WorldWideScience

Sample records for temperature sliding wear

  1. Reciprocating sliding wear of Inconel 600 tubing in room temperature air

    International Nuclear Information System (INIS)

    Kim, Hun; Choi, Jong Hyun; Kim, Jun Ki; Hong, Hyun Seon; Kim, Seon Jin

    2003-01-01

    The sliding wear behavior of the material of a steam generator in a nuclear power station (Inconel 600) was investigated at room temperature. Effects of the wear parameters such as material combination, sliding distance and contact stress were examined with various mating materials including 304 austenitic stainless steel, Inconel 600 and Al-Cu alloy 2011. In the prediction of the wear volume by Archard's wear equation, the standard error range was calculated to be ±4.04x10 -9 m 3 and the reliability to be 71.9% for the combination of Inconel 600 and 304 stainless steel. The error range was considered to be relatively broad because the wear coefficient in Archard's equation was assumed to be a constant, regardless of the changes in the mechanical properties during the wear. In the present study, the sliding wear behavior turned out to be influenced by the material combination; the wear volume of 304 stainless steel did not linearly increase with the sliding distance, while that of other material combinations exhibited linear increases. Based on the experimental results, the wear coefficient was modified as a function of the sliding distance. The calculation with the modified wear equation showed that the error range narrowed down to ±2.60x10 -9 m 3 and the reliability increased to 75.3%, compared to Archard's original equation

  2. Sliding friction and wear behavior of high entropy alloys at room and elevated temperatures

    Science.gov (United States)

    Kadhim, Dheyaa

    Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.

  3. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  4. The unlubricated reciprocating sliding wear of 316 stainless steel in C02 in the temperature range 20 to 6000C

    International Nuclear Information System (INIS)

    Smith, A.F.

    1985-11-01

    The friction and wear behaviour of 316 stainless steel in C0 2 has been investigated in the load range 8 - 5ON from 20 to 600 0 C. Wear transitions occurred at all temperatures but were load dependent. At and below 300 0 C wear transitions only took place at low leads whereas above 300 0 C transitions were seen al all loads. The low temperature wear transition, giving an order of magnitude decrease in wear rate was associated with a change in friction behaviour. The friction force across the specimen was initially widely fluctuating and varied from cycle to cycle. After a time, which did not necessarily coincide with the wear transition the cyclic variation in the friction force become much less. This smoother sliding is thought to indicate a trend to oxide -oxide contacts. At higher temperatures wear transitions result in a two orders of magnitude reduction in wear. The corresponding friction transition was similar to the low temperature friction change but also included a marked temporary drop in the coefficient of friction. (author)

  5. High Temperature Sliding Wear of NiAl-based Coatings Reinforced by Borides

    Directory of Open Access Journals (Sweden)

    Oleksandr UMANSKYI

    2016-05-01

    Full Text Available The development of composite materials (CM in the systems “metal-refractory compound” is one of the up-to-date trends in design of novel materials aimed at operating under the conditions of significant loads at high temperature. To design such material, NiAl, which is widely used for deposition of protective coatings on parts of gas-turbine engines, was selected for a matrix. To strengthen a NiAl under the conditions of intense wear and a broad temperature range (up to 1000 °C, it is reasonable to add refractory inclusions. Introduction of refractory borides into matrix leads to a marked increase in metal wear resistance. In order to research the behavior of the designed composites at high temperatures and to study the influence of oxides on the friction processes, the authors carried out high temperature oxidation of CM of the above systems at 1000 °С for 90 min. It was determined that all of the composites were oxidized selectively and that the thickness of oxide layers formed on the boride inclusions is 3 – 7 times that on the oxides formed on the NiAl matrix. The mechanism of wear of gas-thermal coatings of the NiAl – МеB2 systems was studied for conditions of high temperature tribotests using the «pin-on-disc» technique. The obtained results indicate that introduction of TiB2, CrB2 and ZrB2 leads to their more intense oxidation during high temperature tribotests as compared to the matrix. The oxides formed on refractory borides act as solid lubricants, which promote a decrease in wear of the contact friction pairs. For more detailed investigation of the effect of tribo-oxidation products on the friction processes, tribotests were conducted for prior oxidized (at 900 °С coatings NiAl – 15 wt.% CrB2 (TiB2, ZrB2.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8093

  6. A new reciprocating sliding wear testing apparatus for high temperature gaseous environments

    International Nuclear Information System (INIS)

    Smith, A.F.; Radford, T.J.; Mawson, D.; Kaye, P.

    1988-01-01

    A new reciprocating wear testing rig is described that has been designed, built and commissioned at the Berkeley Nuclear Laboratories, United Kingdom. The objectives of this work are to improve upon the range of parameters offered by the existing rigs and to provide additional facilities for data acquisition and analysis. (author)

  7. New reciprocating sliding wear testing apparatus for high temperature gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.F.; Radford, T.J.; Mawson, D.; Kaye, P.

    1988-09-01

    A new reciprocating wear testing rig is described that has been designed, built and commissioned at the Berkeley Nuclear Laboratories, United Kingdom. The objectives of this work are to improve upon the range of parameters offered by the existing rigs and to provide additional facilities for data acquisition and analysis.

  8. Residual Stresses and Sliding Wear.

    Science.gov (United States)

    1982-05-25

    case of rolling contact, taking into account strain hardening during plastic deformation. ..-s calculations (forSAE 52100 at a hardness level of 58.5 R...can reach -800- 1000 MPa. If 033 was comparable to these values, it would indeed effect the wear rate. It is evident that an experimental deter...cc o 40 1 °2 00 I I +A ) S l~lll0 44MUK I CQ E3 e0 El 0 Uc 00 E3 (3 80 j40 c (vclq) SSHHI +ce ce mCQ ce (2E e0 4El EJ) E - 0 El 0 E0 .. t El 0 (vdNp

  9. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  10. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  11. Comparison study on resistance to wear and abrasion of high-temperature sliding strike of laser and plasma spray layer on the stainless steel surface

    International Nuclear Information System (INIS)

    Shi Shihong; Zheng Qiguang; Fu Geyan; Wang Xinlin

    2004-01-01

    In this paper, the effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal of nuclear valve seats, on wear resistance is studied. A 5-kW transverse-flowing CO 2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the laser-cladding layer have lower rate of spoiled products and higher rate of finished products. Their microstructure is extremely fine. They have close texture and small-size grain. Their dilution diluted by the compositions of their base metal and hot-effect on base metal are less. The hardness, toughness, and strength of the laser-cladding layers are higher. The grain size is 11-12th grade in the laser-cladding layer and 9-10th in the plasma spray layer. The width of combination zone between laser-cladding layer and substrate is 10-45 μm but that between plasma spray layer and substrate is 120-160 μm. The wear test shows that the laser layers have higher property of anti-friction, anti-scour, and high-temperature sliding strike. The wear resistance of laser-cladding layer is about one time higher than that of plasma spray welding layer

  12. Dry sliding wear of Ni alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-09-01

    Full Text Available Measurements of dry sliding wear are presented for ductile irons with composition Fe-3.56C-2.67Si-0.25Mo-0.5Cu and Ni contents of 0.8 and 1.5 in wt.% with applied loads of 50, 100 and 150 N for austempering temperatures of 270, 320, and 370 °C after austenitizing at 870 °C for 120 min. The mechanical property measurements show that the grades of the ASTM 897M: 1990 Standard can be satisfied for the selected austempering conditions. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Observations indicate that wear is due to subsurface fatigue with cracks nucleated at deformed graphite nodules.

  13. The effects of various reinforcements on dry sliding wear behaviour of AA 6061 nanocomposites

    International Nuclear Information System (INIS)

    Jeyasimman, D.; Narayanasamy, R.; Ponalagusamy, R.; Anandakrishnan, V.; Kamaraj, M.

    2014-01-01

    Highlights: • Wear and friction coefficient of nanocomposites were investigated. • The worn surface morphologies of nanocomposites were analysed. • The wear rate was increased with increasing load and sliding velocity. • The friction coefficient was decreased with increasing load and sliding velocity. - Abstract: The present work aims to investigate the dry sliding wear behaviour of AA 6061 nanocomposites reinforced with various nanolevel reinforcements, such as titanium carbide (TiC), gamma phase alumina (γ-Al 2 O 3 ) and hybrid (TiC + Al 2 O 3 ) nanoparticles with two weight percentages (wt.%) prepared by 30 h of mechanical alloying (MA). The tests were performed using a pin-on-disk wear tester by sliding these pin specimens at sliding speeds of 0.6, 0.9 and 1.2 m/s against an oil-hardened non-shrinking (OHNS) steel disk at room temperature. Wear tests were conducted for normal loads of 5, 7 and 10 N at different sliding speeds at room temperature. The variations of the friction coefficient and the wear rate with the sliding distances (500 m, 1000 m and 1600 m) for different normal loads and sliding velocities were plotted and investigated. To observe the wear characteristics and to investigate the wear mechanism, the morphologies of the worn surfaces were analysed using a scanning electron microscope (SEM). The formation of an oxide layer on the worn surface was examined by energy dispersive spectroscopy (EDS). The wear rate was found to increase with the load and sliding velocity for all prepared nanocomposites. Hybrid (TiC + Al 2 O 3 ) reinforced AA 6061 nanocomposites had lower wear rates and friction coefficients compared with TiC and Al 2 O 3 reinforced AA 6061 nanocomposites

  14. Synthesis and Study on Effect of Parameters on Dry Sliding Wear Characteristics of AL-SI Alloys

    Directory of Open Access Journals (Sweden)

    Francis Uchenna OZIOKO

    2012-08-01

    Full Text Available The effect of parameters on dry sliding wear characteristics of Al-Si alloys was studied. Aluminium-silicon alloys containing 7%, 12% and 14% weight of silicon were synthesized using casting method. Dry sliding wear characteristics of sample were studied against a hardened carbon steel (Fe-2.3%Cr-0.9%C using a pin-on-disc. Observations were recorded keeping two parameters (sliding distance, sliding speed and load constant against wear at room temperature. Microstructural characterization was done using optical microscope (OM and scanning electron microscope (SEM. Hardness and wear characteristics of different samples have shown near uniform behaviour. The wear rate decreased when the percentage of silicon increases. Wear was observed to increase at higher applied load, higher sliding speed and higher sliding distance. The wear characteristics of Al-14%Si was observed superior to those of Al-7%Si and Al-12%Si due to the degree of refinement of their eutectic silicon.

  15. The Sliding Wear and Friction Behavior of M50-Graphene Self-Lubricating Composites Prepared by Laser Additive Manufacturing at Elevated Temperature

    Science.gov (United States)

    Liu, Xiyao; Shi, Xiaoliang; Huang, Yuchun; Deng, Xiaobin; Lu, Guanchen; Yan, Zhao; Zhou, Hongyan; Xue, Bing

    2018-03-01

    M50 steel is widely applied to manufacture aircraft bearings where service lives are mainly determined by the friction and wear behaviors. The main purpose of this study is to investigate the tribological behaviors and wear mechanisms of M50-1.5 wt.% graphene composites (MGC) prepared by laser additive manufacturing (LAM) (MGC-LAM) sliding against Si3N4 ball from 25 to 550 °C at 18 N-0.2 m/s. XRD, EPMA, FESEM, and EDS mapping were conducted to understand the major mechanisms leading to the improvement in the sliding behavior of MGC-LAM. The results indicated that MGC-LAM showed the excellent friction and wear performance at 25-550 °C for the lower friction coefficient of 0.16-0.52 and less wear rate of 6.1-9.5 × 10-7 mm3 N-1 m-1. Especially at 350 °C, MGC-LAM obtained the best tribological performance (0.16, 6.1 × 10-7mm3 N-1 m-1). It was attributed to the dense coral-like microstructure, as well as the formed surface lubricating structure which is composed of the upper uniform lubricating film with massive graphene and the underneath compacted layer.

  16. 3D finite element modeling of sliding wear

    Science.gov (United States)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  17. Surface and sliding wear behaviour of different coatings and steels

    Energy Technology Data Exchange (ETDEWEB)

    Vera-Cardenas, E.E. [Universidad Politecnica de Pachuca, Zempoala, Hidalgo (Mexico)]. E-mail: evera@upp.edu.mx; Vite-Torres, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico)]. E-mail: drmanulvite9@hotmail.com; Lewis, R. [University of Sheffield (United Kingdom)]. E-mail: roger.lewis@sheffield.ac.uk

    2012-01-15

    In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 degrees Celsius and 45% - 50% relative humidity). The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa) and 7.84 N (Po = 1.52 GPa). Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles) where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS) was performed, as well as Scanning Electron Microscopy (SEM) and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings. [Spanish] En este trabajo se estudio el comportamiento en desgaste por deslizamiento de los recubrimientos de TiN, CrN y WC/C aplicados sobre sustratos de acero. Las pruebas se realizaron con una maquina reciprocante en condiciones secas a temperatura ambiente (20-23 grados centigrados y 45% - 50% de humedad relativa). Se empleo una velocidad promedio de 0.08 m/s y una amplitud de 2 mm. Las cargas aplicadas fueron de 11.76N (Po = 1.74 GPa) y de 7.84 N (Po = 1.52 GPa). Se realizo microscopia optica para observar las caracteristicas de las zonas de desgaste y sus posibles causas de formacion. Se obtuvo graficamente la variacion del coeficiente de friccion con el numero de ciclos. Estos datos se emplearon para determinar con mayor precision el

  18. Effect of tempering temperature on microstructure and sliding wear property of laser quenched 4Cr13 steel

    NARCIS (Netherlands)

    Ouyang, J.H.; Pei, Y.T.; Li, X.D.; Lei, T.C.

    1994-01-01

    4Cr13 martensite stainless steel was quenched by a CO2 laser and tempered for 2 h at different temperatures in the range 200 °C to 550 °C. The microstructure of treated layer was observed by SEM, XRD and TEM. Tempering leads to the decomposition of a large number of retained austenites in laser

  19. Monitoring of dry sliding wear using fractal analysis

    NARCIS (Netherlands)

    Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.

    2005-01-01

    Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power

  20. Sliding wear studies of sprayed chromium carbide-nichrome coatings for gas-cooled reactor applications

    International Nuclear Information System (INIS)

    Li, C.C.; Lai, G.Y.

    1978-09-01

    Chromium carbide-nichrome coatings being considered for wear protection of some critical components in high-temperature gas-cooled reactors (HTGR's) were investigated. The coatings were deposited either by the detonation gun or the plasma-arc process. Sliding wear tests were conducted on specimens in a button-on-plate arrangement with sliding velocities of 7.1 x 10 -3 and 7.9 mm/s at 816 0 C in a helium environment simulates HTGR primary coolant chemistry. The coatings containing 75 or 80 wt % chromium carbide exhibited excellent wear resistance. As the chromium carbide content decreased from either 80 or 75 to 55 wt %, with a concurrent decrease in coating hardness, wear-resistance deteriorated. The friction and wear behavior of the soft coating was similar to that of the bare metal--showing severe galling and significant amounts of wear debris. The friction characteristics of the hard coating exhibited a strong velocity dependence with high friction coefficients in low sliding velocity tests ad vice versa. Both the soft coating and bare metal showed no dependence on sliding velocity. The wear behavior observed in this study is of adhesive type, and the wear damage is believed to be controlled primarily by the delamination process

  1. Dry Sliding Wear Behavior of Super Duplex Stainless Steel AISI 2507: a Statistical Approach

    Directory of Open Access Journals (Sweden)

    Davanageri M.

    2016-12-01

    Full Text Available The dry sliding wear behavior of heat-treated super duplex stainless steel AISI 2507 was examined by taking pin-on-disc type of wear-test rig. Independent parameters, namely applied load, sliding distance, and sliding speed, influence mainly the wear rate of super duplex stainless steel. The said material was heat treated to a temperature of 850°C for 1 hour followed by water quenching. The heat treatment was carried out to precipitate the secondary sigma phase formation. Experiments were conducted to study the influence of independent parameters set at three factor levels using the L27 orthogonal array of the Taguchi experimental design on the wear rate. Statistical significance of both individual and combined factor effects was determined for specific wear rate. Surface plots were drawn to explain the behavior of independent variables on the measured wear rate. Statistically, the models were validated using the analysis of variance test. Multiple non-linear regression equations were derived for wear rate expressed as non-linear functions of independent variables. Further, the prediction accuracy of the developed regression equation was tested with the actual experiments. The independent parameters responsible for the desired minimum wear rate were determined by using the desirability function approach. The worn-out surface characteristics obtained for the minimum wear rate was examined using the scanning electron microscope. The desired smooth surface was obtained for the determined optimal condition by desirability function approach.

  2. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  3. A Study on the Sliding/Impact Wear of a Nuclear Fuel Rod in Room Temperature Air: (I) Development of a Test Rig and Characteristic Analysis

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2007-01-01

    A new type of a fretting wear tester has been designed and developed in order to simulate the actual vibration behavior of a nuclear fuel rod for springs/dimples in room temperature. When considering the actual contact condition between fuel rod and spring/dimple, if fretting wear progress due to the Flow-Induced Vibration (FIV) under a specific normal load exerted on the fuel rod by the elastic deformation of the spring, the contacting force between the fuel rod and dimple that were located in the opposite side should be decreased. Consequently, the evaluation of developed spacer grids against fretting wear damage should be performed with the results of a cell unit experiments because the contacting force is one of the most important variables that influence to the fretting wear mechanism. Therefore, it is necessary to develop a new type of fretting test rig in order to simulate the actual contact condition. In this paper, the development procedure of a new fretting wear tester and its performance were discussed in detail

  4. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  5. The influence of reciprocating sliding wear on the oxidation behaviour of Fe-12Cr steel

    International Nuclear Information System (INIS)

    Smith, A.F.

    1989-01-01

    Medium-chromium ferritic alloys are used extensively in advanced gas cooled reactors (AGRs). Under certain conditions these alloys can undergo breakaway oxidation in which the rate-limiting step is located at the oxide/metal interface rather than the more usual gas/oxide interface; this results in linear oxidation kinetics. Repeated removal of oxide layers can expose chromium-depleted metal to the oxidizing gas and promote nucleation of breakaway oxidation. The question has been addressed as to whether high temperature sliding wear processes can also disrupt the surface so as to make the material potentially susceptible to breakaway oxidation. High temperature reciprocating wear tests of Fe-12Cr material in both low and high pressure reactor gas have been carried out. As expected, compact adhesive load-bearing oxide and mixed oxide/metal beds form in wear regions. These contacting features wear at very low rates of less than 10 -16 m 3 (Nm) -1 . Preformed oxides wear at sufficiently low rates at high temperature as to preclude the possibility of exposure of the underlying metal to the reactor gas. It is thus unlikely that sliding wear processes will accelerate the tendency for initiation of breakaway oxidation. (author)

  6. Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition

    International Nuclear Information System (INIS)

    Anasyida, A.S.; Daud, A.R.; Ghazali, M.J.

    2010-01-01

    The purpose of this work is to understand the effect of cerium addition on wear resistance behaviour of as-cast alloys. Al-12Si-4 Mg alloys with 1-5 wt% cerium addition were prepared using the casting technique. A sliding wear test was carried out under applied loads of 10 N, 30 N and 50 N at a fixed sliding speed of 1 m/s using a pin-on-disc configuration. The wear test was conducted in dry conditions at room temperature of ∼25 o C. Detailed analysis of the microstructure, worn surface, collected debris and microhardness was undertaken in order to investigate the differences between the as-cast alloys with different levels of cerium addition. The addition of 1-5 wt% cerium was found to lead to the precipitation of intermetallic phases (Al-Ce), resulting a needle-like structures. Increasing cerium content up to 2 wt% improved both wear resistance and microhardness of as-cast alloys. Addition of more than 2 wt% cerium, however, led to a decrease in microhardness, resulting in lower wear resistance of the alloys. Moderate wear was observed at all loads, with specific wear rates (K') ranging from 6.82 x 10 -5 with 2 wt% Ce at applied load of 50 N to 21.48 x 10 -5 mm 3 /N m without added Ce at an applied load of 10 N. Based on K' ranges, the as-cast alloys exhibited moderate wear regimes, and the mechanism of wear is a combination of abrasion and adhesion. Alloy containing 2 wt% Ce, with the highest hardness and lowest K' value, showed the greatest wear resistance.

  7. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  8. Bedrock erosion by sliding wear in channelized granular flow

    Science.gov (United States)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  9. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  10. Effect of wear parameters on dry sliding behavior of Fly Ash/SiC particles reinforced AA 2024 hybrid composites

    Science.gov (United States)

    Bhaskar Kurapati, Vijaya; Kommineni, Ravindra

    2017-09-01

    In the present work AA 2024 alloy reinforced with mixtures of SiC and Fly Ash (FA) particles of 70 µm (5, 10 and 15 wt. %) are fabricated using the stir casting method. Both reinforcements are added in equal weight proportions. The wear test specimens are prepared from both the alloy and composite castings in the dimensions of Ф 4 mm and 30 mm lengths by the wire cut EDM process. The dry sliding wear properties of the prepared composites at room temperature are estimated by pin-on-disc wear testing equipment. The wear characteristics of the composites are studied by conducting the dry sliding wear test over loads of 0.5 Kgf, 1.0 Kgf, 1.5 Kgf, a track diameter of 60 mm and sliding times of 15 min, 30 min, 45min. The experimental results shows that the wear decreases with an increase in the weight percentage of FA and SiC particles in the matrix. Additionally wear increases with an increase in load and sliding time. Further, it is found that the wear resistance of the AA2024-Hybrid composites is higher than that of the AA2024 matrix.

  11. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  12. Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi's techniques

    International Nuclear Information System (INIS)

    Rashmi; Renukappa, N.M.; Suresha, B.; Devarajaiah, R.M.; Shivakumar, K.N.

    2011-01-01

    Highlights: → Successful fabrication of OMMT filled epoxy nanocomposites by high-shear mixing mehod. → Systematic tribological behaviour of the nanocomposites was made using Taguchi method. → Worn surface morphologies of the samples were discussed for different wear mechanisms. → Generation of wear data for sliding/bearing parts for different industries. -- Abstract: The aim of the research article is to study the dry sliding wear behaviour of epoxy with different wt.% of organo-modified montmorillonite (OMMT) filled nanocomposites. An orthogonal array (L 9 ) was used to investigate the influence of tribological parameters. The results indicate that the sliding distance emerges as the most significant factor affecting wear rate of epoxy nanocomposites. Experimental results showed that the inclusion of 5 wt.% OMMT nanofiller increased the wear resistance of the epoxy nanocomposite significantly. Furthermore, the worn surfaces of the samples were analyzed by scanning electron microscopy (SEM) to study the wear mechanisms and to correlate them with the wear test results.

  13. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Kiran, T.S.; Prasanna Kumar, M.; Basavarajappa, S.; Viswanatha, B.M.

    2014-01-01

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  14. The influence of reciprocating sliding wear on the oxidation behaviour of Fe-12Cr steel

    International Nuclear Information System (INIS)

    Smith, A.F.

    1988-04-01

    Medium-chromium ferritic alloys are used extensively in the boiler and core sections of advanced gas cooled reactors. It was discovered in the early 1970s, that under certain conditions these alloys could undergo the phenomenon known as breakaway oxidation. In this type of oxidation the rate limiting step is located at the oxide/metal interface rather than the more usual gas/oxide interface and results in linear oxidation kinetics. It has been shown that repeated removal of oxide layers can expose chromium depleted metal to the oxidising gas and promote nucleation of breakaway oxidation. The question has been addressed as to whether high temperature sliding wear processes can also disrupt the surface so as to make the material potentially susceptible to breakaway oxidation. To this end high temperature reciprocating wear of Fe-12Cr material in both low and high pressure reactor gas has been investigated. (author)

  15. Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites

    International Nuclear Information System (INIS)

    Aigbodion, V.S.; Hassan, S.B.; Agunsoye, J.O.

    2012-01-01

    Highlights: → The influence of wear parameters on the wear rate of RLDPE were investigated. → The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. → The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance. -- Abstract: The tribological behaviour of recycled low density polyethylene (RLDPE) polymer composites with bagasse ash particles as a reinforcement was studied using a pin-on-disc wear rig under dry sliding conditions. The influence of wear parameters like, applied load, sliding speed, sliding distance and percentage of bagasse ash fillers, on the wear rate were investigated. A plan of experiments was performed to acquire data in a controlled way. Scanning electron microscope was used to analyse the worn surface of the samples. Linear regression equation and analysis of variance (ANOVA) were employed to investigate the influence of process parameters on the wear rate of the samples. The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. The confirmation of the experiments conducted using ANOVA to verify the optimal testing parameters show that sliding speed and applied load had significant effect on the wear rate. The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance of the composite greatly.

  16. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W con...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  17. Wear calculation possibility of slide-friction pair "shaft-plain bearing" for four-stroke engines

    Science.gov (United States)

    Springis, Guntis; Rudzitis, Janis; Avisane, Anita; Kumermanis, Maris

    2013-12-01

    The issues of the service life and its prediction for main four stroke engine parts such as shaft-plain bearing have always been of particular importance. The article determines the most suitable mathematical calculation model allowing considering the set of parameters needed for the slide-friction pair's calculation, thus achieving a result as precise as possible. Since the wear process is variable and many-sided it is influenced by very many different parameters, for example, the surface geometry (roughness, waviness, form deviation, etc.), the physical and mechanical conditions of the upper layer, component material, wear regime, wear temperature, etc. The offered wear calculation model taking into consideration as much as possible wear affecting parameters is based on the fatigue theory regularities of the friction surface's destroying, using the approach of probability theory.

  18. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    International Nuclear Information System (INIS)

    Biswal, Somen; Satapathy, Alok

    2016-01-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range. (paper)

  19. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    International Nuclear Information System (INIS)

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  20. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding

    International Nuclear Information System (INIS)

    Jia, S.G.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zheng, M.S.; Zhou, G.S.

    2005-01-01

    The wear behavior of a Cu-Ag-Cr alloy contact wire against a copper-base sintered alloy strip was investigated. Wear tests were conducted under laboratory conditions with a special sliding wear apparatus that simulated train motion under electrical current conditions. The initial microstructure of the Cu-Ag-Cr alloy contact wire was analyzed by transmission electron microscopy. Worn surfaces of the Cu-Ag-Cr alloy wire were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of the Cu-Ag-Cr wire increased with increasing electrical current and sliding. Within the studied range of electrical current, the wear rate increases with increasing electrical current and sliding speed. Compared with the Cu-Ag contact wire under the same testing conditions, the Cu-Ag-Cr alloy wire has much better wear resistance. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes

  1. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  2. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  3. Wear Response of Aluminium 6061 Composite Reinforced with Red Mud at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    R. Dabral

    2017-09-01

    Full Text Available The present work is focused on the investigations on dry sliding wear behaviour of aluminium metal matrix composite at room and elevated temperature. Aluminium metal matrix composites reinforced with red mud are prepared by stir casting method. The experiments are planned using Taguchi technique. An orthogonal array, analysis of variance and signal to noise ratio are used to check the influence of wear parameters like temperature, percentage of reinforcement, mesh size, load, sliding distance and sliding speed on dry sliding wear of composites. The optimal testing parameters are found and their values are calculated which are then compared with predicted values. A reasonable agreement is found between predicted and actual values. The model prepared in the present work can be effectively used to predict the specific wear rate of the composites.

  4. Sliding wear behavior of E-glass-epoxy/MWCNT composites: An experimental assessment

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2016-03-01

    Full Text Available This investigation has evaluated the sliding wear properties of E-glass-epoxy/MWCNT (multiwalled carbon nanotube composite and Epoxy/MWCNT composite. Four different reinforcements (0, 0.5,1 and 1.5 wt % of MWCNTs are dispersed into an epoxy resin. Design of experiments (DOE and Analysis of variance (ANOVA are employed to understand the relationship between control factors (Percentage of reinforcement, Sliding distance, Sliding velocity and Normal load and response measures (specific wear rate and friction coefficient. The control variables such as sliding distance (300, 600, 900 and 1200 m and normal loads of 10, 15, 20 and 25 N and at sliding velocities of 1, 2, 3 and 4 m/s are chosen for this study. It is observed that that the specific wear rate and friction coefficient can be reduced by the addition of MWCNTs. Scanning electron microscopy (SEM is used to observe the worn surfaces of the samples. Compared with neat epoxy, the composites with MWCNTs showed a lower mass loss, friction coefficient and wear rate and these parameters decreased with the increase of MWCNT percentage. Microscopic investigation of worn out sample fracture surface has revealed that fiber debonding happens when the stresses at the fiber matrix interface exceeds the interfacial strength, causing the fiber to debond from the matrix. The optimum control variables have been derived to reduce both wear and friction coefficient of composites.

  5. Elastomers in Combined Rolling-Sliding Contact; Wear and its Underlying Mechanisms

    Science.gov (United States)

    Rowe, Kyle Gene

    Elastomeric materials, specifically rubbers, being both of a practical and scientific importance, have been the subjects of vast amounts of research spanning well over two centuries. There is currently a large effort by tire manufacturers to design new rubber compounds with lower rolling resistance, higher sliding friction, and reduced or predictable wear. At present, these efforts are primarily based on a few empirical rules and very costly trial and error testing; only a basic understanding of the mechanisms involved in the wear of elastomeric materials exists despite rigorous study. In general, the only well controlled experiments have been for simple loading and sliding schemes. The aim of this work is to characterize the tribological properties of a carbon black filled natural rubber sample. This work explores (1) its behavior in unidirectional sliding, (2) contact mechanics, (3) traction properties in combined rolling and sliding, (4) frictional heating response, and (5) wear. It was found that the friction coefficient of this material was dependent upon sliding velocity, contact pressure, and surface roughness. The high friction coefficients also lead to a bifurcation of the contact area into two different pressure regimes at sliding velocities greater than 10 mm/s . The traction response of this material in combined rolling and sliding exhibited similar behavior, being a function of the contact pressure, but not rolling velocity. The wear of this material was found to be linearly dependent upon the global slip condition and occurred preferentially on the sample. Investigations of the worn surface revealed that the most likely mechanism of wear is the degradation of surface material in a confined layer a few micrometers thick. A simple spring-mass model was developed to offer an explanation of localized wear. It was found that the coupling of system elements in the normal direction helped to shift the load from wearing elements to non-wearing ones. The

  6. Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition

    International Nuclear Information System (INIS)

    Ashok Gandhi, R.; Palanikumar, K.; Ragunath, B.K.; Paulo Davim, J.

    2013-01-01

    Highlights: ► Role of carbon nanotubes (CNTs) on wear behaviour of polypropylene (PP) is evaluated. ► Effect of applied pressure and composition against a steel counter face is investigated. ► Microstructure and worn surfaces of samples are observed by scanning electron microscope. ► The wear phenomenon has been discussed based on wear losses and worn surfaces. ► The coefficient of friction (μ) and sliding time for PP and PP/CNT blend is investigated. - Abstract: Polymers are widely used for sliding couples against metals and other materials. Polypropylene is a polymer used in variety of applications includes packaging, laboratory equipments, automotive components, etc. Polypropylene is often desirable automotive material due to its low cost, colorability, chemical resistance and UV stability. In addition the range of potential polypropylene uses is nearly unlimited through the use of modifiers, additives and fillers. In the present work, the sliding wear of polypropylene (PP) and carbon nanotube (CNT) blends are evaluated as a function of applied load and composition against a steel counter face in dry condition. The addition of CNT in PP in wear performance is investigated and presented in detail. Microstructure and worn surfaces of samples were observed by scanning electron microscope. The wear phenomenon has been discussed based on wear losses and worn surfaces

  7. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings

    Science.gov (United States)

    Wu, Shenjiang; Kousaka, Hiroyuki; Kar, Satyananda; Li, Dangjuan; Su, Junhong

    2017-01-01

    We have studied the tribological properties of bearing steel ball (Japan standard, SUJ2) sliding against tetrahedral amorphous carbon (ta-C) coatings and amorphous hydrogenated carbon (a-C:H) coatings. The reciprocating sliding testes are performed with ball-on-plate friction tester in ambient air condition. Analysis of friction coefficient, wear volume and microstructure in wear scar are carried out using optical microscopy, atom force morphology (AFM) and Raman spectroscopy. The results show the SUJ2 on ta-C coating has low friction coefficient (around 0.15) but high wear loss. In contrast, the low wear loss of SUJ2 on a-C:H coating with high (around 0.4) and unsteady friction coefficient. Some Fe2O3, FeO and graphitization have been found on the wear scar of SUJ2 sliding against ta-C coating. Nearly no oxide materials exist on the wear scar of SUJ2 against a-C:H coating. The mechanism and hypothesis of the wear behavior have been investigated according to the measurement results. This study will contribute to proper selection and understand the tribological performance of bearing steels against DLC coatings.

  8. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites

    International Nuclear Information System (INIS)

    Algul, H.; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A.

    2015-01-01

    Graphical abstract: - Highlights: • Graphene reinforced nickel matrix composites were produced by pulse electroplating method at a constant current density of 5 A/dm"2. • Incorporating graphene refines the grain size and changes the microstructure of the coating. • Incorporating graphene greatly improves the friction reduction and wear resistance of the coating. • The nickel/graphene composite coating containing 500 mg/L graphene in the electrolyte showed the best results. - Abstract: Nickel–graphene metal matrix composite coatings were fabricated by pulse electrodeposition technique from a Watt's type electrolyte. Effect of the graphene concentration in the electrolyte on the microstructure, microhardness, tribological features of nanocomposite coatings were evaluated in details. Microhardness of the composite coating was measured using a Vicker's microhardness indenter. The surfaces of the samples were characterized by scanning electron microscopy (SEM). Raman spectroscopy, EDS and XRD analysis were used to determine chemical composition and structure of composite coatings. The tribological behavior of the resultant composite coating was tested by a reciprocating ball-on disk method at constant load but varying sliding speeds for determination the wear loss and friction coefficient features against a counterface. The wear and friction variations of the electrodeposited nickel graphene nanocomposite coatings sliding against an M50 steel balls were carried out on a CSM Instrument. The friction and wear properties of the coatings were examined without any lubrication at room temperature in the ambient air. The change in wear mechanisms by changing graphene nanosheets content was also comprehensively studied.

  9. The effects of retained austenite on dry sliding wear behavior of carburized steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Jun [Research Inst. of Industrial Science and Technology, Steel Products Dept., Pohang (Korea, Republic of); Kweon, Young-Gak [Research Inst. of Industrial Science and Technology, Steel Products Dept., Pohang (Korea, Republic of)

    1996-04-01

    Ring-on-square tests on two kinds of low-alloy carburized steel which were AISI 8620 and 4140 were carried out to study the dry sliding wear behavior. The influence of different retained austenite level of 6% to 40% was evaluated while trying to eliminate other factors. Test results show that the effects of grain size and carburized steel species are negligible in dry sliding wear behavior. While the influence of retained austenite is negligible at 20 kg load condition, wear resistance is decreased at 40 kg load condition as the retained austenite level is increased from 6% to 30%. However, wear resistance is again increased above about 30% of retained austenite level at 40 kg load condition. (orig.)

  10. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    OpenAIRE

    N. Panwar; R.P. Poonia; G. Singh; R. Dabral; A. Chauhan

    2017-01-01

    In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear...

  11. Severe wear behaviour of alumina balls sliding against diamond

    Indian Academy of Sciences (India)

    Wear and friction data were recorded for microwave plasma chemical vapour deposition (MWCVD) grown PCD coatings of four different types, out of which two ... CSIR–Central Glass & Ceramic Research Institute, Kolkata 700032, India; Department of Chemistry, National Institute of Technology, Durgapur 713209, India ...

  12. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    International Nuclear Information System (INIS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-01-01

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS 2 and MoS 2 . • WS 2 and MoS 2 are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS 2 and MoS 2 , where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  13. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    Energy Technology Data Exchange (ETDEWEB)

    Hovsepian, Papken Eh., E-mail: p.hovsepian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Mandal, Paranjayee, E-mail: 200712mum@gmail.com [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Ehiasarian, Arutiun P., E-mail: a.ehiasarian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Sáfrán, G., E-mail: safran.gyorgy@ttk.mta.hu [Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thegeut 29-33 (Hungary); Tietema, R., E-mail: rtietema@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands); Doerwald, D., E-mail: ddoerwald@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands)

    2016-03-15

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS{sub 2} and MoS{sub 2}. • WS{sub 2} and MoS{sub 2} are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS{sub 2} and MoS{sub 2}, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  14. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    Science.gov (United States)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  15. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  16. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    International Nuclear Information System (INIS)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M.

    2002-01-01

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s

  17. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    Energy Technology Data Exchange (ETDEWEB)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M

    2002-02-15

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s.

  18. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  19. Role of PET in improving wear properties of PP in dry sliding condition

    Indian Academy of Sciences (India)

    Unknown

    ... blends were studied using scanning elec- tron microscopy. Sliding wear properties of these blends have been determined and studied for various blend com- positions. 2. Materials and methods. 2.1 Materials. Isotactic polypropylene PP (density 0⋅91 g/cc, grade SRM. 100 N) was obtained from M/s Indian Petrochemicals.

  20. Dry sliding wear behaviour of heat treated iron based powder metallurgy steels with 0.3% Graphite + 2% Ni additions

    International Nuclear Information System (INIS)

    Tekeli, S.; Gueral, A.

