging from 2.15 to 12.63 MPa using a variable-volume autoclave.The thermodynamic properties including mole fractions,densities,and molar volumes of the system were calculated with an equation of state by Heilig and Franck,in which a repulsion term and a square-well potential attraction term for intermolecular interaction was used.The pairwise combination rule was used to calculate the square-well molecular interaction potential and three adjustable parameters (ω,kε,kσ) were obtained.The Heilig-Franck equation of state is found to have good correlation with binary vapor-liquid equilibrium data of the carbon dioxide + n-hexane system.

  4. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  5. CFD analysis using two-equation turbulence models for the vertical upward flow of water in a heated tube at supercritical pressure(I)

    International Nuclear Information System (INIS)

    Kim, Y. I.; Kim, S. H.; Bae, Y. Y.; Cho, B. H.

    2003-12-01

    Numerical simulation was performed referring to the Yamagata's experiment on the heat transfer in a vertical tube where water flows upward at supercritical pressure. Numerical simulation was performed for the conditions of tube diameter of 7.5 mm, heated tube length of 2 m, operation pressure at 245 bar, bulk temperatures from 300 to 420 .deg. C, heat fluxes from 465 to 930 kW/m 2 and mass velocity 1,260 kg/m 2 s, by Fluent code and compared with the Yamagata's experiments. At the heat flux 465 kW/m 2 , the maximum difference between calculated results and Yamagata's experiment were less than 20% and the difference between the results using different turbulence models was not so significant. But at the heat flux, 930 kW/m 2 , the difference between the calculations and Yamagata's experiment increased to about 25%, and the difference between the results using different turbulence models increased significantly. The case with RNG κ-ε and enhanced wall treatment predicted the Yamagata's experiment best

  6. Influence of steam leakage through vane, gland, and shaft seals on rotordynamics of high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P.N. [Shanghai Jiao Tong University, Key Laboratory of Power Machinery and Engineering, Ministry of Education, School of Mechanical Engineering, Shanghai (China); Shanghai Turbine Company, Department of R and D, Shanghai (China); Wang, W.Z.; Liu, Y.Z. [Shanghai Jiao Tong University, Key Laboratory of Power Machinery and Engineering, Ministry of Education, School of Mechanical Engineering, Shanghai (China); Meng, G. [Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai (China)

    2012-02-15

    A comparative analysis of the influence of steam leakage through vane, gland, and shaft seals on the rotordynamics of the high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine was performed using numerical calculations. The rotordynamic coefficients associated with steam leakage through the three labyrinth seals were calculated using the control-volume method and perturbation analysis. A stability analysis of the rotor system subject to the steam forcing induced by the leakage flow was performed using the finite element method. An analysis of the influence of the labyrinth seal forcing on the rotordynamics was carried out by varying the geometrical parameters pertaining to the tooth number, seal clearance, and inner diameter of the labyrinth seals, along with the thermal parameters with respect to pressures and temperatures. The results demonstrated that the steam forcing with an increase in the length of the blade for the vane seal significantly influences the rotordynamic coefficients. Furthermore, the contribution of steam forcing to the instability of the rotor is decreased and increased with increases in the seal clearance and tooth number, respectively. The comparison of the rotordynamic coefficients associated with steam leakage through the vane seal, gland seal, and shaft seal convincingly disclosed that, although the steam forcing attenuates the stability of the rotor system, the steam turbine is still operating under safe conditions. (orig.)

  7. Experimental Adsorption Isotherm of Methane onto Activated Carbon at Sub- and Supercritical Temperatures

    KAUST Repository

    Rahman, Kazi Afzalur

    2010-11-11

    This paper presents the experimentally measured adsorption isotherm data for methane onto the pitch-based activated carbon type Maxsorb III for temperatures ranging from (120 to 220) K and pressures up to 1.4 MPa. These data are useful to study adsorbed natural gas (ANG) storage systems when the low temperature natural gas regasified from the liquid phase is considered to charge in the storage chamber. Adsorption parameters were evaluated from the isotherm data using the Tóth and Dubinin-Astakhov models. The isosteric heat of adsorption, which is concentration- and temperature-dependent, is extracted from the data. The Henry\\'s law coefficients for the methane/Maxsorb III pairs are evaluated at various temperatures. © 2010 American Chemical Society.

  8. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  9. Quasi-dynamic pressure and temperature

    International Nuclear Information System (INIS)

    Zaug, J M.; Farber, D L; Blosch, L L; Craig, I M; Hansen, D W; Aracne-Ruddle, C M; Shuh, D K

    1998-01-01

    The phase transformation of(beta)-HMX ( and lt; 0.5% RDX) to the(delta) phase has been studied for over twenty years and more recently with an optically sensitive second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al.[l] in 1978. However the stability field favors the(beta) polymorph over(delta) as pressure is increased (up to 5.4 GPa) along any sensible isotherm. In this experiment strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced(beta) - and gt;(delta) transition, the pressure induced is heterogeneous in nature. The room pressure and temperature(delta) - and gt;(beta) transition is not immediate although it seems to occur over tens of hours. Transition points and kinetics are path dependent and so this paper describes our work in progress

  10. The effect of low-concentration inorganic materials on the behaviour of supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Imre, A.R., E-mail: imre@aeki.kfki.h [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Hazi, G.; Horvath, A.; Maraczy, Cs. [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Mazur, V.; Artemenko, S. [Odessa State Academy of Refrigeration, 1/3 Dvoryanslaya Str., 65026, Odessa (Ukraine)

    2011-01-15

    Research highlights: Small amount of inorganic materials (like corrosion products) can be dissolved in the supercritical water. Pseudo-critical temperature and other properties will be changed. Thermal and hydraulic behaviours of the SCW with small amount of contaminants differ in great extent from the behaviour of pure SCW. - Abstract: Supercritical water is a promising working fluid in the new Generation IV nuclear power plants. Due to the presence of the pseudo-critical line, the thermo-hydraulics (thermal and flow properties) and the physical chemistry of the supercritical water differ significantly from the pressurized hot water used in pressurized water reactors. In this study we would like to analyse the effect of small amount of inorganic material on the thermo-hydraulics of the supercritical water cooled nuclear reactors and other, non-nuclear supercritical water loops.

  11. Students' Investigations in Temperature and Pressure

    Science.gov (United States)

    Brown, Patrick L.; Concannon, James; Hansert, Bernhard; Frederick, Ron; Frerichs, Glen

    2015-01-01

    Why does a balloon deflate when it is left in a cold car; or why does one have to pump up his or her bike tires in the spring after leaving them in the garage all winter? To answer these questions, students must understand the relationships among temperature, pressure, and volume of a gas. The purpose of the Predict, Share, Observe, and Explain…

  12. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  13. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  14. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    Science.gov (United States)

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    International Nuclear Information System (INIS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-01-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  16. Dielectric recovery mechanism of pressurized carbon dioxide at liquid and supercritical phases

    Science.gov (United States)

    Tanoue, Hiroyuki; Furusato, Tomohiro; Imamichi, Takahiro; Ota, Miyuki; Katsuki, Sunao; Akiyama, Hidenori

    2015-09-01

    Estimates of dielectric recovery rates of supercritical (SC) and liquid carbon dioxide (CO2) were derived with focus on highly-repetitive pulsed power switching mediums. Calculated results suggest that recovery time of SC and liquid CO2 are approximately 50 times shorter than that of water and oils. Prior to 10 µs after breakdown, recovery rates in neither SC nor liquid CO2 reached 100%, though the recovery rate in SC CO2 was higher than that of liquid CO2. To examine causes of recovery rate differences, each dielectric recovery process in SC and liquid CO2 was observed by laser shadowgraph technique. These shadowgraph images suggest two factors explaining dielectric recovery rate differences between these medium conditions: 1) thermodynamic property differences between medium conditions, and 2) differences in the low density region recovery mechanism.

  17. Thermal circuit and supercritical steam generator of the BGR-300 nuclear power plant

    International Nuclear Information System (INIS)

    Afanas'ev, B.P.; Godik, I.B.; Komarov, N.F.; Kurochnkin, Yu.P.

    1979-01-01

    Secondary coolant circuit and a steam generator for supercritical steam parameters of the BGR-300 reactor plant are described. The BGR-300 plant with a 300 MW(e) high-temperature gas-cooled fast reactor is developed as a pilot commercial plant. It is shown that the use of a supercritical pressure steam increases the thermal efficiency of the plant and descreases thermal releases to the environment, permits to use home-made commercial turbine plants of large unit power. The proposed supercritical pressure steam generator has considerable advantages from the viewpoint of heat transfer and hydrodynamical processes

  18. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  19. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-01-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed

  20. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab

    Science.gov (United States)

    K.Yandrapu, Sarath; Upadhyay, Arun K.; Petrash, J. Mark; Kompella, Uday B.

    2014-01-01

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9 fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Flour 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases. PMID:24131101

  1. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

    Science.gov (United States)

    Yandrapu, Sarath K; Upadhyay, Arun K; Petrash, J Mark; Kompella, Uday B

    2013-12-02

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

  2. Supercritical fluid technology: concepts and pharmaceutical applications.

    Science.gov (United States)

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  3. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  4. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    Directory of Open Access Journals (Sweden)

    Sujuan Pan

    2013-01-01

    Full Text Available Supercritical fluid extraction and expansion (SFEE patented technology combines the advantages of both supercritical fluid extraction (SFE and rapid expansion of supercritical solution (RESS with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid.

  5. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  6. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  7. Calculation of partial molar volume of components in supercritical ammonia synthesis system

    Institute of Scientific and Technical Information of China (English)

    Cunwen WANG; Chuanbo YU; Wen CHEN; Weiguo WANG; Yuanxin WU; Junfeng ZHANG

    2008-01-01

    The partial molar volumes of components in supercritical ammonia synthesis system are calculated in detail by the calculation formula of partial molar volume derived from the R-K equation of state under different conditions. The objectives are to comprehend phase beha-vior of components and to provide the theoretic explana-tion and guidance for probing novel processes of ammonia synthesis under supercritical conditions. The conditions of calculation are H2/N2= 3, at a concentra-tion of NH3 in synthesis gas ranging from 2% to 15%, Concentration of medium in supercritical ammonia syn-thesis system ranging from 20% to 50%, temperature ran-ging from 243 K to 699 K and pressure ranging from 0.1 MPa to 187 MPa. The results show that the ammonia synthesis system can reach supercritical state by adding a suitable supercritical medium and then controlling the reaction conditions. It is helpful for the supercritical ammonia synthesis that medium reaches supercritical state under the conditions of the corresponding total pres-sure and components near the normal temperature or near the critical temperature of medium or in the range of tem-perature of industrialized ammonia synthesis.

  8. Destruction of energetic materials by supercritical water oxidation

    International Nuclear Information System (INIS)

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-01-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400 degrees C and 650 degrees C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600 degrees C. The reactions produce primarily N 2 , N 2 O,CO 2 , and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525 degrees C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100 degrees C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented

  9. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  10. Numerical experiment on different validation cases of water coolant flow in supercritical pressure test sections assisted by discriminated dimensional analysis part I: the dimensional analysis

    International Nuclear Information System (INIS)

    Kiss, A.; Aszodi, A.

    2011-01-01

    As recent studies prove in contrast to 'classical' dimensional analysis, whose application is widely described in heat transfer textbooks despite its poor results, the less well known and used discriminated dimensional analysis approach can provide a deeper insight into the physical problems involved and much better results in all cases where it is applied. As a first step of this ongoing research discriminated dimensional analysis has been performed on supercritical pressure water pipe flow heated through the pipe solid wall to identify the independent dimensionless groups (which play an independent role in the above mentioned thermal hydraulic phenomena) in order to serve a theoretical base to comparison between well known supercritical pressure water pipe heat transfer experiments and results of their validated CFD simulations. (author)

  11. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  12. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  13. Experimental study of elliptical jet from sub to supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  14. Supercritical carbon dioxide extraction of oil from Clanis bilineata ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... temperature, 35°C; pressure, 25 MPa; supercritical CO2 flow rate, 20 L/min and time, 60 min. ... methyl esters were recovered after solvent evaporation in vacuum ... Effect of time on extraction of the oil from C. bilineata larvae.

  15. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    Science.gov (United States)

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  16. Performance Estimation of Supercritical CO2 Cycle for the PG-SFR application with Heat Sink Temperature Variation

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    The heat sink temperature conditions are referred from the annual database of sea water temperature in East sea. When the heat sink temperature increases, the compressor inlet temperature can be influenced and the sudden power decrease can happen due to the large water pumping power. When designing the water pump, the pumping margin should be considered as well. As a part of Prototype Generation IV Sodium-cooled Fast Reactor (PG-SFR) development, the Supercritical CO 2 cycle (S-CO 2 ) is considered as one of the promising candidate that can potentially replace the steam Rankine cycle. S-CO 2 cycle can achieve distinctively high efficiency compared to other Brayton cycles and even competitive performance to the steam Rankine cycle under the mild turbine inlet temperature region. Previous studies explored the optimum size of the S-CO 2 cycle considering component designs including turbomachinery, heat exchangers and pipes. Based on the preliminary design, the thermal efficiency is 31.5% when CO 2 is sufficiently cooled to the design temperature. However, the S-CO 2 compressor performance is highly influenced by the inlet temperature and the compressor inlet temperature can be changed when the heat sink temperature, in this case sea water temperature varies. To estimate the S-CO 2 cycle performance of PG-SFR in the various regions, a Quasi-static system analysis code for S-CO 2 cycle is developed by the KAIST research team. A S-CO 2 cycle for PG-SFR is designed and assessed for off-design performance with the heat sink temperature variation

  17. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids

    International Nuclear Information System (INIS)

    Le, Van Long; Feidt, Michel; Kheiri, Abdelhamid; Pelloux-Prayer, Sandrine

    2014-01-01

    This paper presents the system efficiency optimization scenarios of basic and regenerative supercritical ORCs (organic Rankine cycles) using low-GWP (global warming potential) organic compounds as working fluid. A more common refrigerant, i.e. R134a, was also employed to make the comparison. A 150-°C, 5-bar-pressurized hot water is used to simulate the heat source medium. Power optimization was equally performed for the basic configuration of supercritical ORC. Thermodynamic performance comparison of supercritical ORCs using different working fluids was achieved by ranking method and exergy analysis method. The highest optimal efficiency of the system (η sys ) is always obtained with R152a in both basic (11.6%) and regenerative (13.1%) configurations. The highest value of optimum electrical power output (4.1 kW) is found with R1234ze. By using ranking method and considering low-GWP criterion, the best working fluids for system efficiency optimization of basic and regenerative cycles are R32 and R152a, respectively. The best working fluid for net electrical power optimization of basic cycle is R1234ze. Although CO 2 has many desirable environmental and safety properties (e.g. zero ODP (Ozone Depletion Potential), ultra low-GWP, non toxicity, non flammability, etc.), the worst thermodynamic performance is always found with the cycle using this compound as working fluid. - Highlights: • Performance optimizations were carried out for the supercritical ORCs using low-GWP working fluids. • Heat regeneration was used to improve the system efficiency of the supercritical ORC. • Thermodynamic performances of supercritical ORCs at the optima were evaluated by ranking method and exergy analysis

  18. Flexible MOFs under stress: pressure and temperature.

    Science.gov (United States)

    Clearfield, Abraham

    2016-03-14

    In the recent past an enormous number of Metal-Organic Framework type compounds (MOFs) have been synthesized. The novelty resides in their extremely high surface area and the ability to include additional features to their structure either during synthesis or as additives to the MOF. This versatility allows for MOFs to be designed for specific applications. However, the question arises as to whether a particular MOF can withstand the stress that may be encountered in fulfillment of the designated application. In this study we describe the behavior of two flexible MOFs under pressure and several others under temperature increase. The pressure study includes both experimental and theoretical calculations. In the thermal processes evidence for colossal negative thermal expansion were encountered.

  19. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  20. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    Directory of Open Access Journals (Sweden)

    A Vatanara

    2009-03-01

    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  1. Numerical Analysis of Flow and Heat Transfer Characteristics of CO2 at Vapour and Supercritical Phases in Micro-Channels

    Directory of Open Access Journals (Sweden)

    Rao N.T.