    2007-01-01

    To determine the effect of various heat treatments on the microstructure and dry sliding wear behaviour of iron based powder metallurgy (PM) steels, atomized iron powder was mixed with 0.3% graphite + 2% Ni. The mixed powders were cold pressed at 700 MPa and sintered at 1200 deg. C for 30 min under pure Ar gas atmosphere. One of the sintered specimens was quenched from 890 deg. C and then tempered at 200 deg. C for 1 h. The other sintered specimens were annealed at different intercritical heat treatment temperatures of 728 and 790 deg. C and water quenched. Through this intercritical annealing heat treatment, the specimens with various ferrite + martensite volume fractions were produced. Wear tests were carried out on the quenched + tempered and intercritically annealed specimens under dry sliding conditions using a pin-on-disk type machine at constant load and speed and the results were compared in terms of microstructure, hardness and wear strength. It was seen that hardness and wear strength in intercritically annealed specimens were higher than that of quenched + tempered specimen

  1. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  2. Site specific SEM/FIB/TEM for analysis of lubricated sliding wear of aluminium alloy composites

    International Nuclear Information System (INIS)

    Walker, J C; Jones, H; Rainforth, W M

    2006-01-01

    Although extensive research has been undertaken into the dry sliding wear of aluminium alloys, only limited work has been reported on lubricated wear. In this paper, the lubricated sliding wear of some powder derived aluminium alloy composites is reported. Stereo pairs of the worn surface were obtained in the SEM and digitally reconstructed to give an accurate projection of the surface topography. Analysis of the average surface roughness (R a ) along chosen sections provided quantitative information about the wear mechanism. Following this, dual beam focused ion beam (FIB) was undertaken to further explore the features revealed by the SEM surface reconstructions, with TEM sections removed from selected regions. Surface deformation was confined to a narrow layer, typically 1μm thick. Subgrain size within the subsurface layer was comparable to that found in dry sliding wear tests. Reinforcement fracture occurred in the surface particles only. The resultant fragments were often incorporated back into the surface following detachment, such that the total volume fraction reinforcement at the surface was greater than in the bulk. Thus, the dynamic surface topography was a result of three factors: surface deformation, local detachment of reinforcement and re-incorporation of the fragments back into the surface

  3. Wear mechanisms and friction parameters for sliding wear of micron-scale polysilicon sidewalls

    NARCIS (Netherlands)

    Alsem, D. H.; van der Hulst, R.; Stach, E. A.; Dugger, M. T.; De Hosson, J. Th. M.; Ritchie, R. O.

    As tribological properties are critical factors in the reliability of silicon-based microelectromechanical systems, it is important to understand what governs wear and friction. Average dynamic friction, wear volumes and morphology have been studied for polysilicon devices fabricated using the

  4. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Algul, H., E-mail: halgul@sakarya.edu.tr; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A.

    2015-12-30

    Graphical abstract: - Highlights: • Graphene reinforced nickel matrix composites were produced by pulse electroplating method at a constant current density of 5 A/dm{sup 2}. • Incorporating graphene refines the grain size and changes the microstructure of the coating. • Incorporating graphene greatly improves the friction reduction and wear resistance of the coating. • The nickel/graphene composite coating containing 500 mg/L graphene in the electrolyte showed the best results. - Abstract: Nickel–graphene metal matrix composite coatings were fabricated by pulse electrodeposition technique from a Watt's type electrolyte. Effect of the graphene concentration in the electrolyte on the microstructure, microhardness, tribological features of nanocomposite coatings were evaluated in details. Microhardness of the composite coating was measured using a Vicker's microhardness indenter. The surfaces of the samples were characterized by scanning electron microscopy (SEM). Raman spectroscopy, EDS and XRD analysis were used to determine chemical composition and structure of composite coatings. The tribological behavior of the resultant composite coating was tested by a reciprocating ball-on disk method at constant load but varying sliding speeds for determination the wear loss and friction coefficient features against a counterface. The wear and friction variations of the electrodeposited nickel graphene nanocomposite coatings sliding against an M50 steel balls were carried out on a CSM Instrument. The friction and wear properties of the coatings were examined without any lubrication at room temperature in the ambient air. The change in wear mechanisms by changing graphene nanosheets content was also comprehensively studied.

  5. Isotopic study of the wear of sliding bearings with plastic friction surface

    International Nuclear Information System (INIS)

    Pandur, J.; Varkonyi, A.

    1978-01-01

    A new complex device has been elaborated for the investigation of the duration of bearings in the Institute of Isotopes of the Hungarian Academy of Sciences. The simultaneous determination of wear by an isotopic method the coefficient of friction by means of a Wheatstone bridge and the bearing temperature by means of a thermoresistor is described. Dynamic loading and variable revolution per minute are applied to produce a forced wear of the bearings. The isotopically labelled wear products are removed by oil and the collected sample is measured by a scintillation detector. Wear of a steel axle in plastic housing and plastic coated axle in cast iron housing was determined. (V.N.)

  6. Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

    Science.gov (United States)

    Das, Prithika; Satapathy, Alok; Mishra, M. K.

    2018-03-01

    The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

  7. Initial Sliding Wear Kinetics of Two Types of Glass Ionomer Cement: A Tribological Study

    Directory of Open Access Journals (Sweden)

    Cyril Villat

    2014-01-01

    Full Text Available The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement under sliding friction after 28-day storing in distilled water or Ringer’s solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student’s t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P>0.05. However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P<0.0001. The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material.

  8. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel

    Science.gov (United States)

    Sun, Y.; Moroz, A.; Alrbaey, K.

    2014-02-01

    Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.

  9. Effects of Material Combinations on Friction and Wear of PEEK/Steel Pairs under Oil-Lubricated Sliding Contacts

    Science.gov (United States)

    Akagaki, T.; Nakamura, T.; Hashimoto, Y.; Kawabata, M.

    2017-05-01

    The effects of material combinations on the friction and wear of PEEK/steel pairs are studied using blocks on a ring wear tester under oil-lubricated conditions. The rings are made of forged steel (SF540A) and a PEEK composite filled with 30 wt% carbon fibre. The surface roughness is 0.15 and 0.32 μm Ra, respectively. The blocks are also made of the same materials as the rings: the forged steel and the PEEK composite. Finished with an emery paper of #600, the surface roughness is 0.06 and 0.23 μm Ra, respectively. Sliding tests for 4 combinations of two materials are conducted. The load is increased up to 1177 N at 1 N s-1. The sliding velocity is varied in the range of 10 to 19 m s-1. In some cases, the ring temperature is measured with a thermocouple with a diameter of 0.5 mm, located 1 mm below the frictional surface. Results indicate that the forged steel’s ring and the PEEK composite’s block is the best combination among 4 combinations, because seizure does not occur under the increasing load up to 1177 N at the sliding velocity of 10-19 m s-1. In contrast, seizure occurs at 15 and 19 m s-1 in the other three combinations. However, the PEEK composite’s ring shows a lower friction coefficient as compared to the forged steel’s ring, when seizure does not occur. Wear scars are observed with a scanning electron microscope (SEM). The seizure mechanisms are then discussed.

  10. Application of x-ray diffraction techniques to the understanding of the dry sliding wear behaviour of aluminium and titanium

    International Nuclear Information System (INIS)

    Zoheir, N.; Ahmet, T.A.; Northwood, D.O.

    1996-01-01

    Dry sliding wear tests were performed on polycrystalline f.c.c. Al and h.c.p. Ti specimens using a block-on-ring type wear machine with a rotating ring made of 52100 bearing steel. The sliding speed was 0.13 m.s sup -l and the applied normal load was 10 N. The wear tests were performed on a single specimen in ambient conditions and the texture was evaluated during wear using an X-ray diffraction inverse pole figure technique at a range of sliding distances. Pole density distributions for the [0001] and [111) poles for of Ti and Al, respectively, were then determined from the inverse pole figures. The texture evolution during sliding wear was subsequently related to the friction and wear behaviour. For the aluminum sample, a (111) texture developed parallel to the worn surface with increasing sliding distance (a 6 fold increase in the (111) pole density as the sliding distance increases from 0 to 2714 m). The titanium sample (normal section) which had a preferred orientation with the basal poles, [0001), parallel to the contact surface prior to testing, an increase in wear, i.e. sliding distance, did not change the texture. However, for the transverse section of titanium, the basal pole, [0001), density parallel to the worn surface increased with increasing sliding distance. The shape of the coefficient of friction versus sliding distance curve is strongly influenced by crystallographic texturing. A drop in the coefficient of friction with the progressive development of the [111) and [0001) texture was observed for both Al and Ti (transverse section) specimens, respectively

  11. Erosion by sliding wear in granular flows: Experiments with realistic contact forces

    Science.gov (United States)

    Stark, C. P.; Hung, C. Y.; Smith, B.; Li, L.; Grinspun, E.; Capart, H.

    2015-12-01

    Debris flow erosion is a powerful and sometimes dominant process in steep channels. Despite its importance, this phenomenon is relatively little studied in the lab. The large drum experiments of Hsu are a notable exception, in which almost-field-scale impact forces were generated at the head of a synthetic debris flow whose properties (grain size, proportion of fines, etc) were varied widely.A key challenge in these and similar experiments is to explore how erosion rate varies as a function of the scale of the flow (thereby varying inertial stresses, impact forces, etc). The geometrical limitations of most lab experiments, and their short run time, severely limit the scope of such explorations.We achieve this scale exploration in a set of drum erosion experiments by varying effective gravity across several orders of magnitude (1g, 10g, 100g) in a geotechnical centrifuge. By half-filling our 40cm-diameter drum with dry 2.3mm grains, placing a synthetic rock plate at the back and a glass plate at the front 3cm apart, and rotating the drum at 1-50rpm, we simulate wear in a channelized dry granular flow. In contrast to Hsu's experiments, we focus on sliding wear erosion at the flow boundary rather than impact/frictional wear at the flow head. By varying effective gravity from 1g-100g we can tune the pressure exerted by the grains at the boundary without having to change the scale of our apparatus. Using a recently developed depth-averaged, kinetic-energy closure theory for granular flow, we can simultaneously tune the drum rotation rate such that the flow dynamics remain invariant. We can thereby explore how changing the scale of a granular flow, and thus the contact forces of grains on the boundary, controls the rate of rock erosion. Using a small apparatus we can simulate the erosion generated by debris flows several meters deep involving grains up to 10cm in diameter.Our results suggest that sliding wear is the main erosion process, and are consistent with Archard

  12. Sliding wear characteristics of carburized steels and thermally refined steels implanted with nitrogen ions

    International Nuclear Information System (INIS)

    Terashima, Keiichi; Koda, Hiroyuki; Takeuchi, Eiichi.

    1995-01-01

    In order to concretely examine the application of surface reforming by ion implantation, nitrogen ion implantation was applied to the thermally refined steels S45C and SCM440 and the carburized steel SCM415, which are high versatile steels for mechanical structures, and their friction and wear characteristics were examined. The results are summarized as follows. In the surface-reformed material, in which nitrogen was implanted for the purpose of improving the seizure durability of the carburized steel, the load-frictional coefficient curve in lubricated sliding friction was similar to that of the material without implantation, but it was recognized that the load at which seizure occurred reached 2000 kgf or more, and as the amount of implantation was more, the material withstood higher load. In the lubricated sliding friction using a pin-ring type wear testing machine of the thermally refined steels and those to which implantation was applied, it was recognized that the specific wear amount was less in the implanted steels than in those without implantation. The results of the analysis of the implanted surface layers and the friction surfaces are reported. (K.I.)

  13. EFFECT OF THE TEMPERATURE ON THE FRICTION AND WEAR PROPERTIES OF BULK AMORPHOUS ALLOY

    OpenAIRE

    DAWIT ZENEBE SEGU; PYUNG HWANG; SEOCK-SAM KIM

    2014-01-01

    The present paper report the results of an experimental investigation of the temperature effect on the sliding friction and wear properties of the bulk metallic glass (BMG). To improve the friction and wear properties of the BMG, the disk specimens were developed in the alloy system of Fe67.6C7.1Si3.3B5.5P8.7Cr2.3Mo2.6Al2Co1.0 using hot metal and industrial ferro-alloys. The friction and wear test was performed using flat-on-flat contact configuration of unidirectional tribometer and Si3N4 ce...

  14. Wirelessly Interrogated Wear or Temperature Sensors

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  15. Experimental Investigation of Friction Coefficient and Wear Rate of Composite Materials Sliding Against Smooth and Rough Mild Steel Counterfaces

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2013-12-01

    Full Text Available In the present study, friction coefficient and wear rate of gear fiber reinforced plastic (gear fiber and glass fiber reinforced plastic (glass fiber sliding against mild steel are investigated experimentally. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when smooth or rough mild steel pin slides on gear fiber and glass fiber disc. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative humidity 70%. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities are investigated. Results show that friction coefficient is influenced by duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for gear fiber and glass fiber mating with smooth or rough mild steel counterface. On the other hand, it is also found that friction coefficient increases with the increase in sliding velocity for both of the tested materials. Moreover, wear rate increases with the increase in normal load and sliding velocity. The magnitudes of friction coefficient and wear rate are different depending on sliding velocity and normal load for both smooth and rough counterface pin materials.

  16. Comparison of sliding friction and wear behaviour of overhead conveyor steels tested under dry and lubrication conditions

    International Nuclear Information System (INIS)

    Castro-Regal, G.; Fernandez-Vicente, A.; Martinez, M. A.

    2005-01-01

    The sliding friction and wear behaviour of different steel qualities were investigated with and without lubrication conditions. Steel qualities tested are normally used in the overhead conveyor system of many industrial fields, like the automotive sector. Sliding wear tests have been conducted by means of a pin-on-disk machine. A 100Cr6 steel similar to that used within the overhead conveyor trolleys has been employed as a pin. Friction coefficient values obtained under lubrication conditions were three times smaller than those obtained without lubrication. The mechanism that controls wear behaviour under lubrication conditions is an abrasive one and the wear values obtained are almost worthless. On the other hand, mechanism controlling wear during non lubrication tests, was a combination of abrasion and adhesion. (Author) 20 refs

  17. Initial sliding wear kinetics of two types of glass ionomer cement: a tribological study.

    Science.gov (United States)

    Villat, Cyril; Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P glass ionomer cement weakens the tribological behaviour of this material.

  18. Dry Sliding Wear Behavior of A356 Alloy/Mg2Sip Functionally Graded in-situ Composites: Effect of Processing Conditions

    Directory of Open Access Journals (Sweden)

    S.C. Ram

    2016-09-01

    Full Text Available In present study, the effect of dry sliding wear conditions of A356 alloy/Mg2Sip functionally graded in-situ composites developed by centrifugal casting method has been studied. A pure commercial A356 alloy (Al–7.5Si–0.3Mg was selected to be the matrix of the composites and primary Mg2Sip reinforcing particles were formed by in-situ chemical reaction with an average grain size of 40-47.8 µm. The Al–(Mg2Sip functionally graded metal matrix composites (FGMMC’s were synthesized by centrifugal casting technique with radial geometry, using two different mould rotating speeds ( 1200 and 1600 rpm. The X-ray diffraction (XRD characterization technique was carried out to confirm the in-situ formed Mg2Si particles in composites. Optical microscopy examination was carried out to reveals the grain refinement of Al-rich grains due to in-situ formed Mg2Si particles. Scanning electron microscope (SEM and Energy dispersive X-ray spectroscopy (EDS techniques were carried out to reveal the distribution of phases, morphological characteristics and confirmation of primary Mg2Si particles in the matrix. The sliding wear behavior was studied using a Pin-on-Disc set-up machine with sliding wear parameters: effect of loads (N, effect of sliding distances (m and effect of Mg on wear at room temperature with a high-carbon chromium steel disc (HRC-64 as counter surfaces. A good correlation was evidenced between the dry sliding behaviour of functionally graded in-situ composites and the distribution of Mg2Si reinforcing particles. Beside the above processing conditions, the dominant wear mechanisms of functionally graded in-situ composites have been correlated with the microstructures. The hardness and wear resistance properties of these composites increase with increasing volume percent of reinforced primary Si/Mg2Si particles toward inner zone of cast cylindrical shapes. The objective of this works was to study the tribological characteristics under dry sliding

  19. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    International Nuclear Information System (INIS)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In

    2000-03-01

    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  20. Experimental Investigation of Friction Coefficient and Wear Rate of Composite Materials Sliding Against Smooth and Rough Mild Steel Counterfaces

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman; B.K. Roy; S. Samad; R. Sarker; A.H.M. Rezwan

    2013-01-01

    In the present study, friction coefficient and wear rate of gear fiber reinforced plastic (gear fiber) and glass fiber reinforced plastic (glass fiber) sliding against mild steel are investigated experimentally. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when smooth or rough mild steel pin slides on gear fiber and glass fiber disc. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative h...

  1. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  2. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  3. Influence of Rock Properties on Wear of M and SR Grade Rubber with Varying Normal Load and Sliding Speed

    Directory of Open Access Journals (Sweden)

    Pal Samir Kumar

    2017-09-01

    Full Text Available Rubbers are interesting materials and are extensively used in many mining industries for material transportation. Wear of rubber is a very complex phenomenon to understand. The present study aims to explain the influence of rock properties on wear of M and SR grade rubber used in top cover of conveyor belts. Extensive laboratory experiments were conducted under four combinations of normal load and sliding speed. The wear of both the rubber types were analyzed based on the rock properties like shear strength, abrasivity index and fractal dimension. A fully instrumented testing set up was used to study the wear of rubber samples under different operating conditions. In general, wear was higher for M grade rubber compared to SR grade rubber. Increase in shear strength of rocks depicts decreasing trend for the wear of M and SR grade rubber at lower load conditions. Moreover, a higher load combination displays no definite trend in both the rubbers. The strong correlation between the wear of rubber and frictional power for all rubber-rock combinations has given rise to the parameter A, which reflects the relative compatibility between the rubber and rock. Increase of Cerchar’s Abrasivity Index of rocks shows gradual enhancement in wear for M grade rubber in all the load and speed combinations whereas, it fails in SR grade rubber due to its higher strength. The wear of rubber tends to decrease marginally with the surface roughness of rocks at highest normal load and sliding speed in M grade rubber. However, the wear of M and SR grade rubber is influenced by the surface roughness of rocks.

  4. THE EFFECT OF VARIOUS PARAMETERS ON DRY SLIDING WEAR BEHAVIOR AND SUBSURFACE OF AGED HYBRID METAL MATRIX COMPOSITES USING TAGUCHI TECHNIQUE

    Directory of Open Access Journals (Sweden)

    B.M. Viswanatha

    2017-06-01

    Full Text Available The effects of applied load, sliding speed and sliding distance on the dry sliding wear behavior of aged Al-SiCp-Gr composites were investigated. The specimen were fabricated by stir-casting technique. The pin-on-disc wear testing machine was used to investigate the wear rate by design of experiments based on L27 using Taguchi technique. Sliding distance was the most important variable that influenced the wear rate followed by sliding speed and applied load. The worn out surfaces were analyzed by SEM and EDS to study the subsurface mechanism of wear. The addition of reinforcements showed improved tribological behavior of the composite than base alloy.

  5. Study of Surface Wear and Damage Induced by Dry Sliding of Tempered AISI 4140 Steel against Hardened AISI 1055 Steel

    Directory of Open Access Journals (Sweden)

    A. Elhadi

    2016-12-01

    Full Text Available In industry, the sliding mechanical systems are subject to friction and wear phenomena. These phenomena can be the origin of a reduction of the efficiency of the mechanical system even to be responsible for its incapacity. Generally, the materials of the parts which are moving relative (tribological couple of these systems are low alloy steels and carbon steels, thanks to their good mechanical and tribological properties. The present work aimed to study, the surface wear and damage induced by dry sliding of hard carbon steel AISI 1055 (disc against tempered low alloy steel AISI 4140 (pin with different hardness and applied loads was investigated. The results revealed that the interaction between the applied load and pin hardness result in complex thermo-mechanical behaviour of the worn surfaces. When a lower hardness pin is used, the main wear mechanisms observed on the discs were abrasion, adhesion, and oxidation. When a higher hardness pin is used, the wear of the discs is governed by delamination, oxidation, and plastic deformation. In particular, third-body wear occurs at high applied load resulting in higher wear rate of high hardness pins compared to low hardness pins.

  6. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  7. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method

    Science.gov (United States)

    Kadam, Nikhil Rajendra; Karthikeyan, Ganesarethinam

    2016-10-01

    The purpose of the experiments in this paper is to use the Taguchi methods to investigate the wear of WC/C coated nitrided AISI 4140 alloy steel. A study of lamellar WC/C coating which were deposited by a physical vapor deposition on nitrided AISI 4140 alloy steel. The investigation includes wear evaluation using Pin-on-disk configuration. When WC/C coated AISI 4140 alloy steel slides against EN 8 steel, it was found that carbon-rich coatings show much lower wear of the countersurface than nitrogen-rich coatings. The results were correlated with the properties determined from tribological and mechanical characterization, therefore by probably selecting the proper processing parameters the deposition of WC/C coating results in decreasing the wear rate of the substrate which shows a potential for tribological application.

  8. Early stages of sliding wear behaviour of Al2O3 and SiC reinforced aluminium

    International Nuclear Information System (INIS)

    Bonollo, F.; Ceschini, L.; Garagnani, G.L.; Palombarini, G.; Tangerini, I.; Zambon, A.

    1993-01-01

    Al matrix composites reinforced by 10 vol.% Al 2 O 3 and SiC particles were subjected to dry sliding tests against steel using a slider-on-cylinder tribometer. Damage mechanisms were 'micro-machining' of the steel carried out by ceramic particles, plastic deformation and oxidation of the metal matrix, as well as abrasion. The results were discussed on the basis of the third-body wear model. (orig.)

  9. Microstructure and High-temperature Wear Behavior of Hot-dipped Aluminized Coating on Different Substrate Materials

    Directory of Open Access Journals (Sweden)

    ZHOU De-qin

    2018-02-01

    Full Text Available The aluminized 45 and H13 steel were prepared via hot-dipped aluminizing and subsequently high-temperature diffusion treatment. The phase, morphology and composition of aluminized coating were characterized by XRD,SEM and EDS methods. Comparative study was performed on unlubricated sliding wear behavior of plating under different substrates on a pin-on-disc wear tester, and the wear mechanism was explored. The results show that the coating is composed of ductile phases FeAl and Fe3Al. Kikendall porosity parallel to the surface exists around the interface of the two phases; because of the carbide particles agglomeration, the bond between the coating and H13 steel is apparently inferior to that in the case of 45 steel; the aluminized 45 steel possesses an excellent wear resistance under 50-200N at 400℃, whereas mild-to-severe wear transition occurs when the temperature increases to 600℃. The wear rate of the aluminized H13 steel reaches the lowest at 400℃, then slightly increases at 600℃. The wear mechanisms of Fe-Al coating are mainly predominated by oxidative mild wear, whereas the extrusion wear prevails in the process for aluminized 45 steel at 600℃.

  10. Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Zhang Di; Li Guobin

    2005-01-01

    This paper reports a study on the wear property of powder metallurgy aluminum matrix composites 9Si/Al-Cu-Mg. A on rock wear-testing machine is used to evaluate the wear property of the composites, in which a GCrl5 steel ring is used as the counter face material. The wear behavior of the composites under different conditions is studied. The optical microscope and scanning electron microscope are used to analyze the worn surfaces and the subsurface of the composites in order to research the wear mechanism of the composites. Results indicate that the weight loss of the composite were lower than that of the matrix alloy

  11. Influence of aluminium content on the physical, mechanical and sliding wear properties of zinc-based alloys

    International Nuclear Information System (INIS)

    Prasad, B.K.; Patwardhan, A.K.; Yegneswaran, A.H.

    1997-01-01

    Attention has been focussed on the influence of Al content on the physical, mechanical and sliding wear properties of Zn-based alloys. Aspects studied include microstructure, density, electrical conductivity, hardness, tensile strength and elongation as well as sliding wear response of the alloys. Microstructural features of the alloys showed the presence of primary α, eutectic/eutectoid α + η (depending on whether the alloy was hypereutectic/hypereutectoid with regard to the concentration of Al) along with the meta stable ε phase. The study suggests that it is possible to design and develop Zn-based alloys with a wide range of concentration of Al. The alloys in turn attain different combinations of physical, mechanical and wear properties which could suit a variety of engineering applications. Increasing the Al content in the alloy system proves beneficial within limits. In other words, there exists an optimum quantity of Al which could reap its advantage to the maximum extent. This of course varies with reference to a specific property of the alloy(s). The changing response of the alloys has been explained in terms of their microstructural features and the effects produced as a result of the test conditions maintained while characterizing the specimens. (orig.)

  12. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    Science.gov (United States)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  13. Wear surface damage of a Stainless Steel EN 3358 aeronautical component subjected to sliding

    Directory of Open Access Journals (Sweden)

    Ferdinando Felli

    2013-01-01

    Full Text Available The present paper describes the failure analysis of an aircraft component subjected to several episodes of in service failure, resulted in loss of the aircraft safety. Modern aircrafts are provided with mechanical systems which have the task to open not pressurized hatches during landing. The components of such systems are subject to considerable mechanical stresses in harsh environment (presence of moisture and pollutants, significant and sudden temperature variations. The system is constituted by a sliding piston, a related nipple and by a locking system consisting of 4 steel spheres which are forced into a countersink machined on the piston when the hatches is open. The whole system is activated by a preloaded spring. The machined parts, nipple and piston, are made of EN3358 steel (X3CrNiMo13-8-2, a precipitation hardening stainless steel with very low content of carbon often used in the aerospace. The samples provided by the manufacturer present different types of damage all referable to phenomena relative to the sliding of the piston inside the nipple. The present paper describes the different damage observed and the microstructure of the material, then are reported the results obtained from the characterization of the material of the samples by means of optical and electronic microscopy, carried out to define the mechanisms involved in the system seizure. In order to define the primary cause of failure and to propose solutions to be adopted, also analyzing the criticality of using this PH stainless steel for this application, the results of different tests were compared with system design and working data.

  14. Elevated temperature wear of Al6061 and Al6061-20%Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Alpas, A.T. [Univ. of Windsor, Ontario (Canada)

    1995-04-01

    Both current and potential applications of particulate reinforced aluminum alloys involve components which are required to operate under sliding contact conditions at elevated temperatures. Examples include brake rotors, piston and cylinder liners in automotive engines where operating temperatures can reach 0.5--0.8 of the melting temperature of the matrix alloy. For this reason, study of the high temperature wear resistance of aluminum alloys reinforced by Al{sub 2}O{sub 3} or SiC particles is important. These studies are also of interest for the problem of die wear during hot extrusion of aluminum matrix composites and to rationalize the process of frictional welding involved in joining of the composites. Although the room temperature tribological and mechanical behaviors of aluminum matrix composites have received considerable attention, their high temperature properties have only recently started being considered. It has been shown that Al-Si-Mg (A356) alloys with or without SiC particles show a transition from mild to severe wear when a critical temperature (at about 0.4 T{sub m}, where T{sub m} is the melting temperature of aluminum) is reached as a result of frictional heating under dry sliding conditions. In this work, high temperature wear of A16061 and A16061-20%Al{sub 2}O{sub 3} was studied at temperatures between 25--500 C. The microstructural changes that occurred during wear have been delineated in order to understand the wear mechanisms that operate at high temperatures.

  15. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Balamurugan, G.M.; Duraiselvam, Muthukannan; Anandakrishnan, V.

    2012-01-01

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  16. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    International Nuclear Information System (INIS)

    Zhang Baosen; Xu Yi; Gao Fei; Shi Peijing; Xu Binshi; Wu Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  17. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2017-09-01

    Full Text Available The poor wear performance of copper is improved by reinforcing hard ceramic particles. The present work reports the fabrication of Cu/TiB2 (0, 6, 12, 18 vol.% copper matrix composites (CMCs using friction stir processing (FSP. TiB2 particles were initially packed together into a machined groove and were subjected to FSP under a constant set of process parameters. The microstructure was observed using optical, scanning and transmission electron microscopy. The wear behavior was examined using a pin-on-disc apparatus. The micrographs showed a homogeneous distribution of TiB2 particles without aggregation and segregation. The distribution of TiB2 particles was closely persistent across the stir zone. TiB2 particles were well bonded with the copper matrix without any interfacial reaction. Many TiB2 particles fractured during FSP. The grains in the composite were extensively refined because of dynamic recrystallization and pinning effect of TiB2 particles. The wear behavior under dry sliding condition was presented in detail.

  18. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni–Al–TiC composites

    International Nuclear Information System (INIS)

    Karantzalis, A.E.; Lekatou, A.; Tsirka, K.

    2012-01-01

    Monolithic Ni 3 Al and Ni–25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution–reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt–particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni 3 Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) material detachment and d) debris–counter surfaces interactions. - Highlights: ► Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. ► Solidification phenomena examination. ► TiC crystal formation and growth mechanisms. ► Sliding wear examination.

  19. Elevated temperature erosive wear of metallic materials

    International Nuclear Information System (INIS)

    Roy, Manish

    2006-01-01

    Solid particle erosion of metals and alloys at elevated temperature is governed by the nature of the interaction between erosion and oxidation, which, in turn, is determined by the thickness, pliability, morphology, adhesion characteristics and toughness of the oxide scale. The main objective of this paper is to critically review the present state of understanding of the elevated temperature erosion behaviour of metals and alloys. First of all, the erosion testing at elevated temperature is reviewed. This is followed by discussion of the essential features of elevated temperature erosion with special emphasis on microscopic observation, giving details of the erosion-oxidation (E-O) interaction mechanisms. The E-O interaction has been elaborated in the subsequent section. The E-O interaction includes E-O maps, analysis of transition criteria from one erosion mechanism to another mechanism and quantification of enhanced oxidation kinetics during erosion. Finally, the relevant areas for future studies are indicated. (topical review)

  20. Sliding wear and corrosion behaviour of alloyed austempered ductile iron subjected to novel two step austempering treatment

    Science.gov (United States)

    Sethuram, D.; Srisailam, Shravani; Rao Ponangi, Babu

    2018-04-01

    Austempered Ductile Iron(ADI) is an exciting alloy of iron which offers the design engineers the best combination high strength-to-weight ratio, low cost design flexibility, good toughness, wear resistance along with fatigue strength. The two step austempering procedure helps in simultaneously improving the tensile strength as-well as the ductility to more than that of the conventional austempering process. Extensive literature survey reveals that it’s mechanical and wear behaviour are dependent on heat treatment and alloy additions. Current work focuses on characterizing the two-step ADI samples (TSADI) developed by novel heat treatment process for resistance to corrosion and wear. The samples of Ductile Iron were austempered by the two-Step Austempering process at temperatures 300°C to 450°C in the steps of 50°C.Temperaturesare gradually increased at the rate of 14°C/Hour. In acidic medium (H2SO4), the austempered samples showed better corrosive resistance compared to conventional ductile iron. It has been observed from the wear studies that TSADI sample at 350°C is showing better wear resistance compared to ductile iron. The results are discussed in terms of fractographs, process variables and microstructural features of TSADI samples.

  1. X-ray residual stress measurement and its variation during plane bending fatigue and sliding wear processes in TiC, TiN, TiB2 and Al2O3 coated carbon steels

    International Nuclear Information System (INIS)

    Endoh, Takashi; Idemitsu, Kohji; Kawakami, Mamoru

    1993-01-01

    The development of ceramic coating to metals was stimulated by the need for high temperature, wear and corrosion resistant materials. Recently TiC, TiN, TiB 2 and Al 2 O 3 are used as ceramic coating materials. In the present study, the X-ray method was successfully applied to measure the residual stress distribution in their ceramics coated steels. The X-ray elastic constants were determined and compared with the mechanically measured values. And plane bending and sliding wear tests were carried out. The X-ray method was successfully applied to measure the residual stress changes during fatigue and wear processes. The relationship between the change of residual stress and damage accumulation was investigated. (author)

  2. Sliding wear studies of microwave clad versus unclad surface of stainless steel 304

    Directory of Open Access Journals (Sweden)

    Akshata M. K.

    2018-01-01

    Full Text Available Small and large scale (gas power plant, hydro power plant, automobile industries are suffering by failure of component. Sometimes, it is also observed that the component which was failed due to these reasons are very much costly and replacement of those also very difficult due to the complex geometry. By using Microwave hybrid heating, WC-12Co based clads were developed on austenitic stainless steel (SS304. Microwave clads were developed by introducing the preplaced, preheated powder for a duration of 15 min to microwave radiation at 2.45GHz frequency and 900 W power in domestic microwave applicator. By using optical microscope and scanning electron microscope (SEM, the developed clads were characterized. By using pin-on-disk, wear performance of the WC-12Co based clads and unclad samples were tested. It is observed that developed clad samples performed superior wear resistance than unclad samples.

  3. Microstructure and sliding wear properties of HVOF sprayed, laser remelted and laser clad Stellite 6 coatings

    Czech Academy of Sciences Publication Activity Database

    Houdková, Š.; Pala, Zdeněk; Smazalová, E.; Vostřák, M.; Česánek, Z.

    2017-01-01

    Roč. 318, May (2017), s. 129-141 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] Institutional support: RVO:61389021 Keywords : Stellite 6 * HVOF * Laser remelting * Laser clad * Wear * Phase transformation Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0257897216308817

  4. Dry Sliding Wear Charactristics of Aluminum 6061-T6, Magnesium AZ31 and Rock Dust Composite

    Science.gov (United States)

    Balachandar, R.; Balasundaram, R.; Rajkumar, G.

    2018-02-01

    In recent years, the use of aluminum composite is gaining popularity in a wide range of applications like automobiles, aerospace and constructions (both interior & exterior) panels etc., due to its high strength, low density characteristics. Various reinforcing materials are used with aluminum 6061-T6 in order to have better mechanical properties. The addition of 0.3% of magnesium AZ31 will increase the ultimate tensile strength by 25 %. The reinforcement of rock dust will decrease the density. Hence, in order to have an advantages of magnesium AZ31 and rock dust, in this work, these two constitutes are varied from 1% to 2% on the base material of Al6061-T6 in stir casting. To evaluate the wear characteristics, Pin on disc is used in these composites. The input parameters are speed, time & load. The output response is wear. To minimize the number of experiments, L9 orthogonal array is used. The test results showed that a composite of 97% of Al (6061-T6), 1% Mg (AZ31) & 2 % of rock dust produced less wear. To find the best value of operating parameter for each sample, ANN-GA is used.

  5. The Effect of Counterpart Material on the Sliding Wear of TiAlN Coatings Deposited by Reactive Cathodic Pulverization

    Directory of Open Access Journals (Sweden)

    Michell Felipe Cano Ordoñez

    2015-11-01

    Full Text Available This work aims to study the effect of the counterpart materials (100Cr6, Al2O3 and WC-Co on the tribological properties of TiAlN thin films deposited on AISI H13 steel substrate by reactive magnetron co-sputtering. The structural characterization of the TiAlN films, performed by X-ray diffraction, showed (220 textured fcc crystalline structure. The values of hardness and elastic modulus obtained by nanoindentation were 27 GPa and 420 GPa, respectively, which resulted in films with a relatively high resistance to plastic deformation. Ball-on-disk sliding tests were performed using normal loads of 1 N and 3 N, and 0.10 m/s of tangential velocity. The wear coefficient of the films was determined by measuring the worn area using profilometry every 1000 cycles. The mechanical properties and the chemical stability of the counterpart material, debris formation and the contact stress influences the friction and the wear behavior of the studied tribosystems. Increasing the hardness of the counterpart decreases the coefficient of friction (COF due to lower counterpart material transference and tribofilm formation, which is able to support the contact pressure. High shear stress concentration at the coating/substrate interface was reported for higher load promoting failure of the film-substrate system for all tribopairs

  6. Sliding-wear resistance of pure near fully-dense B4C under lubrication with water, diesel fuel, and paraffin oil

    DEFF Research Database (Denmark)

    Ortiz, Angel L.; Leal, Victor Manuel Candelario; Borrero-López, Oscar

    2017-01-01

    The sliding-wear resistance of pure near fully-dense B4C is investigated, and the wear mode/mechanisms identified, under lubrication with water, diesel fuel, and paraffin oil. It is found that the wear is mild in the three cases, with specific wear rates (SWRs) of 10−16–10−17 m3/N m. Nonetheless......, the wear resistance of the B4C ceramic is one order of magnitude greater under oil lubrication (1016 N m/m3) than under water lubrication (1015 N m/m3), and twice as great for the specific case of paraffin oil than diesel fuel, attributable to the lubricant’s viscosity. It is also found that the wear mode...... is always abrasion, and that the wear mechanisms are plastic deformation and localized fracture with grain pullout. However, in agreement with the macro-wear data, the severity of the wear damage is lower under lubrication with paraffin oil, followed by diesel fuel, and lastly water. Finally...