    2016-01-01

    Full Text Available Supercritical carbon dioxide (CO2 has special thermal properties with better heat transfer and flow characteristics. Due to this reason, supercritical CO2 is being used recently in air-condition and refrigeration systems to replace non environmental friendly refrigerants. Even though many researches have been done, there are not many literatures for heat transfer and flow characteristics of supercritical CO2. Therefore, the main purpose of this study is to develop flow and heat transfer CFD models on two different phases; vapour and supercritical of CO2 to investigate the heat transfer characteristics and pressure drop in micro-channels. CO2 is considered to be in different phases with different flow pressures but at same temperature. For the simulation, the CO2 flow was assumed to be turbulent, nonisothermal and Newtonian. The numerical results for both phases are compared. From the numerical analysis, for both vapour and supercritical phases, the heat energy from CO2 gas transferred to water to attain thermal equilibrium. The temperature of CO2 at vapour phase decreased 1.78% compared to supercritical phase, which decreased for 0.56% from the inlet temperature. There was a drastic increase of 72% for average Nu when the phase changed from vapour to supercritical. The average Nu decreased rapidly about 41% after total pressure of 9.0 MPa. Pressure drop (ΔP increased together with Reynolds number (Re for vapour and supercritical phases. When the phase changed from vapour to supercritical, ΔP was increased about 26%. The results obtained from this study can provide information for further investigations on supercritical CO2.

  2. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-05

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons.

  3. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  4. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  5. Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Sub- and Supercritical Pressures

    National Research Council Canada - National Science Library

    Chehroudi, B

    2001-01-01

    ...), and can lead to local burnout of the combustion chamber walls and injector plates. This is caused by extreme heat-transfer rates brought about by high-frequency pressure and gas velocity fluctuations, see Harrje and Reardon.

  6. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  7. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A.; Subbotin, S. A.; Chibinyaev, A. V.

    2011-01-01

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  8. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  9. The use of supercritical carbon dioxide for contaminant removal from solid waste

    International Nuclear Information System (INIS)

    Adkins, C.L.J.; Russick, E.M.; Smith, H.M.; Olson, R.B.

    1994-01-01

    Supercritical carbon dioxide is being explored as a waste minimization technique for separating oils, greases and solvents from solid waste. The containments are dissolved into the supercritical fluid and precipitated out upon depressurization. The carbon dioxide solvent can then be recycled for continued use. Definitions of the temperature, pressure, flowrate and potential co-solvents are required to establish the optimum conditions for hazardous contaminant removal. Excellent extractive capability for common manufacturing oils, greases, and solvents has been observed in both supercritical and liquid carbon dioxide. Solubility measurements are being used to better understand the extraction process, and to determine if the minimum solubility required by federal regulations is met

  10. Injection of Fluids into Supercritical Environments

    National Research Council Canada - National Science Library

    Oschwald, M

    2004-01-01

    This paper summarizes and compares the results of systematic research programs at two independent laboratories regarding the injection of cryogenic liquids at subcritical and supercritical pressures...

  11. Mixing Dynamics of Supercritical Droplets and Jets

    National Research Council Canada - National Science Library

    Talley, Douglas G; Cohn, R. K; Coy, E. B; Chehroudi, B; Davis, D. W

    2005-01-01

    .... At supercritical pressures, however, a distinct difference between "gaseous" and "liquid" phases no longer exists, surface tension and the enthalpy of vaporization vanish, and "gas" phase density...

  12. Development of computational methods for the safety assessment of gas-cooled high-temperature and supercritical light-water reactors. Final report; Rechenmethoden zur Bewertung der Sicherheit von gasgekuehlten Hochtemperaturreaktoren und superkritischen Leichtwasserreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, S.; Cron, D. von der; Hristov, H.; Lerchl, G.; Papukchiev, A.; Seubert, A.; Sureda, A.; Weis, J.; Weyermann, F.

    2012-12-15

    This report documents developments and results in the frame of the project RS1191 ''Development of computational methods for the safety assessment of gas-cooled high temperature and supercritical light-water reactors''. The report is structured according to the five work packages: 1. Reactor physics modeling of gas-cooled high temperature reactors; 2. Coupling of reactor physics and 3-D thermal hydraulics for the core barrel; 3. Extension of ATHLET models for application to supercritical reactors (HPLWR); 4. Further development of ATHLET for application to HTR; 5. Further development and validation of ANSYS CFX for application to alternative reactor concepts. Chapter 4 describes the extensions made in TORT-TD related to the simulation of pebble-bed HTR, e.g. spectral zone buckling, Iodine-Xenon dynamics, nuclear decay heat calculation and extension of the cross section interpolation algorithms to higher dimensions. For fast running scoping calculations, a time-dependent 3-D diffusion solver has been implemented in TORT-TD. For the PBMR-268 and PBMR-400 as well as for the HTR-10 reactor, appropriate TORT-TD models have been developed. Few-group nuclear cross sections have been generated using the spectral codes MICROX- 2 and DRAGON4. For verification and validation of nuclear cross sections and deterministic reactor models, MCNP models of reactor core and control rod of the HTR-10 have been developed. Comparisons with experimental data have been performed for the HTR-10 first criticality and control rod worth. The development of the coupled 3-D neutron kinetics and thermal hydraulics code system TORT-TD/ATTICA3D is documented in chapter 5. Similar to the couplings with ATHLET and COBRA-TF, the ''internal'' coupling approach has been implemented. Regarding the review of experiments and benchmarks relevant to HTR for validation of the coupled code system, the PBMR-400 benchmarks and the HTR-10 test reactor have been selected

  13. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  14. Electron mobility in supercritical ethane as a function of density and temperature

    International Nuclear Information System (INIS)

    Nishikawa, M.; Holroyd, R.A.; Sowada, U.

    1980-01-01

    The electron mobility is reported for ethane as a function of density at various temperatures above T/sub c/. The high pressure cell used permits measurements to 200 atm. Our analysis shows that theory is consistent with the ethane mobility results at low and intermediate densities. At densities less than 1 x 10 21 molecules/cm 3 electrons are scattered by isolated ethane molecules and the Lorentz equation is valid. At intermediate densities, μ/sub e/ correlates with the square of the velocity of sound, indicating that in dense fluids the adiabatic compressibility must be included. The data are consistent with a modified Cohen--Lekner equation, and the minimum in μ/sub e/N observed at densities just below d/sub c/ is qualitatively accounted for by changes in the adiabatic compressibility. Thus the concept of quasilocalization, suggested by others to qualitatively explain such minima, is unnecessary here. At higher densities an additional, unspecified, scattering mechanism becomes important

  15. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  16. Instability of supercritical porosity in highly doped ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Esposito, Vincenzo

    2015-01-01

    The thermomechanical behavior and microstructural evolution of low relative density (∼0.40) gadolinium-doped ceria are characterized under oxidative and reducing conditions at high temperatures. The electronic defects generated in the structure by Ce4+ to Ce3+ reduction play an important role on ...

  17. Determination of Minimum Miscibility Pressure in supercritical extractor using oil saturated sample

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen; Abbasi, Waqas A.

    2009-01-01

    with a given oil reservoir at the reservoir temperature. The oil formation to which the process is applied must be operated at or above the MMP. Before field trial this parameter is to be determined at the laboratory which traditionally is done by help of a slim tube or a raising bubble experiments. However...

  18. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  19. Pressure sensor based on distributed temperature sensing

    NARCIS (Netherlands)

    van Baar, J.J.J.; Wiegerink, Remco J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    A differential pressure sensor has been realized with thermal readout. The thermal readout allows simultaneous measurement of the membrane deflection due to a pressure difference and measurement of the absolute pressure by operating the structure as a Pirani pressure sensor. The measuring of the

  20. Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Michalski, Sebastian

    2014-01-01

    The supercritical power plant analyzed in this paper consists of the following elements: a steam turbine, a hard-coal-fired oxy-type pulverized fuel boiler, an air separation unit with a four-end-type high-temperature membrane and a carbon dioxide capture unit. The electrical power of the steam turbine is 600 MW, the live steam thermodynamic parameters are 650°C/30 MPa, and the reheated steam parameters are 670°C/6 MPa. First of all the net efficiency was calculated as functions of the oxygen recovery rate. The net efficiency was lower than the reference efficiency by 9–10.5 pp, and a series of actions were thus proposed to reduce the loss of net efficiency. A change in the boiler structure produced an increase in the boiler efficiency of 2.5–2.74 pp. The range of the optimal air compressor pressure ratio (19–23) due to the net efficiency was also determined. The integration of all installations with the steam turbine produced an increase in the gross electric power by up to 50.5 MW. This operation enabled the replacement of the steam regenerative heat exchangers with gas–water heat exchangers. As a result of these alterations, the net efficiency of the analyzed power plant was improved to 5.5 pp less than the reference efficiency. - Highlights: • Analysis of a power plant with a “four-end” HTM for oxygen production was made. • Reorganization of the flue gas recirculation increased the boiler efficiency. • Optimization of the air compressor pressure ratio decreased the auxiliary power. • Replacement of the regenerative heat exchangers increased the gross electric power. • Comparison of the net efficiency of the analyzed and reference plants were made

  1. Comparing the effect of pressure and temperature on ion mobilities

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2005-01-01

    The effect of pressure on ion mobilities has been investigated and compared with that of temperature. In this connection, an ion mobility spectrometry (IMS) cell, which employs a corona discharge as the ionization source, has been designed and constructed to allow varying pressure inside the drift region. IMS spectra were recorded at various pressures ranging from 15 Torr up to atmospheric pressure. The results show that IMS peaks shift perfectly linear with pressure which is in excellent agreement with the ion mobility theory. However, experimental ion mobilities versus temperature show deviation from the theoretical trend. The deviation is attributed to formation of clusters. The different behaviour of pressure and temperature was explained on the basis of the different impact of pressure and temperature on hydration and clustering of ions. Pressure affects the clustering reactions linearly but temperature affects it exponentially

  2. Method and apparatus for waste destruction using supercritical water oxidation

    Science.gov (United States)

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  3. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    Science.gov (United States)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  4. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao

    2011-01-01

    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  5. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  6. Semi-analytical prediction of hydraulic resistance and heat transfer for pipe and channel flows of water at supercritical pressure

    International Nuclear Information System (INIS)

    Laurien, E.

    2012-01-01

    Within the Generation IV International Forum the Supercritical Water Reactor is investigated. For its core design and safety analysis the efficient prediction of flow and heat transfer parameters such as the wall-shear stress and the heat-transfer coefficient for pipe and channel flows is needed. For circular pipe flows a numerical model based on the one-dimensional conservation equations of mass, momentum end energy in the radial direction is presented, referred to as a 'semi-analytical' method. An accurate, high-order numerical method is employed to evaluate previously derived analytical solutions of the governing equations. Flow turbulence is modeled using the algebraic approach of Prandtl/van-Karman, including a model for the buffer layer. The influence of wall roughness is taken into account by a new modified numerical damping function of the turbulence model. The thermo-hydraulic properties of water are implemented according to the international standard of 1997. This method has the potential to be used within a sub-channel analysis code and as wall-functions for CFD codes to predict the wall shear stress and the wall temperature. The present study presents a validation of the method with comparison of model results with experiments and multi-dimensional computational (CFD) studies in a wide range of flow parameters. The focus is laid on forced convection flows related to reactor design and near-design conditions. It is found, that the method can accurately predict the wall temperature even under deterioration conditions as they occur in the selected experiments (Yamagata el al. 1972 at 24.5 MPa, Ornatski et al. 1971 at 25.5 and Swenson et al. 1963 at 22.75 MPa). Comparison of the friction coefficient under high heat flux conditions including significant viscosity and density reductions near the wall with various correlations for the hydraulic resistance will be presented; the best agreement is achieve with the correlation of Pioro et al. 2004. It is

  7. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  8. Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures

    International Nuclear Information System (INIS)

    Mesmer, R.E.; Marshall, W.L.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.

    1990-01-01

    Electrochemical and electrical conductance cells have been widely used at ORNL over the years to quantitatively determine equilibrium constants and their salt effects to 300 degree C (EMF) and 800 degree C (conductance) at the saturation pressure of water (EMF) and to 4000 bars (conductance). The most precise results to 300 degree C for a large number of weak acids and bases show very similar thermodynamic behavior, which will be discussed. Results for the ionization constants of water, NH 3 (aq), HCl(aq), and NaCl(aq), which extend well into the supercritical region, have been fitted in terms of a model with dependence on density and temperature. The entropy change is found to be the driving force for ion-association reactions and this tendency increases (as it must) with increasing temperature at a given pressure. Also, the variation of all thermodynamic properties is greatly reduced at high fixed densities. Considerable variation occurs at low densities. From this analysis, the dependence of the reaction thermodynamics on the P-V-T properties of the solvent is shown, and the implication of large changes in hydration for solutes in the vicinity of the critical temperature will be discussed. Finally, the change in the molar compressibility coefficient for all reactions in water is shown to be the same and dependent only on the compressibility of the solvent

  9. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  10. Heat Transfer Experiment with Supercritical CO{sub 2} Flowing Upward in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO{sub 2} are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations.

  11. Heat Transfer Experiment with Supercritical CO2 Flowing Upward in a Circular Tube

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong

    2005-01-01

    SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO 2 are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations

  12. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  13. Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol : Influence of Reaction Temperature and Feedstock

    NARCIS (Netherlands)

    Huang, Xiaoming; Atay, Ceylanpinar; Zhu, Jiadong; Palstra, Sanne W L; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2017-01-01

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while

  14. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  15. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  16. Pirani pressure sensor with distributed temperature measurement

    NARCIS (Netherlands)

    de Jong, B.R.; Bula, W.P.; Zalewski, D.R.; van Baar, J.J.J.; Wiegerink, Remco J.

    2003-01-01

    Surface micro-machined distributed Pirani pressure gauges, with designed heater-to-heat sink distances (gap-heights) of 0.35 μm and 1.10 μm, are successfully fabricated, modeled and characterized. Measurements and model response correspond within 5% of the measured value in a pressure range of 10 to

  17. Experiments on the basic behavior of supercritical CO{sub 2} natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangxu [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China (China); Wang, Junfeng; Lv, Fa [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China (China); Leung, Laurence K.H. [Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, Ontario (Canada)

    2016-04-15

    Highlights: • Steady-state behavior of supercritical CO{sub 2} natural circulation was studied. • Effects of pressure and inlet temperature were carefully investigated. • No instabilities were found in present study. • The maximum of mass flow was obtained at outlet temperature much higher than T{sub pc}. • Inlet temperature has vital effect on mass flow rate. - Abstract: To study the steady-state characteristics of supercritical carbon dioxide natural circulation, experiments were carried out in a simple rectangular loop with vertically placed heating section. The effects of system pressure and inlet temperature on the system behavior were also investigated. No instabilities were found in the present experiments. The maximum of mass flow rate was obtained at a heating section outlet temperature much higher than the pseudo-critical temperature. The maximum value of mass flow rate increased with system pressure just as in two-phase natural circulation systems. Inlet temperature significantly affected the steady-state characteristics of supercritical carbon dioxide natural circulation system. A small temperature difference of 14 °C in the natural circulation system could induce a mass flow rate with considerably high Re up to 9.1 × 10{sup 4}, which indicates the potential for supercritical carbon dioxide to be used as a high efficient natural circulation working fluid.

  18. Development of Nuclear Decontamination Technology Using Supercritical Fluid

    International Nuclear Information System (INIS)

    Jung, Wonyoung; Park, Kwangheon; Park, Jihye; Lee, Donghee

    2014-01-01

    Soil cleaning technologies that have been developed thus far increase treatment costs in contaminated soil recovery processes because they generate large amounts of secondary wastes. In this respect, this study is intended to develop soil decontamination methods using CO 2 , which is a nontoxic, environmentally friendly substance, in order to fundamentally suppress the generation of secondary wastes from the decontamination process and to create high added values. In this study, to develop decontamination methods for uranium-contaminated soil using supercritical CO 2 , a soil decontamination system using supercritical CO 2 was constructed. In addition, the basic principle of supercritical CO 2 decontamination using a TBP-HNO3 complex was explained. According to the results of the study, sea-sand samples having the same degree of contamination showed different results of decontamination according to the quantities of the TBP-HNO3 complex used as an extraction agent, which resulted in high extraction rates. Thus far, a most widely used method of extracting uranium has been the dissolving of uranium in acids. However, this method has the large adverse effect of generating strong acidic wastes that cannot be easily treated. On the other hand, supercritical CO 2 requires critical conditions that are no more difficult to meet than those of other supercritical fluids, since its density can be changed from a very low state close to that of an ideal gas to a high state close to that of liquids. The critical gas conditions are a pressure of 71 bar and a temperature of 31 .deg. C, both of which are inexpensive to achieve. Moreover, CO 2 is a solvent that is not harmful to the human body and few effects on environmental pollution. Therefore, nontoxic and environment friendly processes can be developed using supercritical CO 2 . Supercritical CO 2 's advantages over prevailing methods suggest its potential for developing innovative decontamination methods, as demonstrated

  19. Results of studying of turbulent heat transfer deterioration and their application for development of engineering methods of calculation of heat transfer and pressure drop in supercritical-pressure coolant flow

    International Nuclear Information System (INIS)

    Vladimir A Kurganov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: Using of the supercritical-pressure (SCP) water as a working medium is an apparent way to increase specific capacity and economic efficiency of nuclear power installations. Nevertheless, to provide safe operation of SCP nuclear power units, it is necessary to considerably improve reliability and accuracy of calculations of pressure drop and heat transfer in the SCP working media and coolants flows and the methods of forecasting such a dangerous phenomenon as deterioration of the turbulent heat transfer at a certain level of heat flux density. A value of the latter changes within a very large range depending on the specific conditions of the process under consideration. In the paper, the main results of the experimental study of heat transfer, pressure drop, and velocity and temperature fields in both upward and downward flows of the SCP CO 2 in tubes are considered. This study was conducted at OIVT RAN under conditions of heat input and embraced the regimes of normal and deteriorated heat transfer as well. On the basis of this data, the concept regarding to physical mechanism of incipience of the regimes of deteriorated heat transfer was developed. Classification of different modes of heat transfer deterioration in vertical channels is proposed. A degree of a danger of certain regimes is assessed. It is shown that the above phenomenon is caused by transformation of the structure of nonisothermal flow of SCP fluid due to changes in proportions between the forces acting upon a flow, specifically, because of an increase in the inertia forces due to thermal acceleration of a flow and/or in Archimedes' (buoyancy) forces up to the level comparable or higher than that of friction forces. The efficiency of the most thorough correlations for calculating normal and deteriorated heat transfer in flows of SCP water and CO 2 is analyzed. Reliability of existed recommendations to determine boundaries of normal heat transfer regimes is considered

  20. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  1. HIGH-PRESSURE VAPOR-LIQUID EQUILIBRIUM DATA FOR BINARY AND TERNARY SYSTEMS FORMED BY SUPERCRITICAL CO2, LIMONENE AND LINALOOL

    Directory of Open Access Journals (Sweden)

    MELO S. A. B. VIEIRA DE

    1999-01-01

    Full Text Available The feasibility of deterpenating orange peel oil with supercritical CO2 depends on relevant vapor-liquid equilibrium data because the selectivity of this solvent for limonene and linalool (the two key components of the oil is of crucial importance. The vapor-liquid equilibrium data of the CO2-limonene binary system was measured at 50, 60 and 70oC and pressures up to 10 MPa, and of the CO2-linalool binary system at 50oC and pressures up to 85 bar. These results were compared with published data when available in the literature. The unpublished ternary phase equilibrium of CO2-limonene-linalool was studied at 50oC and up to 9 MPa. Selectivities obtained using these ternary data were compared with those calculated using binary data and indicate that a selective separation of limonene and linalool can be achieved.

  2. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    P. Zacchi

    2006-03-01

    Full Text Available Wheat germ oil was obtained by mechanical pressing using a small-scale screw press and by supercritical extraction in a pilot plant. With this last method, different pressures and temperatures were tested and the tocopherol concentration in the extract was monitored during extraction. Then supercritical extracted oil as well as commercial pressed oil were deacidified in a countercurrent column using supercritical carbon dioxide as solvent under different operating conditions. Samples of extract, refined oil and feed oil were analyzed for free fatty acids (FFA and tocopherol contents. The results show that oil with a higher tocopherol content can be obtained by supercritical extraction-fractionation and that FFA can be effectively removed by countercurrent rectification while the tocopherol content is only slightly reduced.

  3. Effects of pressure and temperature on gate valve unwedging

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-12-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. {open_quotes}Pressure locking{close_quotes} and {open_quotes}thermal binding{close_quotes} refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an {open_quotes}interference{close_quotes} between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat {open_quotes}interference{close_quotes}. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat {open_quotes}interference{close_quotes} or disk-to-seat friction.

  4. Effects of pressure and temperature on gate valve unwedging

    International Nuclear Information System (INIS)

    Damerell, P.S.; Harrison, D.H.; Hayes, P.W.; Simons, J.W.; Walker, T.A.

    1996-01-01

    The stem thrust required to unwedge a gate valve is influenced by the pressure and temperature when the valve is closed and by the changes in these conditions between closure and opening. open-quotes Pressure lockingclose quotes and open-quotes thermal bindingclose quotes refer to situations where pressure and temperature effects cause the unwedging load to be much higher than normal. A model of these phenomena has been developed. Wedging (closure) is modeled as developing an open-quotes interferenceclose quotes between the disk and its seat rings in the valve. The effects of pressure and temperature are analyzed to determine the change in this disk-to-seat open-quotes interferenceclose quotes. Flexibilities, of the disk, body, stem and yoke strongly influence the unwedging thrust. Calculations and limited comparisons to data have been performed for a range of valve designs and scenarios. Pressure changes can increase the unwedging load when there is either a uniform pressure decrease, or a situation where the bonnet pressure exceeds the pressures in the adjacent piping. Temperature changes can increase the unwedging load when: (1) valve closure at elevated system temperature produces a delayed stem expansion, (2) a temperature increase after closure produces a bonnet pressure increase, or (3) a temperature change after closure produces an increase in the disk-to-seat open-quotes interferenceclose quotes or disk-to-seat friction

  5. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  6. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    Energy Technology Data Exchange (ETDEWEB)

    Chordia, Lalit [Thar Energy, LLC, Pittsburgh, PA (United States); Portnoff, Marc A. [Thar Energy, LLC, Pittsburgh, PA (United States); Green, Ed [Thar Energy, LLC, Pittsburgh, PA (United States)

    2017-03-31

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO2. Additional project tasks included building a hot air-to-sCO2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated a number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.

  7. Viscosity of low-temperature substances at pressure

    International Nuclear Information System (INIS)

    Rudenko, N.S.; Slyusar', V.P.

    1976-01-01

    The review presents an analysis of data available on the viscosity coefficients of hydrogen, deuterohydrogen, deuterium, neon, argon, krypton, xenon, nitrogen and methane under pressure in the temperature range from triple points to 300 deg K. Averaged values of viscosity coefficients for all the substances listed above versus temperature, pressure and density are tabulated

  8. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William [General Electric Company, Niskayuna, NY (United States)

    2015-02-10

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  9. Optical Pressure-Temperature Sensor for a Combustion Chamber

    Science.gov (United States)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  10. Study of flue-gas temperature difference in supercritical once-through boiler

    Science.gov (United States)

    Kang, Yanchang; Li, Bing; Song, Ang

    2018-02-01

    The 600 MW coal-fired once-through Boilers with opposed firing at a power plant are found to experience marked temperature variation and even overtemperature on the wall of the heating surface as a result of flue-gas temperature (FGT) variation in the boiler. In this study, operational adjustments were made to the pulverizing, combustion, and secondary air box systems in these boilers, in order to solve problems in internal combustion. The adjustments were found to reduce FGT difference and optimize the boiler’ combustion conditions. The results of this study can provide a reference for optimization of coal-fired boiler of the same type in similar conditions.

  11. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  12. Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock.

    Science.gov (United States)

    Huang, Xiaoming; Atay, Ceylanpinar; Zhu, Jiadong; Palstra, Sanne W L; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2017-11-06

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while char-forming reactions become significant at high reaction temperature (>380 °C). At preferred intermediate temperatures (300-340 °C), char-forming reactions are effectively suppressed by alkylation and Guerbet and esterification reactions. This shifts the reaction toward depolymerization, explaining high monomeric aromatics yield. Carbon-14 dating analysis of the lignin residue revealed that a substantial amount of the carbon in the lignin residue originates from reactions of lignin with ethanol. Recycling tests show that the activity of the regenerated catalyst was strongly decreased due to a loss of basic sites due to hydrolysis of the MgO function and a loss of surface area due to spinel oxide formation of the Cu and Al components. The utility of this one-step approach for upgrading woody biomass was also demonstrated. An important observation is that conversion of the native lignin contained in the lignocellulosic matrix is much easier than the conversion of technical lignin.

  13. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  14. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    Science.gov (United States)

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  16. Oxidation of oily sludge in supercritical water

    International Nuclear Information System (INIS)

    Cui Baochen; Cui Fuyi; Jing Guolin; Xu Shengli; Huo Weijing; Liu Shuzhi

    2009-01-01

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O 2 excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O 2 excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10 14 (mol L -1 ) -0.405 s -1 ; the activation energy was 213.13 ± 1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  17. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  18. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  19. Temperature and pressure dependent osmotic pressure in liquid sodium-cesium alloys

    International Nuclear Information System (INIS)

    Rashid, R.I.M.A.

    1987-01-01

    The evaluation of the osmotic pressure in terms of the concentration fluctuations of mixtures and the equations of state of the pure liquids is considered. The temperature and pressure dependent experimentally measured concentration-concentration correlations in the long wavelength limit of liquid sodium-cesium alloys are used to demonstrate the appreciable dependence of the temperature and pressure on the osmotic pressure as a function of concentration. Introducing interchange energies as functions of temperature and pressure, our analysis is consistent with the Flory model. Thus, a formalism for evaluating the state dependent osmotic pressure is developed and our numerical work is considered to be an extension of the calculations of Rashid and March in the sense that a temperature and pressure dependent interchange energy parameter that more closely parameterizes the state dependent concentration fluctuations in the liquid alloys, is used. (author)

  20. PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS

    International Nuclear Information System (INIS)

    HOLROYD, R.

    2007-01-01

    Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications

  1. Temperature noise characteristics of pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1984-01-01

    The core exit temperature noise RMS is linearly related to the core ΔT at a commercial PWR and LOFT. Test loop observations indicate that this linear behavior becomes nonlinear with blockages, boiling, or power skews. The linear neutron flux to temperature noise phase behavior is indicative of a pure time delay process, which has been shown to be related to coolant flow velocity in the core. Therefore, temperature noise could provide a valuable diagnostic tool for the detection of coolant blockages, boiling, and sensor malfunction under both normal and accident conditions in a PWR

  2. Sub- and supercritical jet disintegration

    Science.gov (United States)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  3. Supercritical Water Oxidation Program (SCWOP)

    International Nuclear Information System (INIS)

    1994-02-01

    Purpose of SCWOP is to develop and demonstrate supercritical water oxidation as a viable technology for treating DOE hazardous and mixed wastes and to coordinate SCWO research, development, demonstration, testing, and evaluation activities. The process involves bringing together organic waste, water, and an oxidant (air, O 2 , etc.) to temperatures and pressures above water's critical point (374 C, 22.1 MPa); organic destruction is >99.99% efficient, and the resulting effluents (mostly water, CO 2 ) are relatively benign. Pilot-scale (300--500 gallons/day) SCWO units are to be constructed and demonstrated. Two phases will be conducted: hazardous waste pilot plant demonstration and mixed waste pilot demonstration. Contacts for further information and for getting involved are given

  4. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  5. Thermodynamic analysis of a supercritical water reactor

    International Nuclear Information System (INIS)

    Edwards, M.

    2007-01-01

    A thermodynamic model has been developed for a hypothetical design of a Supercritical Water Reactor, with emphasis on Canadian design criteria. The model solves for cycle efficiency, mass flows and physical conditions throughout the plant based on input parameters of operating pressures and efficiencies of components. The model includes eight feedwater heaters, three feedwater pumps, a deaerator, a condenser, the core, three turbines and two reheaters. To perform the calculations, Microsoft Excel was used in conjunction with FLUIDCAL-IAPWS95 and VBA code. The calculations show that a thermal efficiency of 47.5% can be achieved with a core outlet temperature of 625 o C. (author)

  6. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  7. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  8. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  9. SOLUBILITY OF ORGANIC BIOCIDES IN SUPERCRITICAL CO2 AND CO2+ COSOLVENT MIXTURES

    Science.gov (United States)

    Solubilities of four organic biocides in supercritical carbon dioxide (Sc-CO2) were measured using a dynamic flowr apparatus over a pressure range of 10 to 30 MPa and temperature of 35-80 degrees C. The biocides studied were: Amical-48 (diiodomethyl p-tolyl sulfone), chlorothalo...

  10. Supercritical fluid extraction of silicone oil from uranate microspheres prepared by sol-gel process

    International Nuclear Information System (INIS)

    Kumar, R.; Venkatakrishnan, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2005-01-01

    Supercritical fluid extraction of silicone oil from urania microspheres prepared through sol-gel route was investigated. The influence of pressure, temperature, and flow rate on the extraction efficiency was studied. Experimental conditions were optimised for the complete removal of silicone oil from urania microspheres. (author)

  11. Supercritical fluid extraction of uranium from tissue paper matrix using organic extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Bhattacharyya, A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct extraction of dried uranyl nitrate from tissue paper matrix was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) and di-n-hexyl octanamide (DHOA)). The effects of temperature, pressure, extractant and nitric acid concentration on the extraction of uranyl ion were investigated. (author)

  12. The use of supercritical fluid extraction as a sample preparation technique for soils

    International Nuclear Information System (INIS)

    Levy, J.M.; Dolata, L.A.; Rosselli, A.C.; Ravey, R.M.

    1994-01-01

    Using off-line supercritical fluid extraction (SFE), polynuclear aromatic hydrocarbons (PAHs) were extracted at different levels from various soil and sediment matrices. Based upon GC/MS measurements a number of SFE operational parameters including pressure, temperature and flow rate, were optimized to yield the highest efficiencies with the best precision

  13. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    Science.gov (United States)

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-07-13

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  14. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Sven Poeggel

    2015-07-01

    Full Text Available This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS. The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI with integrated fibre Bragg grating (FBG for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF acid and femtosecond (FS laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of \\(s_p\\ = 2–10 \\(\\frac{\\text{nm}}{\\text{kPa}}\\ and a resolution of better than \\(\\Delta P\\ = 10 Pa protect (0.1 cm H\\(_2\\O. A static pressure test in 38 cmH\\(_2\\O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H\\(_2\\O in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by \\(k=10.7\\ \\(\\frac{\\text{pm}}{\\text{K}}\\, which results in a temperature resolution of better than \\(\\Delta T\\ = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  15. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  16. Supercritical Water Reactor Cycle for Medium Power Applications

    International Nuclear Information System (INIS)

    BD Middleton; J Buongiorno

    2007-01-01

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency (ge)20%; Steam turbine outlet quality (ge)90%; and Pumping power (le)2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  17. Convective heat transfer in supercritical flows of CO_2 in tubes with and without flow obstacles

    International Nuclear Information System (INIS)

    Eter, Ahmad; Groeneveld, Dé; Tavoularis, Stavros

    2017-01-01

    Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO_2-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m"2 s, and a heat flux range from 1 to 175 kW/m"2. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.