  7. Statistical model to predict dry sliding wear behaviour of Aluminium-Jute bast ash particulate composite produced by stir-casting

    Directory of Open Access Journals (Sweden)

    Gambo Anthony VICTOR

    2017-06-01

    Full Text Available A model to predict the dry sliding wear behaviour of Aluminium-Jute bast ash particulate composites produced by double stir-casting method was developed in terms of weight fraction of jute bast ash (JBA. Experiments were designed on the basis of the Design of Experiments (DOE technique. A 2k factorial, where k is the number of variables, with central composite second-order rotatable design was used to improve the reliability of results and to reduce the size of experimentation without loss of accuracy. The factors considered in this study were sliding velocity, sliding distance, normal load and mass fraction of JBA reinforcement in the matrix. The developed regression model was validated by statistical software MINITAB-R14 and statistical tool such as analysis of variance (ANOVA. It was found that the developed regression model could be effectively used to predict the wear rate at 95% confidence level. The wear rate of cast Al-JBAp composite decreased with an increase in the mass fraction of JBA and increased with an increase of the sliding velocity, sliding distance and normal load acting on the composite specimen.

  8. Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy

    Science.gov (United States)

    Lentzaris, K.; Poulia, A.; Georgatis, E.; Lekatou, A. G.; Karantzalis, A. E.

    2018-04-01

    Α Co1.5CrFeNi1.5Ti0.5 high-entropy alloy (HEA) of the well-known family of CoCrFeNiTi has been designed using empirical parameters. The aim of this design was the production of a HEA with fcc structure that gives ductile behavior and also high strength because of the solid solution effect. The VEC calculations (8.1) supported the fcc structure while the δ factor calculations (4.97) not being out of the limit values, advised a significant lattice distortion. From the other hand, the ΔΗ mix calculations (- 9.64 kJ/mol) gave strong indications that no intermetallic would be formed. In order to investigate its potential application, the Co1.5CrFeNi1.5Ti0.5 HEA was prepared by vacuum arc melting and a primary assessment of its surface degradation response was conducted by means of sliding wear testing using different counterbody systems for a total sliding distance of 1000 m. An effort to correlate the alloy's wear response with the microstructural characteristics was attempted. Finally, the wear behavior of the Co1.5CrFeNi1.5Ti0.5 HEA was compared with that of two commercially used wear-resistant alloys. The results obtained provided some first signs of the high-entropy alloys' better wear performance when tested under sliding conditions against a steel ball.

  9. Sliding Wear Behaviour and Corosion Resistance to Ringer’s Solution of Uncoated and DLC Coated X46Cr13 Steel

    Directory of Open Access Journals (Sweden)

    Scendo M.

    2016-12-01

    Full Text Available Sliding wear properties and corrosion resistance in Ringer’s solution of uncoated and diamond-like carbon (DLC coated X46Cr13 steel was tested. The Raman spectra showed that the DLC film was successfully coated by plasma assisted CVD method onto the steel surface. The wear test, carried out using a ball-on disk tribometer, revealed that the DLC coating show better resistance to sliding wear and lower friction coefficient against a 100Cr6 steel ball than five times softer X46Cr13 steel. The oxidation kinetic parameters were determined by means of both the gravimetric and electrochemical method. It was found that the DLC coating markedly decreased the rate of corrosion of the X46Cr13 steel, irrespective of the corrosion mechanism involved.

  10. Effect of plasma spraying parameter on wear resistance of NiCrBSiCFe plasma coatings on austenitic stainless steel at elevated temperatures at various loads

    International Nuclear Information System (INIS)

    Parthasarathi, N.L.; Duraiselvam, Muthukannan; Borah, Utpal

    2012-01-01

    Highlights: ► Effect of plasma spraying parameters, especially the stand-off distance. ► Effect of microstructure and applied load on coating in sliding wear. ► The reason for maximum wear rate at 250 °C and the minimum wear at 350 °C were explained. ► The worn debris were characterised by SEM analysis and correlated with wear rate. -- Abstract: The dry sliding wear tests were carried out on AISI 316 austenitic stainless steel (ASS) plasma coated with NiCrBSiCFe alloy powder under two set of plasma spraying parameters (PSP-1 and PSP-2). EN 8 medium carbon steel was used as a counterface material. The tests were carried out at loads of 20 N and 40 N with a constant sliding velocity of 1 m/s at room temperature (35°), 150 °C, 250 °C and 350 °C. Metallographic characterisation was carried out by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Between the two plasma parameters tested, stand-off distance of 125 mm was found to be more suitable for producing uniform lamellar microstructure with fewer amounts of pores which shows better wear resistance. The wear rate at 250 °C was comparatively more due to the material softening and adhesion by intermolecular bonding. The worn debris collected during sliding at 350 °C turn into oxides which further behaves like a protective and lubricative film eliminating the chances of severe material loss. SEM was used to characterise the worn track and debris to identity the wear mechanism.

  11. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

    International Nuclear Information System (INIS)

    Huang, Can; Zhang, Yongzhong; Vilar, Rui; Shen, Jianyun

    2012-01-01

    Highlights: ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V) 5 Si 3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. -- Abstract: Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V) 5 Si 3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V) 5 Si 3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.

  12. Dry sliding wear behavior and corrosion resistance of NiCrBSi coating deposited by activated combustion-high velocity air fuel spray process

    International Nuclear Information System (INIS)

    Liu, Shenglin; Zheng, Xueping; Geng, Gangqiang

    2010-01-01

    NiCrBSi is a Ni-based superalloy widely used to obtain high wear and corrosion resistant coatings. This Ni-based alloy coating has been deposited onto 0Cr13Ni5Mo stainless steel using the AC-HVAF technique. The structure and morphologies of the Ni-based coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). The wear resistance and corrosion resistance were studied. The tribological behaviors were evaluated using a HT-600 wear test rig. The wear resistance of the Ni-based coating was shown to be higher than that of the 0Cr13Ni5Mo stainless steel because Fe 3 B, with high hardness, was distributed in the coating so the dispersion strengthening in the Ni-based coating was obvious and this increased the wear resistance of the Ni-based coating in a dry sliding wear test. Under the same conditions, the worn volume of 0Cr13Ni5Mo stainless steel was 4.1 times greater than that of the Ni-based coating. The wear mechanism is mainly fatigue wear. A series of the electrochemical tests was carried out in a 3.5 wt.% NaCl solution in order to examine the corrosion behavior. The mechanisms for corrosion resistance are discussed.

  13. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    Science.gov (United States)

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  14. Microstructural and superficial modification in a Cu-Al-Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions

    Science.gov (United States)

    Figueroa, C. G.; Garcia-Castillo, F. N.; Jacobo, V. H.; Cortés-Pérez, J.; Schouwenaars, R.

    2017-05-01

    Stress induced martensitic transformation in copper-based shape memory alloys has been studied mainly in monocrystals. This limits the use of such results for practical applications as most engineering applications use polycristals. In the present work, a coaxial tribometer developed by the authors was used to characterise the tribological behaviour of polycrystalline Cu-11.5%Al-0.5%Be shape memory alloy in contact with AISI 9840 steel under sliding wear conditions. The surface and microstructure characterization of the worn material was conducted by conventional scanning electron microscopy and atomic force microscopy, while the mechanical properties along the transversal section were measured by means of micro-hardness testing. The tribological behaviour of Cu-Al-Be showed to be optimal under sliding wear conditions since the surface only presented a slight damage consisting in some elongated flakes produced by strong plastic deformation. The combination of the plastically modified surface and the effects of mechanically induced martensitic transformation is well-suited for sliding wear conditions since the modified surface provides the necessary strength to avoid superficial damage while superelasticity associated to martensitic transformation is an additional mechanism which allows absorbing mechanical energy associated to wear phenomena as opposed to conventional ductile alloys where severe plastic deformation affects several tens of micrometres below the surface.

  15. The influence of elevated temperature transformation and mechanical properties of a precipitation hardening martensitic stainless steel on its wear behaviour

    International Nuclear Information System (INIS)

    Smith, A.F.

    1989-11-01

    Self wear tests of a martensitic stainless steel in CO 2 in the temperature range 20-300degC showed transitional behaviour at 20 and 300degC. In the mid temperature range a severe wear rate of ∼ 2 x 10 -13 m 3 /Nm persisted for sliding distances up to 2000 m. A possible explanation was that while strain induced transformation of retained austenite at low temperatures provided a sufficiently hardened substrate that allowed inelastic rather than plastic interactions this did not occur at 200degC. Tests were carried out to determine the temperature above which strain no longer transformed austenite into martensite. Although a martensite start temperature of ∼ 150degC was found for the present steel the presence of only ∼ 10% retained austenite in the ''as heat treated'' material suggests that its transformation to martensite at 200degC would not materially affect the extent of subsurface hardening. It is proposed that a surface reaction plays a role in transition behaviour. At 300degC the reaction product is an oxide but at room temperature it is possibly a carbonate. The stability of the carbonate decreases with temperature thus giving an intermediate temperature range where metal/metal contacts prevail leading to the persistent high wear behaviour. (author)

  16. Comparison of friction and wear performances of brake materials containing different amounts of ZrSiO4 dry sliding against SiCp reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhang Shaoyang; Wang Fuping

    2007-01-01

    Low friction levels for brake materials dry sliding against Al matrix composites (Al-MMCs) were observed. Al matrix composites reinforced with 30 vol.% SiC p (34 μm) were used first to fabricate a new brake drum in place of the conventional cast iron brake drum for a Chase Machine. Experimental studies on the brake materials differing in amounts of zirconium silicate (0 wt%, 4 wt%, 8 wt%, and 12 wt% ZrSiO 4 ) dry sliding against the Al-MMCs drum were performed on the Chase Machine in order to examine their effects on friction and wear performances. The test procedures include friction fade and recovery, load and speed sensitivities at 177 deg. C and 316 deg. C, and wear. Experimental results show that the brake material containing 8 wt% ZrSiO 4 had the best wear resistance and higher friction level. The brake material containing 12 wt% ZrSiO 4 had the highest friction level, but wear increased rapidly. The deterioration of the latter wear suggests that this brake material is unreliable in commercial applications

  17. Friction and Wear of Nanoadditive-Based Biolubricants in Steel-Steel Sliding Contacts: A Comparative Study

    Science.gov (United States)

    Gupta, Rajeev Nayan; Harsha, A. P.

    2018-02-01

    The present work deals with the study of tribo-pair interaction in lubricated sliding contacts. By considering the environmental issues, the sunflower oil was extracted from the sunflower seeds and used as a base lubricant. The two types of the nanoadditives, i.e., CuO and CeO2, varying concentrations from 0.10 to 0.50% w/v were used to formulate the nanolubricants. The compatibility/synergism of the nanoadditives was examined from antifriction and antiwear behavior study with four-ball tester. Also, sunflower oil was modified by the chemical method to improve its fatty acid structure. A comparative tribological and compatibility study was also done in modified oil at similar concentration levels with both types of nanoparticles. The tribological test result exhibits 0.10% w/v concentration of the nanoadditive as optimum due to lowest wear scar and coefficient of friction. Higher concentration of the nanoparticles impaired the base oil performance. Different analytical tools were used to characterize the oil modification and worn surfaces. Moreover, the role of subsurface of the contacting material with the tribological performance has been reported.

  18. High temperature tribological behaviour of carbon based (B{sub 4}C and DLC) coatings in sliding contact with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gharam, A. Abou, E-mail: abougha@uwindsor.c [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada); Lukitsch, M.J.; Balogh, M.P. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T. [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada)

    2010-12-30

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B{sub 4}C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B{sub 4}C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 {sup o}C. Experimental results have shown that the 319 Al/B{sub 4}C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B{sub 4}C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 {sup o}C. This was followed by an abrupt increase to 0.6 at 400 {sup o}C. The deterioration of friction behaviour at T > 200 {sup o}C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  19. Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.

  20. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  1. Effect of magnesium content on the microstructure and dry sliding wear behavior of centrifugally cast functionally graded A356-Mg2Si in situ composites

    Science.gov (United States)

    Ram, Subhash Chandra; Chattopadhyay, K.; Chakrabarty, I.

    2018-04-01

    Functionally graded A356 alloy (Al–7.2Si–0.3Mg) –Mg2Si in situ composites have been synthesized via centrifugal casting route. Mg2Si particles tend to migrate towards the core of the tubular product by centrifugal force. The in situ formed Mg2Si particles in composites are characterized by x-ray diffraction (XRD) analysis, Energy dispersive spectrometry (EDS), Optical, Scanning Electron and Transmission Electron Microscopy. Apart from primary blocky Mg2Si particles the matrix contains other phases viz. Al-Si eutectic, pseudo-binary Al-Mg2Si eutectic and Al-Fe-Si intermetallics. Density is found to decrease and %porosity is increased with increase in volume fraction of Mg2Si. Maximum hardness was observed at the inner core region due to maximum segregation of Mg2Si particles and gradually decreases towards the outer periphery region. The dry sliding wear was evaluated with varying parameters such as normal loads (N) and sliding distances (m). A substantial increase in wear resistance at the inner core region is observed. From the worn surface characterization, the wear mechanisms have been explained.

  2. Effect of design factors on surface temperature and wear in disk brakes

    Science.gov (United States)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  3. A kinetic model for impact/sliding wear of pressurized water reactor internal components: Application to rod cluster control assemblies

    International Nuclear Information System (INIS)

    Zbinden, M.

    1996-01-01

    Certain internal components of Pressurized Water Reactors are damaged by wear when subjected to vibration induced by flow. In order to enable predictive calculation of such wear, one must have a model which takes account reliably of real damages. The modelling of wear represents a final link in a succession of numerical calculations which begins by the determination of hydraulic excitations induced by the flow. One proceeds, then, in the dynamic response calculation of the structure to finish up with an estimation of volumetric wear and of the depth of wear scars. A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which correspond to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work

  4. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by partial decomposition of the WC particles, lamellar morphology and micro-porosity among the solidified splats. Tribological behavior was studied under sliding friction conditions using a Si3N4 ball as counterbody and the friction coefficient and volume loss were determined as a function of the cermet fraction. Microscopic examinations of the wear tracks and relevant cross sections identified the wear mechanisms involved. Coatings containing only the metallic phase were worn out through a combination of ploughing, micro-cracking and splat exfoliation, whilst those containing only the cermet phase primarily by micro-cracking at the individual splat scale. The wear mechanisms of the composite coatings were strongly affected by their randomly stratified structure. In-depth cracks almost perpendicular to the coating/ substrate interface occurring at the wear track boundaries resulted in cermet trans-splat fracture.

  5. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    García, C. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain); Romero, A. [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Herranz, G., E-mail: gemma.herranz@uclm.es [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Blanco, Y.; Martin, F. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain)

    2016-11-15

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructures of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.

  6. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  7. Wear Behavior and Self Tribofilm Formation of Infiltration-Type TiC/FeCrWMoV Metal Ceramics Under Dry Sliding Conditions

    DEFF Research Database (Denmark)

    Wang, Yanjun; Yang, Zhenyu; Han, Liying

    2015-01-01

    infiltration furnace. The friction and wear behaviors of the composites were investigated using a pin-on-disk high temperature wear testing machine at different temperature (up to 800°C). The compositions, images and structures of worn surfaces were analyzed by means of scanning electron microscope (SEM...... PbMoO4, PbO, SnWO4, Ag2WO4 and Ag3Sn. The formation of lubrication film containing of these oxides and of intermetallic compounds was the main reason that the composites had good self-lubrication properties at high temperature. It was considered that the micro-pores on friction surface would...

  8. Effect of Alkyl Phenol from Cashew Nutshell Liquid on Mechanical and Dry Sliding Wear Behavior of Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Rajesh Panda

    2015-05-01

    Full Text Available A phenalkamine made from the reaction of alkyl phenol from cashew nutshell liquid (CSNL and polyamine was added at three different weight percentages (30%, 40%, and 50% as a diglycidyl ether of bisphenol A (DGEBA epoxy hardener. This curing agent was compared to a traditional polyamine epoxy hardener. It was observed that an increase in phenalkamine concentration resulted in considerable improvement to impact strength and elongation, which ultimately translated to better wear resistance of the cured epoxy compound. Lancaster–Ratner correlations between mechanical and wear resistance properties were found to be linear. Optical microscope observations were used to understand the wear mechanisms of the cured epoxy materials.

  9. A kinetic model for impact/sliding wear of pressurized water reactor internal components. Application to rod cluster control assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Zbinden, M; Durbec, V

    1996-12-01

    A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which corresponds to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work. (author). 34 refs.

  10. A kinetic model for impact/sliding wear of pressurized water reactor internal components. Application to rod cluster control assemblies

    International Nuclear Information System (INIS)

    Zbinden, M.; Durbec, V.

    1996-12-01

    A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which corresponds to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work. (author)

  11. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17.

  12. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Slide 2 · Membrane Phospholipids · Slide 4 · NAE and NAPE · Biological and Pharmacological properties · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25.

  13. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  14. PWR control rods wear by vibrations induced by coolant fluid

    International Nuclear Information System (INIS)

    Reynier, R.

    1997-01-01

    Flow induced vibrations in pressurised water reactors generate the wear of control rods against their guidance systems. Alternate sliding (at 320 deg. C in water) and impact-sliding tests (at room temperature in air) were carried out on 304 L austenitic stainless steel control rods' claddings. Microstructural analysis were made on the wear scars of the tube specimen using Scanning ELectron Microscopy, microhardness measurements and X-ray diffractometry. The alternate sliding leads to an important mass loss, a strong plastic deformation due to the strain hardening of the surface layers and generates strong compressive residual stresses. These results are specific to a severe wear case. Therefore, the impact-sliding mode induces martensitic phase, a cracked oxide layer and a compressive residual stresses weaker than those created in the alternate sliding case. This type of motion leads to a milder wear of the control rods

  15. Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B4C cast composites

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Shahmir, H.; Saghafi, M.; Emamy, M.

    2010-01-01

    In present paper, an attempt was made to examine the influence of T6 heat treatment (solution treatment at 540 o C for 5 h, quenching in hot water and artificial aging at 170 o C for 8 h) on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B 4 C cast composites. The composite ingots were made by stir casting process. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, tensile tests and conventional pin-on-disk experiment. The obtained results showed that in Al-B 4 C composite, T6 treatment was a dominant factor on the hardness improvement in comparison with hardness increasing due to the addition of B 4 C hard particles. In addition, T6 treatment can contribute to the strong bonding between B 4 C and matrix alloy and also it can change eutectic silicon morphology from acicular to near spherical. This case can lead to higher strength and wear properties of heat treated metal matrix composites in comparison with unheat treated state. Observation of worn surfaces indicated detachment of mechanically mixed layer which can primarily due to the delamination wear mechanism under higher applied load.

  16. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    Science.gov (United States)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  17. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying.

    Science.gov (United States)

    Janicki, Damian

    2018-01-05

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.

  18. Wear Behavior of Selected Nuclear Grade Graphites at Room Temperature in Ambient Air Environment

    International Nuclear Information System (INIS)

    Kim, Eung-Seon; Park, Kwang-Seok; Kim, Yong-Wan

    2008-01-01

    In a very high temperature reactor (VHTR), graphite will be used not only for as a moderator and reflector but also as a major structural component due to its excellent neutronic, thermal and mechanical properties. In the VHTR, wear of graphite components is inevitable due to a neutron irradiation-induced dimensional change, thermal gradient, relative motions of graphite components and a shock load such as an earthquake. Large wear particles accumulated at the bottom of a reactor can influence the cooling of the lower part and small wear particles accumulated on the primary circuit and heat exchanger tube can make it difficult to inspect the equipment, and also decrease the heat exchange rate. In the present work, preliminary wear tests were performed at room temperature in ambient air environment to understand the basic wear characteristics of selected nuclear grade graphites for the VHTR

  19. Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing

    International Nuclear Information System (INIS)

    Richmond, V L; Wilkinson, D M; Blacker, S D; Horner, F E; Carter, J; Rayson, M P; Havenith, G

    2013-01-01

    This study assessed the validity of insulated skin temperature (T is ) to predict rectal temperature (T re ) for use as a non-invasive measurement of thermal strain to reduce the risk of heat illness for emergency service personnel. Volunteers from the Police, Fire and Rescue, and Ambulance Services performed role-related tasks in hot (30 °C) and neutral (18 °C) conditions, wearing service specific personal protective equipment. Insulated skin temperature and micro climate temperature (T mc ) predicted T re with an adjusted r 2 = 0.87 and standard error of the estimate (SEE) of 0.19 °C. A bootstrap validation of the equation resulted in an adjusted r 2 = 0.85 and SEE = 0.20 °C. Taking into account the 0.20 °C error, the prediction of T re resulted in a sensitivity and specificity of 100% and 91%, respectively. Insulated skin temperature and T mc can be used in a model to predict T re in emergency service personnel wearing CBRN protective clothing with an SEE of 0.2 °C. However, the model is only valid for T is over 36.5 °C, above which thermal stability is reached between the core and the skin. (paper)

  20. Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Anesh; Dwivedi, D.K.

    2007-01-01

    In the present paper, the influence of solutionizing temperature during artificial age hardening treatment (T 6 ) of cast Al-(8, 12, 16%)Si-0.3%Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given artificial age hardening treatment having a sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 450 deg. C, 480 deg. C, 510 deg. C, and 550 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 170 deg. C for 12 h. Abrasive wear tests were conducted against 320 grade SiC polishing papers at 5 N and 10 N normal loads. It was observed that the silicon content and solution temperature affected the wear resistance significantly. Increase in solution temperature improved the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic and hypoeutectic alloys under identical conditions. Optical microstructure study of alloys revealed that the increase in solutionizing temperature improved distribution of silicon grains. Scanning electron microscopy (SEM) of wear surface was carried out to analyze the wear mechanism

  1. Temperature processes at two sliding surfaces subjected to dry friction

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Cibulka, Jan; Bula, Vítězslav

    2012-01-01

    Roč. 63, 5/6 (2012), s. 277-292 ISSN 0039-2472 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : dry friction * vibration damping * experimental set * increase of temperature * lost energy Subject RIV: BI - Acoustics

  2. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Immunology of VL · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Strategies To Design Drugs · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25 · Slide 26 · Slide 27 · Slide 28.

  3. Slide 1

    Indian Academy of Sciences (India)

    Slide 5 · Slide 6 · Second Question How Did this Shift in ToT Come About? Slide 8 · Second Question How Did this Shift in ToT Come About? Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 17 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24 · Slide 25 · Slide 26 · Slide 27 · Slide 30 · India's Globalization.

  4. Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Barcelos

    Full Text Available Abstract Despite the AISI 304 stainless steel has high corrosion/oxidation resistance, its tribological properties are poor, being one of the barriers for use in severe wear applications. Thus, there is a wide field for studying technologies that aim to increase the surface hardness and wear resistance of this material. In this work, hardness and wear resistance for AISI 304 stainless steel submitted to the thermochemical treatment by low temperature plasma carburizing (LTPC in a fixed gas mixture composition of 93% H2 and 7% CH4 are presented. Through the evaluation of the carburizing layers, it was possible to observe a substantial improvement in tribological properties after all temperature and time of treatment. This improvement is directly related to the increase of the process variables; among them temperature has a stronger influence on the wear resistance obtained using LTPC process.

  5. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  6. Friction and wear behavior of Colmonoy and Stellite alloys in sodium environment

    International Nuclear Information System (INIS)

    Kanoh, S.; Mizobuchi, S.; Atsumo, H.

    1976-01-01

    A description is given of a series of experiments in sodium environment for the research and development of friction and wear resistant material used for the sliding components of sodium cooled fast breeder reactor. The study relates to the friction and wear characteristics of nickel-base alloy, Colmonoy, and cobalt-base alloy, Stellite, with respect to temperature, load, sliding velocity, sliding mode, and sodium flushing. The friction behavior of these alloys in sodium is compared with that in argon

  7. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  8. Effects of temperature and sliding rate on frictional strength of granite

    Science.gov (United States)

    Lockner, D.A.; Summers, R.; Byerlee, J.D.

    1986-01-01

    Layers of artificial granite gouge have been deformed on saw-cut granite surfaces inclined 30?? to the sample axes. Samples were deformed at a constant confining pressure of 250 MPa and temperatures of 22 to 845??C. The velocity dependence of the steady-state coefficient of friction (??ss) was determined by comparing sliding strengths at different sliding rates. The results of these measurements are consistent with those reported by Solberg and Byerlee (1984) at room temperature and Stesky (1975) between 300 and 400??C. Stesky found that the slip-rate dependence of (??ss) increased above 400??C. In the present study, however, the velocity dependence of (??ss) was nearly independent of temperature. ?? 1986 Birkha??user Verlag.

  9. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  10. Elaboration of high-temperature friction polymer material and study of its wear aspects

    International Nuclear Information System (INIS)

    Gventsadze, L.

    2009-01-01

    High-temperature friction composite material is elaborated and its physical, mechanical and tribologic features are studied. It is shown, that addition to the friction material composition of filling material having nanopores -diatomite-and its modification with polyethilensilan leads to friction materials friction coefficient stability and wear resistance increase at high temperatures (400-600 ℃). (author)

  11. Wear of liquid nitrogen-cooled 440C bearing steels in an oxygen environment

    Science.gov (United States)

    Chaudhuri, Dilip K.; Verma, Ravi

    1988-01-01

    This paper presents up-to-date findings of the research being conducted to understand the mechanism of sliding wear in unlubricated 440C bearing steels under oxidative conditions. A sliding wear test rig has been designed and built with a cylinder-on-flat geometry. The equipment is capable of testing specimens under high axial loads and sliding speeds in a simulated LOX environment. Samples of 440C steel, quenched and tempered to a hardness of Rc 56, were tested under a load of 890 N and a sliding speed of 2.05 m/sec for total sliding distances of up to 5.54 km. Flash temperatures during these tests were measured with an IR camera and a fast digital recorder. Microstructural and microanalytical data from the worn surfaces and the debris particles are analyzed extensively, along with wear rates, flash temperatures, surface profiles, hardnesses, and residual stresses, in the context of oxidation and wear theories.

  12. DETERMINATION ANALYSIS OF TEMPERATURE REGIMES, FUNCTIONAL CHARACTERISTICS AND SLIDING CURVES OF A HYDRODYNAMIC CLUTCH

    Directory of Open Access Journals (Sweden)

    Božidar V Krstić

    2010-01-01

    Full Text Available Analysis of output quality of power transmitters is possible in position when characteristics are determined earlier. This is the reason why we focused on determination of these characteristics for a concrete power hydro-transmitter. This means that the investigation task primarily consisted of determination of functional characteristics, defining of the sliding curves and temperature regimes of a concrete hydrodynamic clutch. Results of velocity and pressure field investigations in the working space of this clutch, obtained by use of the same test setup, are the basis for determination and analysis of the functional characteristics, sliding curves and temperature regimes. In this work we also analyzed function of the hydrodynamic transmitter in assembly with an internal combustion engine, as well as a process of acceleration and deceleration of a vehicle with this assembly in it.

  13. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Liu, Xiu-Bo; Meng, Xiang-Jun; Liu, Hai-Qing; Shi, Gao-Lian; Wu, Shao-Hua; Sun, Cheng-Feng; Wang, Ming-Di; Qi, Long-Hao

    2014-01-01

    Highlights: • A novel high temperature self-lubricating anti-wear composite coating was fabricated. • Reinforced carbides as well as self-lubricating sulfides were in situ synthesized. • Microhardness of the Ti–6Al–4V substrate was significantly improved. • Friction coefficient and wear rate of the composite coating were greatly reduced. - Abstract: To enhance the wear resistance and friction-reducing capability of titanium alloy, a process of laser cladding γ-NiCrAlTi/TiC + TiWC 2 /CrS + Ti 2 CS coatings on Ti–6Al–4V alloy substrate with preplaced NiCr/Cr 3 C 2 –WS 2 mixed powders was studied. A novel coating without cracks and few pores was obtained in a proper laser processing. The composition and microstructure of the fabricated coating were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) techniques, and tribological properties were evaluated using a ball-on-disc tribometer under dry sliding wear test conditions at 20 °C (room-temperature), 300 °C, 600 °C, respectively. The results show that the coating has unique microstructure consisting of α-Ti, TiC, TiWC 2 , γ-NiCrAlTi, Ti 2 CS and CrS phases. Average microhardness of the composite coating is 1005 HV 0.2 , which is about 3-factor higher than that of Ti–6Al–4V substrate (360 HV 0.2 ). The friction coefficient and wear rate of the coating are greatly decreased due to the combined effects of the dominating anti-wear capabilities of reinforced TiC and TiWC 2 carbides and the CrS and Ti 2 CS sulfides which have excellent self-lubricating property

  14. Tribological Investigation of SiC/Al Composite under Dry Sliding Friction

    Directory of Open Access Journals (Sweden)

    DAI Liquan

    2016-12-01

    Full Text Available The effect of sliding distances on aluminum matrix composite reinforced by silicon carbide particle with volume fraction of 9% was investigated. Friction behavior and wear resistance of the composite with distances of 5000 r, 10000 r and 20000 r were studied under dry sliding conditions of the same speed and load(200 r/min, 45 N. The results show that the friction coefficient in long-range sliding process displays three stages:wearing zone, stable zone and accelerating zone. The matrix surface produces severe adhesion because of the rising temperature and then leads plastic areas, in which both friction coefficient and wear rate are increased.

  15. The rectal temperature estimation method based on tympanic temperature for workers wearing protective clothing in nuclear facilities

    International Nuclear Information System (INIS)

    Takahashi, Naoki; Lee, Joo-Young; Wakabayashi, Hitoshi; Tochihara, Yutaka

    2012-01-01

    At nuclear facilities, workers wear impermeable protective clothing to prevent radioactive contamination during inspection and maintenance activities. The heat stroke risk of the workers wearing protective clothing gradually increases, because of retaining heat and humidity inside of protective clothing. Normally, the rectal temperature is used to manage the heat stroke risk. But the rectal temperature measurement is very difficult at the working place. We have already reported that the measurement of infrared tympanic temperature is more realistic than that of rectal temperature to manage the heat stroke risk. But tympanic temperature indicates high temperature compared to rectal temperature. So, the use of the tympanic temperature overestimates core temperature and decreases the work efficiency. Therefore, we attempted to make formulas to predict rectal temperature from measured tympanic temperature, and to use calculated rectal temperature for safer and more efficient management. The rectal temperature predicted with the formulas agreed with the actual measurement within the range of measurement error (±0.1degC). Combination of tympanic temperature measurement and heat rate evaluation enabled the safer management of the heat stroke risk with wearing protective clothing. (author)

  16. Slide 1

    Indian Academy of Sciences (India)

    Table of contents. Slide 1 · Matsyagandhya A case of genetic disorder · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Active Site with Molybdopterin Ligation · Disadvantage of a Chemist to Model the Cofactor · Slide 10 · Slide 11 · Slide 12 · Active Site Investigation · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  17. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  18. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  19. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  20. Ocular Surface Temperature During Scleral Lens Wearing in Patients With Keratoconus.

    Science.gov (United States)

    Carracedo, Gonzalo; Wang, Zicheng; Serramito-Blanco, Maria; Martin-Gil, Alba; Carballo-Alvarez, Jesús; Pintor, Jesús

    2017-11-01

    To evaluate the ocular surface temperature using an infrared thermography camera before and after wearing scleral lens in patients with keratoconus and correlate these results with the tear production and stability. A pilot, experimental, short-term study has been performed. Twenty-six patients with keratoconus (36.95±8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (KC-ICRS group) and patients without ICRS (KC group). Schirmer test, tear breakup time (TBUT), and ocular surface temperature in the conjunctiva, limbus, and cornea were evaluated before and after wearing a scleral lens. The patients wore the scleral lenses from 6 to 9 hours with average of 7.59±0.73 hours. No significant changes in Schirmer test and TBUT were found for both groups. No temperature differences were found between the KC-ICRS and the KC groups for all zones evaluated. There was a slight, but statistically significant, increase in the inferior cornea, temporal limbus, and nasal conjunctival temperature for KC-ICRS group and temporal limbus temperature decreasing for the KC group after wearing scleral lens (Ptemperature was statistically higher than the central cornea for both groups before and after scleral lenses wearing (Pperipheral cornea was found. No statistically significant differences in the central corneal temperature were found between the groups after scleral lens wearing (P>0.05). Scleral contact lens seems not to modify the ocular surface temperature despite the presence of the tear film stagnation under the lens.

  1. Slide 1

    Indian Academy of Sciences (India)

    Slide 25 · Life course epidemiology and chronic diseases · Models · Slide 28 · Slide 29 · Slide 30 · New Delhi Birth Cohort · New Delhi Birth Cohort (NDBC) · Slide 33 · Slide 34 · Slide 35 · Slide 36 · Slide 37 · Slide 38 · Slide 39 · CONCLUSIONS Urban Children and Adolescents · CONCLUSIONS New Delhi Birth Cohort.

  2. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    Science.gov (United States)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  3. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    Directory of Open Access Journals (Sweden)

    S. Ilaiyavel

    2013-03-01

    Full Text Available In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 3.0 m/s under normal load of 40 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Heat treated Manganese Phosphate with oil lubricant exhibited the lowest average wear coefficient and the lowest wear loss under 40 N load.

  4. Influence of the ion nitriding temperature in the wear resistance of AISI H13 tool steel

    International Nuclear Information System (INIS)

    Heck, Stenio Cristaldo; Fernandes, Frederico Augusto Pires; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Totten, George Edward

    2010-01-01

    The AISI H13 tool steel for hot work is the most used in its category. This steel was developed for injection molds and extrusion of hot metals as well as for conformation in hot presses and hammers. Plasma nitriding can improve significantly the surface properties of these steels, but the treatments conditions, such as temperature, must be optimized. In this work the influence of nitriding treatment temperature on the wear behavior of this steel is investigated. Samples of AISI H13 steel were quenched and tempered and then ion nitrided in the temperatures of 450, 550 and 650 deg C, at 4mbar pressure, during 5 hours. Samples of the treated material were characterized by optical microscopy, Vickers microhardness, x-ray analysis and wear tests. Plasma nitriding formed hard diffusion zones in all the treated samples. White layers were formed in samples treated at 550 deg C and 650 deg C. The treatment temperature of 450 deg C produced the highest hardness. Treatment temperature showed great influence in the diffusion layer thickness. X-ray analysis indicated the formation of the Fe_3N, Fe_4N and CrN phases for all temperatures, but with different concentrations. Nitriding increased significantly the AISI H13 wear resistance. (author)

  5. Dry sliding wear of Al-Fe-Cr-Mn quasicrystalline phase former alloy obtained by spray forming; Estudo do comportamento ao desgaste de liga Al-Fe-Cr-Mn obtida por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.M.T.; Rios, C.T.; Botta Filho, W.J.; Bolfarini, C.; Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Gargarella, P.; Mendes, M.A.B., E-mail: marcio.andreato@gmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Samples from different regions of a spray formed billet of Al{sub 92}Fe{sub 3}Cr{sub 2}Mn{sub 3} quasicrystalline phase former alloy were analyzed and their wear behavior has been studied. The microstructures observed depend on the cooling rate imposed to the material. The border of the billet exhibits a very fine structure with presence of quasicrystalline phase and the base showed a fine structure but without presence of quasicrystalline phase. Dry sliding wear tests were made using three loads and samples of these two different regions. The wear surfaces were analyzed by scanning electron microscopy and X-ray diffraction. Similar wear behavior was observed in the border and the base samples at the same load. The wear mechanism verified is the adhesive and the applied load increases the formation of Al{sub 2}O{sub 3}. These particles can take off the surface and act as abrasive, which can explain the large increase in the wear rate for the samples loaded at 30N.(author)

  6. Sliding wear of steels (used in polished rods of oil pump jack) against polyurethane; Desgaste de deslizamento de acos (usados em hastes de unidade de bombeio de petroleo) contra poliuretano

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Gelsoneide da Silva [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Engenharia de Materiais; Farias, Aline Cristina Mendes; Lima da Silva, Ruthilene Catarina; Medeiros, Joao Telesforo Nobrega [Universidade Federal do Rio Grande do Norte (PPGEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia de Materiais], e-mail: gelsoneidegg@yahoo.com.br, e-mail: alineastro@yahoo.com.br, e-mail: ruthilene@ufrnet.br, e-mail: medeirosj2@asme.org

    2008-07-01

    Accelerated sliding tests were carried out in the steels AISI 316, AISI 4140, AISI 1045 coated and AISI 4142 coated, in the dry and lubricated with contaminated oil with 10% SiO{sub 2} conditions. Each cylindrical counterbody with angular generatrix of polyurethane slid against a stationary metallic specimen. The contact pressure changed by increment of normal loads of 10,0 and 2,3 N, velocity of 0,91 m/s and distance of 12 km. The wear rates were calculated through of the mass variation from specimens after each test. The wear morphology was characterized by Optical and Scanning Electron Microscopy, where identified damages by abrasion at two and three bodies. The contaminated lubricant increase the wear rate due to action of the abrasive particles. (author)

  7. Effect of low temperature annealing on the wear properties of NITINOL

    International Nuclear Information System (INIS)

    Mukunda, Sriram; Nath S, Narendra; Herbert, Mervin A.; Mukunda, P. G.