  18. Design and Evaluation of a Pressure and Temperature Monitoring System for Pressure Ulcer Prevention

    Directory of Open Access Journals (Sweden)

    Farve Daneshvar Fard

    2014-08-01

    Full Text Available Introduction Pressure ulcers are tissue damages resulting from blood flow restriction, which occurs when the tissue is exposed to high pressure for a long period of time. These painful sores are common in patients and elderly, who spend extended periods of time in bed or wheelchair. In this study, a continuous pressure and temperature monitoring system was developed for pressure ulcer prevention. Materials and Methods The monitoring system consists of 64 pressure and 64 temperature sensors on a 40×50 cm2 sheet. Pressure and temperature data and the corresponding maps were displayed on a computer in real-time. Risk assessment could be performed by monitoring and recording absolute pressure and temperature values, as well as deviations over time. Furthermore, a posture detection procedure was proposed for sitting posture identification. Information about the patient’s movement history may help caregivers make informed decisions about the patient’s repositioning and ulcer prevention strategies. Results Steady temporal behaviour of the designed system and repeatability of the measurements were evaluated using several particular tests. The results illustrated that the system could be utilized for continuous monitoring of interface pressure and temperature for pressure ulcer prevention. Furthermore, the proposed method for detecting sitting posture was verified using a statistical analysis. Conclusion A continuous time pressure and temperature monitoring system was presented in this study. This system may be suited for pressure ulcer prevention given its feasibility for simultaneous monitoring of pressure and temperature and alarming options. Furthermore, a method for detecting different sitting postures was proposed and verified. Pressure ulcers in wheelchair-bound patients may be prevented using this sitting posture detection method.

  19. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    Science.gov (United States)

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Experimental study of supercritical water flow and heat transfer in vertical tube

    International Nuclear Information System (INIS)

    Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng

    2012-01-01

    The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)

  1. Alterations in MAST suit pressure with changes in ambient temperature.

    Science.gov (United States)

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  2. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  3. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  4. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  5. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  6. Innovations in plantar pressure and foot temperature measurements in diabetes

    NARCIS (Netherlands)

    Bus, S. A.

    2016-01-01

    Plantar pressure and temperature measurements in the diabetic foot primarily contribute to identifying abnormal values that increase risk for foot ulceration, and they are becoming increasingly more integrated in clinical practice and daily life of the patient. While plantar pressure measurements

  7. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  8. Extraction of heavy oil by supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2010-01-01

    The present study deals with the extraction of heavy oil by supercritical carbon dioxide at the pressure values changing from 16 to 56 MPa at the fixed value of temperature: 60oC. The amount of the recovered liquid phase of oil was calculated as a percentage of the extracted amount to the initial...... 40 gm of oil. The noticeable breackover point in the graph of the oil recovery versus pressure was observed at 27 MPa, which was in concordance with the conclusions from chromatographic analysis of the extracted oil samples. But the recovery rate of 14 % at this pressure value was not high enough...

  9. Numerical comparison of thermal hydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan Krishna Singhar; Basu, Dipankar Narayan [Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India)

    2017-02-15

    Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  10. Temperature effect compensation for fast differential pressure decay testing

    International Nuclear Information System (INIS)

    Shi, Yan; Tong, Xiaomeng; Cai, Maolin

    2014-01-01

    To avoid the long temperature recovery period with differential pressure decay for leak detection, a novel method with temperature effect compensation is proposed to improve the testing efficiency without full stabilization of temperature. The mathematical model of conventional differential pressure decay testing is established to analyze the changes of temperature and pressure during the measuring period. Then the differential pressure is divided into two parts: the exponential part caused by temperature recovery and the linear part caused by leak. With prior information obtained from samples, parameters of the exponential part can be identified precisely, and the temperature effect will be compensated before it fully recovers. To verify the effect of the temperature compensated method, chambers with different volumes are tested under various pressures and the experiments show that the improved method is faster with satisfactory precision, and an accuracy less than 0.25 cc min −1  can be achieved when the compensation time is proportional to four times the theoretical thermal-time constant. (paper)

  11. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  12. Influence of temperature and pressure on the lethality of ultrasound

    International Nuclear Information System (INIS)

    Raso, J.; Pagan, R.; Condon, S.; Sala, F.J.

    1998-01-01

    A specially designed resistometer was constructed, and the lethal effect on Yersinia enterocolitica of ultrasonic waves (UW) at different static pressures (manosonication [MS]) and of combined heat-UW under pressure treatments (manothermosonication [MTS]) was investigated. During MS treatments at 30 degrees C and 200 kPa, the increase in the amplitude of UW of 20 kHz from 21 to 150 micrometers exponentially decreased decimal reduction time values (D(MS)) from 4 to 0.37 min. When pressure was increased from 0 to 600 kPa at a constant amplitude (150 micrometers) and temperature (30 degrees C), D(MS) values decreased from 1.52 to 0.20 min. The magnitude of this decrease in D(MS) declined progressively as pressure was increased. The influence of pressure on D(MS) values was greater with increased amplitude of UW. Pressure alone of as much as 600 kPa did not influence the heat resistance of Y. enterocolitica (D60 = 0.094; zeta = 5.65). At temperatures of as much as 58 degrees C, the lethality of UW under pressure was greater than that of heat treatment alone at the same temperature. At higher temperatures, this difference disappeared. Heat and UW under pressure seemed to act independently. The lethality of MTS treatments appeared to result from the added effects of UW under pressure and the lethal effect of heat. The individual contributions of heat and of UW under pressure to the total lethal effect of MTS depended on temperature. The inactivating effect of UW was not due to titanium particles eroded from the sonication horn. The addition to the MS media of cysteamine did not increase the resistance of Y. enterocolitica to MS treatment. MS treatment caused cell disruption

  13. Plastic Foam Withstands Greater Temperatures And Pressures

    Science.gov (United States)

    Cranston, John A.; Macarthur, Doug

    1993-01-01

    Improved plastic foam suitable for use in foam-core laminated composite parts and in tooling for making fiber/matrix-composite parts. Stronger at high temperatures, more thermally and dimensionally stable, machinable, resistant to chemical degradation, and less expensive. Compatible with variety of matrix resins. Made of polyisocyanurate blown with carbon dioxide and has density of 12 to 15 pounds per cubic feet. Does not contibute to depletion of ozone from atmosphere. Improved foam used in cores of composite panels in such diverse products as aircraft, automobiles, railroad cars, boats, and sporting equipment like surfboards, skis, and skateboards. Also used in thermally stable flotation devices in submersible vehicles. Machined into mandrels upon which filaments wound to make shells.

  14. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  15. Core body temperature, skin temperature, and interface pressure. Relationship to skin integrity in nursing home residents.

    Science.gov (United States)

    Knox, D M

    1999-06-01

    To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.

  16. Temperature measurement in the liquid helium range at pressure

    International Nuclear Information System (INIS)

    Itskevich, E.S.; Krajdenov, V.F.

    1978-01-01

    The use of bronze and germanium resistance thermometers and the use of a (Au + 0.07 % Fe)-Cu thermocouple for temperature measurements from 1.5 to 4.2 K in the hydrostatic compression of up to 10 kbar are considered. To this aim, the thermometer resistance as a function of temperature and pressure is measured. It is revealed that pressure does not change the thermometric response of the bronze resistance thermometer but only shifts it to the region of lower temperatures. The identical investigations of the germanium resistance thermometer shows that strong temperature dependence and the shift of its thermometric response under the influence of pressure make the use of germanium resistance thermometers in high-pressure chambers very inconvenient. The results of the analysis of the (Au + 0.07 % Fe) - Cu thermocouple shows that with a 2 per cent accuracy the thermocouple Seebeck coefficient does not depend on pressure. It permits to use this thermocouple for temperature measurements at high pressures

  17. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  18. Experiments in a natural circulation loop with supercritical water at low powers

    International Nuclear Information System (INIS)

    Pilkhwal, D.S.; Sharma, Manish; Jana, S.S.; Vijayan, P.K.

    2013-05-01

    Earlier, 1/2 ″ uniform diameter Supercritical Pressure Natural Circulation Loop (SPNL) was set-up in hall-7, BARC for carrying out experiments related to supercritical fluids. The loop is a rectangular loop having two heaters and two coolers. Experiments were carried out with CO 2 under supercritical conditions for various pressures and different combinations of heater and cooler orientations. Since, the design conditions are more severe for supercritical water (SCW) experiments, the loop was modified for SCW by installing new test sections, pressurizer and power supply for operation with supercritical water. Experimental data were generated on steady state, heat transfer and stability under natural circulation conditions for the horizontal heater and horizontal cooler (HHHC) orientation with SCW up to a heater power of 8.5 kW. The flow rate data and instability data were compared with the predictions of in-house developed 1-D code NOLSTA, which showed reasonable agreement. The heat transfer coefficient data were also compared with the predictions of various correlations exhibit peak at bulk temperature lower than that obtained in the experiments. Most of these correlations predicted experimental data well in the pseudo-critical region. However, all correlations are matching well with experimental data beyond the pseudo-critical region. The details of the experimental facility, Experiments carried out and the results presented in this report. (author)

  19. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  20. Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel

    International Nuclear Information System (INIS)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol

    2010-01-01

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  1. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  2. Determination of temperature and pressure in the calcium reduction process

    International Nuclear Information System (INIS)

    Arceri, Mariana E.

    1997-01-01

    The calcium reduction process consists in the reduction of uranium tetrafluoride (UF 4 ) with calcium in a refractory material crucible, in order to obtain metallic uranium. The crucible is in turn contained in a steel reactor, heated by means of an induction coil to bring the reagents from the environmental temperature to the temperature necessary for the reaction starting. For the design of the reactor, mathematical expressions that allow to estimate the temperature and pressure of the system have been developed

  3. Properties of planetary fluids at high pressure and temperature

    International Nuclear Information System (INIS)

    Nellis, W.J.; Hamilton, D.C.; Holmes, N.C.; Radousky, H.B.; Ree, F.H.; Ross, M.; Young, D.A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N 2 and CH 4 . Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space

  4. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  5. Film bulk acoustic resonator pressure sensor with self temperature reference

    International Nuclear Information System (INIS)

    He, X L; Jin, P C; Zhou, J; Wang, W B; Dong, S R; Luo, J K; Garcia-Gancedo, L; Flewitt, A J; Milne, W I

    2012-01-01

    A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately −17.4 ppm kPa −1 , while that for the second peak is approximately −6.1 ppm kPa −1 , both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. (paper)

  6. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  7. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    Science.gov (United States)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  8. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  10. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  11. Pulse radiolysis study of supercritical water-G-value measurement up to 450 degree C

    International Nuclear Information System (INIS)

    Katsumura, Y.

    2006-01-01

    It is widely recognized that the understanding of water radiolysis at elevated temperatures is inevitably important in the field of water chemistry in light water reactors because water radiolysis is closely related to many subjects such as hydrogen water chemistry (H 2 injection), SCC (stress corrosion cracking), dose accumulation and so on. This situation would also be applied to the future reactor using supercritical water (>374 C, 22.1MPa) as a coolant, so called supercritical water-cooled reactor (SCWR). Therefore, it is important to investigate water radiolysis of supercritical water. In 1989 Prof. Oka, University of Tokyo, proposed the SCWR as a future reactor and done much design study. This reactor has many advantages such as high energy efficiency, applicability of experience accumulated in light water reactors and supercritical fissile plant, and compact structure. In 2002 the Department of Energy in USA has selected the SCWR as one of the six Generation IV reactors and fundamental research has started in different countries as a national or an international project. In the present research G-values of water radiolysis have been measured by using a pulse radiolysis method up to 450 degree C to obtain the fundamental data relevant to the development of the SCWR. In supercritical water, the pressure controls the density of water easily and it was found that the G-values are strongly dependent not only on temperature but also on density in supercritical water. After presentation of experimental method and its difficulties, temperature and density dependent G-values of water decomposition products in supercritical water would be summarized. (authors)

  12. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  13. Research activities on supercritical fluid science in food biotechnology.

    Science.gov (United States)

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  14. Measurement of rock properties at elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Pincus, H.J.; Hoskins, E.R.

    1985-01-01

    The papers in this volume were presented at an ASTM symposium held on 20 June 1983 in conjunction with the 24th Annual Rock Mechanics Symposium at Texas A and M University, College Station, TX. The purpose of these papers is to present recent developments in the measurement of rock properties at elevated pressures and temperatures, and to examine and interpret the data produced by such measurement. The need for measuring rock properties at elevated pressures and temperatures has become increasingly important in recent years. Location and design of nuclear waste repositories, development of geothermal energy sites, and design and construction of deep excavations for civil, military, and mining engineering require significantly improved capabilities for measuring rock properties under conditions substantially different from those prevailing in most laboratory and in situ work. The development of high-pressure, high-temperature capabilities is also significant for the analysis of tectonic processes

  15. Transformations in refractory compounds, caused by high pressures and temperatures

    International Nuclear Information System (INIS)

    Zajnulin, Yu.G.; Alyamovskij, S.I.; Shvejkin, G.P.

    1979-01-01

    Considered is the effect of high pressures and temperatures on structural features of refractory carbides, nitrides and monooxides of transition metals. The results are discussed on the basis of one component of the theory on daltonides and bertollides by N.S. Kurnakov - the theory of imaginary compounds, developed by G.B. Bokij. Several new ideas, resulting from this consideration, are formulated, It is shown that at high pressures and temperatures it is possible to obtain new electron modifications of compounds and to expand sufficiently the region of the existance of variable composition phases. The concept on imaginary compounds is shown to be true. A supposition is made on realization of numerous imaginary compounds at high pressures and temperatures. Other ways of production of imaginary compounds are recommended

  16. Supercritical carbon dioxide extraction of pigments from Bixa orellana seeds (experiments and modeling

    Directory of Open Access Journals (Sweden)

    B. P. Nobre

    2006-06-01

    Full Text Available Supercritical CO2 extraction of the pigments from Bixa orellana seeds was carried out in a flow apparatus at a pressure of 200 bar and a temperature of 40 ºC at two fluid flow rates (0.67g/min and 1.12g/min. The efficiency of the extraction was low (only about 1% of the pigment was extracted. The increase in flow rate led to a decrease in pigment recovery. A large increase in recovery (from 1% to 45% was achieved using supercritical carbon dioxide with 5 mol % ethanol as extraction fluid at pressures of 200 and 300 bar and temperatures of 40 and 60 ºC. Although the increase in temperature and pressure led to an increase in recovery, the changes in flow rate did not seem to affect it. Furthermore, two plug flow models were applied to describe the supercritical extraction of the pigments from annatto seeds. Mass transfer coefficients were determined and compared well with those obtained by other researchers with similar models for the supercritical extraction of solutes from plant materials.

  17. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  18. Supercritical fluid synthesis inthe preparation of β+-emitting labelled compounds

    International Nuclear Information System (INIS)

    Jacobson, G.; Markides, K.E.; Laangstroem, B.

    1994-01-01

    A system for synthesis in supercritical fluids has been developed for the microscale synthesis of pharmaceuticals labelled with 11 C. Supercritical ammonia was selected as the reaction medium and the following variables were studied in detail: trapping efficiency, cell design, substrate concentration, operation design, and temperature and pressure conditions. Alkylation of phenol by [ 11 C]methyl iodide to yield [methyl- 11 C]anisole was used as a model reaction for evaluation of the system. The results show an increased radiochemical yield in the highly compressible near-critical region. (au) (40 refs.)

  19. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  20. Pressure and Temperature Sensors Using Two Spin Crossover Materials.

    Science.gov (United States)

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-02-02

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  1. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    Science.gov (United States)

    Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann

    2016-01-01

    The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. PMID:26848663

  2. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    Directory of Open Access Journals (Sweden)

    Catalin-Maricel Jureschi

    2016-02-01

    Full Text Available The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  3. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  4. Pressure and temperature development in solar heating system during stagnation

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Chen, Ziqian

    2010-01-01

    of the pipes of the solar collector loop. During the investigation the pre-pressure of the expansion vessel and system filling pressure was changed. The investigations showed that a large pressurised expansion vessel will protect the collector loop from critically high temperatures as long as the solar......This paper presents an investigation of stagnation in solar collectors and the effects it will have on the collector loop. At a laboratory test stand at the Technical University of Denmark, a pressurized solar collector loop was designed to test different numbers of collectors and different designs...