    2016-01-01

    NiTi shape memory alloy is a wonder material that is a solution looking for problems. The material finds wide biomedical applications like endodontic files for root canal treatment and cardiovascular stents. This material has rendered the surgical procedure simple compared to that with the existing Stainless Steel (SS) or titanium ones. NiTi as an endodontic file would cause less discomfort to the patients in comparison to that with far stiffer SS or titanium ones. Here nearly equi-atomic 50:50 commercial NiTi rods were subjected to low temperature aging at 300 to 450°C. The wear resistance of the as-received and the heat-treated samples was studied using adhesive wear tests on hardened steel counter face. Abrasive wear tests were run against Alumina disc to simulate the working of endodontic drills and files against dental hard and soft tissues. The abrasive wear resistance is expected to be proportional to the Vickers Hardness of the material and is high for the 450°C heat-treated sample. A correlation between the mechanical properties and microstructures of this material is attempted (paper)

  8. Friction and wear behavior of steam-oxidized ferrous PM compacts

    Energy Technology Data Exchange (ETDEWEB)

    Raj, P. Philomen-D-Anaand; GopalaKrishna, A. [Dept. of Mechanical Engineering, Jawaharlal Nehru Technological University, Kakinada (India); Palaniradja, K [Dept. of Mechanical Engineering, Pondicherry Engineering College, Pondicherry (India)

    2016-10-15

    This study determines density effect by assessing sintering temperature and graphite content on the dry sliding wear characteristics of steam-treated iron materials using a pin-on-disk wear test. The specimens were prepared from atomized premixed iron base powders and contained 0.1 to 1.0 wt.% carbon compacted at different densities (5.9 g/cc to 6.8 g/cc). The specimens were sintered for 1 h at different sintering temperatures (1090°C to 1130°C), and then subjected to continuous steam treatment at 540°C for 95 min through in situ Powder metallurgy (PM) technique. Steam treatment was proposed to improve the wear performances of the components of PM. Wear tests were conducted using a pin-on-disk-type machine. Load ranged from 20 N to 60 N. Sliding distance and sliding velocity of 312 m and 0.26 m/s, respectively, were adopted for all tests. Scanning electron microscope was used to analyze wear surface. Increased density and graphite content reduced the wear rate of steam-treated materials. Hardness increased with increasing graphite content. Wear mechanism, wear rate map, and wear maps were drawn for the test result data. Wear transition map identified mild, severe, and ultra-severe wear regimes as functions of applied load.

  9. Characterization of thermally sprayed coatings for high-temperature wear-protection applications

    International Nuclear Information System (INIS)

    Li, C.C.

    1980-03-01

    Under normal high-temperature gas-cooled reactor (HTGR) operating conditions, faying surfaces of metallic components under high contact pressure are prone to friction, wear, and self-welding damage. Component design calls for coatings for the protection of the mating surfaces. Anticipated operating temperatures up to 850 to 950 0 C (1562 to 1742 0 F) and a 40-y design life require coatings with excellent thermal stability and adequate wear and spallation resistance, and they must be compatible with the HTGR coolant helium environment. Plasma and detonation-gun (D-gun) deposited chromium carbide-base and stabilized zirconia coatings are under consideration for wear protection of reactor components such as the thermal barrier, heat exchangers, control rods, and turbomachinery. Programs are under way to address the structural integrity, helium compatibility, and tribological behavior of relevant sprayed coatings. In this paper, the need for protection of critical metallic components and the criteria for selection of coatings are discussed. The technical background to coating development and the experience with the steam cycle HTGR (HTGR-SC) are commented upon. Coating characterization techniques employed at General Atomic Company (GA) are presented, and the progress of the experimental programs is briefly reviewed. In characterizing the coatings for HTGR applications, it is concluded that a systems approach to establish correlation between coating process parameters and coating microstructural and tribological properties for design consideration is required

  10. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Roodposhti, Peiman Shahbeigi, E-mail: pshahbe@ncsu.edu [North Carolina State University (United States); University of Connecticut (United States); Sarkar, Apu; Murty, Korukonda Linga [North Carolina State University (United States); Brody, Harold [University of Connecticut (United States); Scattergood, Ronald [North Carolina State University (United States)

    2016-07-04

    High temperature tensile creep tests were conducted on AZ31 Magnesium alloy at low stress range of 1–13 MPa to clarify the existence of grain boundary sliding (GBS) mechanism during creep deformation. Experimental data within the GBS regime shows the stress exponent is ~2 and the activation energy value is close to that for grain boundary diffusion. Analyses of the fracture surface of the sample revealed that the GBS provides many stress concentrated sites for diffusional cavities formation and leads to premature failure. Scanning electron microscopy images show the appearances of both ductile and brittle type fracture mechanism. X-ray diffraction line profile analysis (based on Williamson-Hall technique) shows a reduction in dislocation density due to dynamic recovery (DRV). A correlation between experimental data and Langdon's model for GBS was also demonstrated.

  11. Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%)Si-0.3% Mg alloys

    International Nuclear Information System (INIS)

    Shah, K.B.; Kumar, Sandeep; Dwivedi, D.K.

    2007-01-01

    In the present paper, influence of aging temperature during artificial age hardening treatment (T 6 ) of cast Al-(4, 12, 20%)Si-0.3% Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given age hardening treatment having sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 510 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 150, 170, 190, 210 and 230 deg. C for 12 h. Abrasive wear tests were conducted against of 320 grade SiC abrasive medium at 5 and 10 N normal loads. It was observed that the silicon content and aging temperature significantly affect the wear resistance. Increase in aging temperature improves the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic alloy under identical conditions. Optical microstructure study of alloys under investigation has shown that cast dendritic structure is destroyed besides the spheroidization of eutectic silicon crystals after the heat treatment. The extent of change in structure depends on aging temperature. Scanning electron microscopy (SEM) of wear surface was carried to analyze the wear mechanism

  12. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  13. Research on Oxidation Wear Behavior of a New Hot Forging Die Steel

    Science.gov (United States)

    Shi, Yuanji; Wu, Xiaochun

    2018-01-01

    Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.

  14. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    Science.gov (United States)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  15. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  16. Effect of thermal treatments on the wear behaviour of duplex stainless steels

    International Nuclear Information System (INIS)

    Fargas, G; Mestra, A; Anglada, M; Mateo, A

    2009-01-01

    Duplex stainless steel (DSS) is a family of steels characterized by two-phase microstructure with similar percentages of ferrite (α) and austenite (γ).Their attractive combination of mechanical properties and corrosion resistance has increased its use in last decades in the marine and petrochemical industries. Nevertheless, an inappropriate heat treatment can induce the precipitation of secondary phases which affect directly their mechanical properties and corrosion resistance. There are few works dealing with the influence of heat treatments on wear behaviour of these steels in the literature. For instances, this paper aims to determine wear kinetic and sliding wear volume developed as a function of heat treatment conditions. Therefore, the samples were heat treated from 850 deg. C to 975 deg.C before sliding wear tests. These wear tests were carried out using ball on disk technique at constant sliding velocity and different sliding distances. Two methodologies were used to calculate the wear volume: weight loss and area measurement using a simplified contact model. Microstructural observations showed the presence of sigma phase for all studied conditions. The formation kinetics of this phase is faster at 875 deg. C and decrease at higher temperatures. Results related to wear showed that the hardness introduced due to the presence of sigma phase plays an important role on wear behaviour for this steel. It was observed also that wear rates decreased when increasing the percentage of sigma phase on the microstructure.

  17. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    Science.gov (United States)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  18. Slide 1

    Indian Academy of Sciences (India)

    Potency of Stem Cells · Slide 3 · Slide 4 · Slide 5 · World Wide Clinical trials using MSCs · Slide 7 · Bone Marrow derived Human MSCs (hMSC) in culture · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Fetal MSCs · Morphology of murine fetal heart derived stem cells (fHSCs) · Growth Kinetics of fHSCs · Phenotype of ...

  19. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  20. Dry sliding behavior of aluminum alloy 8011 with 12% fly ash composites

    Science.gov (United States)

    Magibalan, S.; Senthilkumar, P.; Palanivelu, R.; Senthilkumar, C.; Shivasankaran, N.; Prabu, M.

    2018-05-01

    This research focused on the fabrication of aluminum alloy 8011 with 12% fly ash (FA) composite (AA8011%–12% FA) using the stir casting method. A three-level central composite design experiment was developed using response surface methodology with various parameters such as load, time, and sliding velocity varied in the range of 5 to 15 N, 5 to 15 min, and 1.5 to 4.5 m.s‑1, respectively. Dry sliding wear tests were performed as per the experimental design using a pin on disc at room temperature. The obtained regression result indicated that the developed model performed well in relating the wear process parameters and predicted the wear behavior of the composite. The surface plot showed that the wear rate increases with increase in load, time, and sliding velocity. Hardness was evaluated by Vickers hardness testing machine. Moreover, the surface morphology of the worn-out composite was examined using a scanning electron microscope.

  1. The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy

    International Nuclear Information System (INIS)

    Alipour, M.; Azarbarmas, M.; Heydari, F.; Hoghoughi, M.; Alidoost, M.; Emamy, M.

    2012-01-01

    Highlights: ► The effect of Al–8B on the properties of aluminum alloy was studied. ► Al–8B is an effective in reducing the grain and reagent fine microstructure. ► Al–8B is an effective in optimization of properties. -- Abstract: In this study the effect of Al–8B grain refiner on the structural and properties of Al–12Zn–3Mg–2.5Cu aluminum alloy were investigated. The optimum amount for B containing grain refiner was selected as 3.75 wt.%. The results showed that B containing grain refiner is more effective in reducing average grain size of the alloy. T6 heat treatment was applied for all specimens before tensile testing. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the heat treatment, the average tensile strength increased from 479 MPa to 537 MPa for sample refined with 3.75 wt.% Al–8B. The fractography of the fractured faces and microstructure evolution was characterized by scanning electron microscopy and optical microscopy. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al–12Zn–3Mg–2.5Cu aluminum alloy to the dry sliding wear.

  2. 3D FEM Simulation of Flank Wear in Turning

    Science.gov (United States)

    Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio

    2011-05-01

    This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.

  3. The role of hardness and microstructure in high temperature pitting in the impact wear of 9Cr boiler material. Part 1

    International Nuclear Information System (INIS)

    Morri, J.

    1987-11-01

    This report describes impact wear experiments on 9Cr1Mo finned boiler tube specimens in 3 different heat treated forms. The objective of the tests was to establish whether a high temperature, high wear rate, pitting form of wear was dependent upon the residual microstructure and hardness. Although a x2 reduction in specific wear rate was achieved for the martensitic structure, the pitting characteristic remained. It is concluded that modifying the as-received 9Cr microstructure has not suppressed the high temperature severe form of wear. (author)

  4. Effect of temperature and pressure on wear properties of ion nitrided AISI 316 and 409 stainless steels

    International Nuclear Information System (INIS)

    Fernandes, Frederico Augusto Pires; Heck, Stenio Cristaldo; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Nascente, Pedro Augusto de Paula

    2010-01-01

    Stainless steels are widely used in chemical and other industries due to their corrosion resistance property. However, because of their low hardness and wear properties, their applications are limited. Many attempts have been made to increase the surface hardness of these materials by using plasma techniques. Plasma nitriding is distinguished by its effectiveness, and for presenting a relatively low cost and being a clean process, producing hard surface layers on stainless steels. Aiming to verify the influence of the temperature and pressure on the modified resultant layers, samples of AISI 316 and 409 stainless steels were plasma nitrided in two different temperatures (450 and 500°C) and pressures of 400, 500, and 600Pa for 5h. After the nitriding treatment, the layers were analyzed by means of optical microscopy and wear tests. Wear tests were conducted in a fixed-ball micro-wear machine without lubrication. After the plasma nitriding treatment on AISI 316 and 409 samples, homogeneous and continuous layers were produced and their thicknesses increased as the temperature increased, and as the pressure decreased. The nitriding treatment on the AISI 316 steel sample resulted on the formation of expanded austenite layers at 450°C, and chromium nitrides (CrN and Cr_2N) phases at 500°C. The nitriding treatment on AISI 409 sample yielded the formation of similar layers for both treatment temperatures; these layers constituted mainly by chromium (Cr_2N) and iron (Fe_2N, Fe3_N, and Fe_4N) nitrides. After the nitriding treatment, the AISI 316 steel sample presented higher wear resistance for lower temperature and pressure values. The increase on layer fragility, for higher temperature and pressure values can be responsible for this inverse tendency. The wear resistance of the nitrided AISI 409 sample followed a logic tendency: the harder the layer the better the performance, i.e. the performance was improved with the increase in both the temperature and pressure

  5. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2

    International Nuclear Information System (INIS)

    Xiang, Zhan-Feng; Liu, Xiu-Bo; Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao; Shi, Gao-Lian; Wu, Shao-Hua

    2014-01-01

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF 2 were “in situ” synthesized in the coating. • The coating with the addition of CaF 2 possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF 2 coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF 2 coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF 2 particles. The wear rates of γ-NiCrAlTi/TiC/CaF 2 coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF 2 coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF 2 coating exhibited excellent friction-reducing and anti-wear properties at high temperature

  6. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhan-Feng [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Liu, Xiu-Bo, E-mail: liuxiubo@suda.edu.cn [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Shi, Gao-Lian; Wu, Shao-Hua [Suzhou Institute of Industrial Technology, Suzhou 215104 (China)

    2014-09-15

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF{sub 2} were “in situ” synthesized in the coating. • The coating with the addition of CaF{sub 2} possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF{sub 2} coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF{sub 2} coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF{sub 2} particles. The wear rates of γ-NiCrAlTi/TiC/CaF{sub 2} coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF{sub 2} coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF{sub 2} coating exhibited excellent friction-reducing and anti-wear properties at high temperature.

  7. Slide-away distributions and relevant collective modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.; Pozzoli, R.; Rewoldt, G.

    1976-01-01

    The evolution of the electron distribution function, when an electric field that is not too small in comparison with the critical electron runaway field is applied along the confining magnetic field of a high temperature plasma, is analysed. In the regimes considered, a finite fraction of the electron population has magnetically trapped orbits, and is not appreciably affected by the applied electric field, while the distribution of circulating electrons tends to ''slide away'' as a whole. Then the Spitzer-Haerm model for the current-carrying electron distribution is inadequate, and the role that collective modes, in particular current-driven microinstabilities, and collisions can play in producing a stationary electron distribution is analysed. Modes at the ion plasma frequency, ωsub(pi), that are driven by the positive slope of the current-carrying electron distribution, can be excited, when the average electron drift velocity is a finite fraction of the electron thermal velocity, and transfer transverse energy to the main body of the electron distribution. These features are consistent with the experimental observations performed on the Alcator device. Modes at the ''reduced'' electron plasma frequency (ksub(parallel)/k)ωsub(pe) can also be excited both in connection with the modes at wsub(pi) and independently. Modes at the electron gyrofrequency Ωsub(e) associated with the loss-cone feature that the electron distribution tends to develop are considered, among others, as a factor for the strongly enhanced electron cyclotron emission experimentally observed in regimes where non-thermal electron distributions have been realized. (author)

  8. Nitrogen plasma immersion ion implantation for surface treatment and wear protection of austenitic stainless steel X6CrNiTi1810

    International Nuclear Information System (INIS)

    Blawert, C.; Mordike, B.L.

    1999-01-01

    Plasma immersion ion implantation is an effective surface treatment for stainless steels. The influence of treatment parameters (temperature, plasma density and pressure) on the sliding wear resistance are studied here. At moderate temperatures, nitrogen remains in solid solution without forming nitrides. This increases the surface hardness and the wear resistance without affecting the passivation of the steel. This may allow the use of such steels in applications where their poor wear resistance would normally prohibit their use. (orig.)

  9. Effect of the post heat treatment on the sliding wear resistance of a nickel base coating deposited by high velocity oxyl-fuel (HVOF)

    International Nuclear Information System (INIS)

    Cadenas, P.; Rodriguez, M.; Staia, M. H.

    2007-01-01

    In the present research, a nickel base coating was deposited on an AISI 1020 substrate by using high velocity oxy-fuel technique (HVOF). The coating was subsequently post heat-treated by means of an oxyacetylene flame. For the conditions evaluated in the present study, it was found that the CTT coating coating has 1,15 better wear resistance for the smaller level of the applied load and nearly 50 times for the highest level of the applied load when compared to the STT coatings. These results have been attributed to a better distribution of the hard phases, better cohesion between particles and an increase in hardness, as consequence of the post heat treatment process. A severe wear regime was found for all the samples since the wear rates presented values which were higher tan 1.10''-5 mm''3/m. For the CT T coatings, the wear mechanisms was mainly due to the adhesion and oxidation phenomena, meanwhile for the steel counterpart mechanisms such oxidation, grooving and three body abrasion were observed. (Author) 22 refs

  10. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  11. Friction and wear studies of graphite and a carbon-carbon composite in air and in helium

    International Nuclear Information System (INIS)

    Li, C.C.; Sheehan, J.E.

    1980-10-01

    Sliding friction and wear tests were conducted on a commercial isotropic graphite and a carbon-carbon composite in air, purified helium, and a helium environment containing controlled amounts of impurities simulating the primary coolant chemistry of a high-temperature gas-cooled reactor (HTGR). The friction and wear characteristics of the materials investigated were stable and were found to be very sensitive to the testing temperature. In general, friction and wear decreased with increasing temperature in the range from ambient to 950 0 C. This temperature dependence is concluded to be due to chemisorption of impurities to form lubricating films and oxidation at higher temperatures, which reduce friction and wear. Graphite and carbon-carbon composites are concluded to be favorable candidate materials for high-temperature sliding service in helium-cooled reactors

  12. Friction and wear properties of Cu and Fe-based P/M bearing materials

    International Nuclear Information System (INIS)

    Tufekci, Kenan; Kurbanoglu, Cahit; Durak, Ertugrul; Tunay, R. Fatih

    2006-01-01

    The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient - temperature for both constant load, and constant sliding speed, friction coefficient - average bearing pressure, PV - wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings

  13. Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings

    Directory of Open Access Journals (Sweden)

    Li Jiahong

    2018-01-01

    Full Text Available Cr–Ni coatings with the mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni were fabricated on H13 hot work mould steel using a laser cladding (LC. The surface–interface morphologies, chemical elements, surface roughness and phase composition of the obtained Cr–Ni coatings were analysed using a scanning electron microscope (SEM, energy disperse spectroscopy (EDS, atomic force microscope (AFM and X–ray diffractometer (XRD, respectively. The friction–wear properties and wear rates of Cr–Ni coatings with the different mass ratios of Cr and Ni at 600 °C were investigated, and the worn morphologies and wear mechanism of Cr–Ni coatings were analysed. The results show that the phases of Cr–Ni coatings with mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni are composed of Cr + Ni single-phases and their compounds at the different stoichiometry, the porosities on the Cr–Ni coatings increase with the Cr content increasing. The average coefficient of friction (COF of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% coatings are 1.10, 0.33 and 0.87, respectively, in which the average COF of 20% Cr–80% Ni coating is the lowest, exhibiting the better anti-friction performance. The wear rate of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni coatings is 4.533 × 10−6, 5.433 × 10−6, and 1.761 × 10−6 N−1·s−1, respectively, showing the wear resistance of Cr–Ni coatings at a high temperature increases with the Cr content, in which the wear rate is 24% Cr–76% Ni coating with the better reducing wear. The wear mechanism of 17% Cr–83% Ni and 20% Cr–80% Ni and 24% Cr–76% coatings at 600 °C is primarily adhesive wear, and that of 24% Cr–76% coating is also accompanied by oxidative wear.

  14. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method

    International Nuclear Information System (INIS)

    Mostafapour Asl, A.; Khandani, S.T.

    2013-01-01

    Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nanocomposites of Al5083/Graphite p /Al 2 O 3p with different hybrid ratios were fabricated by friction stir processing method. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nanocomposite was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples. Hardness value measurements, tensile and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nanocomposites. Microstructural investigations displayed better distribution with less agglomeration of reinforcement for lower volume fraction of reinforcement for both alumina and graphite particles. Hardness value, yield strength, ultimate tensile strength and wear rate of the nanocomposites revealed a two stage form along with hybrid ratio variation. The results are discussed based on microstructural observations of the nanocomposites and worn surface analyses.

  15. Dynamic study of a sliding interface wear process of TiAlN and CrN multi-layers by X-ray absorption

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    reactions at the interface. The basic physical and chemical processes on the nano-scale are, however, not yet known fully. Thus, the work presented here is a contribution to the knowledge of the area. The main objectives of this dynamical investigation are to show that real time and in-situ tribology...... in France. The contact under investigation (TiAlN/CrN/TiAlN (2000nm/1000nm/2000nm) multi-layer system) was exposed to a reciprocating sliding motion under a normal load. Simultaneously, the contact zone was submitted to a direct, focused and monochromatic SR photon beam. In this way we have studied...

  16. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    Science.gov (United States)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  17. Wear behavior of steam generator tubes in nuclear power plant operating condition

    International Nuclear Information System (INIS)

    Kim, In-Sup; Hong, Jin-Ki; Kim, Hyung-Nam; Jang, Ki-Sang

    2003-01-01

    Reciprocating sliding wear tests were performed on steam generator tubes materials at steam generator operating temperature. The material surfaces react with oxygen to form oxides. The oxide properties such as formation rate and mechanical properties are varied with the test temperature and alloy composition. So, it is important to investigate the wear properties of each steam generator tube materials in steam generator operating condition. The tests results indicated that the wear coefficient in work rate model of alloy 690 was faster than that of alloy 800. From the scanning electron microscopy observation, the wear scars were similar each other and worn surfaces were covered with oxide layers. It seemed that the oxide layers were formed by wear debris sintering or cold welding and these layer properties affected the wear rate of steam generator tube materials. (author)

  18. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  19. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

    Science.gov (United States)

    2008-09-01

    measured during operation without breaking the gas environment. For this study, coatings were deposited on 304 stainless steel spheres and rectangular...activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to...efforts to measure and under- stand tribological behavior at cryogenic temperatures; to date, results of these efforts show either no trend or con- flicting

  20. A comparative wear study on Al-Li and Al-Li/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Okumus, S. Cem, E-mail: cokumus@sakarya.edu.tr; Karslioglu, Ramazan, E-mail: cokumus@sakarya.edu.tr; Akbulut, Hatem, E-mail: cokumus@sakarya.edu.tr [Sakarya University Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187, Sakarya (Turkey)

    2013-12-16

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al{sub 2}O{sub 3} ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms{sup −1} and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth and diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.

  1. Patients presenting with miliaria while wearing flame resistant clothing in high ambient temperatures: a case series

    Directory of Open Access Journals (Sweden)

    Garcia Anisa M

    2011-09-01

    Full Text Available Abstract Introduction Clothing can be a cause of occupational dermatitis. Frequent causes of clothing-related dermatological problems can be the fabric itself and/or chemical additives used in the laundering process, friction from certain fabrics excessively rubbing the skin, or heat retention from perspiration-soaked clothing in hot working environments. To the best of our knowledge, these are the first reported cases of miliaria rubra associated with prolonged use of flame resistant clothing in the medical literature. Case presentation We report 18 cases (14 men and 4 women, with an age range of 19 to 37 years of moderate to severe skin irritation associated with wearing flame resistant clothing in hot arid environments (temperature range: 39 to 50°C, 5% to 25% relative humidity. We describe the medical history in detail of a 23-year-old Caucasian woman and a 31-year-old African-American man. A summary of the other 16 patients is also provided. Conclusions These cases illustrate the potential serious nature of miliaria with superimposed Staphylococcus infections. All 18 patients fully recovered with topical skin treatment and modifications to their dress ensemble. Clothing, in particular blend fabrics, must be thoroughly laundered to adequately remove detergent residue. While in hot environments, individuals with sensitive skin should take the necessary precautions such as regular changing of clothing and good personal hygiene to ensure that their skin remains as dry and clean as possible. It is also important that they report to their health care provider as soon as skin irritation or rash appears to initiate any necessary medical procedures. Miliaria rubra can take a week or longer to clear, so removal of exposure to certain fabric types may be necessary.

  2. Impact fretting wear in CO2-based environments

    International Nuclear Information System (INIS)

    Levy, G.; Morri, J.

    1985-01-01

    An impact wear model, based on the load-sliding distance proportionality of wear and the mechanical response of the impacting bodies, was derived and tested against experiment. The experimental work was carried out on a twin vibrator rig capable of repetitive impact of a moving specimen against a stationary target material. The impact wear characteristics of three materials (mild steel, 9Cr-1Mo steel and austenitic 316 steel) against 310 stainless steel were examined over a range of temperatures (18-600 0 C). Additionally the effects of variations in the mechanical parameters (incident energy, ξ i , number N of impacts and angle of incidence φ) as a function of temperature were evaluated for mild steel only. The model was verified for impacting within a stable wear regime at 100 0 C for 9Cr-1Mo steel. The emergence of a severe-to-mild wear transition at elevated temperatures (200-400 0 C), however, introduced an energy and a 'numbers of cycles' effect that caused apparent deviations from theory. It was concluded that for stable single-mechanism wear regimes (metallic, oxidative etc.) oblique elastic impacts with a gross slip component were accurately described by the proposed impact wear model. (orig.)

  3. Slide 1

    Indian Academy of Sciences (India)

    Projected Rainfall (Weighted Mean CDF; A1B scenario) · Slide 18 · Imprecise Probability · Bounds for Probability of Drought · Slide 21 · Possibility Distribution of GCMs and Scenarios · Mahanadi River Basin - Streamflow · Projections for future monsoon inflows to Hirakud Reservoir · Slide 25 · Rule curve for adaptive policies.

  4. WEAR OF THE FRICTION SURFACES PARTS IN THE PRESENSE OF SOLID PARTICLES CONTACTING ZONE

    Directory of Open Access Journals (Sweden)

    B. M. Musaibov

    2015-01-01

    Full Text Available The problems of intensity of wear of details of the cars working in the oil polluted by abrasive particles, depending on mechanical properties of material of details and abrasive particles, their sizes, a form and concentration, loading, temperature of a surface of friction, speed of sliding, quality of lubricant are considered. 

  5. Friction and wear behaviour of ion beam modified ceramics

    Science.gov (United States)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  6. Adhesion and wear properties of boro-tempered ductile iron

    International Nuclear Information System (INIS)

    Kayali, Yusuf; Yalcin, Yilmaz; Taktak, Suekrue

    2011-01-01

    Highlights: → In this study, the wear and adhesion properties of BDI were investigated. → Boro-tempering process under several heat treatment conditions was examined. → Optical microscope, SEM and XRD analysis were carried out to investigate the microstructure. → It was observed that boro-tempering process improves micro-hardness and wear properties of ductile irons. -- Abstract: In this study, adhesion and wear properties of boro-tempered ductile iron (BDI) were investigated. Boro-tempering was carried out on two stage processes i.e. boronizing and tempering. At the first stage, ductile iron samples were boronized by using pack process at 900 o C for 1, 3, and 5 h and then, secondly tempered at 250, 300, 350, and 400 o C for 1 h. X-ray diffraction (XRD) analysis of boro-tempered samples showed that FeB and Fe 2 B phases were found on the surface of the samples. The Daimler-Benz Rockwell-C adhesion test was used to assess the adhesion of boride layer. Test result showed that adhesion decreased with increasing boriding time and increased with increasing tempering temperature. Dry sliding wear tests of these samples were performed against Al 2 O 3 ball at a constant sliding speed and loads of 5 and 10 N. Wear tests indicated that boro-tempering heat treatment increased wear resistance of ductile iron. In addition, it was found that while wear rate of boro-tempered samples decreased with increasing boriding time, there is no significant affect of tempering temperature on wear rate.

  7. Friction and wear behaviour of Ni-Cr-B hardface coating on 316LN stainless steel in liquid sodium at elevated temperature

    Science.gov (United States)

    Kumar, Hemant; Ramakrishnan, V.; Albert, S. K.; Bhaduri, A. K.; Ray, K. K.

    2017-11-01

    The sliding friction and wear behaviour of Ni-Cr-B hardface coating made on 316LN stainless steel were evaluated in liquid sodium at 823 K by using a fabricated reciprocating-type tribometer. The test parameters have been selected based on operational conditions prevailing in the Indian sodium cooled fast breeder reactors (FBRs). Accordingly, the tests were carried out at sliding speeds of 2 and 16 mm/s under contact stresses of 10 and 40 MPa respectively using Ni-Cr-B coated pin and disc specimens. The static and dynamic friction coefficients are found to be in the ranges of 0.03-0.07 and 0.01-0.02 respectively under the imposed test conditions. The estimated wear rates (WR) are found to be in the range of 0.62 × 10-12 - 3.07 × 10-12 m3/m; the magnitude of WR increases with increase in the contact stress. The examination of the worn disc specimens by confocal laser scanning microscopy indicated higher damage in specimens tested at 40 MPa compared to that in specimens tested at 10 MPa; the quantitative estimation of damage was made by the number of scars and their depth. These observations corroborate well with the morphological features of the worn surfaces of the pin specimens examined by scanning electron microscopy. The results unambiguously indicate superior friction coefficients and wear resistance of Ni-Cr-B coatings in liquid sodium compared to that in air under identical test conditions.

  8. Fretting wear of steam generator tubes: high-temperature tests on AECL rig

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.

    1993-07-01

    The R and DD has undertaken the study of fretting-wear of Alloy 600 S.G. tubes which occurs by contact with migrating items. The test series was performed in Canada at AECL Research (Atomic Energy of Canada Limited) as part of an exchange program. Four types of configuration were envisaged: a tube-to-drilled hole support contact which provides reference results and three types of tube-to-support contacts which simulate the tube fretting-wear induced by a welding rod, a threaded rod and a knife-edge rod support. This programme is completed by the study of the contact between a S.G. tube and a neighbouring S.G. tube which has been broken after plugging. (authors). 1 tab., 3 refs

  9. Effect of the low temperature ion nitriding on the wear and corrosion resistance of 316L austenitic stainless steel biomaterials

    International Nuclear Information System (INIS)

    Sudjatmoko; Bambang Siswanto; Wirjoadi; Lely Susita RM

    2012-01-01

    In the present study has been completed done the ion nitriding process and characterization of the 316L SS samples. The ion nitriding process has been conducted on the samples for nitriding temperature variation of 350, 400, 450, 500, and 550 °C, the optimum nitrogen gas pressure of 1.8 mbar and optimum nitriding time of 3 hours. The micro-structure, elemental composition and the phase structure of the nitride layer formed on the surface of samples were observed using the techniques of SEM-EDAX and XRD, respectively. It is known that a thin layer of iron nitrides has been formed on the surface of the samples. Iron nitride layer has a phase structure including ε-Fe_2_-_3N, γ'-Fe_4N, CrN, Cr_2N and expanded austenite γN. The characterization results of the wear resistance of the 316L SS samples showed an increasing of about 2.6 times the wear resistance of standard samples after nitriding temperature of 350 °C. From the corrosion test by using the Hanks solution was obtained 29.87 mpy corrosion rate or the increasing of corrosion resistance of about 137%. Thus it can be seen that by using ion nitriding technique the iron nitride layer has been formed on the surface of the 316L SS samples, and they have an excellent properties of wear resistance and corrosion resistance, which were caused especially due to the formation of an expanded austenite γN. Properties of the high hardness and has the good corrosion resistance, especially due to the formation of iron nitride and expanded austenite phases γN at low temperature nitriding process. (author)

  10. Protection of 310l Stainless Steel from Wear at Elevated Temperatures using Conicraly Thermal Spray Coatings with and without Sic Addition

    Science.gov (United States)

    Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang

    2017-10-01

    Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.

  11. Friction and wear behaviour of ion beam modified ceramics

    International Nuclear Information System (INIS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temparature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 0 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides. (author)

  12. Sand Particles Impact on the Tribological Behavior of Sliding Contact

    Directory of Open Access Journals (Sweden)

    Aldajah Saud

    2016-01-01

    Full Text Available Lubricant contaminants cause severe problems to machines. Substantial research has been conducted to study the impact of such contaminates on the tribological performance of lubricated contacts. The primary goal of such studies is to find solutions to avoid the dirtiest cause of damaging machines’ parts and to reduce energy consumption and maintenance costs. The current study investigates the tribological behavior of contaminated lubricated contacts; the contaminants considered in this research are sand particles. The effect of the sand particles concentration levels on friction and wear of a tribological system under sliding contact was studied. Three different concentration levels were tested; 5%, 10% and 15%.The experimental program was carried out using an in-house built ball on disc machine at room temperature, constant normal load, constant speed, constant running time and constant travelling distance. Results showed that both friction coefficient and wear volume of the contacting surfaces are dependent on the concentration level of the sand particles. Both friction coefficient and wear volume increased by increasing the sand particles concentration. SEM was utilized to study the wear mechanisms of the contacting surfaces, it was found that the dominant wear mechanism in all cases was abrasive wear.

  13. Experimental fretting-wear studies of steam generator materials

    International Nuclear Information System (INIS)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1994-01-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally-derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances and tube support geometries have been studied. As well, the effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short- and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is appropriate correlating parameter for impact-sliding interaction

  14. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  15. Slide 1

    Indian Academy of Sciences (India)

    Game Theory · Strategic Form Games (Normal Form Games) · Example : Prisoner's Dilemma · Dominant Strategy Equilibrium · Nash Equilibrium · Nash's Theorem · Slide 17 · Slide 18 · Example 1: Mechanism Design Fair Division of a Cake · Example 2: Mechanism Design Truth Elicitation through an Indirect Mechanism.

  16. The role of specimen temperature difference in the elevated temperature pitting/transfer of PE16 and 20/25/Nb SS during impact wear

    International Nuclear Information System (INIS)

    Morri, J.

    1989-01-01

    A previous study of the impact fretting wear characteristics of PE16 + impacting 20/25 Nb SS (carried out on the BNL twin vibrator rig) identified a pitting-transfer form of wear at 480 0 C. This behaviour was thought to be dependent upon the temperature difference ΔT(ΔT = T 20/25 -T PE 16 ) between the two specimens. In that series of tests, however, no localised temperature control over the specimens was possible and specimen temperature effects could only be assessed by interchanging their positions in the rig. The introduction of locally positioned auxilliary heaters permitted a degree of control over the specimen temperature difference. The effect of ΔT upon pitting and transfer of the PE16 and 20/25 was then assessed and is reported in this paper. The study confirmed that the pitting transfer process was dependent on the temperature difference between the two surfaces. The direction and size of the transfer/pitting effect was independent of the material. Under the particular set of conditions employed in the test, pitting occurred only when the magnitude of ΔT exceeded 20 0 C. At high ΔT the initial period of high friction was extended and was associated with the tendency for gross transfer and pitting. (author)

  17. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  18. Investigation of friction and wear characteristics of cast iron material under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji Hoon; Kim, Chang Lae; Oh, Jeong Taek; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of); Nemati, Narguess [School of Materials and Metallurgy, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3D profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

  19. Friction and wear behavior of Inconel 625 with Ni3Ti, TiN, TiC-CVD coatings in an HTGR environment

    International Nuclear Information System (INIS)

    Sarosiek, A.M.; Li, C.C.

    1984-04-01

    The following conclusions apply to Inconel 625 with Ni 3 Ti, TiN, TiC-CVD coatings, tested in an HTGR environment in a temperature range between 500 and 900 0 C at a contact pressure of 3.45 MPa. The average wear rate is very small varying between 0.0 and 1.7 x 10 -4 g/m. The wear rate shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases or as the sliding velocity decreases. Damage experienced by wear areas is minimal. Stick-slip friction was observed at low sliding velocity, however the friction coefficient is low (maximum 0.63) with an average value of about 0.44. The friction coefficient shows little dependence on temperature and sliding velocity, increasing slightly as the temperature increases, or as the sliding velocity decreases. Ni 3 Ti, TiN, TiC-CVD coatings, are considered effective in minimizing friction and wear damage of Inconel 625 in an HTGR environment

  20. Low Friction and Wear Surface for Application over a Wide Range of Temperature

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1997-01-01

    ...) and Transmission electron microscopy (TEM), both before and after exposure to high temperatures (up to 700 deg C) in air. Friction measurements were performed at temperatures in the range of room temperature to 700 deg C in air...

  1. Fretting wear behaviour of TiC/Ti(C,N)/TiN multi-layer coatings at elevated temperature in gross slip regime

    International Nuclear Information System (INIS)

    Liu Hanwei; Huang Kunpeng; Zhu Minhao; Zhou Zhongrong

    2005-01-01

    Tic/Ti(C,N)/TiN multi-layer coatings are prepared on the 1Cr13 stainless steel substrate by the technique of Chemical Vapour Deposition, and the fretting wear behaviour of 1Cr13 stainless steel and TiC/Ti(C,N)/TiN coatings are investigated and studied controversially from 25 degree C to 400 degree C in the gross slip regime. It shows that the temperature has great influence on the fretting wear in the gross slip regime for the 1Cr13 stainless steel but little for Ti/C/Ti(C,N)/TiN multi-layer coatings. With the temperature increasing, the friction coefficient and the wear volume of the 1Cr13 alloy decreases and the wear volume of TiC/Ti(C, N)/TiN multi-layer coatings is invariant. TiC/Ti(C,N)/TiN multi-layer coatings have better wear-resistant capability than the 1Cr13 stainless steel, but the wear volume of the substrate increases greatly because of the grain-abrasion resulted from hard debris when TiC/Ti(C,N)/TiN multi-layer coatings are ground off. (authors)

  2. Wear Calculation for Sliding Friction Pairs

    Directory of Open Access Journals (Sweden)

    Springis G.