  5. Fluid and rock interactions in silicate and aluminosilicate systems at elevated pressure and temperature

    Science.gov (United States)

    Davis, Mary Kathleen

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubilities of cations, such as silicon, in water strongly affect both the physical and chemical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In situ Raman experiments of the silica-water, alumina-water, and alumina water systems were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples and synthetic ruby samples were used in the experiments. Samples were loaded in the sample chamber with a water pressure medium. All experiments used rhenium gaskets of uniform thickness with a 500 mum drill hole for the sample chamber. Temperature was measured using K-type thermocouples encompassing both the upper and lower diamond anvils. Pressures are obtained on the basis of the Raman shift of the 464 cm-1 quartz mode where possible or the Raman shift of the tips of the diamond anvils according to a method developed in this work. This work characterizes the state of stress in the diamond anvil cell, which is used as the basis for the pressure calibration using only the diamond anvils. Raman measurements of silicate fluid confirm the presence of H4 SiO4 and H6Si2O7 in solution and expand the pressure range for in-situ structural observations in the silica-water system. Additionally, we identify the presence of another silica species present at mantle conditions, which occurs at long time scales in the diamond cell. This study provides the first in situ data in the alumina-water and alumina-silica-water systems at pressures and temperatures relevant to the slab environment. Al(OH) 3 appears to be the dominant form of alumina present under these conditions and in the alumina

  6. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature

    International Nuclear Information System (INIS)

    Lasebikan, B.A.; Akisanya, A.R.

    2014-01-01

    The burst pressure of super duplex stainless steel pipe is measured under combined internal pressure, external axial tension and elevated temperature up to 160 °C. The experimental results are compared with existing burst pressure prediction models. Existing models are found to provide reasonable estimate of the burst pressure at room temperature but significantly over estimate the burst pressure at elevated temperature. Increasing externally applied axial stress and elevated temperature reduces the pressure capacity. - Highlights: • The burst pressure of super duplex steel is measured under combined loading. • Effect of elevated temperature on burst pressure is determined. • Burst pressure decreases with increasing temperature. • Existing models are reliable at room temperature. • Burst strength at elevated temperature is lower than predictions

  7. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550 C and 750 C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in

  8. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  9. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  10. Steady state and linear stability analysis of a supercritical water natural circulation loop

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-01-01

    Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.

  11. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    Science.gov (United States)

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  12. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  13. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    International Nuclear Information System (INIS)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.

    2015-01-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  14. Thermodynamic Analysis of a Supercritical Mercury Power Cycle

    International Nuclear Information System (INIS)

    Roberts, A.S. Jr.

    1969-04-01

    An heat engine is considered which employs supercritical mercury as the working fluid and a magnetohydrodynamic (MHD) generator for thermal to electrical energy conversion. The main thrust of the paper is power cycle thermodynamics, where constraints are imposed by utilizing a MHD generator operating between supercritical, electrically conducting states of the working fluid; and, pump work is accomplished with liquid mercury. The temperature range is approximately 300 to 2200 K and system pressure is > 1,500 atm. Equilibrium and transport properties are carefully considered since these are known to vary radically in the vicinity of the critical point, which is found near the supercritical states of interest. A maximum gross plant efficiency is 20% with a regenerator effectiveness of 90% and greater, a cycle pressure ratio of two, and with highly efficient pump and generator. Certain specified cycle irreversibilities and others such as heat losses and heat exchanger pressure drops, which are not accounted for explicitly, reduce the gross plant efficiency to a few per cent. Experimental efforts aimed at practical application of the power cycle are discouraged by the marginal thermodynamic performance predicted by this study, unless such applications are insensitive to gross cycle efficiency

  15. Thermodynamic Analysis of a Supercritical Mercury Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jr, A S

    1969-04-15

    An heat engine is considered which employs supercritical mercury as the working fluid and a magnetohydrodynamic (MHD) generator for thermal to electrical energy conversion. The main thrust of the paper is power cycle thermodynamics, where constraints are imposed by utilizing a MHD generator operating between supercritical, electrically conducting states of the working fluid; and, pump work is accomplished with liquid mercury. The temperature range is approximately 300 to 2200 K and system pressure is > 1,500 atm. Equilibrium and transport properties are carefully considered since these are known to vary radically in the vicinity of the critical point, which is found near the supercritical states of interest. A maximum gross plant efficiency is 20% with a regenerator effectiveness of 90% and greater, a cycle pressure ratio of two, and with highly efficient pump and generator. Certain specified cycle irreversibilities and others such as heat losses and heat exchanger pressure drops, which are not accounted for explicitly, reduce the gross plant efficiency to a few per cent. Experimental efforts aimed at practical application of the power cycle are discouraged by the marginal thermodynamic performance predicted by this study, unless such applications are insensitive to gross cycle efficiency.

  16. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  17. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  18. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  19. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  20. On the gasification of wet biomass in supercritical water : over de vergassing van natte biomassa in superkritiek water

    NARCIS (Netherlands)

    Withag, J.A.M.

    2013-01-01

    Supercritical water gasification (SCWG) is a challenging thermo-chemical conversion route for wet biomass and waste streams into hydrogen and/or methane. At temperatures and pressures above the critical point the physical properties of water differ strongly from liquid water or steam. Because of the

  1. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  2. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    Science.gov (United States)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-01-01

    In a recent paper in "The Physics Teacher (TPT)", DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of…

  3. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  4. Production of FAME by palm oil transesterification via supercritical methanol technology

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    The present study employed non-catalytic supercritical methanol technology to produce biodiesel from palm oil. The research was carried out in a batch-type tube reactor and heated beyond supercritical temperature and pressure of methanol, which are at 239 o C and 8.1 MPa respectively. The effects of temperature, reaction time and molar ratio of methanol to palm oil on the yield of fatty acid methyl esters (FAME) or biodiesel were investigated. The results obtained showed that non-catalytic supercritical methanol technology only required a mere 20 min reaction time to produce more than 70% yield of FAME. Compared to conventional catalytic methods, which required at least 1 h reaction time to obtain similar yield, supercritical methanol technology has been shown to be superior in terms of time and energy consumption. Apart from the shorter reaction time, it was found that separation and purification of the products were simpler since no catalyst is involved in the process. Hence, formation of side products such as soap in catalytic reactions does not occur in the supercritical methanol method.

  5. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.

    1997-01-01

    Thermal composition fluctuations in a homogeneous binary polymer blend and in a diblock copolymer were measured by small-angle neutron scattering as a function of temperature and pressure. The experimental data were analyzed with theoretical expressions, including the important effect of thermal...... fluctuations. Phase boundaries, the Flory-Huggins interaction parameter and the Ginzburg number were obtained. The packing of the molecules changes with pressure. Therefore, the degree of thermal fluctuation as a function of packing and temperature was studied. While in polymer blends packing leads, in some...... respects, to a universal behaviour, such behaviour is not found in diblock copolymers. It is shown that the Ginzburg number decreases with pressure sensitively in blends, while it is constant in diblock copolymers. The Ginzburg number is an estimation of the transition between the universality classes...

  6. Convective heat transfer in supercritical flows of CO{sub 2} in tubes with and without flow obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca

    2017-03-15

    Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO{sub 2}-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m{sup 2} s, and a heat flux range from 1 to 175 kW/m{sup 2}. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.

  7. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  8. Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1.

    Science.gov (United States)

    Somkuti, Judit; Bublin, Merima; Breiteneder, Heimo; Smeller, László

    2012-07-31

    Fish allergy is associated with IgE-mediated hypersensitivity reactions to parvalbumins, which are small calcium-binding muscle proteins and represent the major and sole allergens for 95% of fish-allergic patients. We performed Fourier transform infrared and tryptophan fluorescence spectroscopy to explore the pressure-temperature (p-T) phase diagram of cod parvalbumin (Gad m 1) and to elucidate possible new ways of pressure-temperature inactivation of this food allergen. Besides the secondary structure of the protein, the Ca(2+) binding to aspartic and glutamic acid residues was detected. The phase diagram was found to be quite complex, containing partially unfolded and molten globule states. The Ca(2+) ions were essential for the formation of the native structure. A molten globule conformation appears at 50 °C and atmospheric pressure, which converts into an unordered aggregated state at 75 °C. At >200 MPa, only heat unfolding, but no aggregation, was observed. A pressure of 500 MPa leads to a partially unfolded state at 27 °C. The complete pressure unfolding could only be reached at an elevated temperature (40 °C) and pressure (1.14 GPa). A strong correlation was found between Ca(2+) binding and the protein conformation. The partially unfolded state was reversibly refolded. The completely unfolded molecule, however, from which Ca(2+) was released, could not refold. The heat-unfolded protein was trapped either in the aggregated state or in the molten globule state without aggregation at elevated pressures. The heat-treated and the combined heat- and pressure-treated protein samples were tested with sera of allergic patients, but no change in allergenicity was found.

  9. Temperature measurement in low pressure plasmas. Temperaturmessungen im Niederdruckplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbauer, K.A.; Wilting, H.; Schramm, G. (Duesseldorf Univ. (Germany, F.R.). Abt. fuer Histologie und Embryologie)

    1989-11-01

    The present work discusses the influence of various parameters on the substrate temperature in a low pressure plasma. The measurement method chosen utilized Signotherm (Merck) temperature sensors embedded in silicon between two glass substrates. All measurements were made in a 200 G Plasma Processor from Technics Plasma GmbH. The substrate temperature is dependent on the process time, the RF power, the process gas and the position in the chamber. The substrate temperature increases with increasing process time and increasing power. Due to the location of the microwave port from the magnetron to the chamber, the substrate temperature is highest in the center of the chamber. Measurements performed in an air plasma yielded higher results than in an oxygen plasma. (orig.).

  10. Muonium kinetics in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Addison-Jones, B.; Brodovitch, J.C.; Kecman, S.; McKenzie, I.; Percival, P.W

    2003-02-01

    Muonium is long-lived in pure water and has been studied over a very wide range of temperatures and pressures, from 5 deg. C to over 400 deg. C and from 1 to 400 bar. We have determined rate constants for representative reactions of muonium in aqueous solution; equivalent data on H atom kinetics is sparse and stops well short of the maximum temperature and pressure attained in our experiments. The results show remarkable deviations from the predictions of standard reaction theories. In particular, rate constants pass through a maximum with temperature well below the critical point. This seems to be a general phenomenon, since we have observed it for spin-exchange and chemical reactions that are diffusion limited at low temperatures, as well as for activated reactions. We believe that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter. Whatever the reason, the implications are profound for both the efficiency of supercritical water oxidation reactors and for the modelling of radiation chemistry in pressurized water nuclear reactors.

  11. Muonium kinetics in sub- and supercritical water

    International Nuclear Information System (INIS)

    Ghandi, K.; Addison-Jones, B.; Brodovitch, J.C.; Kecman, S.; McKenzie, I.; Percival, P.W.

    2003-01-01

    Muonium is long-lived in pure water and has been studied over a very wide range of temperatures and pressures, from 5 deg. C to over 400 deg. C and from 1 to 400 bar. We have determined rate constants for representative reactions of muonium in aqueous solution; equivalent data on H atom kinetics is sparse and stops well short of the maximum temperature and pressure attained in our experiments. The results show remarkable deviations from the predictions of standard reaction theories. In particular, rate constants pass through a maximum with temperature well below the critical point. This seems to be a general phenomenon, since we have observed it for spin-exchange and chemical reactions that are diffusion limited at low temperatures, as well as for activated reactions. We believe that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter. Whatever the reason, the implications are profound for both the efficiency of supercritical water oxidation reactors and for the modelling of radiation chemistry in pressurized water nuclear reactors

  12. Adsorption of ethyl acetate onto modified clays and its regeneration with supercritical CO2

    Directory of Open Access Journals (Sweden)

    A. M. Cavalcante

    2005-03-01

    Full Text Available Modified clays were used to remove ethyl acetate from aqueous solutions. These clays were regenerated using supercritical CO2. Structural changes in the montmorillonite clay after treatment with quaternary amines were studied. The surface properties of the modified clay changed from highly hydrophilic to highly organophilic. The clay was regenerated by percolation of a stream of CO2 through the porous montmorillonite matrix. Different pressures and temperatures were employed, resulting in different fluid conditions (gas, liquid, and supercritical. The experimental data was fitted with a simplified model. The best desorption result was found under supercritical conditions. A crossover effect was observed. The capacity of the modified clay as a pollutant attenuator remained almost unchanged after a regeneration cycle.

  13. MIF-SCD computer code for thermal hydraulic calculation of supercritical water cooled reactor core

    International Nuclear Information System (INIS)

    Galina P Bogoslovskaia; Alexander A Karpenko; Pavel L Kirillov; Alexander P Sorokin

    2005-01-01

    Full text of publication follows: Supercritical pressure power plants constitute the basis of heat power engineering in many countries to day. Starting from a long-standing experience of their operation, it is proposed to develop a new type of fast breeder reactor cooled by supercritical water, which enables the economical indices of NPP to be substantially improved. In the Thermophysical Department of SSC RF-IPPE, an attempt is made to provide thermal-hydraulic validation of the reactor under discussion. The paper presents the results of analysis of the thermal-hydraulic characteristics of fuel subassemblies cooled by supercritical water based on subchannel analysis. Modification of subchannel code MIF - MIF-SCD Code - developed in the SSC RF IPPE is designed as block code and permits one to calculate the coolant temperature and velocity distributions in fuel subassembly channels, the temperature of fuel pin claddings and fuel subassembly wrapper under conditions of irregular geometry and non-uniform axial and radial power generation. The thermal hydraulics under supercritical pressure of water exhibits such peculiarities as abrupt variation of the thermal physical properties in the range of pseudo-critical temperature, the absence of such phenomenon as the critical heat flux which can lead to fuel element burnout in WWERs. As compared with subchannel code for light water, in order to take account of the variation of the coolant properties versus temperature in more detail, a block for evaluating the thermal physical properties of supercritical water versus the local coolant temperature in the fuel subassembly channels was added. The peculiarities of the geometry and power generation in the fuel subassembly of the supercritical reactor are considered as well in special blocks. The results of calculations have shown that considerable preheating of supercritical coolant (several hundreds degrees) can occur in the fuel subassembly. The test calculations according to

  14. Supercritical fluid chromatography in drug analysis: a literature survey.

    Science.gov (United States)

    Salvador, A; Jaime, M A; Becerra, G; Guardia, M de L

    1996-08-01

    The applications of supercritical fluid chromatography to the analysis of drugs have been carefully revised from the literature compiled in the Analytical Abstracts until March 1994. Easy-to-read tables provide useful information about the state-of-the-art and possibilities offered by SFC in pharmaceutical analysis. The tables comprise extensive data about samples analyzed, pharmaceutical principles determined, solvents used and sample quantity injected, supercritical fluids and modifiers employed, injection system, instrumentation, experimental conditions for chromatographic separations (density, pressure, flow, temperature), characteristics of columns employed (type, support, length, diameter, particle film thickness, stationary phase), detectors, type of restrictors, and also some analytical features of the methods developed (such as retention time, resolution, sensitivity, limit of detection and relative standard deviation).

  15. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R, E-mail: n.foster@unsw.edu.a [Supercritical Fluids Research Group, School of Chemical Sciences and Engineering, University of New South Wales, NSW 2052 (Australia)

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO{sub 2} (SCCO{sub 2}). The solubility of CO{sub 2} in PCL allows for the impregnation of CO{sub 2}-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO{sub 2} to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35{sup 0}C and 40 {sup 0}C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  16. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R

    2010-01-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO 2 (SCCO 2 ). The solubility of CO 2 in PCL allows for the impregnation of CO 2 -soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO 2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35 0 C and 40 0 C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  17. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    Science.gov (United States)

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  18. Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes

    International Nuclear Information System (INIS)

    Pis'menny, E.N.; Razumovskiy, V.G.; Maevskiy, E.M.; Koloskov, A.E.; Pioro, I.L.