    2014-04-01

    Full Text Available ums Mūsdienu ražošanas procesa viens no pamatmērķiem ir produkcijas kvalitātes līmeņa paaugstināšana, tas nozīmē arī dažādu izstrādājumu nepieciešamā kalpošanas laika nodrošināšanu un nodilumizturības palielināšanu. Svarīga loma šī uzdevuma sasniegšanā ir salāgojamo detaļu kalpošanas laika prognozēšanai, kas ir ļoti aktuāls jautājums, jo attīstoties dažādām ražošanas, kā arī mēriekārtu tehnoloģijām, kļūst iespējams arvien precīzāk noteikt nepieciešamos datus, kuri vēlāk tiek izmantoti arī analītiskajos aprēķinos.

  3. An analysis of the physiologic parameters of intraoral wear: a review

    International Nuclear Information System (INIS)

    Lawson, Nathaniel C; Cakir, Deniz; Burgess, John O; Janyavula, Sridhar

    2013-01-01

    This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2–7 and 5–55 °C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method. (paper)

  4. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  5. An Experimental Investigation of Cutting Temperature and Tool Wear in 2 Dimensional Ultrasonic Vibrations Assisted Micro-Milling

    Directory of Open Access Journals (Sweden)

    Ibrahim Mohd Rasidi

    2017-01-01

    Full Text Available Two dimensional Ultrasonic vibration assisted milling (2D UVAM well knows process that involved in high tech system to generate ultra range of frequency applied to the milling process. More industries nowadays become aware taking this opportunity to improve their productivity without decreasing their product accuracies. This paper investigate a comparative machining between UVAM and conventional machining (CM in tool wear and cutting temperature in milling process. Micro amplitude and sine wave frequency will be generate into the workpiece jig by piezo-actuator. Thus, creating a micro gap that allow heat remove effectively with the chip produces. A more complex tool trajectory mechanics of 2D UVAM has been found during this research. The approaching the tool tip into the workpiece surfaces is affected by the amplitude displacement along the frequency applied. It is found that the tool wear was reduce and surface roughness improvement by applying the 2D UVAM compared to the CM when choosing the optimum amplitude and appropriate frequency.

  6. Optimization of tribological behaviour on Al- coconut shell ash composite at elevated temperature

    Science.gov (United States)

    Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.

    2018-02-01

    In this study, determine the tribological behaviour of composite at elevated temperature i.e. 50 - 150 °C. The aluminium matrix composite (AMC) are prepared with compo casting route by volume of reinforcement of coconut shell ash (CSA) such as 5, 10 and 15%. Mechanical properties of composite has enhances with increasing volume of CSA. This study details to optimization of wear behaviour of composite at elevated temperatures. The influencing parameters such as temperature, sliding velocity and sliding distance are considered. The outcome response is wear rate (mm3/m) and coefficient of friction. The experiments are designed based on Taguchi [L9] array. All the experiments are considered as constant load of 10N. Analysis of variance (ANOVA) revealed that temperature is highest influencing factor followed by sliding velocity and sliding distance. Similarly, sliding velocity is most influencing factor followed by temperature and distance on coefficient of friction (COF). Finally, corroborates analytical and regression equation values by confirmation test.

  7. The friction and wear of γ-irradiated polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Briscoe, B.J.; Ni, Z.

    1984-01-01

    The exposure of polytetrafluoroethylene (PTFE) to γ radiation significantly reduces the molecular weight but below the gross softening temperature suppresses the overall molecular domain mobility. The shear modulus and creep resistance increase but the toughness is reduced. Data are presented to substantiate these trends and to interpret their influence on the friction and wear of γ-damaged PTFE. The sliding friction on smooth rigid counterfaces increases but the wear in this configuration is decreased. The rate of abrasion on rough rigid counterfaces is increased. There is also an improvement in the ultimate load-bearing capacity. All the changes produced are a function of the exposure but most of the effects are fully manifested by 20 Mrad. The general conclusion is that the extent of the molecular mobility or migration induced by mechanical stresses, imposed in both the interface and the bulk of the polymer, has a critical effect on the friction and wear processes. (Auth.)

  8. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  9. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  10. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    Directory of Open Access Journals (Sweden)

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  11. A thermal, thermoelastic, and wear analysis of high-energy disk brakes

    Science.gov (United States)

    Kennedy, F. E., Jr.; Wu, J. J.; Ling, F. F.

    1974-01-01

    A thermomechanical investigation of the sliding contact problem encountered in high-energy disk brakes is described. The analysis includes a modelling, using the finite element method of the thermoelastic instabilities that cause transient changes in contact area to occur on the friction surface. In order to include the effect of wear at the contact surface, a wear criterion is proposed that results in the prediction of wear rates for disk brakes that are quite close to experimentally determined wear rates. The thermal analysis shows that the transient temperature distribution in a disk brake assembly can be determined more accurately by use of this thermomechanical analysis than by a more conventional analysis that assumes constant contact conditions. It also shows that lower, more desirable, temperatures in disk brakes can be attained by increasing the volume, the thermal conductivity, and, especially, the heat capacity of the brake components.

  12. Experimental Investigation on Tool Wear Behavior and Cutting Temperature during Dry Machining of Carbon Steel SAE 1030 Using KC810 and KC910 Coated Inserts

    Directory of Open Access Journals (Sweden)

    Y. Tamerabet

    2018-03-01

    Full Text Available The removal of cutting fluids and lubrication in dry machining operations requires a good knowledge and full control of all the mechanisms that lead to tool damage. In order to optimize dry machining operations, it is necessary to clearly identify the wear patterns, determine the contact conditions and define the relationship between the contact parameters and the operating conditions. The idea is to choose optimal cutting conditions which lead to the best contact conditions limiting the triggering or aggravation of wear phenomena. The purpose of this paper is to determine the impact multilayer coatings and cutting parameters on tool wear and temperature at the tool-chip interface for two types of coated carbides (KC810 and KC910 Commercialized inserts during dry turning operation of carbon steel SAE 1030, in order to determine the ideal parameters and guarantee the best performances of the cutting tools. Cutting temperature, Crater and Flank wear have been systematically recorded in order to determine their influence on tool life time. To ensure the optimum choice of machining conditions; the TAGUCHI method associated to multi-factorial method were applied to plan the experiments. It has been noted that cutting speed was the most influential factor on temperature and wear evolution. We noted also that the KC810 insert was more suitable for machining of SAE 1030 Carbon Steel; where The best life time was registered (T=228 min. The KC810 inserts offer 30 min of additional machining time for the same work conditions.

  13. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    OpenAIRE

    S. Kumar

    2016-01-01

    Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44) and water at room temperature to obtain different grades of heat treatment. Microstr...

  14. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions

    Directory of Open Access Journals (Sweden)

    Mirim Shin

    2015-01-01

    Full Text Available There were no validation studies on portable sleep devices under different ambient temperature, thus this study evaluated the validity of wrist Actiwatch2 (AW2 or SenseWear armband (SWA against polysomnography (PSG in different ambient temperatures. Nine healthy young participants (6 males, aged 23.3±4.1 y underwent nine nights of study at ambient temperature of 17 °C, 22 °C and 29 °C in random order, after an adaptation night. They wore the AW2 and SWA while being monitored for PSG simultaneously. A linear mixed model indicated that AW2 is valid for sleep onset latency (SOL, total sleep time (TST and sleep efficiency (SE but significantly overestimated wake after sleep onset (WASO at 17 °C and 22 °C. SWA is valid for WASO, TST and SE at these temperatures, but severely underestimates SOL. However, at 29 °C, SWA significantly overestimated WASO and underestimated TST and SE. Bland–Altman plots showed small biases with acceptable limits of agreement (LoA for AW2 whereas, small biases and relatively wider LoA for most sleep variables were observed in SWA. The kappa statistic showed a moderate sleep–wake epoch agreement, with a high sensitivity but poor specificity; wake detection remains suboptimal. AW2 showed small biases for most of sleep variables at all temperature conditions, except for WASO. SWA is reliable for measures of TST, WASO and SE at 17–22 °C but not at 29 °C, and SOL approximates that of PSG only at 29 °C, thus caution is needed when monitoring sleep at different temperatures, especially in home sleep studies, in which temperature conditions are more variable.

  15. Superlubricity and wearless sliding in diamondlike carbon films

    International Nuclear Information System (INIS)

    Erdemir, A.

    2001-01-01

    Diamondlike carbon (DLC) films have attracted great interest in recent years mainly because of their unusual optical, electrical, mechanical, and tribological properties. Such properties are currently being exploited for a wide range of engineering applications including magnetic hard disks, gears, sliding and roller bearings, scratch resistant glasses, biomedical implants, etc. Systematic studies on carbon-based materials in our laboratory have led to the development of a new class of amorphous DLC films that provide extremely low friction and wear coefficients of 0.001 to 0.005 and 10(sup -11) to 10(sup -10) mm(sup 3) /N.m, respectively, when tested in inert-gas or high-vacuum environments. These films were produced in highly hydrogenated gas discharge plasmas by a plasma enhanced chemical vapor deposition process at room temperature. The carbon source gases used in the deposition of these films included methane, acetylene, and ethylene. Tribological studies in our laboratory have established a very close correlation between the composition of the plasmas and the friction and wear coefficients of the resultant DLC films. Specifically, the friction and wear coefficients of DLC films grown in plasmas with higher hydrogen-to-carbon ratios were much lower than films derived from source gases with lower hydrogen-to-carbon ratios. Fundamental tribological and surface analytical studies have led us to conclude that hydrogen (within the film, as well as on the sliding surfaces) is extremely important for the superlubricity and wearless sliding behavior of these films. Based on these studies, a mechanistic model is proposed to explain the superlow friction and wear properties of the new DLC films

  16. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  17. Standard guide for measuring the wear volumes of piston ring segments run against flat coupons in reciprocating wear tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide covers and describes a profiling method for use accurately measuring the wear loss of compound-curved (crowned) piston ring specimens that run against flat counterfaces. It does not assume that the wear scars are ideally flat, as do some alternative measurement methods. Laboratory-scale wear tests have been used to evaluate the wear of materials, coatings, and surface treatments that are candidates for piston rings and cylinder liners in diesel engines or spark ignition engines. Various loads, temperatures, speeds, lubricants, and durations are used for such tests, but some of them use a curved piston ring segment as one sliding partner and a flat or curved specimen (simulating the cylinder liner) as its counterface. The goal of this guide is to provide more accurate wear measurements than alternative approaches involving weight loss or simply measuring the length and width of the wear marks. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its ...

  18. Core Temperature and Surface Heat Flux During Exercise in Heat While Wearing Body Armor

    Science.gov (United States)

    2015-10-26

    Adam W. Potter, MS, MBA Reed W. Hoyt, PhD Biophysics and Biomedical Modeling Division October 2015 U.S. Army Research Institute of...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION...A relatively recent innovation is to ingest a telemetry temperature pill. Local temperature is transmitted to a receiver as the pill migrates

  19. Microstructure and wear behavior of austempered high carbon high silicon steel

    Directory of Open Access Journals (Sweden)

    Acharya Palaksha

    2018-01-01

    Full Text Available In the present investigation, the influence of austempering temperature and time on the microstructure and dry sliding wear behavior of high silicon steel was studied. The test specimens were initially austenitised at 900°C for 30 minutes, thereafter austempered at various temperatures 280°C, 360°C and 400°C, for varying duration from 30 to 120 minutes. These samples after austempering heat treatment were subsequently air cooled to room temperature, to generate typical ausferritic microstructures and then correlated with the wear property. The test outcomes demonstrate the slight increase in specific wear rate with increase in both austempering temperature and time. Specific wear rate was found to be minimum at an austempering temperature of 280°C, that exhibits lower bainite microstructure with high hardness, on the other hand specific wear rate was found to be slightly high at increased austempering temperatures at 360°C and 400°C, due to the upper bainite structure that offered lower hardness to the matrix. The sample austempered at 280°C for 30 minutes offered superior wear resistance when compared to other austempering conditions, mainly due to the presence of fine acicular bainitic ferrite along with stabilized retained austenite and also some martensite in the microstructure.

  20. Temperature Changes on the Foot during Pregnancy Affected by Wearing Biomechanical Shoes

    Directory of Open Access Journals (Sweden)

    Martin Zvonar

    2016-02-01

    Full Text Available Introduction: Everyone needs to walk; however, many people have problems with walking caused by non-standard condition or function of their feet, which in some cases can be easily recognized by thermography methods. The question is which internal actors can influence plantar temperature. 20 pregnant women from Czech and Slovak Republic in early stage of pregnancy, aged from 24 to 38 years old were included in the research. In this research, we followed the course of temperature-rested feet and feet after exercise for pregnant mothers in the different trimesters of pregnancy. Our task during the experimental research was to verify the functionality of special shoes. When we examined the temperatures of left and right sole in pregnant women, we noticed significant differences between right and left leg on 1 % level of statistical significance. Body weight gain is directly proportional with increased pressure on future mother’s sole. Increased body weight and pressure on the sole connected with it increases blood flow of the tissue. More blood flowing increases the friction and the temperature of the sole. Surprisingly, from second to third trimester we noticed decrease in temperature after walking.

  1. Sliding seal materials for low heat rejection engines

    Science.gov (United States)

    Beaty, Kevin; Lankford, James; Vinyard, Shannon

    1989-01-01

    Sliding friction coefficients and wear rates of promising piston seal materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the low heat rejection (LHR) diesel engine environment. These materials included carbides, oxides, and nitrides. In addition, silicon nitride and partially stablized zirconia disks (cylinder liners) were ion-implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins (piston rings), with the objective of producing reduced friction via solid lubrication at elevated temperature. Friction and wear measurements were obtained using pin-on-disk laboratory experiments and a unique engine friction test rig. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above during the pin-on-disk tests. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combination, by the ion-implantation of TiNi or Co. This beneficial effect was found to derive from the lubricious Ti, Ni, and Co oxides. Similar results were demonstrated on the engine friction test rig at lower temperatures. The structural integrity and feasibility of engine application with the most promising material combination were demonstrated during a 30-hour single-cylinder, direct-injection diesel engine test.

  2. Microstructural evolution during dry wear test in magnesium and Mg-Y alloy

    Energy Technology Data Exchange (ETDEWEB)

    Somekawa, Hidetoshi, E-mail: SOMEKAWA.Hidetoshi@nims.go.jp [Research Center for Strategic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Maeda, Shunsuke; Hirayama, Tomoko; Matsuoka, Takashi [Department of Mechanical Engineering, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe 610-0321 (Japan); Inoue, Tadanobu [Research Center for Strategic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Mukai, Toshiji [Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 (Japan)

    2013-01-20

    The friction and wear properties of pure magnesium and the Mg-Y alloy were investigated using the pin-on-disk configuration. The friction and wear resistance of the Mg-Y alloy was superior to those of pure magnesium. The wear mechanism was abrasion under all the conditions. The deformed microstructural evolutions near the surface region were observed by transmission electron microscopy and electron backscatter diffraction. The stress and strain states were also evaluated by finite element analysis (FEA). The deformed microstructures of both alloys consisted of the {l_brace}10-12{r_brace} twinning formation and the FEA results showed the occurrence of plastic deformation even at the beginning of the test. The formation of low angle grain boundaries was also confirmed with an increase in the applied load in the Mg-Y alloy. On the other hand, grain refinement due to dynamic recrystallization was observed in pure magnesium as the wear test progressed. The different microstructures resulted from difference in the surface temperature during the wear test, which was estimated to be around 393 K and 363 K for pure magnesium and the Mg-Y alloy, respectively. The high increment temperature in the fine-grained alloys brought about the occurrence of grain boundary sliding, i.e., material softening, which led to a decrease in the friction and wear properties. The present results indicated that one of the methods for enhancing the friction and wear properties is to increase the dynamic recrystallization temperature.

  3. Slide 24

    Indian Academy of Sciences (India)

    On one of the days many scientists were relaxing at a beach near Boston. Amongst those were some well-known ones, von Laue, Lawrence Bragg, Paul Ewald, Raman, Patterson, Hermann Mark, JD Bernal and others. A young lady with a camera rushed to get a photograph of von Laue wearing very brief swimming trunks.

  4. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating

    International Nuclear Information System (INIS)

    Zhang Shitang; Zhou Jiansong; Guo Baogang; Zhou Huidi; Pu Yuping; Chen Jianmin

    2008-01-01

    Ni/hBN coating was successfully prepared on 1Cr18Ni9Ti stainless steel substrate by means of laser cladding. The microhardness profile of the composite coating along the depth direction was measured, while its cross-sectional microstructures and phase compositions were analyzed by means of scanning electron microscopy and X-ray diffraction. Moreover, the friction and wear behavior of the composite coatings sliding against Si 3 N 4 from ambient to 800 deg. C was evaluated using a ball-on-disc friction and wear tester, and the worn surface morphologies of the composite coatings and counterpart ceramic balls were observed using a scanning electron microscope. At the same time, the worn surfaces of the ceramic balls were also analyzed using a 3D non-contact surface mapping profiler as well. It was found that the laser cladding Ni/hBN coating on the stainless steel substrate had high microhardness and good friction-reducing and antiwear abilities at elevated temperatures up to 800 deg. C. The composite coating registered slightly increased friction coefficient and wear rate as the temperature rose from ambient to 100 deg. C; then the friction coefficient and wear rate decreased with increasing temperature up to 800 deg. C (with the slight increase in the wear rate at 700 deg. C and 800 deg. C to be an exception). The laser cladding Ni/hBN coating was dominated by mixed adhesion and abrasive wear as it slid against the ceramic ball below 300 deg. C. With further increase in the test temperature up to 400 deg. C and above, it was characterized by mild adhesion wear and plastic deformation. Since the laser cladding Ni/hBN coating registered an increased wear rate at temperatures of 600 deg. C and above, it was not suggested to be used for wear prevention and protection of the stainless steel at elevated temperature above 800 deg. C

  5. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2008-09-15

    Ni/hBN coating was successfully prepared on 1Cr18Ni9Ti stainless steel substrate by means of laser cladding. The microhardness profile of the composite coating along the depth direction was measured, while its cross-sectional microstructures and phase compositions were analyzed by means of scanning electron microscopy and X-ray diffraction. Moreover, the friction and wear behavior of the composite coatings sliding against Si{sub 3}N{sub 4} from ambient to 800 deg. C was evaluated using a ball-on-disc friction and wear tester, and the worn surface morphologies of the composite coatings and counterpart ceramic balls were observed using a scanning electron microscope. At the same time, the worn surfaces of the ceramic balls were also analyzed using a 3D non-contact surface mapping profiler as well. It was found that the laser cladding Ni/hBN coating on the stainless steel substrate had high microhardness and good friction-reducing and antiwear abilities at elevated temperatures up to 800 deg. C. The composite coating registered slightly increased friction coefficient and wear rate as the temperature rose from ambient to 100 deg. C; then the friction coefficient and wear rate decreased with increasing temperature up to 800 deg. C (with the slight increase in the wear rate at 700 deg. C and 800 deg. C to be an exception). The laser cladding Ni/hBN coating was dominated by mixed adhesion and abrasive wear as it slid against the ceramic ball below 300 deg. C. With further increase in the test temperature up to 400 deg. C and above, it was characterized by mild adhesion wear and plastic deformation. Since the laser cladding Ni/hBN coating registered an increased wear rate at temperatures of 600 deg. C and above, it was not suggested to be used for wear prevention and protection of the stainless steel at elevated temperature above 800 deg. C.

  6. Characterization of transfer layers on steel surfaces sliding against diamondlike carbon in dry nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Bindal, C.; Pagan, J. [Argonne National Lab., IL (United States); Wilbur, P. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering

    1995-03-01

    Transfer layers on sliding steel surfaces play important roles in tribological performance of diamondlike carbon films. This study investigated the nature of transfer layers formed on M50 balls during sliding against diamondlike carbon (DLC) films (1.5 {mu}m thick) prepared by ion-beam deposition. Long-duration sliding tests were performed with steel balls sliding against the DLC coatings in dry nitrogen at room temperature and zero humidity. Test results indicated that the friction coefficients of test pairs were initially 0.12 but decreased steadily with sliding distance to 0.02-0.03 and remained constant throughout the tests, which lasted for more than 250,000 sliding cycles (30 km). This low-friction regime appeared to coincide with the formation of a carbon-rich transfer layer on the sliding surfaces of M50 balls. Micro-laser-Raman spectroscopy and electron microscopy were used to elucidate the structure and chemistry of these transfer layers and to reveal their possible role in the wear and friction behavior of DLC-coated surfaces.

  7. Effects of feather wear and temperature on prediction of food intake and residual food consumption.

    Science.gov (United States)

    Herremans, M; Decuypere, E; Siau, O

    1989-03-01

    Heat production, which accounts for 0.6 of gross energy intake, is insufficiently represented in predictions of food intake. Especially when heat production is elevated (for example by lower temperature or poor feathering) the classical predictions based on body weight, body-weight change and egg mass are inadequate. Heat production was reliably estimated as [35.5-environmental temperature (degree C)] x [Defeathering (=%IBPW) + 21]. Including this term (PHP: predicted heat production) in equations predicting food intake significantly increased accuracy of prediction, especially under suboptimal conditions. Within the range of body weights tested (from 1.6 kg in brown layers to 2.8 kg in dwarf broiler breeders), body weight as an independent variable contributed little to the prediction of food intake; especially within strains its effect was better included in the intercept. Significantly reduced absolute values of residual food consumption were obtained over a wide range of conditions by using predictions of food intake based on body-weight change, egg mass, predicted heat production (PHP) and an intercept, instead of body weight, body-weight change, egg mass and an intercept.

  8. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-12-01

    Full Text Available Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44 and water at room temperature to obtain different grades of heat treatment. Microstructures and corresponding micro hardness of the samples have been measured along with Feritscopic studies. Wear characteristics have been studied in a multi tribo-tester (Ducom in dry sliding condition against EN-8 steel roller. Speed, load on job and duration of test run have been considered as the experimental parameters. The wear of the samples have been obtained directly from ‘Winducom 2006’ software. Mass loss of the samples before and after operation has also been considered as the measure of wear in the present study. All the samples have been slid against EN-8 steel roller with fixed experimental parameters. The data have been plotted, compared and analyzed. Effect of microstructures as well as micro hardness on the wear behavior has been studied and concluded accordingly.

  9. Characterization and wear performance of boride phases over tool steel substrates

    Directory of Open Access Journals (Sweden)

    Edgar E Vera Cárdenas

    2016-02-01

    Full Text Available This research work was conducted to characterize boride phases, obtained from the powder-pack process, on AISI H13 and D2 steel substrates, and investigate their tribological behavior. The boriding was developed at a temperature of 1273 K with an exposure time of 8 h. X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were conducted on the borided material to characterize the presence of the FeB, Fe2B, and CrB phases and the distribution of heavy elements on the surface of the substrates. The adherence of the boride layers was evaluated, in a qualitative form, through the Daimler-Benz Rockwell-C indentation technique. Sliding wear tests were then performed using a reciprocating wear test machine. All tests were conducted in dry conditions at room temperature. A frequency of 10 Hz and 15-mm sliding distance were used. The applied Hertzian pressure was 2.01 GPa. Scanning electron microscopy was used to observe and analyze the wear mechanisms. Additionally, the variation of the friction coefficient versus the number of cycles was obtained. Experimental results showed that the characteristic wear mechanism for the borided surface was plastic deformation and mild abrasive wear; for unborided substrates, cracking and spalling were observed.

  10. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  11. Tribological properties of anti-wear PVD coatings for elevated temperatures application deposited onto X37CrMoV5-1 type hot work steel

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Polok, M.; Adamiak, M.

    2003-01-01

    The paper presents results of tribological and adhesion investigations of anti-wear PVD coatings TiN, TiN/(Ti,Al)N and CrN types deposited in ion plating PVD process onto X37CrMoV5-1 type hot work tool steel. It was found that damage mechanism during scratch test in all investigated coatings begins with multiple spallings located on the scratch edges followed by cracking and tool coatings delamination. Regarding to the coating types it can be seen different location of such damages and loads typical for them. According to this observations it can be stated that highest adhesion among investigated coating present, CrN monolayer coating and the lowest one multilayers Ti/(Ti,Al)N coating. The wear resistance was investigated by pin-on-disc method performed in room and elevated to 500 o C temperatures. It was found that the lowest wear in to fixed investigation conditions in both room and elevated temperatures shows TiN monolayer coating. Additionally one can see that TiN coatings application improve wear resistance some five times. (author)

  12. A new ball-on-disk vacuum tribometer with in situ measurement of the wear track by digital holographic microscopy

    Science.gov (United States)

    Meylan, B.; Ciani, D.; Zhang, B.; Cuche, E.; Wasmer, K.

    2017-12-01

    This contribution presents a new ball-on-disk vacuum tribometer with in situ measurement of the wear track by digital holographic microscopy. This new tribometer allows observation of the evolution of the wear track in situ and in real-time. The method combines a high vacuum high temperature ball-on-disk tribometer with a digital holographic microscope (DHM). The machine was tested and validated by taking DHM images during wear tests at room temperature and in vacuum at 2 · 10-6 of polished 100Cr6 steel disks. We demonstrated that the DHM system is well suited to monitor the evolution of the wear track during sliding. We found that, with an acquisition time of 0.1 ms for the DHM, the maximal linear speed is 10 cm s-1 to have reliable images. We proved, via scanning electron microscope (SEM) pictures, that the lines in the sliding direction in all DHM images exist. We also validated the new tribometer by having an excellent correlation between the images and profiles of the wear track taken by the DHM with the ones from a confocal microscope. Finally, the new tribometer combined with the DHM has four advantages. It can test under vacuum and various atmospheric conditions. The evolution of the wear track is measured in situ and in real-time. Hence, the problem of replacing the sample is avoided. Thanks to the DHM technology, the vertical accuracy of the topographical measurement is 4 nm.

  13. A novel nonlinear nano-scale wear law for metallic brake pads.

    Science.gov (United States)

    Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd

    2018-05-03

    In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.

  14. Wear-resistant powder materials with intermetallic hardening. I. Nonporous materials for antifriction purposes

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, G.K.; Akopov, N.L.; Karapetyan, F.K.; Manukyan, N.N.

    1987-09-01

    This article investigates the wear resistance, microhardness, microstructure, and crystal-phase behavior of a molybdenum alloy solid lubricant under cyclic wear and sliding friction tests against steel 45. Calculated and experimental results are given.

  15. Slide layout and integrated design (SLIDE) program

    International Nuclear Information System (INIS)

    Roberts, S.G.

    1975-01-01

    SLIDE is a FORTRAN IV program for producing 35 mm color slides on the Control Data CYBER-74. SLIDE interfaces with the graphics package, DISSPLA, on the CYBER-74. It was designed so that persons with no previous computer experience can easily and quickly generate their own textual 35 mm color slides for verbal presentations. SLIDE's features include seven different colors, five text sizes, ten tab positions, and two page sizes. As many slides as desired may be produced during any one run of the program. Each slide is designed to represent an 8 1 / 2 in. x 11 in. or an 11 in. x 8 1 / 2 in. page. The input data cards required to run the SLIDE program and the program output are described. Appendixes contain a sample program run showing input, output, and the resulting slides produced and a FORTRAN listing of the SLIDE program. (U.S.)

  16. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    Science.gov (United States)

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  17. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    International Nuclear Information System (INIS)

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  18. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  19. Wear resistance of polypropylene-SiC composite

    Science.gov (United States)

    Abenojar, J.; Enciso, B.; Martínez, MA; Velasco, F.

    2017-05-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope.

  20. Wear resistance of polypropylene-SiC composite

    International Nuclear Information System (INIS)

    Abenojar, J; Enciso, B; Martínez, MA; Velasco, F

    2017-01-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope. (paper)

  1. Effect of Polypropylene Modification by Impregnation with Oil on Its Wear and Friction Coefficient at Variable Load and Various Friction Rates

    Directory of Open Access Journals (Sweden)

    Paweł Sędłak

    2017-01-01

    Full Text Available Laboratorial two-body wear testing was carried out in order to assess effects of polypropylene modification by impregnating it with oils on friction coefficient and wear in comparison to those parameters of unmodified polypropylene, Teflon, and polyamide during operation under conditions of sliding friction without lubrication. Wear behaviour of the tested specimens was investigated using ASTM G77-98 standard wear test equipment. Recording program made it possible to visualise and record the following parameters: rotational speed and load, linear wear, friction coefficient, temperature of the specimen, and ambient temperature. In addition, wear mechanisms of the analysed materials were determined with use of scanning electron microscopy. In the case of the remaining tested polymers, the most important mechanism of wear was adhesion (PP, PTFE, PA 6.6, and PA MoS2, microcutting (PTFE, PA 6.6, and PA MoS2, fatigue wear (PTFE, forming “roll-shaped particles” combined with plastic deformation (PA 6.6 and PA MoS2, and thermal wear (PP. Impregnation of polypropylene with engine oil, gear oil, or RME results in significant reduction of friction coefficient and thus of friction torque, in relation to not only unmodified polypropylene but also the examined polyamide and Teflon.

  2. Tribology of selected ceramics at temperatures to 900 C

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1986-01-01

    Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.

  3. Wear of rolling element bearings in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.

    1976-01-01

    Rolling element bearings and related mechanisms are attractive for service in liquid sodium but it is not clear what minimum wear rate can be anticipated. For axially loaded angular contact bearings rotation is incompatible with pure rolling on both races and wear arises from the resulting ball spin. The initial pressure distributions and sizes of the contact ellipses can be calculated but will change with bearing wear. However, the most effective distribution for producing wear would be for the full loads to be borne on the tips of the contact areas, whose maximum length is given by examination of the race wear tracks. A calculation on such a basis should set a lower limit for the wear coefficient. Both the torque and instantaneous wear rate of a bearing will be similar functions of the integral over the contact areas of the product of contact pressure and radius from the ball spin axis. A better estimate of wear coefficient should be obtained by relating the average torque, the average wear, the initial torque and the initial wear where the conditions are known. Analysis of tests in sodium at 400 0 C of high speed steel and Stellite bearings by these methods indicates specific wear rates of the order of 10 -15 m 3 /N-m, not unduly out of line with the range of values found in conventional sliding tests

  4. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  5. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  6. Friction and wear behaviour of hypereutectic Al-Si alloy/steel tribopair under dry and lubricated conditions

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2017-12-01

    Full Text Available Dry and lubricated sliding tribological tests on hypereutectic Al-25Si alloy was performed using a ball- on- disk configuration at room temperature. Hypereutectic Al-25Si alloy were prepared by rapid solidification process under T6 condition. Friction coefficient (COF and wear rate of the alloy were measured under different applied loads ranging from 5–100 N. It is found that the friction coefficient varies with load, first declines (from 5-50 N, then increases (from 50-80 N and then again decreases (80-100 N. The wear rate of the samples of hypereutectic Al-25Si alloy, first increases and then decreases with increasing the applied normal load. Hypereutectic Al-25Si alloy presents higher wear rate at 50 N due to the participation of a large amount of needle-like precipitates, but shows low wear rate under high load of 100 N because of the work hardening layer. Worn surface morphologies were analyzed using optical and scanning electron microscope (SEM coupled with an energy dispersive spectrometer (EDS. The improvements in COF and wear rate were mainly attributed to morphology, size and distribution of Si particles due to its fabrication process. The dominant wear mechanism for hypereutectic Al-25Si alloy was adhesive wear, abrasive wear and plastic deformation.

  7. Slide 11

    Indian Academy of Sciences (India)

    Advanced Energy Technologies: Thorium and beyond. New technology; Metallic fuel; Molten salt; Liquid heavy metal; High power accelerators; High temperature materials; Hydrogen production; Hydrogen utilisation; Fusion.

  8. Characterization of wear mechanism by tribo-corrosion of nickel base alloys

    International Nuclear Information System (INIS)

    Ionescu, C.C.

    2012-01-01

    Some components of nuclear power plants, as steam generator tubes are made from Ni base alloys. These components are exposed to severe environment of high temperature and high pressure and submitted to contact mechanical stresses. These Ni - based alloys properties are determined by their ability to form on their surface an inner protective barrier film mainly composed of Cr 2 O 3 . The steam generator tubes are among the most difficult components to maintain, on the hand, because of their safety importance and secondly, the exchange tubes are subject to various degradation mechanisms, because of the harsh conditions of work. Wear by tribo-corrosion is a physicochemical aging mechanism which occurs in the management of the nuclear power plants life time. Tribo-corrosion is an irreversible process which involves mechanical and chemical / electrochemical interactions between surfaces in relative motion, in the presence of a corrosive environment. The goal of this study was to quantify in terms of quantity and quality the wear generated by tribo-corrosion process on Ni - Cr model alloys. Two model alloys: Ni -15Cr and Ni -30Cr were used to highlight, evaluate and compare the influence of the chromium content on the formation of the protective oxide layer and the role played by the latter one on the kinetics and mechanisms of wear by tribo-corrosion. The tribo-corrosion experiments were performed by using a pin-on-disc tribometer under controlled electrochemical conditions in LiOH - H 3 BO 3 solution. The corrosion - wear degradation of the protective layer during continuous and intermittent unidirectional sliding tests was investigated by a three-stage tribo-corrosion protocol. In the first stage, electrochemical techniques (open circuit potential measurements and electrochemical impedance measurements) were used without applying unidirectional sliding to monitor and evaluate the characteristics of protective oxide layer formed on the surface of the two model alloys

  9. Experimental evaluation of the wear of the PEC type fuel element base. Tribological experimental studies in Na at high temperature

    International Nuclear Information System (INIS)

    D'Agraives, B.C.; Volcan, A.; Bacchilega, A.

    1978-01-01

    Tribological studies in sodium, related to the PEC-type fuel element design are presented. They are aimed at the simulation of friction and wear phenomena which are expected to occur on the surface of fuel element components undergoing solid-solid contact situations with variable loads and/or variable motions. In this first paper, a description of the preparatory work is given. Then, results related to long-duration experiments are shown with respect to the contact between the centering spherical ring belonging to the lower extension of the subassembly, and the cylindrical sleeve of the grid in which it takes place. After 1000 hours under loaded and vibrated conditions, in sodium at 400 0 C, the wear effects suffered by both contacting samples, are observed and evaluated. The stellite surfaces of the samples are damaged to a not-negligible extent and material transfers from the cylindrical sleeve onto the spherical ring occur

  10. FRICTION TORQUE IN THE SLIDE BEARINGS

    Directory of Open Access Journals (Sweden)

    BONDARENKO L. N.

    2016-09-01

    Full Text Available Summary. Problem statement. Until now slide bearings are used widely in engineering. But the calculation is made on obsolete method that is based on undetermined parameters such as wear of the bearing shell. It is accepted in the literature that if the shaft and liner material are homogeneous, the workpiece surface are cylindrical as they wear and contact between them occurs at all points contact arc. Research objective. The purpose of this study is determine a friction torque in the slide bearings of power-basis parameters. Conclusions. Since the friction is primarily responsible for wear of cinematic pairs “pin – liner” and “pivot – liner” slide bearings. It is shown that the friction torquesof angles wrap, that are obtained by the formulas and given in literature, are not only qualitatively but also quantitatively, namely, the calculation by literature to the formulas the friction torques are proportional to the angle wrap and the calculation by improved formulas the friction torques are inversely proportional to the angle wrap due to the reduction the normal pressure. Underreporting friction torque at large angle wrap is between 40 and 15 %. The difference in the magnitude of friction torque in the run-in and run-out cinematic pairs with real method of machining is 2...3 %, which it is possible to declare of reducing the finish of contacting surface of slide bearings.

  11. TRIBOLOGICAL BEHAVIOURS OF ABS AND PA6 POLYMERMETAL SLIDING COMBINATIONS UNDER DRY FRICTION, WATER ABSORBED AND ELECTROPLATED CONDITIONS

    Directory of Open Access Journals (Sweden)

    MITHUN V. KULKARNI

    2016-01-01

    Full Text Available The friction and wear properties of polyamide 6 (PA6 and poly-Acrylonitrile Butadiene Styrene (ABS sliding against metal under dry sliding, water absorption and electroplated (EP conditions were studied by using a pin-ondisc tribometer. The effect of applied load and sliding speed on the tribological behaviours of the polymer–metal sliding combinations under dry sliding, water absorbed and EP conditions were also investigated. The worn surfaces were examined by using Scanning Electron Microscope (SEM. Experimental results showed that ABS samples under water absorbed conditions showed higher wear loss compared to normal samples and the EP samples had exhibited lower wear loss compared to the water absorbed samples. Similarly EP-PA6 samples exhibited excellent wear resistance when compared with EP-ABS samples. Further, it was observed that the frictional heat produced on account of sliding action had a significant effect on the tribological behaviours of samples under dry sliding and water absorbed conditions.

  12. Influence of contact conditions on vibration induced wear of metals

    International Nuclear Information System (INIS)

    Hofmann, P.J.; Schettler, T.; Wieling, N.; Steininger, D.A.

    1990-01-01

    Unfavourable design characteristics of nuclear power plant steam generators and heat exchangers in general may result in vibration induced tube wear. A systematic investigation was performed on the contact conditions which may appear between heat exchanger tubes and tube support structure and the influence of different parameters e.g., normal contact force, on the resulting steady state wear rates. It is concluded that not only are contact forces and sliding distances important in the wear process but also the type of relative motion has a decisive influence on the resulting wear rates. For a certain 'work rate', the wear rate caused by repeated impact motions between tube and tube support structure may be an order of magnitude higher than that caused by only sliding motion. This is the result of different operating wear mechanisms which are discussed in this paper. (orig.)