    2006-01-01

    The results on heat transfer to supercritical water heated above the pseudo-critical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m 2 s), inlet temperature from 100 to 415 deg. C and heat flux up to 3.2 MW/m 2 . Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudo-critical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re 2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data. (authors)

  19. Numerical investigation of flow instability in parallel channels with supercritical water

    International Nuclear Information System (INIS)

    Shitsi, Edward; Debrah, Seth Kofi; Agbodemegbe, Vincent Yao; Ampomah-Amoako, Emmanuel

    2017-01-01

    Highlights: •Supercritical flow instability in parallel channels is investigated. •Flow dynamics and heat transfer characteristics are analyzed. •Mass flow rate, pressure, heating power, and axial power shape have significant effects on flow instability. •Numerical results are validated with experimental results. -- Abstract: SCWR is one of the selected Gen IV reactors purposely for electricity generation in the near future. It is a promising technology with higher efficiency compared to current LWRs but without the challenges of heat transfer and its associated flow instability. Supercritical flow instability is mainly caused by sharp change in the coolant properties around the pseudo-critical point of the working fluid and research into this phenomenon is needed to address concerns of flow instability at supercritical pressures. Flow instability in parallel channels at supercritical pressures is investigated in this paper using a three dimensional (3D) numerical tool (STAR-CCM+). The dynamics characteristics such as amplitude and period of out-of-phase inlet mass flow oscillation at the heated channel inlet, and heat transfer characteristic such as maximum outlet temperature of the heated channel outlet temperature oscillation are discussed. Influences of system parameters such as axial power shape, pressure, mass flow rate, and gravity are discussed based on the obtained mass flow and temperature oscillations. The results show that the system parameters have significant effect on the amplitude of the mass flow oscillation and maximum temperature of the heated outlet temperature oscillation but have little effect on the period of the mass flow oscillation. The amplitude of mass flow oscillation and maximum temperature of the heated channel outlet temperature oscillation increase with heating power. The numerical results when compared to experiment data show that the 3D numerical tool (STAR-CCM+) could capture dynamics and heat transfer characteristics of

  20. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  1. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  2. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  3. A novel spiral reactor for biodiesel production in supercritical ethanol

    International Nuclear Information System (INIS)

    Farobie, Obie; Sasanami, Kazuma; Matsumura, Yukihiko

    2015-01-01

    Highlights: • A novel spiral reactor for biodiesel production in supercritical ethanol was proposed. • The spiral reactor employed in this study successfully recovered heat. • The effects of temperature and time on FAEE yield were investigated. • FAEE yield as high as 0.937 mol/mol was obtained at 350 °C after 30 min. • The second-order kinetic model expressed the experimental yield well. - Abstract: A spiral reactor is proposed as a novel reactor design for biodiesel production under supercritical conditions. Since the spiral reactor serves as a heat exchanger, it offers the advantage of reduced apparatus space compared to conventional supercritical equipment. Experimental investigations were carried out at reaction temperatures of 270–400 °C, pressure of 20 MPa, oil-to-ethanol molar ratio of 1:40, and reaction times of 3–30 min. An FAEE yield of 0.937 mol/mol was obtained in a short reaction time of 30 min at 350 °C and oil-to-ethanol molar ratio of 1:40 under a reactor pressure of 20 MPa. The spiral reactor was not only as effective as conventional reactor in terms of transesterification reactor but also was superior in terms of heat recovery. A second-order kinetic model describing the transesterification of canola oil in supercritical ethanol was proposed, and the reaction was observed to follow Arrhenius behavior. The corresponding reaction rate constants and the activation energies as well as pre-exponential factors were determined

  4. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  5. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  6. Heat Transfer Experiments with Supercritical CO{sub 2} in a Vertical Circular Tube (9.0 mm)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sim, Woo Gun; Bae, Yoon Yeong [Hannam University, Daejeon (Korea, Republic of)

    2008-10-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic behaviors of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has critical pressure and temperature which is much lower than water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical circular tube with and inner diameter of 9.0mm has been performed. CO{sub 2} flows downward through the vertical circular tube for the simulation of the water rod which may be used for a moderation of the reactor. The heat transfer characteristics were analyzed and compared with the upward flow test results previously performed at the same test section at KAERI.

  7. Relationship of pressure to temperature rise in overfilled cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.

    1979-01-01

    Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)

  8. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  9. Development of Nuclear Decontamination Technology Using Supercritical Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wonyoung; Park, Kwangheon; Park, Jihye; Lee, Donghee [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Soil cleaning technologies that have been developed thus far increase treatment costs in contaminated soil recovery processes because they generate large amounts of secondary wastes. In this respect, this study is intended to develop soil decontamination methods using CO{sub 2}, which is a nontoxic, environmentally friendly substance, in order to fundamentally suppress the generation of secondary wastes from the decontamination process and to create high added values. In this study, to develop decontamination methods for uranium-contaminated soil using supercritical CO{sub 2}, a soil decontamination system using supercritical CO{sub 2} was constructed. In addition, the basic principle of supercritical CO{sub 2} decontamination using a TBP-HNO3 complex was explained. According to the results of the study, sea-sand samples having the same degree of contamination showed different results of decontamination according to the quantities of the TBP-HNO3 complex used as an extraction agent, which resulted in high extraction rates. Thus far, a most widely used method of extracting uranium has been the dissolving of uranium in acids. However, this method has the large adverse effect of generating strong acidic wastes that cannot be easily treated. On the other hand, supercritical CO{sub 2} requires critical conditions that are no more difficult to meet than those of other supercritical fluids, since its density can be changed from a very low state close to that of an ideal gas to a high state close to that of liquids. The critical gas conditions are a pressure of 71 bar and a temperature of 31 .deg. C, both of which are inexpensive to achieve. Moreover, CO{sub 2} is a solvent that is not harmful to the human body and few effects on environmental pollution. Therefore, nontoxic and environment friendly processes can be developed using supercritical CO{sub 2}. Supercritical CO{sub 2}'s advantages over prevailing methods suggest its potential for developing innovative

  10. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  11. Pressurized-helium breakdown at very low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Metas, R J

    1972-06-01

    An investigation of the electrical-breakdown behavior of helium at very low temperatures has been carried out to assist the design and development of superconducting power cables. At very high densities, both liquid and gaseous helium showed an enhancement in electric strength when pressurized to a few atmospheres; conditioned values of breakdown fields then varied between 30 and 45 MV/m. Breakdown processes occurring over a wide range of helium densities are discussed. 24 references.

  12. Pipe connection for high pressure and temperature loads

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Paetz, E.; Stach, H.

    1976-01-01

    The patent proposes an inprovement of the clamping device for a pipe joint connecting pipelines which are subject to high pressure and temperature loads, e.g. in a nuclear power plant. This clamping device may be tightened and loosened by remote control. The proposed clamping ring consists of several segments connected with each other by hinge-type guide pins and fishplates. (UWI) [de

  13. Pressure and pressure derivative analysis for injection tests with variable temperature without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Martinez, Javier Andres; Montealegre Matilde

    2008-01-01

    The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases

  14. Volatility of coal liquids at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G M; Johnston, R H; Hwang, S C; Tsonopoulos, C

    1981-01-01

    The volatility of coal liquids has been experimentally determined at 700-880 F and about 2000 psia. These measurements were made in a flow apparatus to minimize thermal decomposition effects at high temperatures. Three coal liquids in mixture with Hat2, methane, and Hat2S were investigated. Measurements were also made up to 900 F on the vapor pressure of pure compounds found in coal liquids and on the equilibrium pressure of narrow coal liquid cuts. These data were used to develop a new method for the prediction of the critical point and the superatmospheric vapour pressures of aromatic fractions that is superior to the Maxwell-Bonnell correlation. The VLE data on coal liquids and some recent high-temperature VLE data on binaries of aromatics with Hat2 or methane were analyzed with a modified Chao-Seader correlation and a modified Redlich-Kwong equation of state. Both VLE correlations are shown to be equivalent in the prediction of the volatility of coal liquids, when the new vapour pressure procedure is used.

  15. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  16. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  17. Temperature and Pressure Effects on Drilling Fluid Rheology and ECD in Very Deep Wells

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, R.; Bjoerkvoll, K.S.

    1997-12-31

    The rheological properties of drilling fluids are usually approximated to be independent of pressure and temperature. In many cases this is a good approximation. However, for wells with small margins between pore and fracture pressure, careful evaluations and analysis of the effects of temperature and pressure on well bore hydraulics and kick probability are needed. In this publication the effects of pressure and temperature are discussed and described for typical HPHT (High Pressure High Temperature) wells. Laboratory measurements show that rheology is very pressure and temperature dependent. The practical implications of these observations are illustrated through a series of calculations with an advanced pressure and temperature simulator. 10 refs., 15 figs.

  18. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T. [Los Alamos National Lab., NM (United States). Physical Organic Chemistry Group; Tiefert, K. [Hewlett-Packard Co., Inc., Santa Clara, CA (United States)

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  19. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    Science.gov (United States)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  20. Supercritical heat transfer phenomena in nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.

    2005-01-01

    A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer

  1. Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia

    International Nuclear Information System (INIS)

    Cho, Hang-Kyu; Lim, Jong Sung

    2015-01-01

    In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that 200 .deg. C was the optimal temperature, because thermal degradation of PPD occurred above 250 .deg. C. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis

  2. Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hang-Kyu; Lim, Jong Sung [Sogang University, Seoul (Korea, Republic of)

    2015-02-15

    In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that 200 .deg. C was the optimal temperature, because thermal degradation of PPD occurred above 250 .deg. C. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis.

  3. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    Science.gov (United States)

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  4. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  5. Critical review of supercritical carbon dioxide extraction of selected oil seeds

    Directory of Open Access Journals (Sweden)

    Sovilj Milan N.

    2010-01-01

    Full Text Available Supercritical carbon dioxide extraction, as a relatively new separation technique, can be used as a very efficient process in the production of essential oils and oleoresins from many of plant materials. The extracts from these materials are a good basis for the new pharmaceutical products and ingredients in the functional foods. This paper deals with supercritical carbon dioxide extraction of selected oil seeds which are of little interest in classical extraction in the food industry. In this article the process parameters in the supercritical carbon dioxide extraction, such as pressure, temperature, solvent flow rate, diameter of gound materials, and moisture of oil seed were presented for the following seeds: almond fruits, borage seed, corn germ, grape seed, evening primrose, hazelnut, linseed, pumpkin seed, walnut, and wheat germ. The values of investigated parameters in supercritical extraction were: pressure from 100 to 600 bar, temperature from 10 to 70oC, diameter of grinding material from 0.16 to 2.0 mm, solvent flow used from 0.06 to 30.0 kg/h, amount of oil in the feed from 10.0 to 74.0%, and moisture of oil seed from 1.1 to 7.5%. The yield and quality of the extracts of all the oil seeds as well as the possibility of their application in the pharmaceutical and food, industries were analyzed.

  6. Development of correlations for combustion modelling with supercritical surrogate jet fuels

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Dondapati

    2017-12-01

    Full Text Available Supercritical fluid technology finds its application in almost all engineering aspects in one or other way. Technology of clean jet fuel combustion is also seeing supercritical fluids as one of their contender in order to mitigate the challenges related to global warming and health issues occurred due to unwanted emissions which are found to be the by-products in conventional jet engine combustion. As jet fuel is a blend of hundred of hydrocarbons, thus estimation of chemical kinetics and emission characteristics while simulation become much complex. Advancement in supercritical jet fuel combustion technology demands reliable property statistics of jet fuel as a function temperature and pressure. Therefore, in the present work one jet fuel surrogate (n-dodecane which has been recognized as the constituent of real jet fuel is studied and thermophysical properties of each is evaluated in the supercritical regime. Correlation has been developed for two transport properties namely density and viscosity at the critical pressure and over a wide range of temperatures (TC + 100 K. Further, to endorse the reliability of the developed correlation, two arithmetical parameters have been evaluated which illustrates an outstanding agreement between the data obtained from online NIST Web-Book and the developed correlation.

  7. Supercritical Fluid Extraction of Lovastatin from the Wheat Bran Obtained after Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Ruchir C. Pansuriya

    2009-01-01

    Full Text Available The objective of the present work is to extract lovastatin with minimum impurity by using supercritical carbon dioxide (SC-CO2. A strain of Aspergillus terreus UV 1617 was used to produce lovastatin by solid-state fermentation (SSF on wheat bran as a solid substrate. Extraction of lovastatin and its hydroxy acid form was initially carried out using organic solvents. Among the different screened solvents, acetonitrile was found to be the most efficient. SC-CO2 was used for extraction of lovastatin from the dry fermented matter. The effect of supercritical extraction parameters such as the amount of an in situ pretreatment solvent, temperature, pressure, flow rate and contact time were investigated. The maximum recovery of lovastatin was obtained with 5 mL of methanol as an in situ pretreatment solvent for 1.5 g of solid matrix, flow rate of the supercritical solvent 2 L/min, temperature 50 °C, and contact time 155 min at a pressure 300 bar. The lovastatin extract obtained after optimizing the conditions of supercritical fluid extraction was found to have 5-fold more HPLC purity than the organic solvent extract.

  8. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  9. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  10. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  11. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  12. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  13. Experimental study on heat transfer to supercritical water flowing in 1- and 4-m-long vertical tubes

    International Nuclear Information System (INIS)

    Kirillov, Pavel; Pomet'ko, Richard; Smirnov, Aleksandr; Grabezhnaia, Vera; Pioro, Igor; Duffey, Romney; Khartabil, Hussam

    2005-01-01

    This paper presents selected on heat transfer to supercritical water flowing upward in 1- and 4-m-long vertical tubes. Supercritical water heat-transfer data were obtained at pressures of 24-25 MPa, mass fluxes of 200 - 1500 kg/m 2 s, heat fluxes up to 1050 kW/m 2 and inlet temperature from 300 to 380degC for several combinations of wall and bulk fluid temperatures that were below, at or above the pseudocritical temperature. In general, the experiments confirmed that there are three heat transfer modes for water at supercritical pressures: (1) normal heat transfer characterized in general with heat transfer coefficients (HTCs) similar to those of subcritical convective heat transfer far from critical or pseudocritical regions, which are calculated according to the Dittus-Boelter type correlations, (2) deteriorated heat transfer with lower values of the HTC and hence higher values of wall temperature within some part of a test section compared to those of normal heat transfer and (3) improved heat transfer with higher values of the HTC and hence lower values of wall temperature within some part of a test section compared to those of normal heat transfer. These new heat-transfer data are applicable as a reference dataset for future comparison with supercritical water bundle data and for the verification of scaling parameters between water and modelling fluids. (author)

  14. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  15. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  16. New pressure and temperature effects on bacterial spores

    International Nuclear Information System (INIS)

    Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  17. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  18. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  19. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils.

    Science.gov (United States)

    Crepier, Julien; Le Masle, Agnès; Charon, Nadège; Albrieux, Florian; Duchene, Pascal; Heinisch, Sabine

    2018-06-01

    Extensive characterization of complex mixtures requires the combination of powerful analytical techniques. A Supercritical Fluid Chromatography (SFC) method was previously developed, for the specific case of fast pyrolysis bio oils, as an alternative to gas chromatography (GC and GC × GC) or liquid chromatography (LC and LC × LC), both separation methods being generally used prior to mass spectrometry (MS) for the characterization of such complex matrices. In this study we investigated the potential of SFC hyphenated to high resolution mass spectrometry (SFC-HRMS) for this characterization using Negative ion Atmospheric Pressure Chemical ionization ((-)APCI) for the ionization source. The interface between SFC and (-)APCI/HRMS was optimized from a mix of model compounds with the objective of maximizing the signal to noise ratio. The main studied parameters included both make-up flow-rate and make-up composition. A methodology for the treatment of APCI/HRMS data is proposed. This latter allowed for the identification of molecular formulae. Both SFC-APCI/HRMS method and data processing method were applied to a mixture of 36 model compounds, first analyzed alone and then spiked in a bio-oil. In both cases, 19 compounds could be detected. Among them 9 could be detected in a fast pyrolysis bio-oil by targeted analysis. The whole procedure was applied to the characterization of a bio-oil using helpful representations such as mass-plots, van Krevelen diagrams and heteroatom class distributions. Finally the results were compared with those obtained with a Fourier Transform ion-cyclotron resonance mass spectrometer (FT-ICR/MS). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  1. Supercritical Extraction Process of Allspice Essential Oil

    Directory of Open Access Journals (Sweden)

    Yasvet Y. Andrade-Avila

    2017-01-01

    Full Text Available Allspice essential oil was extracted with supercritical carbon dioxide (SC-CO2 in a static process at three different temperatures (308.15, 313.15, and 318.15 K and four levels of pressure (100, 200, 300, and 360 bar. The amount of oil extracted was measured at intervals of 1, 2, 3, 4, 5, and 6 h; the most extraction yield reached was of 68.47% at 318.15 K, 360 bar, and 6 h of contact time. In this supercritical extraction process, the distribution coefficient (KD, the mean effective diffusion coefficient (Def, the energy of activation (Ea, the thermodynamic properties (ΔG0, ΔH0, and ΔS0, and the apparent solubility (S expressed as mass fraction (w/w were evaluated for the first time. At the equilibrium the experimental apparent solubility data were successfully correlated with the modified Chrastil equation.

  2. Supercritical fluid chromatography and high temperature liquid chromatography for the group-type separation of diesel fuels and heavy gas oils

    Energy Technology Data Exchange (ETDEWEB)

    Paproski, R.E.

    2008-07-01

    This thesis investigated the use of unconventional extraction columns for separating diesel fuels by supercritical fluid chromatography (SFC) and for separating heavy gas oils by high temperature normal phase high performance liquid chromatography (HPLC). The purpose was to improve group-type resolution of the fuels, although these methods are also commonly used to determine the proportion of saturates, mono-, di-, tri-, and polyaromatic hydrocarbons. Higher mobile phase flow rates and unconventional column dimensions were also studied to obtain faster analysis times with both SFC and HPLC. The highest group-type resolutions with SFC were obtained by serially coupling bare titania and bare silica columns. Short packed columns and monolithic silica columns were compared at high carbon dioxide flow rates for reducing SFC analysis time, with shortpacked columns achieving 7-fold lower separation times while maintaining significant resolution. Three diesel samples had better resolution and analysis time. A thermally stable bare zircoma column for normal phase HPLC was studied at temperatures up to 200 degrees C. An increase in temperature resulted in lower retention of twenty five aromatic model compounds. Considerable improvements in peak shape, efficiency, group-type selectivity, and column re-equilibration times were obtained at elevated temperatures. At temperatures over 100 degrees C, indole and carbazole thermally decomposed in a hexane/dichloromethane mobile phase. The first order decomposition of carbazole was studied in further detail. A high resolution method was developed using titania and silica columns with valve-switching and dual gradients to separate 3 heavy gas oils. Separation was achieved in only 3 minutes using a fast analysis time method in a titania column at high flow rates.

  3. Degradation Characteristics of Wood Using Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2012-11-01

    Full Text Available In this work, the characteristics of wood degradation using supercritical alcohols have been studied. Supercritical ethanol and supercritical methanol were used as solvents. The kinetics of wood degradation were analyzed using the nonisothermal weight loss technique with heating rates of 3.1, 9.8, and 14.5 °C/min for ethanol and 5.2, 11.3, and 16.3 °C/min for methanol. Three different kinetic analysis methods were implemented to obtain the apparent activation energy and the overall reaction order for wood degradation using supercritical alcohols. These were used to compare with previous data for supercritical methanol. From this work, the activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol for the different kinetic analysis methods used in this work. The activation energies of wood degradation in supercritical ethanol were obtained as 78.0–86.0, 40.1–48.1, and 114 kJ/mol. This paper also includes the analysis of the liquid products obtained from this work. The characteristic analysis of liquid products on increasing reaction temperature and time has been performed by GC-MS. The liquid products were categorized according to carbon numbers and aromatic/aliphatic components. It was found that higher conversion in supercritical ethanol occurs at a lower temperature than that of supercritical methanol. The product analysis shows that the majority of products fall in the 2 to 15 carbon number range.

  4. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  5. The light water integral reactor with natural circulation of the coolant at supercritical pressure B-500 SKDI

    International Nuclear Information System (INIS)

    Silin, V.A.; Voznesensky, V.A.; Afrov, A.M.

    1993-01-01

    Pressure increase in the primary circuit over the critical value gives a possibility to construct the B-500SKDI (500 MWe) lightwater integral reactor with natural circulation of the coolant in the vessel with a diameter less than 5 m. The given reactor has a high safety level, simple operability, its specific capital cost and fuel expenditure being lower as compared to a conventional PWR. The development of the reactor is carried out taking into consideration verified technical decisions of current NPPs on the basis of Russian LWR technology. (orig.)

  6. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario

    2017-08-24

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock can be a mineral such as a refractory mineral. The mineral can be an ore with high sulfide content or an ore rich in carbonaceous material. Waste can also be used as the metal-containing feedstock. The metal-containing feedstock can be used which is not subjected to ultrafine grinding. Relatively low temperatures and pressures can be used. The metal-containing feedstock can be fed into the reactor at a temperature below the critical temperature of the carbon dioxide, and an exotherm from the oxidation reaction can provide the supercritical temperature. The oxidant can be added to the reactor at a rate to maintain isothermal conditions in the reactor. Minimal amounts of water can be used as an extractive medium.

  7. Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Nikolić-Djorić, Emilija B.; Simikić, Mirko Ð.

    2014-01-01

    Highlights: • Transesterification in supercritical methanol, ethanol and 1-propanol investigated. • Effect of alcohol, reaction temperature, pressure and time on yields analyzed. • Temperature has the highest impact on yield, followed by time and pressure. • Direct material and energy costs for each of the production alternatives estimated. • Lowest costs are achieved at highest yields even at very low oil prices. - Abstract: Experiments with transesterification of rapeseed oil in supercritical alcohols (methanol, ethanol and 1-propanol) were carried out in a batch reactor at various reaction temperatures (250–350 °C), working pressure (8–12 MPa), reaction time, and constant 42:1 alcohol to oil molar ratio. Influence of different alcohols and reaction conditions on biodiesel yield was investigated using linear multiple regression models. Temperature had the highest impact on yields, followed by reaction time and pressure. With increased molecular weight of alcohols, relative importance of temperature for explanation of yields decreased and relative importance of time and pressure increased. Economic assessment has revealed that transesterification in supercritical methanol has the lowest direct material and energy costs. Yield has crucial impact on process economics. Direct costs decrease with increase in biodiesel yields. Even at very low prices of oil feedstock the lowest cost is achieved at the highest yield

  8. High Efficiency Heat Exchanger for High Temperature and High Pressure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    CompRex, LLC (CompRex) specializes in the design and manufacture of compact heat exchangers and heat exchange reactors for high temperature and high pressure applications. CompRex’s proprietary compact technology not only increases heat exchange efficiency by at least 25 % but also reduces footprint by at least a factor of ten compared to traditional shell-and-tube solutions of the same capacity and by 15 to 20 % compared to other currently available Printed Circuit Heat Exchanger (PCHE) solutions. As a result, CompRex’s solution is especially suitable for Brayton cycle supercritical carbon dioxide (sCO2) systems given its high efficiency and significantly lower capital and operating expenses. CompRex has already successfully demonstrated its technology and ability to deliver with a pilot-scale compact heat exchanger that was under contract by the Naval Nuclear Laboratory for sCO2 power cycle development. The performance tested unit met or exceeded the thermal and hydraulic specifications with measured heat transfer between 95 to 98 % of maximum heat transfer and temperature and pressure drop values all consistent with the modeled values. CompRex’s vision is to commercialize its compact technology and become the leading provider for compact heat exchangers and heat exchange reactors for various applications including Brayton cycle sCO2 systems. One of the limitations of the sCO2 Brayton power cycle is the design and manufacturing of efficient heat exchangers at extreme operating conditions. Current diffusion-bonded heat exchangers have limitations on the channel size through which the fluid travels, resulting in excessive solid material per heat exchanger volume. CompRex’s design allows for more open area and shorter fluid proximity for increased heat transfer efficiency while sustaining the structural integrity needed for the application. CompRex is developing a novel improvement to its current heat exchanger design where fluids are directed to alternating

  9. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Thermoelasticity at High Temperatures and Pressures for Ta

    International Nuclear Information System (INIS)

    Orlikowski, D; Soderlind, P; Moriarty, J A

    2004-01-01

    A new methodology for calculating high temperature and pressure elastic moduli in metals has been developed accounting for both the electron-thermal and ion-thermal contributions. Anharmonic and quasi-harmonic thermoelasticity for bcc tantalum have thereby been calculated and compared as a function of temperature (<12,000 K) and pressure (<10 Mbar). In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is closely coupled with ion-thermal contributions obtained via multi-ion, quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT). For the later contributions two separate approaches are used. In one approach, the quasi-harmonic ion-thermal contribution is obtained through a Brillouin zone sum of the strain derivatives of the phonons, and in the other the anharmonic ion-thermal contribution is obtained directly through Monte Carlo (MC) canonical distribution averages of strain derivatives on the multi-ion potentials themselves. The resulting elastic moduli compare well in each method and to available ultrasonic measurements and diamond-anvil-cell compression experiments indicating minimal anharmonic effects in bcc tantalum over the considered pressure range

  11. SiC Coating Process Development Using H-PCS in Supercritical CO2

    International Nuclear Information System (INIS)

    Park, Kwangheon; Jung, Wonyoung

    2013-01-01

    We tried SiC coating using supercritical fluids. Supercritical fluids are the substance exists over critical temperature and critical pressure. It is hard to expect that there would be a big change as single-solvent as the fluid is incompressible and the space between the molecules is almost steady. But the fluid which is being supercritical can bring a great change when it is changed its pressure near its critical point, showing its successive change in the density, viscosity, diffusion coefficient and the polarity. We have tested the 'H-PCS into SiC' coating experiment with supercritical CO 2 which has the high penetration, low viscosity as well as the high density and the high solubility that shows the property of the fluid. This experiment is for SiC coating using H-PCS in supercritical CO 2 . It shows the clear difference that the penetration of H-PCS into the SiC between dip coating method and using the supercritical CO 2 If we can make a metal cladding with SiC composites as a protective layer, the use of the cladding will be very broad and diverse. Inherent safe nuclear fuels can be possible that can stand under severe accident conditions. SiC is known to be one of a few materials that maintain very corrosion-resistant properties under tough corrosive environments. The metal cladding with SiC composites as a protective layer will be a high-tech product that can be used in many applications including chemical, material, and nuclear engineering and etc

  12. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  13. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  14. Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid

    Directory of Open Access Journals (Sweden)

    Zheng Huan-Da

    2017-01-01

    Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.

  15. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  16. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  17. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in the code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.

  18. Extraction of Genistein from Sophora flavescens with Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang-Nam; Kang, Choon-Hyoung [Chonnam National University, Gwangju (Korea, Republic of)

    2015-08-15

    This study was directed to finding an optimum extraction condition of genistein from the S. flavescens with supercritical carbon dioxide as a solvent. In this effort, effects of the extraction conditions including pressure, temperature and a co-solvent on the extraction efficiency were investigated. The aqueous ethanol and methanol solutions were used as co-solvents while the tested operating pressure and temperature ranges were from 200 bar to 300 bar and from 308.15 K to 323.15 K, respectively. The concentration of genistein was determined by means of HPLC equipped with a UV detector. From the results, it was observed that an increase in pressure led to the higher extraction efficiency. Further, methanol showed better performance as a co-solvent than ethanol. The DPPH radical scavenging activities were measured to compare antioxidant activities of S. flavescens extracts.

  19. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  20. Sensitivity analysis of CFD code FLUENT-12 for supercritical water in vertical bare tubes

    Energy Technology Data Exchange (ETDEWEB)

    Farah, A.; Haines, P.; Harvel, G.; Pioro, I., E-mail: amjad.farah@yahoo.com, E-mail: patrickjhaines@gmail.com, E-mail: glenn.harvel@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science,Oshawa, Ontario (Canada)

    2012-07-01

    The ability to use FLUENT 12 or other CFD software to accurately model supercritical water flow through various geometries in diabatic conditions is integral to research involving coal-fired power plants as well as Supercritical Water-cooled Reactors (SCWR). The cost and risk associated with constructing supercritical water test loops are far too great to use in a university setting. Previous work has shown that FLUENT 12, specifically realizable k-ε model, can reasonably predict the bulk and wall temperature distributions of externally heated vertical bare tubes for cases with relatively low heat and mass fluxes. However, sizeable errors were observed for other cases, often those which involved large heat fluxes that produce deteriorated heat transfer (DHT) regimes. The goal of this research is to gain a more complete understanding of how FLUENT 12 models supercritical water cases and where errors can be expected to occur. One control case is selected where expected changes in bulk and wall temperatures occur and they match empirical correlations' predictions, and the operating parameters are varied individually to gauge their effect on FLUENT's solution. The model used is the realizable k-ε, and the parameters altered are inlet pressure, mass flux, heat flux, and inlet temperature. (author)

  1. Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Sun Zhixin; Dai Yiping; Ma Shaolin

    2010-01-01

    Supercritical CO 2 power cycle shows a high potential to recover low-grade waste heat due to its better temperature glide matching between heat source and working fluid in the heat recovery vapor generator (HRVG). Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the cycle performance and exergy destruction in each component. The thermodynamic parameters of the supercritical CO 2 power cycle is optimized with exergy efficiency as an objective function by means of genetic algorithm (GA) under the given waste heat condition. An artificial neural network (ANN) with the multi-layer feed-forward network type and back-propagation training is used to achieve parametric optimization design rapidly. It is shown that the key thermodynamic parameters, such as turbine inlet pressure, turbine inlet temperature and environment temperature have significant effects on the performance of the supercritical CO 2 power cycle and exergy destruction in each component. It is also shown that the optimum thermodynamic parameters of supercritical CO 2 power cycle can be predicted with good accuracy using artificial neural network under variable waste heat conditions.

  2. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  3. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  4. New Challenges for the Pressure Evolution of the Glass Temperature

    Directory of Open Access Journals (Sweden)

    Sylwester J. Rzoska

    2017-11-01

    Full Text Available The ways of portrayal of the pressure evolution of the glass temperature (Tg beyond the dominated Simon–Glatzel-like pattern are discussed. This includes the possible common description of Tg(P dependences in systems described by dTg/dP > 0 and dTg/dP < 0. The latter can be associated with the maximum of Tg(P curve hidden in the negative pressures domain. The issue of volume and density changes along the vitrification curve is also discussed. Finally, the universal pattern of vitrification associated with the crossover from the low density (isotropic stretching to the high density (isotropic compression systems is proposed. Hypothetically, it may obey any glass former, from molecular liquids to colloids.

  5. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  6. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  7. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  8. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    Science.gov (United States)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  9. Supercritical Carbon Dioxide Extraction of Selected Herbal Leaves: An Overview

    Science.gov (United States)

    Hamid, I. A. Abd; Ismail, N.; Rahman, N. Abd

    2018-05-01

    Supercritical fluid extraction of carbon dioxide (SC-CO2) is one of new alternative extraction method that has been widely used to isolate bioactive components from variety of plant materials. The method was proved to be clean and safe, compatible for the extraction of edible products such as spices, food additives, medicines and nutritional supplement products compared to traditional extraction techniques such as solvent extraction, hydro distillation and steam distillation. The SC-CO2 extraction was known as highly influenced by its process parameter such as temperature and pressure for obtaining maximum yield. Therefore, a clear review on the optimum range of temperature and pressure for herbal leaves extraction using SC-CO2 is necessary for future reference. The aim of this work is to analyze the effect of temperature and pressure of SC-CO2 process without modifier on extraction yield of some selected herbal leaves i.e clubmoss, drumstick leaves, kratom leaves, mallee and myrtle leaves. The values of investigated parameters were; pressure from 8.9 to 50 MPa and temperature from 35 to 80°C. The results showed that the highest extraction yields were obtained when the pressure and temperature were above 30 MPa and 40°C. The interaction between pressure and temperature for SC-CO2 extraction of plant leaves are crucial since the values cannot be very high or very low in order to preserve the quality of the extracts.

  10. CONTEMPT, LWR Containment Pressure and Temperature Distribution in LOCA

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Cheng, Teh-Chin; Wheat, L.L.; Mings, W.J.