  13. Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging

    International Nuclear Information System (INIS)

    Cremona, Marzia A.; Liu, Binbin; Hu, Yang; Bruni, Stefano; Lewis, Roger

    2016-01-01

    Railway wheel wear prediction is essential for reliability and optimal maintenance strategies of railway systems. Indeed, an accurate wear prediction can have both economic and safety implications. In this paper we propose a novel methodology, based on Archard's equation and a local contact model, to forecast the volume of material worn and the corresponding wheel remaining useful life (RUL). A universal kriging estimate of the wear coefficient is embedded in our method. Exploiting the dependence of wear coefficient measurements with similar contact pressure and sliding speed, we construct a continuous wear coefficient map that proves to be more informative than the ones currently available in the literature. Moreover, this approach leads to an uncertainty analysis on the wear coefficient. As a consequence, we are able to construct wear prediction intervals that provide reasonable guidelines in practice. - Highlights: • Wear prediction is of outmost importance for reliability of railway systems. • Wear coefficient is essential in prediction through Archard's equation. • A novel methodology is developed to predict wear and RUL. • Universal kriging is used for wear coefficient and uncertainty estimation. • A simulation study and a real case application are provided.

  14. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  15. Wear determination in braking systems by radioisotopes

    International Nuclear Information System (INIS)

    Spruch, W.

    1979-01-01

    Friction and wear behaviour of friction couples has been tested applying loads and sliding speeds. The determination was carried out by direct measurements of the lining material and by surface activation of the opposite material with protons. The application limits of several braking materials could be determined and compared

  16. The Performance of PS400 Subjected to Sliding Contact at Temperatures from 260 to 927 deg C

    Science.gov (United States)

    2016-09-14

    bilities. Such candidate applications include process control valve stems, inlet guide vane bushings , butterfly valve stems, and waste gate valves for...cobalt-based superalloy bushings loaded against reciprocating PS400-coated shaft specimens in a flat-on-cylinder configuration at Hertz contact...contact at temperatures from 260 to 927C. The tests were performed on stationary, uncoated cobalt-based superalloy bushings loaded against

  17. Tooth wear

    Directory of Open Access Journals (Sweden)

    Tušek Ivan

    2014-01-01

    Full Text Available Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction, which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to tooth abfraction and microfracture. Wear of tooth surfaces due to the presence of microscopic imperfections of tooth surfaces is clinically manifested as sanding veneers. Tribology, as an interdisciplinary study of the mechanisms of friction, wear and lubrication at the ultrastructural level, has defined a universal model according to which the etiopathogenesis of tooth wear is caused by the following factors: health and diseases of the digestive tract, oral hygiene, eating habits, poor oral habits, bruxism, temporomandibular disorders and iatrogenic factors. Attrition and dental erosion are much more common in children with special needs (Down syndrome. Erosion of teeth usually results from diseases of the digestive tract that lead to gastroesophageal reflux (GER of gastric juice (HCl. There are two basic approaches to the assessment of the degree of wear and dental erosion. Depending on the type of wear (erosion, attrition, abfraction, the amount of calcium that was realised during the erosive attack could be determined qualitatively and quantitatively, or changes in optical properties and hardness of enamel could be recorded, too. Abrasion of teeth (abrasio dentium is the loss of dental hard tissue caused by friction between the teeth and exogenous foreign substance. It is most commonly provoked by prosthetic dentures and bad habits, while its effect depends on the size of abrasive particles and their amount, abrasive particle hardness and hardness of tooth

  18. The influence of the microscope lamp filament colour temperature on the process of digital images of histological slides acquisition standardization.

    Science.gov (United States)

    Korzynska, Anna; Roszkowiak, Lukasz; Pijanowska, Dorota; Kozlowski, Wojciech; Markiewicz, Tomasz

    2014-01-01

    The aim of this study is to compare the digital images of the tissue biopsy captured with optical microscope using bright field technique under various light conditions. The range of colour's variation in immunohistochemically stained with 3,3'-Diaminobenzidine and Haematoxylin tissue samples is immense and coming from various sources. One of them is inadequate setting of camera's white balance to microscope's light colour temperature. Although this type of error can be easily handled during the stage of image acquisition, it can be eliminated with use of colour adjustment algorithms. The examination of the dependence of colour variation from microscope's light temperature and settings of the camera is done as an introductory research to the process of automatic colour standardization. Six fields of view with empty space among the tissue samples have been selected for analysis. Each field of view has been acquired 225 times with various microscope light temperature and camera white balance settings. The fourteen randomly chosen images have been corrected and compared, with the reference image, by the following methods: Mean Square Error, Structural SIMilarity and visual assessment of viewer. For two types of backgrounds and two types of objects, the statistical image descriptors: range, median, mean and its standard deviation of chromaticity on a and b channels from CIELab colour space, and luminance L, and local colour variability for objects' specific area have been calculated. The results have been averaged for 6 images acquired in the same light conditions and camera settings for each sample. The analysis of the results leads to the following conclusions: (1) the images collected with white balance setting adjusted to light colour temperature clusters in certain area of chromatic space, (2) the process of white balance correction for images collected with white balance camera settings not matched to the light temperature moves image descriptors into proper

  19. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    Science.gov (United States)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  20. Wear of control rod cluster assemblies and of instrumentation thimbles: first results obtained with the vibrateau wear simulator

    International Nuclear Information System (INIS)

    Zbinden, M.; Hersant, D.

    1993-07-01

    Several REP components are affected by a particular sort of damage called impact/sliding wear. This kind of wear, originating from flow induced vibrations, affects loosely supported tubular structures. The main involved components are: - the RCCAs claddings and the guides tubes, - the instrumentation thimbles, - the fuel rods claddings, - the SG tubes. The R and D Division is concerned with studies aiming to understand and to master the phenomena leading to this wear. The MTC Branch is charged of the study of the wear itself. Tests are carried out on wear rigs to understand and to model wear mechanisms. The following work is related to the two first wear tests campaigns on the VIBRATEAU wear simulator: - a reproducibility test series in order to assess the spreading of the experimental results, - a comparative test series on surface treatments used to improve the components war resistance. (authors). 7 figs., 2 tabs., 4 refs

  1. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    OpenAIRE

    Fadhel Abbas. Abdulla; Katea L. Hamid

    2017-01-01

    The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40%) was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc) according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding di...

  2. Tooth wear

    OpenAIRE

    Tušek Ivan; Tušek Jasmina

    2014-01-01

    Tooth wear is the loss of dental hard tissue that was not caused by decay and represents a common clinical problem of modern man. In the etiology of dental hard tissue lesions there are three dominant mechanisms that may act synergistically or separately:friction (friction), which is caused by abrasion of exogenous, or attrition of endogenous origin, chemical dissolution of dental hard tissues caused by erosion, occlusal stress created by compression and flexion and tension that leads to toot...

  3. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  4. Processing and study of the wear and friction behaviour of discrete ...

    Indian Academy of Sciences (India)

    due to the increase in the braking energy, (3) at low sliding speeds (5, 10 m s−1), abrasive wear is the main wear ... tion materials, gas turbine thermal barrier coatings, armour ..... in a optimum level to balance both the wear loss and the stop-.

  5. Modelling the initiation of basal sliding

    Science.gov (United States)

    Mantelli, E.; Schoof, C.

    2017-12-01

    The initiation of basal sliding is a thermally-controlled process that affects ice speed, englacial heat transport, and melt water production at the bed, and ultimately influences the large-scale dynamics of ice sheets. From a modelling perspective, describing the onset of sliding in thin-film models suitable for ice sheet scale simulations is problematic. In particular, previous work concluded that, under shallow-ice mechanics, the scenario of a hard switch from frozen to molten bed leads to an infinite vertical velocity at the onset, and higher-order mechanical formulations are needed to describe sliding initiation. An alternative view considers the occurrence of subtemperate sliding, which allows for a smooth sliding velocity across the onset. However, the sliding velocity decreases rapidly as temperature drops below the melting point, thus raising the issue of whether a mechanical model that does not resolve the ice sheet thickness scale is ever appropriate to model the onset of sliding. In this study we first present a boundary layer model for the hard switch scenario. Our analysis, which considers a thermo-mechanically coupled Stokes flow near the onset, shows that the abrupt onset of sliding is never possible. In fact, the acceleration of ice flow deflects the flowlines towards the bed, which freezes again immediately downstream to the onset. This leads to the conclusion that the sliding velocity must change smoothly across the onset, thus the temperature dependence of sliding needs to be taken into account. In this context, we examine a limiting case of standard temperature-dependent sliding laws, where sliding onset takes the form of an extended transition region interposed between fully frozen and temperate bed. In the transition region basal temperature is at the melting point, and the sliding velocity varies smoothly as dictated by the energy budget of the bed. As the extent of this region is not small compared to the ice sheet length scale, we couple

  6. Micro-tribological properties of hydroxyapatite-based composites in dry sliding

    International Nuclear Information System (INIS)

    Lu, Zhi; Liu, Yong; Liu, Bowei; Liu, Meiling

    2013-01-01

    Highlights: ► The micro-tribological properties of HA-based composites were investigated. ► The micro-scale test is greatly benefits to the analyses of the wear mechanism. ► A higher speed benefits the formation of the lubricating layer, when high in Cu. ► With increasing Cu, the wear mechanism shift from abrasive wear to adhesive wear. - Abstract: The micro-tribological properties of hydroxyapatite-based composites sliding against alumina balls were investigated by a ball-on-block tribometer. Surface properties of the HA-based composites were measured and examined by using atomic force microscopy and scanning electron microscopy. Running-in behavior during sliding tests was studied as a function of surface properties. The effects of copper fibers, initial surface roughness, and sliding velocity on the friction coefficient and the wear resistance were discussed. Results show that a lubricant layer benefits the tribological properties of the composites. With the increasing of Cu, the lubricant layer is more stable, and resistant to increase of the sliding velocity. At a Cu content of 15%, the wear curve is very stable even at a velocity of 900 rpm. The wear mechanism also changes from abrasive wear to adhesive wear. A model was quoted to describe the relationship between the wear resistant and the load

  7. An analytical interpretation of the high temperature linear contact between composite materials reinforced with glass fibers and steel

    Science.gov (United States)

    Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca

    2018-01-01

    In this paper we have tried to present the influence of the metal surface wear and of the contact temperature on the evolution of the sliding speed, of the normal load and of the friction coefficient. We have performed numerous experimental trials that have highlighted the dependency between load and wear in relation to the friction coefficient. A dry linear friction couple was used with a large range of loads and speeds, simulating real-life working conditions: temperature, sliding speed, contact pressure. We have made a connection between the theoretical case and the experimental results arising from the use of the “wear imprint method” for the volume and depth of wear.

  8. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  9. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  10. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Bakoglidis, Konstantinos D.; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-01-01

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN x ) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN x films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N 2 /Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V s , was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V s  ≥ 60 V, V s  ≥ 100 V, and V s  = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V s for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V s , while CN x films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant

  11. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  12. On the debris-level origins of adhesive wear.

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François

    2017-07-25

    Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.

  13. A study on wear behaviour of Al/6101/graphite composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2017-03-01

    Full Text Available The current research work scrutinizes aluminium alloy 6101-graphite composites for their mechanical and tribological behaviour in dry sliding environments. The orthodox liquid casting technique had been used for the manufacturing of composite materials and imperilled to T6 heat treatment. The content of reinforcement particles was taken as 0, 4, 8, 12 and 16 wt.% of graphite to ascertain it is prospective as self-lubricating reinforcement in sliding wear environments. Hardness, tensile strength and flexural strength of cast Al6101 metal matrix and manufactured composites were evaluated. Hardness, tensile strength and flexural strength decreases with increasing volume fraction of graphite reinforcement as compared to cast Al6101 metal matrix. Wear tests were performed on pin on disc apparatus to assess the tribological behaviour of composites and to determine the optimum volume fraction of graphite for its minimum wear rate. Wear rate reduces with increase in graphite volume fraction and minimum wear rate was attained at 4 wt.% graphite. The wear was found to decrease with increase in sliding distance. The average co-efficient of friction also reduces with graphite addition and its minimum value was found to be at 4 wt.% graphite. The worn surfaces of wear specimens were studied through scanning electron microscopy. The occurrence of 4 wt.% of graphite reinforcement in the composites can reveal loftier wear possessions as compared to cast Al6101 metal matrix.

  14. Experimental Study of the Hygrothermal Effect on Wear Behavior of Composite Materials

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas. Abdulla

    2017-07-01

    Full Text Available The hygrothermal effect on the wear behavior of composite material (fiberglass and polyester resin vf=40% was investigated experimentally in this work. The study includes manufacturing of test device (pin on disc according to ASTM G 99. In order to study the hygrothermal effect on wear behavior of composite materials the hygrothermal chamber was manufactured. The experimental results show that the wear of glass fiber/polyester increased with increasing the load, sliding speed and sliding distance. The load and sliding distance were more effective on the wear of the composite rather than sliding speed. Also, it has been revealed that, the hygrothermal is considerable effect that, the wear rate of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect. Applied load is the wear factor that has the highest physical influence on the wear of composites materials than other wear factors. Also, the wear of glass fiber/polyester without hygrothermal effect is lower than wear with hygrothermal effect.

  15. Tribological behavior at elevated temperature of multilayer TiCN/TiC/TiN hard coatings produced by chemical vapor deposition

    International Nuclear Information System (INIS)

    Bao Mingdong; Xu Xuebo; Zhang Haijun; Liu Xiaoping; Tian Linhai; Zeng Zhaoxin; Song Yubin

    2011-01-01

    Multilayer hard coatings of TiCN/TiC/TiN on high speed steel substrates were deposited using a chemical vapor deposition system. Evaluations of microstructure, wear morphology of coatings were characterized by scanning electron microscopy, and optical microscopy. Friction coefficient and wear rates of coatings were investigated using ball-on-disk tester sliding against a WC ball at a constant load of 20 N. Tribological behavior of the coatings at room and elevated temperature were discussed. Different changing tendency of friction coefficient were observed from ball-on-disc experiments. Results showed that the friction coefficient of coatings increased gradually to a highest value, then to a relatively constant value at room temperature dry sliding wear. The friction coefficient exhibited a reverse variation tendency at temperature of 550 °C. It got a higher value at the first sliding friction cycles. Then the value of friction coefficient decreased, suffered irregular oscillations and kept a relatively lower value with increasing sliding time. Reasons of the variation of friction coefficient with sliding time and wear mechanism were analyzed and discussed at room and elevated temperatures, respectively.

  16. Baseball and softball sliding injuries: incidence and correlates during one high school league varsity season.

    Science.gov (United States)

    Stovak, Mark; Parikh, Amit; Harvey, Anne T

    2012-11-01

    To estimate injury rates associated with sliding in high school baseball and softball. Prospective cohort study. Community high school athletic events. Ten high school varsity baseball and softball teams over 1 season. All sliding attempts were recorded during each game and recorded as headfirst, feetfirst, or diveback. Base type, playing surface, and field conditions were also noted. Injury exposure rates by game exposures and sliding/diveback exposures. Data were collected from 153 baseball games and 166 softball games. A greater proportion of slides were associated with injury in softball than in baseball (42.0 and 4.9 per 1000 slides; P softball (55 vs 35 per 1000 slides; P = 0.74). More powerful studies are required to determine whether efforts to prevent baseball sliding injuries at the high school level should focus on better education in sliding technique or changes in equipment. Softball players are vulnerable to injury when wearing inadequate protective sliding apparel.

  17. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact

    Science.gov (United States)

    Frérot, Lucas; Aghababaei, Ramin; Molinari, Jean-François

    2018-05-01

    Sliding contact between solids leads to material detaching from their surfaces in the form of debris particles, a process known as wear. According to the well-known Archard wear model, the wear volume (i.e. the volume of detached particles) is proportional to the load and the sliding distance, while being inversely proportional to the hardness. The influence of other parameters are empirically merged into a factor, referred to as wear coefficient, which does not stem from any theoretical development, thus limiting the predictive capacity of the model. Based on a recent understanding of a critical length-scale controlling wear particle formation, we present two novel derivations of the wear coefficient: one based on Archard's interpretation of the wear coefficient as the probability of wear particle detachment and one that follows naturally from the up-scaling of asperity-level physics into a generic multi-asperity wear model. As a result, the variation of wear rate and wear coefficient are discussed in terms of the properties of the interface, surface roughness parameters and applied load for various rough contact situations. Both new wear interpretations are evaluated analytically and numerically, and recover some key features of wear observed in experiments. This work shines new light on the understanding of wear, potentially opening a pathway for calculating the wear coefficient from first principles.

  18. A New Apparatus for Measuring the Temperature at Machine Parts Rotating at High Speeds

    Science.gov (United States)

    Gnam, E.

    1945-01-01

    After a brief survey of the available methods for measuring the temperatures of machine parts at high speed, in particular turbine blades and rotors, an apparatus is described which is constructed on the principle of induction. Transmission of the measuring current by sliding contacts therefore is avoided. Up-to-date experiments show that it is possible to give the apparatus a high degree of sensitivity and accuracy. In comparison with sliding contact types, the present apparatus shows the important advantage that it operates for any length of time without wear, and that the contact difficulties, particularly occurring at high sliding speeds,are avoided.

  19. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    mechanical properties were evaluated by hardness and wear tests (ball on plate) at room temperature without lubrication. The reciprocating sliding wear resistance of the coating was evaluated as function of the normal load and the sliding speed. The worn surface morphology of the tracks were examined by SEM-EDS technique. Clad layer showed hardness value (∼ 650-700 HV0.1) three order of magnitude higher than the stainless steel-316L substrate (∼ 170-200 HV0.1). The clad layer exhibited excellent sliding wear resistance. The clad layer showed higher wear resistance than the stainless steel substrate at higher load (> 3N). The wear resistances of the clad and substrate were decreasing with increasing load and sliding speed. The friction coefficient of the clad layer is lower than the stainless steel substrate under the identical wear test condition (normal load of 5N, sliding frequency of 20 Hz). (author)

  20. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  1. Probabilistic Analysis of Wear of Polymer Material used in Medical Implants

    Directory of Open Access Journals (Sweden)

    T. Goswami

    2016-05-01

    Full Text Available Probabilistic methods are applied to the study of fatigue wear of sliding surfaces. A variance of time to failure (to occurrence of maximum allowable wear depth is evaluated as a function of a mean wear rate of normal wear and a size of wear particles. A method of estimating probability of failure-free work during a certain time interval (reliability is presented. An effect of the bedding-in phase of wear on the reliability is taken into account. Experimental data for Ultra High Molecular Weight Polyethylene (UHMWPE cups of artificial hip implants is used to make numerical calculations.

  2. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    Science.gov (United States)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  3. Effective lecture slides

    International Nuclear Information System (INIS)

    Lim, Jae Hoon

    1986-01-01

    Lawyers, with their constant opportunity for practice, show a talent for public oratory that few doctors can equal. However, the physician, despite his more modest and hesitant delivery, has one great advantage over the most experienced lawyer. He is allowed to use slides. Slides of good quality conceal defects in oratory and they make for a confident speaker and a contented audience. By contrast, smudged, complicated or ill prepared slides may draw attention to minor defects in delivery and make the audience inattentive.

  4. The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite

    Science.gov (United States)

    Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali

    2017-12-01

    Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.

  5. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Friction and wear of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  7. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  8. A new methodology for predictive tool wear

    Science.gov (United States)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  9. Tooth wear and wear investigations in dentistry.

    Science.gov (United States)

    Lee, A; He, L H; Lyons, K; Swain, M V

    2012-03-01

    Tooth wear has been recognised as a major problem in dentistry. Epidemiological studies have reported an increasing prevalence of tooth wear and general dental practitioners see a greater number of patients seeking treatment with worn dentition. Although the dental literature contains numerous publications related to management and rehabilitation of tooth wear of varying aetiologies, our understanding of the aetiology and pathogenesis of tooth wear is still limited. The wear behaviour of dental biomaterials has also been extensively researched to improve our understanding of the underlying mechanisms and for the development of restorative materials with good wear resistance. The complex nature of tooth wear indicates challenges for conducting in vitro and in vivo wear investigations and a clear correlation between in vitro and in vivo data has not been established. The objective was to critically review the peer reviewed English-language literature pertaining to prevalence and aetiology of tooth wear and wear investigations in dentistry identified through a Medline search engine combined with hand-searching of the relevant literature, covering the period between 1960 and 2011. © 2011 Blackwell Publishing Ltd.

  10. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  11. Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC-12%Co coatings on stainless steel

    International Nuclear Information System (INIS)

    Zhao Xiaoqin; Zhou Huidi; Chen Jianmin

    2006-01-01

    Conventional and nanostructured WC-12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3 N 4 at room temperature and elevated temperatures up to 400 deg. C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC-12%Co coatings were composed of WC as the major phase and W 2 C, WC 1-x , and W 3 Co 3 C as the minor phases. The plasma sprayed nanostructured WC-12%Co coating had much higher hardness and refined microstructures than the conventional WC-12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC-12%Co coating than the conventional coating. Besides, the two types of WC-12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC-12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC-12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC-12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC-12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC-12%Co coating with a wear rate as small as 1.01 x 10 -7 mm 3 /Nm at 400 deg. C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated

  12. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  13. CORROSION AND WEAR PROPERTIES OF MATERIALS USED FOR MINCED MEAT PRODUCTION

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Hansen, Martin Otto Laver; Hilbert, Lisbeth Rischel

    2009-01-01

    measurements. Combined sliding wear and corrosion conditions have been simulated in laboratory using a block-on-ring setup allowing for electrochemical measurements. Detailed information concerning the mechanism of possible material degradation is provided by these results, together with microstructural...

  14. Wear and Degradation Modes in Selected Vehicle Tribosystems

    OpenAIRE

    G. Pantazopoulos; A. Tsolakis; P. Psyllaki; A. Vazdirvanidis

    2015-01-01

    The wear and degradation mechanisms of two principle vehicle tribosystems are presented to elucidate the main causes of their premature failure. The first case study concerns the malfunction of an automotive cast iron pressure plate operated in an automobile clutch system. The second is related to the unexpected failure of a stainless steel brake disk of a high performance motorcycle. Both components are designed to function under sliding friction conditions that lead to the severe wear of co...

  15. Truck tyre wear assessment and prediction

    NARCIS (Netherlands)

    Lupker, H.A.; Montanaro, F.; Donadio, D.; Gelosa, E.; Vis, M.A.

    2002-01-01

    Tyre wear is a complex phenomenon. It depends non-linearly on numerous parameters, like tyre compound and design, vehicle type and usage, road conditions and road surface characteristics, environmental conditions (e.g., temperature) and many others. Yet, tyre wear has many economic and ecological

  16. Graphical assessment of the linear contact steel on composite material at high temperature and pressure

    Science.gov (United States)

    Rus, Dorin; Florescu, Virgil; Bausic, Florin; Ursache, Robert; Sasu, Anca

    2018-01-01

    In this article we have tried to present a graphical assessment of the dry linear contact for composite materials reinforced with glass fibers as well as of the influence of the sliding speed, load and friction coefficient. Perpendicular loads, the contact temperature and the wear of the metal surface were recorded. The wear volume was calculated using the Archard relationship. Using the Archard relationship, the width of trace can be calculated in 3 locations. Numerous experimental trials were performed in connection to the wear of the metal surface, the contact temperature and the value of the friction coefficient. A connection between the evolution of the wear process and the dependency on the contact temperature and friction coefficient can be observed.

  17. Microstructure, Wear Behavior and Corrosion Resistance of WC-FeCrAl and WC-WB-Co Coatings

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2018-05-01

    Full Text Available The paper is focused on investigating the quality of two grades of thermally sprayed coatings deposited by high-velocity oxygen fuel (HVOF technology. One grade contains WC hard particles in an environmentally progressive Ni- and Co-free FeCrAl matrix, while the second coating contains WC and WB hard particles in a cobalt matrix. The aim of the experimental work was to determine the effect of thermal cyclic loading on the coatings’ resistance to adhesive, abrasive and erosive wear. Abrasive wear was evaluated using abrasive cloth of two grit sizes, and erosive wear was evaluated by a dry-pot wear test in a pin mill at two sample angles. Adhesion wear resistance of the coatings was determined by a sliding wear test under dry friction conditions and in a 1 mol water solution of NaCl. Corrosion resistance of the coatings was evaluated using potentiodynamic polarization tests. Metallographic cross-sections were used for measurement of the microhardness and thickness and for line energy-dispersive X-ray (EDX analysis. The tests proved the excellent resistance of both coatings against adhesive, abrasive, and erosive wear, as well as the ability of the WC-WB-Co coating to withstand alternating temperatures of up to 600 °C. The “green carbide” coating (WC-FeCrAl can be recommended as an environmentally friendly replacement for Ni- and Co-containing coatings, but its operating temperature is strictly limited to 500 °C in air.

  18. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  19. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  20. Fatigue and Wear in Rolling and Sliding Contacts

    DEFF Research Database (Denmark)

    Janakiraman, Shravan

    bearing supports the main shaft, which connects the rotor to thegearbox. The main bearing is a rolling element bearing containing sphericalrolling elements. The loads on a main bearings are very high, which leads toa lubrication regime called elastohydrodynamic lubrication (EHL). Under theEHL regime...... to increase the film thickness, so as to ensure there is no contactbetween the roller and the raceway. Under lower loads (loads less than EHLloads) it has been observed that axial grooves help to increase the film thicknessat certain optimum operating conditions. It is believed that these groovesact...... the filmthickness. They might improve the film thickness at certain optimum runningconditions, but it is tough to ascertain what those conditions are.The main bearings also undergo rolling contact fatigue failure. The main bearingsexperience premature fatigue failure in both onshore and offshore windturbines...

  1. A Method of the Wear Prognosis of Sliding Bearings

    Directory of Open Access Journals (Sweden)

    Miszczak Andrzej

    2014-12-01

    Full Text Available Rozwazania przedstawione w niniejszej pracy obejmuja komputerowa analize prognozy zuzycia łozyska slizgowego z wykorzystaniem rozwiazan równan rekurencyjnych oraz danych eksperymentalnych.

  2. 3D Finite Element Modeling of Sliding Wear

    Science.gov (United States)

    2013-12-01

    In these pictures one can clearly see the slipper rotation. In the second picture, one can also see what is called the “slipper fire ” due to the...Design Manual for Dual Rail, Narrow Gage, and Monorail Rocket Sleds. Technical Report, Test Track Division, 6585th Test Group, Holloman AFB, New

  3. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    study, alumina ball was chosen as the counter body material to show better performance of the ... Tribology is a relatively new science that considers ... The science is applied in ... for example, in hip prosthesis, instead of existing alumina.

  4. Friction and wear of Synfluo 180XF wax and nano-Al2O3 filled Nomex fabric composites

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Wang Kun; Liu Weimin

    2006-01-01

    Nomex fabric composites filled with the particulates of Synfluo 180XF wax (SFW) and nano-Al 2 O 3 was prepared by dip-coating of Nomex fabric in a phenolic resin containing particulates to be incorporated and the successive curing. The friction and wear performance of the pure and filled Nomex fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high temperature friction and wear tester. The microstructure of the composites, and the morphologies of the worn surfaces and the morphologies of counterpart steel pins were analyzed by means of scanning electron microscopy. And the elemental plane distribution of Al on the cross-section of the Nomex fabric composites filled with nano-Al 2 O 3 was analyzed with an energy dispersive X-ray analyzer (EDAX). The results showed that the addition of Synfluo 180XF wax in composites have the potential to increase wear resistance and friction reduction of Nomex fabric composites, and the addition of the nano-Al 2 O 3 with the optimum mass fraction in composites can improve the anti-wear ability of the composites. Besides the self-properties of the filler, the character of the microstructure of the Nomex fabric composites filled with different particles, coupled with the character of the transfer film, largely accounts for the improved anti-wear and friction-reducing abilities of the filled Nomex fabric composites as compared with the unfilled one

  5. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  6. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  7. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    Science.gov (United States)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  8. Stick-slip friction and wear of articular joints

    Science.gov (United States)

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  9. Mechanics of slide dams

    International Nuclear Information System (INIS)

    Young, G.A.

    1970-01-01

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  10. Mechanics of slide dams

    Energy Technology Data Exchange (ETDEWEB)

    Young, G A [Engineering, Agbabian-Jacobsen Associates, Los Angeles (United States)

    1970-05-15

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  11. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  12. Carbon-Phenolic Cages for High-Speed Bearings. Part 1 - Friction and Wear Response of Phenolic Composite Impregnated with a Multiply-Alkylated Cyclopentane (MAC) Lubricant and MoS2 Solid Lubricant

    National Research Council Canada - National Science Library

    Forster, Nelson

    2003-01-01

    .... This portion covers characterization of flat panel specimens using thermal conductivity, tensile strength, coefficient of thermal expansion measurement, and friction and wear testing in a sliding contact...

  13. Theoretical-experimental analysis of the fretting/impact wear in fuel rods

    International Nuclear Information System (INIS)

    Pecos, Luis F.

    2001-01-01

    Nuclear power plant fuel elements are subjected to flow induced vibrations. A consequence of these vibrations is impact/fretting wear in fuel rods or sliding shoes. Because of the difficulties to assert the mechanism of impact/fretting wear phenomenon it is necessary to use semiempirical formulations in order to predict the wear rate of the components. The results of a series of experiments with Zr-4 specimens are presented in this work. A parameter called 'work-rate' was used to normalize the wear rates and interpret the results in terms of wear coefficient. (author) [es

  14. Superlubric sliding of graphene nanoflakes on graphene.

    Science.gov (United States)

    Feng, Xiaofeng; Kwon, Sangku; Park, Jeong Young; Salmeron, Miquel

    2013-02-26

    The lubricating properties of graphite and graphene have been intensely studied by sliding a frictional force microscope tip against them to understand the origin of the observed low friction. In contrast, the relative motion of free graphene layers remains poorly understood. Here we report a study of the sliding behavior of graphene nanoflakes (GNFs) on a graphene surface. Using scanning tunneling microscopy, we found that the GNFs show facile translational and rotational motions between commensurate initial and final states at temperatures as low as 5 K. The motion is initiated by a tip-induced transition of the flakes from a commensurate to an incommensurate registry with the underlying graphene layer (the superlubric state), followed by rapid sliding until another commensurate position is reached. Counterintuitively, the average sliding distance of the flakes is larger at 5 K than at 77 K, indicating that thermal fluctuations are likely to trigger their transitions from superlubric back to commensurate ground states.

  15. A study of microstructure and wear behaviour of TiB2/Al metal matrix composites

    Directory of Open Access Journals (Sweden)

    A. Sreenivasan

    Full Text Available The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs. Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.

  16. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  17. Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball

    International Nuclear Information System (INIS)

    Liu, C.-C.; Huang, J.-L.

    2004-01-01

    The dry-sliding wear mechanism of Si 3 N 4 -based composites against AISI-52100 steel ball was studied using a ball-on-disc mode in a reciprocation motion. The addition of TiN particles can increase the fracture toughness of Si 3 N 4 -based composites. The fracture toughness of Si 3 N 4 -based composites played an important role for wear behavior. The Si 3 N 4 -based composites exhibits a small friction and wear coefficient compared to monolithic Si 3 N 4 . Atomic force microscopy (AFM) studies displayed fine wear grooves along the sliding traces. The subsurface deformation shows that the microcrack propagation extends along the TiN/Si 3 N 4 grain interface. The wear mechanisms were determined with scanning electron microscopy, transmission electron microscopy, X-ray diffraction and atomic force microscopy

  18. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  19. Effect of solid lubricants on friction and wear behaviour of alloyed ...

    Indian Academy of Sciences (India)

    Friction and wear behaviour of MoS2, boric acid, graphite and TiO2 at four different sliding speeds (1.0, 1.5, 2.0, 2.5 m/s) has been compared with dry sliding condition. MoS2 and graphite show 30 to 50% reduction in mass loss compared to other lubricants at all sliding speeds. Friction coefficient reduces with increase in ...

  20. Selected Landscape Plants. Slide Script.

    Science.gov (United States)

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  1. Influence of heat treatment on the wear life of hydraulic fracturing tools

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong [China University of Petroleum, Qingdao (China)

    2017-02-15

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment.

  2. Influence of heat treatment on the wear life of hydraulic fracturing tools

    International Nuclear Information System (INIS)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong

    2017-01-01

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment

  3. Analysis of mechanisms induced by sliding and corrosion: dedicated apparatus for PWR environments

    International Nuclear Information System (INIS)

    Vernot, JPh

    2004-01-01

    In pressurized water reactors (PWR), some components are submitted to relative motions due to necessary operational processes (localisation and positioning adjustment) or by not wished effects (flow induced vibration). Thus, components and associated supports are typically excited by a large range of kinematics so than complex combinations of wear can occur. Those excitations can lead to sliding, fretting, impact, etc. Furthermore, typical environment in PWR coupling of temperature (320 deg. C), pressure (154 bars) and chemistry solution (deaerated, low conductivity water) involve specific corrosion processes. Apparently, research performed to date did not deal with all the specific parameters involved at PWR conditions. For this purpose, a specific apparatus has been developed in Framatome Technical Center for a better understanding of this complex degradation mechanism where mechanical and corrosion effects are occurring at the same time. Thanks to electromagnets excitation, mechanical investigations can be proposed with the following combined contact type: pure impact, pure sliding and impact plus sliding for several kinds of sample as rod in a ring, rod against a guide. Motion can be induced on a local area or for the total length (orbital excitation). The relative displacement and the contact force are acquired continuously and permit to establish normal and tangential forces, angular position, sliding distance. On the other hand, electrochemistry measurements have been adapted to the specific apparatus and work in the high temperature water environment. The standard mounting with three electrodes has been qualified so that it is possible to adjust or measure current and potential. All the system is computer controlled and with the present apparatus relationship between mechanical parameters and re-passivation can be studied for specific environments, materials and solicitations. In a first step, potential dynamic polarization curves have been established for

  4. Wear resistance evaluation of palm fatty acid distillate using four-ball tribotester

    Science.gov (United States)

    Golshokouh, Iman; Ani, Farid Nasir; Syahrullail, S.

    2012-06-01

    Petroleum reserves are declining nowadays while ironically petroleum is a major source of pollution despite many uses. Researchers are in effort to find an alternative to replace petroleum as a lubricant. One of the best replace sources for petroleum is bio-oil. In this paper, a comparative study of friction and wear was carried out using a fourball tester. In this research, Palm Fatty Acid Distillate (PFAD) and Jatropha oil, two well-known oils from the vegetable family oils were compared with Hydraulic mineral oil and commercial mineral Engine oil. All investigated oils in this study are used in industries as lubricants. PFAD is a product from refined crude palm oil. It exists as a light brown solid at room temperature and Jatropa oil is produced from the seeds of the Jatropha cruces, a plant that grows in marginal lands. For the wear test, the experimental research condition was comparing four kind of oils with ASTM condition in which the load applied was 392N. The sliding speed was 1200rpm under the lubricant temperature of 75 degree Celsius. The experiment was run for 3600 seconds. The experimental results demonstrated that the PFAD and Jatropha oils exhibited better performance in term of friction and wear compared to Hydraulic and Engine mineral oils.

  5. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  6. Laser surface modification of Ti6Al4V-Cu for improved microhardness and wear resistance properties

    CSIR Research Space (South Africa)

    Erinosho, MF

    2017-06-01

    Full Text Available operating with linear reciprocating motion drive. The samples are rubbed against a ball-shaped upper specimen made of 9.5 mm diameter tungsten carbide ball. A load of 25 N, stroke length of 2 mm, oscillation frequency of 5 Hz and test duration of 1000... seconds were selected for the operation. The dry sliding wear tests were carried out according to the ASTM G133- 05 for determining the sliding wear of metals23. The wear loss was calculated from the length of the stroke, the width of the wear scar...

  7. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation

    International Nuclear Information System (INIS)

    La Peiqing; Ma Jiqiang; Zhu, Yuntian T.; Yang Jun; Liu Weimin; Xue Qunji; Valiev, Ruslan Z.

    2005-01-01

    This paper reports the tribological properties of ultrafine-grained (UFG) Ti prepared by severe plastic deformation under dry sliding against AISI52100 steel in ambient environment and at varying load and sliding speed. Worn surfaces of the UFG Ti were examined with a scanning electron microscope and X-ray photoelectron spectroscope. It was found that the wear rate of the UFG Ti under dry sliding was of the magnitude of 10 -3 mm 3 m -1 , which is lower than that of the annealed coarse-grained (CG) Ti. The wear rate of the UFG Ti increased with the load, while it decreased with the sliding speed. The friction coefficient of the UFG Ti was in the range of 0.45-0.60, slightly lower than that of the CG Ti, and did not change with the load and sliding time after the initial transient period. The friction coefficient increased with increasing sliding speed to a maximum point and then decreased. The wear mechanism of the UFG Ti was micro-ploughing and delamination. The worn surfaces were covered by a TiO 2 layer. These results demonstrated that UFG structures improved the wear resistance but did not significantly affect the friction coefficient of Ti

  8. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the

  9. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    Science.gov (United States)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  10. Rod cluster control assemblies and rod cluster control guide tubes: wear and drop time

    International Nuclear Information System (INIS)

    Zbinden, M.