    1991-01-01

    1 - Description of problem or function: CONTEMPT-LT was developed to predict the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. CONTEMPT-LT calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided for fan cooler and cooling spray engineered safety systems. One to four compartments can be modeled, and any compartment except the reactor system may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. The user determines the compartments to be used, specifies input mass and energy additions, defines heat structure and leakage systems, and prescribes the time advancement and output control. CONTEMPT-LT/28-H (NESC0433/08) includes also models for hydrogen combustion. 2 - Method of solution: The initial conditions of the containment atmosphere are calculated from input values, and the initial temperature distributions through the containment structures are determined from the steady-state solution of the heat conduction equations. A time advancement proceeds as follows. The input water and energy rates are evaluated at the midpoint of a time interval and added to the containment system. Pressure suppression, spray system effects, and fan cooler effects are calculated using conditions at the beginning of a time-step. Leakage and heat losses or gains, extrapolated from the last time-step, are added to the containment system. Containment volume pressure and temperature are estimated by solving the mass, volume, and energy balance equations. Using these results as boundary conditions, the heat conduction equations

  11. Corrosion phenomena on alloy 625 in aqueous solutions containing hydrochloric acid and oxygen under subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Boukis, N.; Kritzer, P.

    1997-01-01

    Supercritical Water Oxidation (SCWO) is a very effective process to destroy hazardous aqueous wastes containing organic contaminants. The main target applications in the USA are the destruction of DOD and DOE wastes such as rocket fuels and explosives, warfare agents and organics present in low level radioactive liquid wastes. Alloy 625 is frequently used as reactor material for Supercritical Water Oxidation (SCWO) applications. This is due to the favorable combination of mechanical properties, corrosion resistance, price and availability. Nevertheless, the corrosion of alloy 625 like the corrosion of other Ni-base alloys during oxidation of hazardous organic waste containing chloride proceeds too fast and is a major problem in SCWO applications. In these experiments high pressure, high-temperature resistant tube reactors made of alloy 625 were used as specimens. They were exposed to SCWO conditions, without organics, at temperatures up to 500 C and pressures up to 37 MPa for up to 150 h. Simultaneously, coupons also made from alloy 625 are exposed inside the test tubes. The most important corrosion problem for alloy 625 is pitting and intercrystalline corrosion at temperatures near the critical temperature, i.e. in the preheater and cooling sections of the test tubes. Under certain conditions, stress corrosion cracking appears and leads to premature failure of the test reactors. The corrosion products were insoluble in supercritical water and formed thick layers in the supercritical part of the reactor. Under these layers only minor corrosion occurred. 33 refs

  12. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Xu, Hongwu [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Zhu, Jinlong [High Pressure Science and Engineering Center, Department of Physics and Astronomy, The University of Nevada, Las Vegas, Nevada 89154, USA and National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Page, Katharine, E-mail: pagekl@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-15

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2} measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.

  13. High pressure phase behaviour of the binary mixture for the 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and 2-hydroxypropyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Choi, Min-Yong

    2007-01-01

    Experimental data of high pressure phase behaviour for binary mixtures of {carbon dioxide + 2-hydroxyethyl methacrylate (HEMA)}, {carbon dioxide + 2-hydroxypropyl acrylate (HPA)}, and {carbon dioxide + 2-hydroxypropyl methacrylate (HPMA)} were determined using a static type with the variable-volume cell at temperatures from (313.2 to 393.2) K and pressures up to 27.10 MPa. Among these binary experimental data, the bubble-point data were correlated with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule containing two interaction parameters (k ij and η ij ). The (carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems exhibit type-I phase behaviour. At constant pressure, the solubility of HEMA, HPA, and HPMA for the (Carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems increases as the temperature increases

  14. Temperature and pressure instrumentation in WWERs and their testing

    International Nuclear Information System (INIS)

    Por, G.

    1998-01-01

    A description of WWER model V-213 reactors of second generation is presented and compared to analogous NPPs including description of temperature and pressure instrumentation which was tested at Paks NPP. From the experimental results it was concluded that measured response of in core neutron detector to bubbles strongly depends on the relative position of detector and point bubble injection. Neutron noise spectra show characteristic sink when the origin of bubbles is close to the detectors. Dependence of phase behaviour on the boiling conditions is included as well

  15. Static pressure and temperature coefficients of laboratory standard microphones

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1996-01-01

    of the microphone. The static pressure and temperature coefficients were determined experimentally for about twenty samples of type BK 4160 and BK 4180 microphones. The results agree almost perfectly with the predictions for BK 4160, while some modifications of the lumped parameter values are called for to make......-order approximation of resonances in the back cavity. It was found that each of the coefficients, for a given type of microphone, can be expressed by a single function when the coefficients are normalized by their low-frequency value and the frequency axis normalized by the individual resonance frequency...

  16. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  17. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  18. Effect of various experimental parameters on the swelling and supercritical extraction properties of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Hacimehmetoglu, S.; Sinag, A.; Tekes, A.T.; Misirlioglu, Z.; Canel, M. [Ankara University, Ankara (Turkey). Faculty of Science

    2007-07-01

    The original lignite sample, the samples swollen in dimethylsulfoxide (DMSO), dimethylformamide (DMF), pyridine, tetrahydrofuran (THF), acetone, ethylenediamine (EDA), N-methyl-2-pyrrolidone (NMP), tetrabutylammonium hydroxide (TBAH), the samples impregnated by ZnCl{sub 2} as catalyst and the samples both swollen in the solvents and impregnated by ZnCl{sub 2} were subjected to the supercritical toluene extraction and the effects of temperature, pressure, pre-swelling procedure, hydrogen donor solvent (tetralin), and catalyst on the extract yields were investigated.

  19. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  20. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  1. Self-contained high-pressure chambers for study on the Moessbauer effect at low temperatures

    International Nuclear Information System (INIS)

    Stepanov, G.N.

    1980-01-01

    Designs of two high-pressure chambers intended for studying the Moessbauer effect at low temperatures are described. The high-pressure chamber of the Bridgman anvil type is made of non magnetic materials and intended for operation at helium temperatures. The chamber employs a superconducting pressure gage. A sample and superconducting pressure gage are surrounded with a liquid medium of a high pressure at a room temperature. Measurements of the pressure were taken during heating the chamber in the vapours of liquid helium according to the known dependence of the lead superconducting transition temperature on pressure. The other high-pressure chamber of the piston-to-cylinder type can be used to study the Moessbauer effect at temperatures ranging from 4 to 300 K. Pressure in the chamber is measured by means of the superconducting pressure gage. The maximum pressure obtained in the chamber constitutes 25 kbar

  2. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    The supercritical CO{sub 2} Brayton cycle is gaining importance for power conversion in the Generation IV fast reactor system because of its high conversion efficiencies. When used in conjunction with a sodium fast reactor, the supercritical CO{sub 2} cycle offers additional safety advantages by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV fast reactors, supercritical CO{sub 2} temperatures could be in the range of 30°C to 650°C, depending on the specific component in the system. Materials corrosion primarily at high temperatures will be an important issue. Therefore, the corrosion performance limits for materials at various temperatures must be established. The proposed research will have four objectives centered on addressing corrosion issues in a high-temperature supercritical CO{sub 2} environment: Task 1: Evaluation of corrosion performance of candidate alloys in high-purity supercritical CO{sub 2}: The following alloys will be tested: Ferritic-martensitic Steels NF616 and HCM12A, austenitic alloys Incoloy 800H and 347 stainless steel, and two advanced concept alloys, AFA (alumina forming austenitic) steel and MA754. Supercritical CO{sub 2} testing will be performed at 450°C, 550°C, and 650°C at a pressure of 20 MPa, in a test facility that is already in place at the proposing university. High purity CO{sub 2} (99.9998%) will be used for these tests. Task 2: Investigation of the effects of CO, H{sub 2}O, and O{sub 2} impurities in supercritical CO{sub 2} on corrosion: Impurities that will inevitably present in the CO{sub 2} will play a critical role in dictating the extent of corrosion and corrosion mechanisms. These effects must be understood to identify the level of CO{sub 2} chemistry control needed to maintain sufficient levels of purity to manage corrosion. The individual effects of important impurities CO, H{sub 2}O, and O{sub 2} will be investigated by adding them

  3. Reactions of nitrate salts with ammonia in supercritical water

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.; Gloyna, E.F.; Buelow, S.J.

    1997-01-01

    Reactions involving nitrate salts and ammonia were investigated in supercritical water at temperatures from 450 to 530 C and pressures near 300 bar. Reaction products included nitrite, nitrogen gas, and nitrous oxide. Observed reaction rates and product distributions provided evidence for a free-radical reaction mechanism with NO 2 , NO, and NH 2 · as the primary reactive species at supercritical conditions. In the proposed elementary mechanism, the rate-limiting reaction step was determined to be the hydrolysis of MNO 3 species, which resulted in the formation of nitric acid and subsequently NO 2 . A simple second-order reaction model was used to represent the data. In developing an empirical kinetic model, nitrate and nitrate were lumped as an NO x - reactant. Empirical kinetic parameters were developed for four MNO x /NH 3 reacting systems, assuming first orders in both NH 3 and NO x - . Observed MNO x /NH 3 reaction rates and mechanisms suggest immediately a practical significance of these reactions for nitrogen control strategies in supercritical water oxidation processes

  4. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  5. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  6. A comparative study of solvent and supercritical Co2 extraction of Simarouba gluaca seed oil

    International Nuclear Information System (INIS)

    Anjaneyulu, B.; Satyannarayana, S.; Kanjilal, S.; Siddaiah, V.; Prasanna Rani, K.N.

    2017-01-01

    In the present study, the supercritical carbon dioxide (Co2) extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar), temperature (50–70 °C) and CO2 flow rate (10–30 g·min-1). The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1) extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1). Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1) was found to be higher than the solvent extracted oil (111 mg·kg-1). The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil. [es

  7. A comparative study of solvent and supercritical CO2 extraction of Simarouba gluaca seed oil

    Directory of Open Access Journals (Sweden)

    B. Anjaneyulu

    2017-09-01

    Full Text Available In the present study, the supercritical carbon dioxide (CO2 extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar, temperature (50–70 °C and CO2 flow rate (10–30 g·min-1. The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1 extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1. Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1 was found to be higher than the solvent extracted oil (111 mg·kg-1. The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil.

  8. Prediction of a Heat Transfer to CO{sub 2} Flowing in an Upward Path at a Supercritical Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-09-15

    This study was performed to evaluate the prediction capability of a commercial CFD code and to investigate the effects of different geometries such as a 4.4 mm tube and an 8/10 mm annular channel on the detailed flow structures. A numerical simulation was performed for the conditions, at which the experimental data was produced by the test facility SPHINX. A 2-dimensional axisymmetric steady flow was assumed for computational simplicity. The RNG k-epsilon turbulence model (RNG) with an enhanced wall treatment option, SST k-omega (SST) and low Reynolds Abid turbulence model (ABD) were employed and the numerical predictions were compared with the experimental data generated from the experiment. The effects of the geometry on heat transfer were investigated. The flow and temperature fields were also examined in order to investigate the mechanism of heat transfer near the wall. The local heat transfer coefficient predicted by the RNG model is very close to the measurement result for the tube. In contrast, the local heat transfer coefficient predicted by the SST and ABD models is closer to the measurement for the annular channel

  9. The Solubility of Tugarinovite (MoO2) in H2O at Elevated Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Pritam; Anderson, Alan J.; Lee, Thomas; Klemm, Matthias (SFX); (Augsburg)

    2017-12-18

    The solubility of tugarinovite (MoO2) in pure water was investigated at temperatures between 400 and 800°C and at pressures ranging between 95 and 480 MPa by using in situ synchrotron X-ray fluorescence (SXRF) to separately analyze high temperature aqueous solutions in a hydrothermal diamond anvil cell (HDAC). The concentration of molybdenum in the fluid at 400 and 500°C was below detection; however, at temperatures between 600 and 800°C, the solubility of tugarinovite increased with increasing temperature by two orders of magnitude. The molybdenum concentration at 600°C and 800°C is 44 ppm and 658 ppm, respectively. The results complement the data of Kudrin (1985) and provide the first measurement of MoO2solubility at pressure and temperature conditions comparable to intrusion-related Mo deposit formation. The data are also relevant to the study of water chemistry and corrosion product transport in supercritical-water-cooled reactors, where Mo-bearing steel alloys interact with aqueous solutions at temperatures greater than 600°C. The application of in situ SXRF to solubility measurements of sparingly soluble minerals is recommended because it circumvents analytical uncertainties inherent in determinations obtained by quenching and weight loss measurements.

  10. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  11. Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature

    International Nuclear Information System (INIS)

    Bremer, K; Moss, B; Leen, G; Mueller, I; Lewis, E; Lochmann, S

    2009-01-01

    This paper presents a novel concept of simultaneously measuring pressure and temperature using a silica optical fibre extrinsic Fabry-Perot interferometric (EFPI) pressure sensor incorporating a fibre Bragg grating (FBG), which is constructed entirely from fused-silica. The novel device is used to simultaneously provide accurate pressure and temperature readings at the point of measurement. Furthermore, the FBG temperature measurement is used to eliminate the temperature cross-sensitivity of the EFPI pressure sensor.

  12. A numerical thermal-hydraulic model to simulate the fast transients in a supercritical water channel subjected to sharp pressure variations

    NARCIS (Netherlands)

    Dutta, G.; Jiang, J.; Maitri, R.; Zhang, C.

    2016-01-01

    The present work demonstrates the extension of a thermal-hydraulic model, THRUST, with an objective to simulate the fast transient flow dynamics in a supercritical water channel of circular cross section. THRUST is a 1-D model which solves the nonlinearly coupled mass, axial momentum and energy

  13. High Pressure and High Temperature State of Oxygen Enriched Ice

    Science.gov (United States)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  14. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  15. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  16. Towards Overhauser DNP in supercritical CO(2).

    Science.gov (United States)

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Challenges of selecting materials for the process of biomass gasification in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Boukis, N.; Habicht, W.; Hauer, E.; Dinjus, E. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Chemie

    2010-07-01

    A new process for the gasification of wet biomass is the reaction in supercritical water. The product is a combustible gas, rich in hydrogen with a high calorific value. The reaction is performed under high temperatures - up to 700 C - and pressures up to 30 MPa. The combination of these physical conditions and the corrosive environment is very demanding for the construction materials of the reactor. Only few alloys exhibit the required mechanical properties, especially the mechanical strength at temperatures higher than 600 C. Ni-Base alloys like alloy 625 can be applied up to a temperature of 700 C and are common materials for application under supercritical water conditions. During gasification experiments with corn silage and other biomasses, corrosion of the reactor material alloy 625 appears. The gasification of an aqueous methanol solution in supercritical water at temperatures up to 600 C and 25 - 30 MPa pressure results in an product gas rich in hydrogen, carbon dioxide and some methane. Alloy 625 shows very low corrosion rates in this environment. It is obvious that the heteroatoms and salts present in biomass cause corrosion of the reactor material. (orig.)

  18. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    Science.gov (United States)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  19. Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection

    International Nuclear Information System (INIS)

    Chen, Lin; Zhang, Xin-Rong

    2014-01-01

    Highlights: • Supercritical CO 2 flow is proposed for natural circulation solar water heater system. • Experimental system established and consists of supercritical fluid high pressure side and water side. • Stable supercritical CO 2 natural convective flow is well induced and water heating process achieved. • Seasonal solar collector system efficiency above 60% achieved and optimization discussed. - Abstract: Solar collector has become a hot topic both in scientific research and engineering applications. Among the various applications, the hot water supply demand accounts for a large part of social energy consumption and has become one promising field. The present study deals with a novel solar thermal conversion and water heater system achieved by supercritical CO 2 natural circulation. Experimental systems are established and tested in Zhejiang Province (around N 30.0°, E 120.6°) of southeast China. The current system is designed to operate in the supercritical region, thus the system can be compactly made and achieve smooth high rate natural convective flow. During the tests, supercritical CO 2 pipe flow with Reynolds number higher than 6700 is found. The CO 2 fluid temperature in the heat exchanger can be as high as 80 °C and a stable supply of hot water above 45 °C is achieved. In the seasonal tests, relative high collector efficiency generally above 60.0% is obtained. Thermal and performance analysis is carried out with the experiment data. Comparisons between the present system and previous solar water heaters are also made in this paper

  20. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the