    1997-01-01

    The wear of RCCAs and of RCC guide tubes is due to two quite different mechanisms and the remedies to apply for each case might lead to contradictory solutions: - the impact/sliding wear for the seldom moving RCCAs, namely the shutdown RCCAs, under flow-induced vibrations, - the axial sliding wear for the control rods subjected to the stepping movements ordered by the acting load. In this case the hydraulic sticking forces are those which produce an evolution of the surface states that may increase the drop time. The introduction, an historical survey of the encountered difficulties, is followed by short description of the components and then the paper presents contributions of EDF in the R and D field, which take place in two successive multi-annual projects. Lastly, some information is given about the recent evolutions and new problems as well for impact/sliding wear as for drop time under normal or seismic conditions. (author)

  11. Carbon-Based Wear Coatings: Properties and Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2003-01-01

    The technical function of numerous engineering systems - such as vehicles, machines, and instruments - depends on the processes of motion and on the surface systems. Many processes in nature and technology depend on the motion and dynamic behavior of solids, liquids, and gases. Smart surface systems are essential because of the recent technological push toward higher speeds, loads, and operating temperatures; longer life; lighter weight and smaller size (including nanotechnology); and harsh environments in mechanical, mechatronic, and biomechanical systems. If proper attention is not given to surface systems, then vehicles, machines, instruments, and other technical systems could have short lives, consume excessive energy, experience breakdowns, result in liabilities, and fail to accomplish their missions. Surface systems strongly affect our national economy and our lifestyles. At the NASA Glenn Research Center, we believe that proper attention to surface systems, especially in education, research, and application, could lead to economic savings of between 1.3 and 1.6 percent of the gross domestic product. Wear coatings and surface systems continue to experience rapid growth as new coating and surface engineering technologies are discovered, more cost-effective coating and surface engineering solutions are developed, and marketers aggressively pursue, uncover, and exploit new applications for engineered surface systems in cutting tools and wear components. Wear coatings and smart surface systems have been used widely in industrial, consumer, automotive, aerospace, and biomedical applications. This presentation expresses the author's views of and insights into smart surface systems in wear coatings. A revolution is taking place in carbon science and technology. Diamond, an allotrope of carbon, joins graphite, fullerenes, and nanotubes as its major pure carbon structures. It has a unique combination of extreme properties: hardness and abrasion resistance; adhesion

  12. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  13. Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites

    International Nuclear Information System (INIS)

    Yi Gewen; Yan Fengyuan

    2006-01-01

    Calcined petroleum coke (CPC) and hexagonal boron nitride (h-BN) were used as the friction modifiers to improve the friction and wear properties of phenolic resin-based friction composites. Thus, the composites with different relative amounts of CPC and h-BN as the friction modifiers were prepared by compression molding. The hardness and bending strength of the friction composites were measured. The friction and wear behaviors of the composites sliding against cast iron at various temperatures were evaluated using a pin-on-disc test rig. The worn surfaces and wear debris of the friction composites were analyzed by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. It was found that the hybrid of the two friction modifiers was effective to significantly decrease the wear rate and stabilize the friction coefficient of the friction composites at various temperatures by forming a uniform lubricating and/or transferred film on the rubbing surfaces. The uniform and durable transfer films were also able to effectively diminish the direct contact between the friction composite and the cast iron counterpart and hence prevent severe wear of the latter as well. The effectiveness of the hybrid of CPC and h-BN in improving the friction and wear behavior of the phenolic resin-based friction modifiers could be attributed to the complementary action of the 'low temperature' lubricity of CPC and the 'high temperature' lubricity of h-BN. The optimum ratio of the two friction modifiers CPC and h-BN in the friction composites was suggested to be 1:1, and the corresponding friction composite showed the best friction-reducing and antiwear abilities

  14. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles

    International Nuclear Information System (INIS)

    Zhang Zhaozhu; Su Fenghua; Wang Kun; Jiang Wei; Men Xuehu; Liu Weimin

    2005-01-01

    The carbon fabric composites filled with the particulates of polyfluo-150 wax (PFW), nano-particles of ZnO (nano-ZnO), and nano-particles of SiC (nano-SiC), respectively, were prepared by dip-coating of the carbon fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the carbon fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration are evaluated on a Xuanwu-III high-temperature friction and wear tester. The morphologies of the worn surfaces of the filled carbon fabric composites and the counterpart steel pins are analyzed by means of scanning electron microscopy. The effect of the fillers on the adhesion strength of the adhesive is evaluated using a DY35 universal materials tester. It is found that the fillers PFW, nano-ZnO, and nano-SiC contribute to significantly increasing anti-wear abilities of the carbon fabric composites, however, nano-SiC increase the friction coefficient of the carbon fabric composites. The wear rates of the composites at elevated temperature above 180 deg. C are much larger than that below 180 deg. C, which attribute to the degradation and decomposition of the adhesive resin at an excessively elevated temperature. That the interface bonding strength among the carbon fabric, the adhesive, and the particles is significantly increased after solidification and with the transferred film of the varied features largely account for the increased wear-resistance of the filled carbon fabric composites as compared with the unfilled one

  15. MICROSTRUCTURE, THERMO-PHYSICAL, MECHANICAL AND WEAR PROPERTIES OF IN-SITU FORMED BORON CARBIDE - ZIRCONIUM DIBORIDE COMPOSITE

    Directory of Open Access Journals (Sweden)

    T. S. R. Ch. Murthy

    2017-12-01

    Full Text Available Microstructure, thermos-physical, mechanical and wear properties of in-situ formed B₄C- ZrB₂ composite were investigated. Coefficient of thermal expansion, thermal diffusivity and electrical resistivity of the composite were measured at different temperatures up to 1000 °C in inert atmosphere. Flexural strength was measured up to 900 °C in air. Friction and wear properties have been studied at different loads under reciprocative sliding, using a counter body (ball of cemented tungsten carbide (WC-Co at ambient conditions. X-ray diffraction (XRD and electron probe microanalysis (EPMA confirmed the formation of ZrB₂ as the reaction product in the composite. Electrical resistivity was measured as 3.02 x 10-4Ω.m at 1000°C. Thermal conductivity measured at temperatures between 25°C and 1000 °C was in the range of 8 to 10 W/m-K. Flexural strength of the composite decreased with increase in temperature and reached a value of 92 MPa at 900°C. The average value of coefficient of friction (COF was measured as 0.15 at 20 N load and 10 Hz frequency. Increase of load from 5 N to 20 N resulted in decrease in COF from 0.24 to 0.15 at 10 Hz frequency. Specific wear rate data observed was of the order of 10-6 mm³/N-m. Both abrasive and tribo-chemical reaction wear mechanisms were observed on the worn surface of flat and counter body materials. At higher loads (≥10 N a tribo-chemical reaction wear mechanism was dominant.

  16. Friction and wear of carbon-graphite materials for high-energy brakes

    Science.gov (United States)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  17. Friction and wear of carbon-graphite materials for high energy brakes

    Science.gov (United States)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  18. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    International Nuclear Information System (INIS)

    Khidhir, Basim A; Mohamed, Bashir

    2011-01-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  19. Comparison of wear behaviour and mechanical properties of as-cast Al6082 and Al6082-T6 using statistical analysis

    Science.gov (United States)

    Rani Rana, Sandhya; Pattnaik, A. B.; Patnaik, S. C.

    2018-03-01

    In the present work the wear behavior and mechanical properties of as cast A16082 and A16086-T6 were compared and analyzed using statistical analysis. The as cast Al6082 alloy was solutionized at 550°C, quenched and artificially aged at 170°C for 8hrs. Metallographic examination and XRD analysis revealed the presence of intermetallic compounds Al6Mn.Hardness of heat treated Al6082 was found to be more than as cast sample. Wear tests were carried out using Pin on Disc wear testing machine according to Taguchi L9 orthogonal array. Experiments were conducted under normal load 10-30N, sliding speed 1-3m/s, sliding distance 400,800,1200m respectively. Sliding speed was found to be the dominant factor for wear in both as cast and aged Al 6082 alloy. Sliding distance increases the wear rate up to 800m and then after it decreases.

  20. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  1. Complex technique for studying the machine part wear

    International Nuclear Information System (INIS)

    Grishko, V.A.; Zhushma, V.F.

    1981-01-01

    A technique to determine the wear of steel details rolling with sliding with circulatory lubrication is suggested. The functional diagram of the experimental device and structural diagrams of equipment to register the wear of tested samples and forming the lubricating layer between them, are considered. Results of testing three conples of disc samples and the data characterizing the dependence of sample wear on the value of contact stress are presented. The peculiarity of the device used is synchronous registering of the lubricating layer formation in the place of contact and detail mass loss in time which is realized correspondingly over discharge voltage on the lubricating layer and the intensity of radiation from detail wear products activated by neutrons. On the basis, of the investigation the conclusion is made that MEhF-1 oil has a greater antiwear effectiveness than the universal TAD-17 1 oil used presently [ru

  2. NEMD simulations for ductile metal sliding

    Energy Technology Data Exchange (ETDEWEB)

    Hammerberg, James E [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Ravelo, Ramon J [Los Alamos National Laboratory; Holian, Brad L [Los Alamos National Laboratory

    2011-01-31

    We have studied the sliding behavior for a 19 M Al(110)/Al(110) defective crystal at 15 GPa as a function of relative sliding velocity. The general features are qualitatively similar to smaller scale (1.4 M) atom simulations for Al(111)/Al(110) nondefective single crystal sliding. The critical velocity, v{sub c}, is approximately the same for the defective crystal as the size scaled v{sub c}. The lower velocity tangential force is depressed relative to the perfect crystal. The critical temperature, T*, is depressed relative to the perfect crystal. These conclusions are consistent with a lower value for f{sub c} for the defective crystal. The detailed features of structural transformation and the high velocity regime remain to be mapped.

  3. Effect of annealing temperature on the tribological behavior of ZnO films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Lin Liyu; Kim, Dae-Eun

    2009-01-01

    The tribological behavior of zinc oxide (ZnO) films grown on glass and silicon (100) substrates by sol-gel method was investigated. Particularly, the as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature. Crystal structural and surface morphology of the films were measured by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD patterns and AFM images indicated that the crystallinity and grain size of the films were enhanced and increased, respectively, with temperature. The tribological behavior of films was evaluated by sliding the ZnO films against a Si 3 N 4 ball under 0.5 gf normal load using a reciprocating pin-on-plate tribo-tester. The wear tracks of the films were measured by AFM to quantify the wear resistance of the films. The results showed that the wear resistance of the films could be improved by the annealing process. The wear resistance of the films generally increased with annealing temperature. Specifically, the wear resistance of the films was significantly improved when the annealing temperature was higher than 550 deg. C. The increase in the wear resistance is attributed to the increase in hardness and modulus of the film with annealing temperature

  4. Presentation = Speech + Slides

    Directory of Open Access Journals (Sweden)

    Derik Badman

    2008-12-01

    Full Text Available Back in October, Aaron Schmidt posted “HOWTO give a good presentation” to his blog walking paper. His second bullet point of “thoughts” on good presentations is: Please don’t fill your slides with words. Find some relevant and pretty pictures to support what you’re saying. You can use the pictures to remind yourself what you’re going [...

  5. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  6. Slide system for machine tools

    Science.gov (United States)

    Douglass, Spivey S.; Green, Walter L.

    1982-01-01

    The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.

  7. Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip

    International Nuclear Information System (INIS)

    Chung, Koo-Hyun; Lee, Yong-Ha; Kim, Dae-Eun

    2005-01-01

    The wear of an atomic force microscope (AFM) tip is one of the crucial issues in AFM as well as in other probe-based applications. In this work, wear tests under extremely low normal load using an AFM were conducted. Also, in order to understand the nature of silicon tip wear, the wear characteristics of crystal silicon and amorphous silicon oxide layer were investigated by a high-resolution transmission electron microscope (HRTEM). It was found that fracture of the tip readily occurred due to impact during the approach process. Experimental results showed that the impact should be below 0.1 nN s to avoid significant fracture of the tip. Also, it was observed that wear of the amorphous layer, formed at the end of the tip, occurred at the initial stage of the silicon tip damage process. Based on Archard's wear law, the wear coefficient of the amorphous layer was in the range of 0.009-0.014. As for the wear characteristics of the silicon tip, it was shown that wear occurred gradually under light normal load and the wear rate decreased with increase in the sliding distance. As for the wear mechanism of the silicon tip, oxidation wear was identified to be the most significant. It was shown that the degree of oxidation was higher under high normal load and in a nitrogen environment, oxidation of the silicon tip was reduced

  8. Laser cladding of nickel base alloy on SS316L for improved wear and corrosion behaviour

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kushwaha, R.P.; Chandra, Kamlesh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2013-01-01

    Laser cladding by an Nd:YAG laser was employed to deposit Ni base alloy (Ni-Mo-Cr-Si) on stainless steel-316 L substrate. The resulting defect-free clad with minimum dilution of the substrate was characterized by optical microscopy, scanning electron microscopy, X-ray diffraction and Vickers microhardness test. Dry sliding wear of the cladding and the substrate was evaluated using a ball-on-plate reciprocating wear tester against different counter bodies (WC and 52100 Cr steel). The reciprocating sliding wear resistance of the coating was evaluated as a function of the normal load, keeping the sliding amplitude and sliding speed constant. Wear mechanisms were analyzed by observation of wear track morphology using SEM-EDS. The electrochemical corrosion behavior of clad layer was studied in reducing environment (HCl) to estimate the general corrosion resistance of the laser clad layer in comparison with the substrate SS-316L. The clad layer showed higher wear resistance under reducing condition than that of the substrate material stainless steel 316L. (author)

  9. Wear Behavior of Woven Roving Aramid / Epoxy Composite under Different Conditions

    Directory of Open Access Journals (Sweden)

    Asad A. Khalid

    2012-09-01

    Full Text Available Wear behavior studies of aramid woven roving /epoxy composite has been conducted. Sliding the material against smooth steel counter face under dry and  lubricated with oil conditions has been investigated. Powder of Silicon carbide has been mixed with the epoxy resin and tested also. The powder was mixed in a volumetric fraction of 10% with the epoxy resin. Four Laminates of six layers were fabricated by hand lay up  method. A pin on disc apparatus has been fabricated to conduct the sliding wear tests on specimens of (4 mm   4 mm   12 mm in size have been cut from the four laminates. The effect of sliding condition including dry, lubricated, dry with additives and lubricated with additives have been studied. Wear rate tests have been conducted at different sliding speeds and loads. Results show that the wear characteristics are influenced by the operating conditions and the construction of the composite material used. It was also found that the wear of aramid /epoxy composite onto the steel counter face were significantly reduced by using lubricant and additives but still took place.Keywords: Wear, Composite materials, Woven roving aramid, Epoxy, Additives, Lubricant.

  10. Wear resistance of layers hard faced by the high-alloyed filler metal

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2016-10-01

    Full Text Available The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by high hardness and wear resistance. In experiments, the sliding speed and the normal loading were varied and the wear scar was monitored, based on which the volume of the worn material was calculated analytically. The contact duration time was monitored over the sliding path of 300 mm. The most intensive wear was established for the loading force of 100 N and the sliding speed of 1 m.s-1, though the significant wear was also noticed in conditions of the small loading and speed of 0.25 m.s-1, which was even greater that at larger speeds.

  11. Investigation of counterface surface topography effects on the wear and transfer behaviour of a POM-20% PTFE composite

    NARCIS (Netherlands)

    Franklin, S.E.; de Kraker, A.

    2003-01-01

    In order to gain greater insight into the relation between the wear rate, counterface surface topography and the characteristics of the transfer layer formed, a series of wear experiments have been performed with a commercial POM-20% PTFE composite sliding against hardened tool steel counterfaces in

  12. Simulations of atomic-scale sliding friction

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Stoltze, Per

    1996-01-01

    Simulation studies of atomic-scale sliding friction have been performed for a number of tip-surface and surface-surface contacts consisting of copper atoms. Both geometrically very simple tip-surface structures and more realistic interface necks formed by simulated annealing have been studied....... Kinetic friction is observed to be caused by atomic-scale Stick and slip which occurs by nucleation and subsequent motion of dislocations preferably between close-packed {111} planes. Stick and slip seems ro occur in different situations. For single crystalline contacts without grain boundaries...... pinning of atoms near the boundary of the interface and is therefore more easily observed for smaller contacts. Depending on crystal orientation and load, frictional wear can also be seen in the simulations. In particular, for the annealed interface-necks which model contacts created by scanning tunneling...

  13. Peak effect versus skating in high-temperature nanofriction

    Science.gov (United States)

    Zykova-Timan, T.; Ceresoli, D.; Tosatti, E.

    2007-03-01

    The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to `skating' through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.

  14. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    International Nuclear Information System (INIS)

    Dong, Sheng; J Dapino, Marcelo

    2014-01-01

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  15. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  16. Experimental Investigation on Friction and Wear Properties of Different Steel Materials

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2013-03-01

    Full Text Available Friction coefficient and wear rate of different steel materials are investigated and compared in this study. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 314 (SS 314, stainless steel 202 (SS 202 and mild steel slide against stainless steel 314 (SS 314 pin. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative humidity 70%. At different normal loads and sliding velocities, variations of friction coefficient with the duration of rubbing are investigated. The obtained results show that friction coefficient varies with duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for all the tested materials. It is also found that friction coefficient increases with the increase in sliding velocity for all the materials investigated. Moreover, wear rate increases with the increase in normal load and sliding velocity for SS 314, SS 202 and mild steel. In addition, at identical operating condition, the magnitudes of friction coefficient and wear rate are different for different materials depending on sliding velocity and normal load.

  17. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  18. Microstructure and wear resistance of in situ porous TiO/Cu composites

    Science.gov (United States)

    Qin, Qingdong; Huang, Bowei; Li, Wei

    2016-07-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti2CO and Cu powder. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. Dry sliding un-lubricated wear tests show that the wear resistance of the composite is higher than that of the Cu-Al alloy ingot. The coefficient of friction test shows that, as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear rate variation trend of the oil-lubricated wear test results is similar to that of the un-lubricated wear test results. The coefficient of friction for oil lubrication is similar for different volume fractions of the reinforced phase. The wear resistance of the composite at a sliding velocity of 200 rpm is slightly larger than that at 50 rpm. The porosity of the composites enhances the high-velocity oil-lubricated sliding wear resistance.

  19. A material based approach to creating wear resistant surfaces for hot forging

    Science.gov (United States)

    Babu, Sailesh

    Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate

  20. Cutting tool wear monitoring with the use of impedance layers

    OpenAIRE

    Sadílek, Marek; Kratochvíl, Jiří; Petrů, Jana; Čep, Robert; Zlámal, Tomáš; Stančeková, Dana

    2014-01-01

    The article deals with problems of cutting process monitoring in real time. It is focused on tool wear by means of impedance layers applied on ceramic cutting inserts. In the experimental part the cutting process is monitored using electrical resistance measurement. The results are compared and verified using the monitored cutting temperature and tool wear. The testing of impedance layers is reasonable mainly for cutting edge diagnostics. The width of this layer determines the wear allowance ...

  1. SLIDES: a program to draw slides and posters

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, R.; Schofield, J.

    1977-04-01

    SLIDES is a program which takes text and commands as input and prepares lettered slides and posters. When run on the time-sharing computer, the program can display its output on an interactive graphics terminal; in batch, it can direct its graphical output to a variety of plotters. The program uses DISSPLA graphical subroutines and standard ANL plotter subroutines. This report contains material written for the beginning user, who should be able to produce useful slides or posters by following the examples. This report also serves as a complete reference for the SLIDES program. 4 figures.

  2. Nitrogen implantation of steels: A treatment which can initiate sustained oxidative wear

    International Nuclear Information System (INIS)

    Hale, E.B.; Reinbold, R.; Missouri Univ., Rolla; Kohser, R.A.

    1987-01-01

    Falex wear tests on mild (SAE 3135) steel samples treated by either nitrogen implantation (2.5x10 17 N 2 + cm -2 at 180 keV) or low temperature (about 315 0 C) oxidation are reported. The results show that both treatments lead to about an order-of-magnitude reduction in the long-term wear rate of the steel. In addition to the wear rate measurements, the wear member asymmetry behavior, scanning electron microscopy studies, Auger spectra and sputter profiles all indicate that the wear modes induced by both treatments are the same and are oxidative wear. These results confirm the previously proposed initiator-sustainer wear model in which implanted nitrogen simply acts as an initiator of favorable oxidative wear but is not directly involved in maintaining the sustained wear resistance. Possible mechanisms for both the initiation process and the sustained wear process are reviewed and discussed. (orig.)

  3. Couple of biomimetic surfaces with different morphologies for remanufacturing nonuniform wear rail surface

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Yang, Lin; Zhang, Haifeng; Feng, Li; Zhang, Peng

    2018-02-01

    In this work, biomimetic laser treatment was performed on repairing and remanufacturing the nonuniform worn rail surface. The wearing depth distribution of three work regions of a failure rail surface was discussed, and different thickness hardening layers with different microstructure, microhardness and wear resistances were detected from the worm surfaces. Varying wear resistances of the surfaces with different biomimetic morphologies were obtained by biomimetic laser treatments, and the corresponding effect on the lubrication sliding wear of treated and untreated surfaces were studied for comparative study. In addition, the relationship between wear resistance and the spacing of units was also provided, which can lay the important theoretical foundation for avoiding the wear resistance of the serious worn surface is less than that of the slight worn surface in the future practical applications.

  4. An experimental modeling and acoustic emission monitoring of abrasive wear in a steel/diabase pair

    Science.gov (United States)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The earthmoving of permafrost soil is a critical task for excavation of minerals and construction on new territories. Failure by abrasive wear is the main reason for excavation parts of earthmoving and soil cutting machines. Therefore investigation of this type of wear is a challenge for developing efficient and wear resistant working parts. This paper is focused on conducting tribological experiments with sliding the steel samples over the surface of diabase stone sample where abrasive wear conditions of soil cutting are modeled experimentally. The worn surfaces of all samples have been examined and transfer of metal and stone particles revealed. The acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. he acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. As shown the wear intensity correlates to that of acoustic emission. Both acoustic emission signal median frequency and energy are found to be sensitive to the wear mode.

  5. Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale.

    Science.gov (United States)

    Chen, Lei; He, Hongtu; Wang, Xiaodong; Kim, Seong H; Qian, Linmao

    2015-01-13

    Wear at sliding interfaces of silicon is a main cause for material loss in nanomanufacturing and device failure in microelectromechanical system (MEMS) applications. However, a comprehensive understanding of the nanoscale wear mechanisms of silicon in ambient conditions is still lacking. Here, we report the chemical wear of single crystalline silicon, a material used for micro/nanoscale devices, in humid air under the contact pressure lower than the material hardness. A transmission electron microscopy (TEM) analysis of the wear track confirmed that the wear of silicon in humid conditions originates from surface reactions without significant subsurface damages such as plastic deformation or fracture. When rubbed with a SiO2 ball, the single crystalline silicon surface exhibited transitions from severe wear in intermediate humidity to nearly wearless states at two opposite extremes: (a) low humidity and high sliding speed conditions and (b) high humidity and low speed conditions. These transitions suggested that at the sliding interfaces of Si/SiO2 at least two different tribochemical reactions play important roles. One would be the formation of a strong "hydrogen bonding bridge" between hydroxyl groups of two sliding interfaces and the other the removal of hydroxyl groups from the SiO2 surface. The experimental data indicated that the dominance of each reaction varies with the ambient humidity and sliding speed.

  6. Tribological properties of ceramics evaluated at low sliding speeds

    International Nuclear Information System (INIS)

    Hayashi, Kazunori; Kano, Shigeki

    1998-03-01

    Low speed tribological properties of stainless steel, ceramics and hard metals were investigated in air at room temperature and in nitrogen atmosphere at high temperature for the consideration of sliding type support structure in intermediate heat exchanger of fast reactor. The following results are obtained. (1) In low speed friction measurements in air at room temperature, friction coefficients of ceramics and hard metals were smaller than that of stainless steel. Surface roughness of the specimens increased the friction force and silicon carbide showed the smallest friction coefficient among the specimens with mirror polished surface. (2) From the results of friction measurements at various sliding speeds in air at room temperature, friction coefficients of ceramics and hard metals were always stable and lower than that of stainless steel. Among ceramics, PSZ showed the smallest friction and silicon carbide showed the most stable friction at any sliding speeds. (3) Friction coefficients of silicon carbide and silicon nitride in nitrogen atmosphere at high temperature showed low values as measured at room temperature. On the contrary, friction coefficient of stainless steel measured in nitrogen atmosphere at high temperature were higher than that measured at room temperature, over 1. (4) In the reciprocal sliding tests in nitrogen atmosphere at high temperature, friction coefficient of stainless steel were over 1. On the contrary, the friction coefficients of ceramics were less than 1 instead of chipping during the slidings. (author)

  7. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  8. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  9. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    Science.gov (United States)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  10. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  11. Analysis of Heat Partitioning During Sliding Contact at High Speed and Pressure

    Science.gov (United States)

    2014-03-27

    the numerical results developed are compared in Chapter 7. Malinowski , Lenard and Davies (35) used the mechanical models of the hot/warm forging...R.F.Harder. “Transient heat partition factor for a sliding railcar wheel,” Wear, 261: 932-936 (2006). 35. Malinowski , Z., J.G.Lenard, and M.E.Davies

  12. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  13. Ultra-high wear resistance of ultra-nanocrystalline diamond film: Correlation with microstructure and morphology

    Science.gov (United States)

    Rani, R.; Kumar, N.; Lin, I.-Nan

    2016-05-01

    Nanostructured diamond films are having numerous unique properties including superior tribological behavior which is promising for enhancing energy efficiency and life time of the sliding devices. High wear resistance is the principal criterion for the smooth functioning of any sliding device. Such properties are achievable by tailoring the grain size and grain boundary volume fraction in nanodiamond film. Ultra-nanocrystalline diamond (UNCD) film was attainable using optimized gas plasma condition in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. Crystalline phase of ultra-nanodiamond grains with matrix phase of amorphous carbon and short range ordered graphite are encapsulated in nanowire shaped morphology. Film showed ultra-high wear resistance and frictional stability in micro-tribological contact conditions. The negligible wear of film at the beginning of the tribological contact was later transformed into the wearless regime for prolonged sliding cycles. Both surface roughness and high contact stress were the main reasons of wear at the beginning of sliding cycles. However, the interface gets smoothened due to continuous sliding, finally leaded to the wearless regime.

  14. Embeddability behaviour of tin-based bearing material in dry sliding

    International Nuclear Information System (INIS)

    Zeren, Adalet

    2007-01-01

    In this study, tin-based bearing material has been investigated in dry sliding conditions. The low Sb content (7%) is known as SAE 12 and is Sn-Sb-Cu alloy and is widely used in the automotive industry. Wear and friction characteristics were determined with respect to sliding distance, sliding speed and bearing load, using a Tecquipment HFN type 5 journal bearing test equipment. Scanning electron microscopy (SEM) and energy-disperse X-ray spectrography (EDX) are used to understand the tribological events, especially embeddability. Thus, the purpose of this study is to investigate the tribological properties of tin-based bearing alloy used especially in heavy industrial service conditions. Tests were carried out in dry sliding conditions, since despite the presence of lubricant film, under heavy service conditions dry sliding may occur from time to time, causing local wear. As a result of local wear, bearing materials and bearing may be out of their tolerance limits in their early lifetime. Embeddability is an important property due to inversely affecting the hardness and the strength of the bearing

  15. No sliding in time

    International Nuclear Information System (INIS)

    Shtengel, Kirill; Nayak, Chetan; Bishara, Waheb; Chamon, Claudio

    2005-01-01

    In this letter, we analyse the following apparent paradox: as has been recently proved by Hastings (2004 Phys. Rev. 69 104431), under a general set of conditions, if a local Hamiltonian has a spectral gap above its (unique) ground state (GS), all connected equal-time correlation functions of local operators decay exponentially with distance. On the other hand, statistical mechanics provides us with examples of 3D models displaying so-called sliding phases (O'Hern et al 1999 Phys. Rev. Lett. 83 2745) which are characterized by the algebraic decay of correlations within 2D layers and exponential decay in the third direction. Interpreting this third direction as time would imply a gap in the corresponding (2+1)D quantum Hamiltonian which would seemingly contradict Hastings' theorem. The resolution of this paradox lies in the non-locality of such a quantum Hamiltonian. (letter to the editor)

  16. Study on the friction and wear properties of glass fabric composites filled with nano- and micro-particles under different conditions

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Liu Weimin

    2005-01-01

    The glass fabric composites filled with the particulates of polytetrafluoroethylene (PTFE), micro-sized MoS 2 , nano-TiO 2 , and nano-CaCO 3 , respectively, were prepared by dip-coating of the glass fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the resulting glass fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration at various temperatures were evaluated on a Xuanwu-III high temperature friction and wear tester. The morphologies of the worn surfaces of the filled glass fabric composites and the counterpart steel pins were analyzed by means of scanning electron microscopy, and the elemental distribution of F on the worn surface of the counterpart steel was determined by means of energy dispersive X-ray analysis (EDXA). It was found that PTFE and nano-TiO 2 particulates as the fillers contributed to significantly improve the friction-reducing and anti-wear properties of the glass fabric composites, but nano-CaCO 3 and micro-MoS 2 as the fillers were harmful to the friction and wear behavior of the glass fabric composites. The friction and wear properties of the glass fabric composites filled with the particulate fillers were closely dependent on the environmental temperature and the wear rates of the composites at elevated temperature above 200 deg. C were much larger than that below 150 deg. C, which was attributed to the degradation and decomposition of the adhesive resin at excessively elevated temperature. The bonding strengths between the interfaces of the glass fabric, the adhesive resin, and the incorporated particulates varied with the types of the particulate fillers, which largely accounted for the differences in the tribological properties of the glass fabric composites filled with different fillers. Moreover, the transferred layers of varied features formed on the counterpart steel pins also partly accounted for the different friction and

  17. Slide Buyers Guide. 1974 Edition.

    Science.gov (United States)

    DeLaurier, Nancy

    Designed for studio art instructors, museum education programs, public libraries, high school teachers, and those who buy slides for teaching art history at the college level, this guide lists sources of slides in the United States and over 20 foreign countries. All U.S. sources are listed first, commercial sources are alphabetical by name and…

  18. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  19. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  20. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    Science.gov (United States)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  1. Optical wear monitoring

    Science.gov (United States)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  2. Sliding bearing diagnosis with magnetic field measuring; Gleitlagerdiagnose mittels Magnetfeldmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik; Kluth, T. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik

    1995-09-01

    Account of their properties sliding bearings are in high demanded and important aggregats. The destruction of a bearing will be almost followed by the destruction of the aggregate. Various methods are existing for sliding bearing diagnosis. This methods often not permit the condition recognition. A new electromagnetical method will be developed. This method permits the condition recognition during working time of the aggregate. It also permits the recognition of wear. The method bases on a measuring of leak current over measuring the generated magnetic fields with Rogowski-coils. (orig.) [Deutsch] Gleitlager befinden sich wegen ihrer Eigenschaften in hoch beanspruchten und exponierten Aggregaten. Die Zerstoerung eines Gleitlagers fuehrt meist auch zur Zerstoerung des gefuehrten Aggregats. Zur Gleitlagerdiagnose existiert eine Reihe Verfahren. Ihnen wird ein elektromagnetisches Verfahren gegenuebergestellt. Damit koennen Gleitlagerzustaende waehrend des Aggregatebetriebs identifiziert werden. Das Verfahren erlaubt gleichermassen die Bestimmung des Lagerverschleisses. Es basiert auf der Ableitstrommessung, bei der sich ausbildende Magnetfelder durch Rogowskispulen ausgemessen werden. (orig.)

  3. An Axial Sliding Test for machine elements surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2012-01-01

    are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Finally, preliminary tests are carried out involving a multifunctional and a fine......Throughout the years, it has become more and more important to find new methods for reducing friction and wear occurrence in machine elements. A possible solution is found in texturing the surfaces under tribological contact, hence the development and spread of plateau-honed surface for cylinder...... liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper a new test rig simulating pure sliding conditions is presented, dubbed Axial Sliding Test. It presents four major components: a rod, a sleeve...

  4. Aspects of fretting wear of sprayed cermet coatings

    International Nuclear Information System (INIS)

    Chivers, T.C.

    1985-01-01

    Two experimental fretting programmes which investigated aspects of fretting wear of sprayed cermet coatings are reviewed. These programmes were conducted in support of components used in the advanced gas-cooled reactor. It is speculated that the results from these programmes are compatible with a simple two-stage wear model. This model assumes that an initial wear process occurs which is dominated by an interlocking and removal of asperities. Such a phase will be dependent on the superficial contact areas and possibly the interfacial load, but the latter aspect is not considered. This initial wear is of very short duration and is followed by a mild, oxidative, wear mode. Coatings data are also compared with those for structural steels. In short-term low temperature tests it appears that structural steels have comparable performance with the cermet coatings but it is argued that this is an artefact of the wear process. However, at high temperatures (600 0 C) wear of stainless steel could not be determined, the specimens showing a net weight gain. It is concluded that for in-reactor fretting applications cermet coatings will have advantages over structural steels at low temperatures. Even in high temperature regions some operation at low temperatures is experienced and consequently cermet coatings may be useful here also. (orig.)

  5. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    OpenAIRE

    Shibe, Vineet; Chawla, Vikas

    2016-01-01

    Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 ste...

  6. Sliding properties of coevaporated and nitrogen-implanted Pt50Ti50 films on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Zheng, L.R.; Hung, L.S.; Mayer, J.W.

    1988-01-01

    Thin Pt 50 Ti 50 films were deposited on a AISI 304 stainless steel substrate by co-evaporation. Dry sliding tests and wear track measurements revealed some improvement in sliding properties compared with the bare substrate. Implantation of the coated substrate with xenon ions did not produce any further improvement in friction and wear but a dramatic improvement resulted from nitrogen ion implantation. This was accompanied by a change in microstructure arising from an amorphous to crystalline phase transformation in the alloy film. (U.K.)

  7. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2014-01-01

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict

  8. Wear behavior of Al-7%Si-0.3%Mg/melon shell ash particulate composites.

    Science.gov (United States)

    Abdulwahab, M; Dodo, R M; Suleiman, I Y; Gebi, A I; Umar, I

    2017-08-01

    The present study examined wear characteristics of A356/melon shell ash particulate composites. Dry-sliding the stainless steel ball against specimen disc revealed the abrasive wear behavior of the composites under loads of 2 and 5N. The composite showed lower wear rate of 2.182 × 10 -4 mm 3 /Nm at 20 wt% reinforced material under load of 5N. Results showed that wear rate decreased significantly with increasing weight percentage of melon shell ash particles. Microstructural analyses of worn surfaces of the composites reveal evidence of plastic deformation of matrix phase. The wear resistance of A356 increased considerably with percentage reinforcement. In other words, the abrasive mass loss decreased with increasing percentage of reinforcement addition at the both applied loads. The control sample suffered a highest mass loss at 5 N applied load.

  9. Microstructure and wear behavior of friction stir processed cast hypereutectic aluminum silicon

    Directory of Open Access Journals (Sweden)

    Ahmad Rosli

    2017-01-01

    Full Text Available Hypereutectic as-cast Al-18Si-Cu-Ni alloy was subjected to friction stir processing (FSP. The resultant effect of FSP on the alloy was evaluated by microstructure analysis and wear tests (dry sliding. A significant microstructural modification and enhancement in wear behavior of Al-18Si-Cu-Ni alloy was recorded after friction stir processing. Wear resistance improvement was related to considerable modification in size, morphology and distribution of silicon particles, and hardness improvement. It was found that lower tool rotation speed was more effective to refine silicon particles and in turn increase wear resistance. Minimum Si particle mean area of about 47.8 µm2, and wear rate of 0.0155 mg/m was achieved.

  10. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  11. Study of confinement and sliding friction of fluids using sum frequency generation spectroscopy

    Science.gov (United States)

    Nanjundiah, Kumar

    2007-12-01

    Friction and wear are important technologically. Tires on wet roads, windshield wipers and human joints are examples where nanometer-thick liquids are confined between flexible-rigid contact interfaces. Fundamental understanding of the structure of these liquids can assist in the design of products such as artificial joints and lubricants for Micro-electromechanical systems [MEMS]. Prior force measurements have suggested an increase in apparent viscosity of confined liquid and sometimes solid-like responses. But, these have not given the state of molecules under confinement. In the present study, we have used a surface sensitive, non-linear optical technique (infrared-visible sum frequency generation spectroscopy [SFG]) to investigate molecular structure at hidden interfaces. SFG can identify chemical groups, concentration and orientation of molecules at an interface. A friction cell was developed to study sliding of a smooth elastomeric lens against a sapphire surface. Experiments were done with dry sliding as well as lubricated sliding in the presence of linear alkane liquids. SFG spectra at the alkane/sapphire interface revealed ordering of the confined alkane molecules. These were more ordered than alkane liquid, but less ordered than alkane crystal. Cooling of the confined alkane below its melting temperature [TM] led to molecular orientation that was different from that of bulk crystal next to a sapphire surface. Molecules were oriented with their symmetry axis parallel to the surface normal. In addition, the melting temperature [Tconf] under confinement for a series of linear alkanes (n =15--27) showed a surprising trend. Intermediate molecular weights showed melting point depression. The T conf values suggested that melting started at the alkane/sapphire interface. In another investigation, confinement of water between an elastomeric PDMS lens and sapphire was studied. SFG spectra at the sapphire/water/PDMS interface revealed a heterogeneous morphology. The

  12. Sliding hiatal hernia in dogs

    OpenAIRE

    JOLANTA SPUŻAK; KRZYSZTOF KUBIAK; MARCIN JANKOWSKI; MACIEJ GRZEGORY; KAMILA GLIŃSKA-SUCHOCKA; JÓZEF NICPOŃ; VASYL VLIZLO; IGOR MAKSYMOVYCH

    2010-01-01

    Introduction Sliding hiatal hernia is a disorder resulting from a displacement of the abdominal part of the oesophagus and/or a part of the stomach into the thoracic cavity through the oesophageal hiatus of the diaphragm. The disorder may be congenital or acquired. Congenital hernia follows disturbances in the embryonic development. In the literature the predisposition to congenital sliding hiatal hernia is observed in the dogs of shar-pei and chow-chow breeds. Pathogenesis of acquired slidin...

  13. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4 C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process

  14. Asperity-Level Origins of Transition from Mild to Severe Wear

    Science.gov (United States)

    Aghababaei, Ramin; Brink, Tobias; Molinari, Jean-François

    2018-05-01

    Wear is the inevitable damage process of surfaces during sliding contact. According to the well-known Archard's wear law, the wear volume scales with the real contact area and as a result is proportional to the load. Decades of wear experiments, however, show that this relation only holds up to a certain load limit, above which the linearity is broken and a transition from mild to severe wear occurs. We investigate the microscopic origins of this breakdown and the corresponding wear transition at the asperity level. Our atomistic simulations reveal that the interaction between subsurface stress fields of neighboring contact spots promotes the transition from mild to severe wear. The results show that this interaction triggers the deep propagation of subsurface cracks and the eventual formation of large debris particles, with a size corresponding to the apparent contact area of neighboring contact spots. This observation explains the breakdown of the linear relation between the wear volume and the normal load in the severe wear regime. This new understanding highlights the critical importance of studying contact beyond the elastic limit and single-asperity models.

  15. Effect of soot on oil properties and wear of engine components

    International Nuclear Information System (INIS)

    Green, D A; Lewis, R

    2007-01-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present

  16. Wear Process Analysis of the Polytetrafluoroethylene/Kevlar Twill Fabric Based on the Components’ Distribution Characteristics

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2017-12-01

    Full Text Available Polytetrafluoroethylene (PTFE/Kevlar fabric or fabric composites with excellent tribological properties have been considered as important materials used in bearings and bushing, for years. The components’ (PTFE, Kevlar, and the gap between PTFE and Kevlar distribution of the PTFE/Kevlar fabric is uneven due to the textile structure controlling the wear process and behavior. The components’ area ratio on the worn surface varying with the wear depth was analyzed not only by the wear experiment, but also by the theoretical calculations with our previous wear geometry model. The wear process and behavior of the PTFE/Kevlar twill fabric were investigated under dry sliding conditions against AISI 1045 steel by using a ring-on-plate tribometer. The morphologies of the worn surface were observed by the confocal laser scanning microscopy (CLSM. The wear process of the PTFE/Kevlar twill fabric was divided into five layers according to the distribution characteristics of Kevlar. It showed that the friction coefficients and wear rates changed with the wear depth, the order of the antiwear performance of the previous three layers was Layer III>Layer II>Layer I due to the area ratio variation of PTFE and Kevlar with the wear depth.

  17. The Effects of Rare Earth Pr and Heat Treatment on the Wear Properties of AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Ning Li

    2018-06-01

    Full Text Available This paper investigated the influences of Pr addition and heat treatment (T6 on the dry sliding wear behavior of AZ91 alloy. The wear rates and friction coefficients were measured by using a pin-on-disc tribometer under loads of 30, 60 and 90 N at dry sliding speeds of 100 rpm, over a sliding time of 15 min. The worn surfaces were examined using a scanning electron microscope and was analyzed with an energy dispersive spectrometer. The experimental results revealed that AZ91-1.0%Pr magnesium alloy exhibited lower wear rate and friction coefficient than the other investigated alloys. As the applied load increased, the wear rate and friction coefficient increased. Compared with the as-cast AZ91-1.0%Pr magnesium alloy, the hardness and wear resistance of the alloy after solution treatment were reduced, and through the subsequent aging, the hardness and wear resistance of the alloy were improved and the hardness was 101.1 HB (compared to as-cast AZ91 magnesium alloy, it increased by 45%. The AZ91-1.0%Pr with T6 magnesium alloy exhibited best wear resistance. Abrasion was dominant at load of 30 N, delamination was dominant at load of 60 N and plastic deformation was dominant at load of 90 N. Oxidation was observed at all loads.

  18. Millisecond bearing wear

    International Nuclear Information System (INIS)

    Blatchley, C.; Sioshansi, P.

    1987-01-01

    Radionuclides have been widely used for many purposes in medicine, metals, transportation, manufacturing and research. Approximately 200 artificially produced nuclides are commercially available from reactors or accelerator sources. Another 400 or so have properties which may make them useful if satisfactory methods of production can be developed. One of the most economically important industrial applications of radionuclides has been in wear measurement and condition monitoring in reciprocating engines. The general techniques developed for this purpose have also been applied in a number of other areas besides engine or lubrication studies. The wear of floor wax applied to linoleum, for example, has been measured by mixing shortlived radionuclides in the wax. In those applications where the material is tagged and then followed, the radionuclides are termed ''tracers,'' similar to the medical tracer materials used to measure uptake or metabolism of biologically active chemicals in the body. The alternate function for the radionuclides is to act as ''markers'' which indicate the amount of material which is remaining at the location of the original activation. Both approaches require that the debris removed from the surface must be carried away from the original site. The first application of radioactive tracers as a diagnostic tool in engines was in 1949. In this technique, an entire wearing part such as a piston ring or gear was first exposed to neutrons in a nuclear reactor. This caused the entire volume of the part to become radioactive. The part was next installed and exposed to wear in the operating engine. Detectors placed near the oil line, an oil filter or a sediment trap then determined the amount of debris from the part by counting the gamma rays escaping from the debris

  19. Wear rate optimization of Al/SiCnp/e-glass fibre hybrid metal matrix composites using Taguchi method and genetic algorithm and development of wear model using artificial neural networks

    Science.gov (United States)

    Bongale, Arunkumar M.; Kumar, Satish; Sachit, T. S.; Jadhav, Priya

    2018-03-01

    Studies on wear properties of Aluminium based hybrid nano composite materials, processed through powder metallurgy technique, are reported in the present study. Silicon Carbide nano particles and E-glass fibre are reinforced in pure aluminium matrix to fabricate hybrid nano composite material samples. Pin-on-Disc wear testing equipment is used to evaluate dry sliding wear properties of the composite samples. The tests were conducted following the Taguchi’s Design of Experiments method. Signal-to-Noise ratio analysis and Analysis of Variance are carried out on the test data to find out the influence of test parameters on the wear rate. Scanning Electron Microscopic analysis and Energy Dispersive x-ray analysis are conducted on the worn surfaces to find out the wear mechanisms responsible for wear of the composites. Multiple linear regression analysis and Genetic Algorithm techniques are employed for optimization of wear test parameters to yield minimum wear of the composite samples. Finally, a wear model is built by the application of Artificial Neural Networks to predict the wear rate of the composite material, under different testing conditions. The predicted values of wear rate are found to be very close to the experimental values with a deviation in the range of 0.15% to 8.09%.

  20. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  1. A Comparative Study on the Formation Mechanism of Wear Scars during the Partial and Full Scale Fretting Wear Tests of Spacer Grids

    International Nuclear Information System (INIS)

    Lee, Young Ho; Shin, Chang Hwan; Oh, Dong Seok; Kang, Heung Seok

    2012-01-01

    Fretting wear studies for evaluating the contact damages of nuclear fuel rods have been focused on the contact shape, rod motion, contact condition, environment, etc.. However, fretting wear mechanism was dramatically changed with slight variation of test variables such as test environments and contact shapes. For example, in an unlubricated condition, effects of wear debris and/or its layer on the fretting wear mechanism showed that the formation of a well-developed layer on the contact surfaces has a beneficial effect for decreasing a friction coefficient. Otherwise, a severe wear was happened due to a third body abrasion. In addition, in water lubrication condition, some of wear debris was remained on worn surface of fuel rod specimens at both sliding and impacting loading conditions. So, it is apparent that a wear rate of fuel rod specimen was easily accelerated by the third-body abrasion. This is because the restrained agglomeration behavior between generated wear particles results in rapid removal of wear debris and its layer. In case of contact shape effects, previous studies show that wear debris are easily trapped between contact surfaces and its debris layer was well developed in a localized area especially in a concave spring rather than a convex spring shape. Consequently, localized wear was happened at both ends of a concave spring and center region of a convex spring. So, it is useful for determining the fretting wear resistance of spacer gird spring and dimple by using part unit in the various lubricated conditions. It is well known that the fretting wear phenomenon of nuclear fuel rod is originated from a flow-induced vibration (FIV) due to the rapid primary coolant. This means that both rod vibration and debris removal behavior were affected by flow fields around the contact regions between fuel rod and spring/dimple. However, all most of the fretting tests were performed by simulating rod vibrating motions such as axial vibration, conservative rod

  2. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  3. Microhardness, Friction and Wear of SiC and Si3N4 Materials as a Function of Load, Temperature and Environment.

    Science.gov (United States)

    1981-10-01

    hardness tester described below. Hot-hardness experiments were carried out in a Wilberforce Scientific Developments (Coventry, U.K.) high-temperature micro...private comunication . 22. G.D. Quinn, -1980, Technical Report to U.S. Department of Energy by AZ4MRC, Interagency Agreement EC-76-A-1017. 46 23. 0.0...1981, priyate comunication . 38. T.F. Page, G.R. Sawyer, O.O.Adewoye and J.J. Wert, 1978, Proc. Brit. Ceram. Soc. 26, 193. 39. K. Niihara, R. Morenaand

  4. Mapping stain distribution in pathology slides using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI offers a novel approach to digitize and review pathology slides, but the voluminous data generated by this technology demand new computational methods for image analysis. Materials and Methods: In this study, we report a method that recognizes stains in WSI data and uses kernel density estimator to calculate the stain density across the digitized pathology slides. The validation study was conducted using a rat model of acute cardiac allograft rejection and another rat model of heart ischemia/reperfusion injury. Immunohistochemistry (IHC was conducted to label ED1 + macrophages in the tissue sections and the stained slides were digitized by a whole slide scanner. The whole slide images were tessellated to enable parallel processing. Pixel-wise stain classification was conducted to classify the IHC stains from those of the background and the density distribution of the identified IHC stains was then calculated by the kernel density estimator. Results: The regression analysis showed a correlation coefficient of 0.8961 between the number of IHC stains counted by our stain recognition algorithm and that by the manual counting, suggesting that our stain recognition algorithm was in good agreement with the manual counting. The density distribution of the IHC stains showed a consistent pattern with those of the cellular magnetic resonance (MR images that detected macrophages labeled by ultrasmall superparamagnetic iron-oxide or micron-sized iron-oxide particles. Conclusions: Our method provides a new imaging modality to facilitate clinical diagnosis. It also provides a way to validate/correlate cellular MRI data used for tracking immune-cell infiltration in cardiac transplant rejection and cardiac ischemic injury.

  5. Wear of human enamel: a quantitative in vitro assessment.

    Science.gov (United States)

    Kaidonis, J A; Richards, L C; Townsend, G C; Tansley, G D

    1998-12-01

    Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.

  6. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  7. Optimization of friction and wear behaviour of Al7075-Al2O3-B4C metal matrix composites using Taguchi method

    Science.gov (United States)

    Dhanalakshmi, S.; Mohanasundararaju, N.; Venkatakrishnan, P. G.; Karthik, V.

    2018-02-01

    The present study deals with investigations relating to dry sliding wear behaviour of the Al 7075 alloy, reinforced with Al2O3 and B4C. The hybrid composites are produced through Liquid Metallurgy route - Stir casting method. The amount of Al2O3 particles is varied as 3, 6, 9, 12 and 15 wt% and the amount of B4C is kept constant as 3wt%. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L27 Orthogonal array was selected for analysis of the data. The investigation is to find the effect of applied load, sliding speed and sliding distance on wear rate and Coefficient of Friction (COF) of the hybrid Al7075- Al2O3-B4C composite and to determine the optimal parameters for obtaining minimum wear rate. The samples were examined using scanning electronic microscopy after wear testing and analyzed.

  8. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    Science.gov (United States)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  9. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    Science.gov (United States)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  10. Friction and Wear of Unlubricated NiTiHf with Nitriding Surface Treatments

    Science.gov (United States)

    Stanford, Malcolm K.

    2018-01-01

    The unlubricated friction and wear properties of the superelastic materials NiTi and NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin on disk testing of the studied materials was performed at sliding speeds from 0.01 to 1m/s at normal loads of 1, 5 or 10N. For all of the studied friction pairs (NiTiHf pins vs. NiTi and NiTiHf disks) over the given parameters, the steady-state coefficients of friction varied from 0.22 to 1.6. Pin wear factors ranged from approximately 1E-6 against the NiTiHf and plasma nitrided disks to approximately 1E-4 for the gas nitrided disks. The plasma nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas nitrided treatment generated the most pin wear but had essentially no disk wear except at the most severe of the studied conditions (1N load and 1m/s sliding speed). The results of this study are expected to provide guidance for design of components such as gears and fasteners.

  11. Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings

    International Nuclear Information System (INIS)

    Scharf, T.W.; Kotula, P.G.; Prasad, S.V.

    2010-01-01

    Fundamental phenomena governing the tribological mechanisms in sputter deposited amorphous MoS 2 /Sb 2 O 3 /Au nanocomposite coatings are reported. In dry environments the nanocomposite has the same low friction coefficient as pure MoS 2 (∼0.007). However, unlike pure MoS 2 coatings, which wear through in air (50% relative humidity), the composite coatings showed minimal wear, with wear factors of ∼1.2-1.4 x 10 -7 mm 3 Nm -1 in both dry nitrogen and air. The coatings exhibited non-Amontonian friction behavior, with the friction coefficient decreasing with increasing Hertzian contact stress. Cross-sectional transmission electron microscopy of wear surfaces revealed that frictional contact resulted in an amorphous to crystalline transformation in MoS 2 with 2H-basal (0 0 0 2) planes aligned parallel to the direction of sliding. In air the wear surface and subsurface regions exhibited islands of Au. The mating transfer films were also comprised of (0 0 0 2)-oriented basal planes of MoS 2 , resulting in predominantly self-mated 'basal on basal' interfacial sliding and, thus, low friction and wear.

  12. Effect of mechanical vibrations on the wear behavior of AZ91 Mg alloy

    Science.gov (United States)

    Chaturvedi, V.; Pandel, U.; Sharma, A.

    2018-02-01

    AZ91 Mg alloy is the most promising alloy used for structural applications. The vibration induced methods are effective and economic viable in term of mechanical properties. Sliding wear tests were performed on AZ91 Mg alloy using a pin-on- disc configuration. Wear rates were measured at 5 N and 10N at a sliding velocity of 1m/s for varied frequency within the range of 5- 25Hz and a constant amplitude of 2mm. Microstructures of worn surfaces and wear debris were characterized by field emission scanning electron microscopy (FESEM). It is observed that wear resistance of vibrated AZ91 alloy at 15Hz frequency ad 2mm amplitude was superior than cast AZ91 Mg alloy. Finer grain size and equiaxed grain shape both are important parameters for better wear resistance in vibrated AZ91 Mg alloys. FESEM analysis revealed that wear is considerably affected due to frictional heat generated by the relative motion between AZ91 Mg alloy and EN31 steel surface. No single mechanism was responsible for material loss.

  13. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    Science.gov (United States)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  14. Artificial Neural Networks for the Prediction of Wear Properties of Al6061-TiO2 Composites

    Science.gov (United States)

    Veeresh Kumar, G. B.; Pramod, R.; Shivakumar Gouda, P. S.; Rao, C. S. P.

    2017-08-01

    The exceptional performance of composite materials in comparison with the monolithic materials have been extensively studied by researchers. Among the metal matrix composites Aluminium matrix based composites have displayed superior mechanical properties. The aluminium 6061 alloy has been used in aeronautical and automotive components, but their resistance against the wear is poor. To enhance the wear properties, Titanium dioxide (TiO2) particulates have been used as reinforcements. In the present investigation Back propagation (BP) technique has been adopted for Artificial Neural Network [ANN] modelling. The wear experimentations were carried out on a pin-on-disc wear monitoring apparatus. For conduction of wear tests ASTM G99 was adopted. Experimental design was carried out using Taguchi L27 orthogonal array. The sliding distance, weight percentage of the reinforcement material and applied load have a substantial influence on the height damage due to wear of the Al6061 and Al6061-TiO2 filled composites. The Al6061 with 3 wt% TiO2 composite displayed an excellent wear resistance in comparison with other composites investigated. A non-linear relationship between density, applied load, weight percentage of reinforcement, sliding distance and height decrease due to wear has been established using an artificial neural network. A good agreement has been observed between experimental and ANN model predicted results.

  15. Understanding the Atomic Scale Mechanisms that Control the Attainment of Ultralow Friction and Wear in Carbon-Based Materials

    Science.gov (United States)

    2016-01-16

    materials to applications such as vibrating joints1,2, contacting and sliding surfaces in micro- and nanoelectromechanical systems for sensors and...Friction and Wear. R.W. Carpick, Midwest Mechanics 2014/2015 Invited Speaker , Iowa State University, Feb. 2015. 4. Invited. Atomic-Scale Processes...in Single Asperity Friction and Wear. R.W. Carpick, Midwest Mechanics 2014/2015 Invited Speaker , University of Minnesota, Feb. 2015. 5. Invited

  16. MOCEAN SURF WEAR -MALLISTO

    OpenAIRE

    Lehtovaara, Hanna

    2013-01-01

    Surffi on urheilulaji, jossa kuljetaan aallon päällä surffilaudalla. Surffaus on lähtöisin Polynesiasta, mutta nykypäivänä surffausta harrastetaan ympäri maailmaa. Opinnäytetyö käsittelee surf wear -malliston suunnittelua ja toteuttamista omalle toi-minimelle Mocean. Työn tavoitteena oli suunnitella toimiva, mutta myös trendikäs mallisto naissurffareille. Mallisto sisältää bikineitä, surffipaitoja legginsejä ja shortseja. Mallisto on suunniteltu naissurffareille, jotka surffaavat lämpimis...

  17. Wear Particle Atlas. Revised

    Science.gov (United States)

    1982-06-28

    Superintendent NOTICE Reproduction of this document in any form by other than naval activities is/Jotbvlhorized except isys^iedcil approval of the SecretarWof...constant. •.■, -1 "if -w \\ SÄNPLlWi V» IVf Figure 3.1.1.1 Simplified Oil Path Ref 21 Scott. D, McCullagh. PJ and Campbell GW Condition Monitoring...Wear Particles in Human Synovial Fluid Arthritis and Rheumatism, 24 (1981) 912-918 30 Evans. C H .andTew W P isolationof Biological Materials

  18. Nitrogen implantation of type 303 stainless steel gears for improved wear and fatigue resistance

    International Nuclear Information System (INIS)

    Kustas, F.M.; Misra, M.S.; Tack, W.T.

    1987-01-01

    Fine-positioning mechanisms are responsible for accurate and reproducible control of aerospace system devices, i.e. filter grading wheels. Low wear and fatigue resistance of mechanism components, such as pinions and gears, can reduce system performance and reliability. Surface modification using ion implantation with nitrogen was used on type 303 stainless steel pinions and gears to increase tribological performance. Wear-life tests of untreated, nitrogen-implanted and nitrogen-implanted-and-annealed gears were performed in a fine-positioning mechanism under controlled environmental conditions. Wear and fatigue resistance were monitored at selected time intervals which were a percentage of the predicted failure life as determined by a numerical stress analysis. Surface analyses including scanning electron microscopy and Auger electron spectroscopy were performed to establish the wear and fatigue mechanisms and the nitrogen concentration-depth distributions respectively. Nitrogen implantation resulted in a significant improvement in both surface wear and fatigue spalling resistance over those of untreated gears. A 40% reduction in surface wear and a 44% reduction in dedendum spalling was observed. In contrast, the nitrogen-implanted-and-annealed gears showed a 46% increase in sliding wear area and an 11% increase in spall density compared with those of untreated gears, indicating that the post-implantation anneal was detrimental to wear and fatigue resistance. (orig.)

  19. An in vitro study of dental enamel wear by restorative materials using radiometric method

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa

    2000-01-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  20. The synergism of impact wear and oxidation in carbon dioxide environments

    International Nuclear Information System (INIS)

    Morri, J.R.

    1987-01-01

    The impact fretting wear characteristics in Co 2 of a 9%Cr steel against a 310SS counterface have been studied between 100 0 and 500 0 C. An energy effect was identified in which high energy impacts suppressed a severe-to-mild wear transition for low energy impacts between 250 0 and 350 0 C. In addition a severe form of high temperature wear (above 400 0 C) was observed in which pitting of the 9Cr steel and transfer to the 310SS occurred. Subsequent wear scar examination revealed a wear mechanism dominated by the interaction of the oxidation characteristics and the changing mechanical behaviour of the 9Cr. (author)

  1. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  2. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  3. Wear mechanisms of toughened zirconias

    International Nuclear Information System (INIS)

    Becker, P.C.; Libsch, T.A.; Rhee, S.K.

    1985-01-01

    The dry friction and wear behavior of toughened zirconias against hardened steel was studied using the falex ring and block technique. Three experimental ZrO 2 -Y 2 O 3 ceramics and two commerical ZrO 2 -MgO ceramics were investigated. Each ceramic was tested at 500 and 2000 rpm at normal loads in the range 2.3 to 40.8 kg. Significant trends in the friction and wear data were found correlating composition, test speeds, and loads. Microstructural examination of the ring, ceramic block, and wear debris has shown that the wear process is very complex and incorporates a number of mechanisms

  4. Tribological behaviors of graphite sliding against cemented carbide in CaCl2 solution

    International Nuclear Information System (INIS)

    Guo, Fei; Tian, Yu; Liu, Ying; Wang, Yuming

    2015-01-01

    The tribological behaviors of graphite sliding against cemented carbide were investigated using a standard tribological tester Plint TE92 in a ring-on-ring contact configuration in both CaCl 2 solution and deionized water. An interesting phenomenon occurred: as the CaCl 2 solution concentration increased, the friction coefficient firstly decreased and was lower than that in the deionized water, and then gradually increased, exceeding the friction coefficient in the deionized water. The wear rate of the ,graphite also presented the same variation trend. According to the polarization curves of cemented carbide, contact angle measurements, Raman spectrum analysis and scanning electron microscope (SEM) images analysis, the above friction and wear behaviors of graphite sliding against cemented carbide were attributed to the graphite surface wettability and the cemented carbide surface corrosion property. (paper)

  5. THE CORROSION BEHAVIOR AND WEAR RESISTANCE OF GRAY CAST IRON

    Directory of Open Access Journals (Sweden)

    Lina F. Kadhim

    2018-01-01

    Full Text Available Gray cast iron has many applications as pipes , pumps and valve bodies where it has influenced by heat and contact with other solutions . This research has studied the corrosion behavior and Vickers hardness of gray cast iron by immersion in four strong alkaline solutions (NaOH, KOH, Ca(OH2, LiOHwith three concentrations (1%,2%,3% of each solution. Dry sliding wear has carried out before and after the heat treatments (stress relief ,normalizing, hardening and tempering. In this work ,maximum wear strength has obtained at tempered gray cast iron and minimum corrosion rate has obtained in LiOH solution by forming protective white visible oxide layer.

  6. A Comparative Study on Wear Properties of As Cast, Cast Aged and Forge Aged A356 Alloy with Addition of Grain Refiner and/or Modifier

    Directory of Open Access Journals (Sweden)

    D.G. Mallapur

    2015-03-01

    Full Text Available In the present work, a comparative wear behavior study of three categories of materials viz, as cast, cast aged (casting followed by T6 and forge aged (forging followed by T6 has been investigated. Neither melt treatment nor solid state processing (like aging and forging seems to be altering the wear behavior of the materials drastically. Cast aged A356 materials exhibit higher wear resistance compared to as cast and forge aged A356 materials. Further, it was observed that cast aged samples register lower coefficient of friction compared to other samples. It is also noted that the difference in wear behavior is revealed only at conditions of higher load, higher speed and longer sliding distance of testing. At lower regimes the difference is marginal. Among cast aged samples, ones treated with combined addition exhibit better wear resistance compared to other materials. Samples treated with combined addition register lowest coefficient of friction followed by samples treated with Sr, those with B, those with Ti and untreated ones. Abrasive wear mechanism is found to be operative in the regime of higher loading and higher velocity of sliding. Adhesive wear mechanism seems to be dominating the wear process at the lower regime of load and velocity of sliding.

  7. Slide-based ergometer rowing

    DEFF Research Database (Denmark)

    Vinther, Anders; Alkjær, T; Kanstrup, I-L

    2012-01-01

    Force production profile and neuromuscular activity during slide-based and stationary ergometer rowing at standardized submaximal power output were compared in 14 male and 8 female National Team rowers. Surface electromyography (EMG) was obtained in selected thoracic and leg muscles along with sy...

  8. Linear Motor With Air Slide

    Science.gov (United States)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  9. SlideDog / Siim Sein

    Index Scriptorium Estoniae

    Sein, Siim

    2015-01-01

    SlideDog on multimeediumi esitluse tööriist, mis võimaldab ühendada PowerPointi esitlused, PDF-failid, Prezi esitlused, videoklipid, helifailid, veebilehed ja palju muud üheks sujuvaks esitluskogemuseks konverentsil, seminaril või muul üritusel

  10. Wear Behavior and Microstructure of Mg-Sn Alloy Processed by Equal Channel Angular Extrusion.

    Science.gov (United States)

    Chen, Jung-Hsuan; Shen, Yen-Chen; Chao, Chuen-Guang; Liu, Tzeng-Feng

    2017-11-16

    Mg-5wt.% Sn alloy is often used in portable electronic devices and automobiles. In this study, mechanical properties of Mg-5wt.% Sn alloy processed by Equal Channel Angular Extrusion (ECAE) were characterized. More precisely, its hardness and wear behavior were measured using Vickers hardness test and a pin-on-disc wear test. The microstructures of ECAE-processed Mg-Sn alloys were investigated by scanning electron microscope and X-ray diffraction. ECAE process refined the grain sizes of the Mg-Sn alloy from 117.6 μm (as-cast) to 88.0 μm (one pass), 49.5 μm (two passes) and 24.4 μm (four passes), respectively. Meanwhile, the hardness of the alloy improved significantly. The maximum wear resistance achieved in the present work was around 73.77 m/mm³, which was obtained from the Mg-Sn alloy treated with a one-pass ECAE process with a grain size of 88.0 μm. The wear resistance improvement was caused by the grain size refinement and the precipitate of the second phase, Mg₂Sn against the oxidation of the processed alloy. The as-cast Mg-Sn alloy with the larger grain size, i.e., 117.6 μm, underwent wear mechanisms, mainly adhesive wear and abrasive wear. In ECAE-processed Mg-Sn alloy, high internal energy occurred due to the high dislocation density and the stress field produced by the plastic deformation, which led to an increased oxidation rate of the processed alloy during sliding. Therefore, the oxidative wear and a three-body abrasive wear in which the oxide debris acted as the three-body abrasive components became the dominant factors in the wear behavior, and as a result, reduced the wear resistance in the multi-pass ECAE-processed alloy.

  11. Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings

    Directory of Open Access Journals (Sweden)

    Tao ZHANG

    2018-03-01

    Full Text Available For starved-oil or solid lubrication of high-speed instrument angular contact ball bearings, friction heating and wear are the main reasons of bearing failures. This paper presents a dynamic wear simulation model to investigate the impacts of different preload methods and the changes of preload caused by wear on bearing wear life. The integral value QV of stress and sliding velocity in the contact ellipses between a ball and the inner and outer races determines friction heating and wear. The changes of QV with the friction coefficient and the wear volume under constant-force preload and fixed-position preload are analyzed. Results show that under the same initial preload, the QV decreases with an increase of the friction coefficient for both preload methods, and the latter is slightly larger. The wear of the ball and the race is equivalent to the ball diameter reduction. The QV of constant-force preload is almost not changed with a decrease of the ball diameter, but for fixed-position preload, the value decreases firstly and then increases substantially due to insufficient preload, and slipping occurs, the ball diameter is reduced by 0.025%, while the preload is reduced by 60.33%. An estimation of the bearing wear life under different preload methods requires a consideration of the changes in the wear rate of bearing parts. Keywords: Angular contact ball bearings, Bearing life, Dynamic model, Preload methods, Wear rate

  12. Assessment of wear facets produced by the ACTA wear machine

    DEFF Research Database (Denmark)

    Benetti, Ana R; Larsen, Liselotte; Dowling, Adam H

    2016-01-01

    . The mean wear depth was measured using the traditionally employed 2D and compared with the 3D profilometric (digital) techniques. Data were submitted to analyses of variance, Tukey's post hoc tests and Independent Samples Student's t-tests (where appropriate) at p...OBJECTIVE: To investigate the use of a three-dimensional (3D) digital scanning method in determining the accuracy of the wear performance parameters of resin-based composites (RBCs) determined using a two-dimensional (2D) analogue methodology following in-vitro testing in an Academisch Centrum...... for Tandheelkunde Amsterdam (ACTA) wear machine. METHODS: Specimens compatible with the compartments of the ACTA wear machine specimen wheel (n=10) were prepared from one commercial and four experimental RBCs. The RBC specimens were rotated against an antagonist wheel in a food-like slurry for 220,000 wear cycles...

  13. Friction and wear in hot forging of steels

    International Nuclear Information System (INIS)

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-01-01

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants

  14. Study of wear mechanism of chopped fiber reinforced epoxy composite filled with graphite and bronze

    Science.gov (United States)

    Patil, Nitinchand; Prasad, Krishna

    2018-04-01

    The combined effect of graphite and sintered bronze with a short glass fiber reinforced epoxy composites was investigated in this work. A pin on disc wear test was carried out to study the wear behaviour and mechanism of the composites. The objective of this work is to develop an alternate friction resistance material for the application of sliding bearing. It was observed that the addition of sintered bronze improved mechanical and thermal stability of the composites as bronze has low contact resistance with graphite and has high thermal conductivity. It was observed from the test results that increased volume percentage of graphite and presence of bronze are play significant role in wear mechanism of the composites. It was observed from the scanning electronic microscopes (SEM) that the abrasive and adhesive wear mechanism was prominent in this study. It was also evident from the result that the frictional force remains stable irrespective of the applied normal load.

  15. Abrasive wear behaviour of Al-Cu-Mg/palm kernel shell ash particulate composite

    Directory of Open Access Journals (Sweden)

    Gambo Anthony VICTOR

    2017-12-01

    Full Text Available This paper presents a systematic approach to develop a wear model of Al-Cu-Mg/Palm kernel shell ash particulate composites (PKSAp produced by double stir-casting method. Four factors, five levels, central composite, rotatable design matrix was used to optimize the number of experiments. The factors considered were sliding velocity, sliding distance, normal load and mass fraction of PKSA reinforcement in the matrix. Response surface methodology (RSM was employed to develop the mathematical model. The developed regression model was validated by statistical software MINITAB and statistical tool such as analysis of variance (ANOVA. It was found that the developed regression model could be effectively used to predict the wear rate at 95% confidence level. The regression model indicated that the wear rate of cast Al-Cu-Mg/PKSAp composite decreased with an increase in the mass fraction of PKSA and increased with an increase of the sliding velocity, sliding distance and normal load acting on the composite specimen.

  16. A grain boundary sliding model for cavitation, crack growth and ...

    African Journals Online (AJOL)

    A model is presented for cavity growth, crack propagation and fracture resulting from grain boundary sliding (GBS) during high temperature creep deformation. The theory of cavity growth by GBS was based on energy balance criteria on the assumption that the matrix is sufficiently plastic to accommodate misfit strains ...

  17. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    Science.gov (United States)

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  18. Tribological Performance of M50-Ag-TiC Self-Lubricating Composites at Elevated Temperature

    Science.gov (United States)

    Zhou, Hongyan; Shi, Xiaoliang; Huang, Yuchun; Liu, Xiyao; Li, Ben

    2018-05-01

    M50 steel is widely used in aero-engine bearings and other high-temperature bearings. However, the poor wear of M50 steel resistance restrains its further applications. In this paper, the sliding tribological behaviors of M50 steel, M50-Ag composites (MAC) and M50-Ag-TiC composites (MATC) against Si3N4 ball were investigated from 150 to 600 °C at 15 N-0.2 m/s. MATC showed better tribological properties in comparison with M50 and MAC. Especially at 450 °C, MATC obtained the lowest friction coefficient of 0.15 and smallest wear rate of 1.3 × 10-5 mm3 N-1 m-1. The excellent tribological performance of MATC during the friction test was attributed to the continuous lubricating film containing lubricant Ag and reinforcement TiC, as well as the subsurface compacted layer that could well support the lubricating film to prevent it from being destroyed. At 600 °C, because of the tribo-chemical reaction between Ag and Mo oxide during sliding process, the newly formed Ag2MoO4 lubricating film was well spread out on the friction surface, which could continuously improve the tribological behavior of MATC. This investigation was meaningful to improve the anti-friction and wear resistance of M50 matrix bearing over a wide temperature range.

  19. Tyre and road wear prediction

    NARCIS (Netherlands)

    Lupker, H.A.

    2003-01-01

    Both tyre wear and road polishing are complex phenomenon, which are obviously strongly related; the energy that polishes the road is the energy that wears the tyre. The both depend non-linearly on numerous parameters, like materials used, vehicle and road usage, environmental conditions (i.e.

  20. Tribological Behaviour of W-DLC against an Aluminium Alloy Subjected to Lubricated Sliding

    Directory of Open Access Journals (Sweden)

    S. Bhowmick

    2015-09-01

    Full Text Available Diamond like carbon (DLC coatings mitigate aluminium adhesion and reduce friction under the ambient conditions but their tribological behaviour under lubricated sliding need to be further investigated. In this study, tribological tests were performed to evaluate the friction and wear characteristics of W-DLC and H-DLC coatings sliding against an aluminium alloy (319 Al under unlubricated (40 % RH and lubricated sliding conditions. For unlubricated sliding, coefficient of friction (COF values of H-DLC and W-DLC were 0.15 and 0.20. A lower COF value of 0.11 was observed when W-DLC was tested using lubricant oil incorporating sulphur while the H-DLC’s COF remained almost unchanged. The mechanisms responsible for the low friction of W-DLC observed during lubricated sliding were revealed by studying the compositions of the coating surfaces and the transfer layers formed on 319 Al. Micro-Raman spectroscopy indicated that the transfer layers formed during lubricated sliding of W-DLC incorporated tungsten disulphide (WS2.

  1. Effect of surface finishing on friction and wear of Poly-Ether-Ether-Ketone (PEEK under oil lubrication

    Directory of Open Access Journals (Sweden)

    Thiago Fontoura de Andrade

    Full Text Available Abstract The tribological properties of poly-ether-ether-ketone (PEEK containing 30% of carbon fiber were studied in an oil-lubricated environment and different surface finishing of the metallic counterbody. Four different finishing processes, commonly used in the automotive industry, were chosen for this study: turning, grinding, honing and polishing. The test system used was tri-pin on disc with pins made of PEEK and counterbody made of steel; they were fully immersed in ATF Dexron VI oil. Some test parameters were held constant, such as the apparent pressure of 2 MPa, linear velocity of 2 m/s, oil temperature at 85 °C, and the time - 120 minutes. The lubrication regime for the apparent pressure of 1 MPa to 7 MPa range was also studied at different sliding speeds. A direct correlation was found between the wear rate, friction coefficient and the lubrication regime, wherein wear under hydrodynamic lubrication was, on average, approximately 5 times lower, and the friction coefficient 3 times lower than under boundary lubrication.

  2. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  3. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  4. Steam generator fretting-wear damage: A summary of recent findings

    International Nuclear Information System (INIS)

    Guerout, F.M.; Fisher, N.J.

    1999-01-01

    Flow-induced vibration of steam generator (SG) tubes may sometimes result in fretting-wear damage at the tube-to-support locations. Fretting-wear damage predictions are largely based on experimental data obtained at representative test conditions. Fretting-wear of SG materials has been studied at the Chalk River Laboratories for two decades. Tests are conducted in fretting-wear test machines that simulate SG environmental conditions and tube-to-support dynamic interactions. A new high-temperature force and displacement measuring system was developed to monitor tube-to-support interaction (i.e., work-rate) at operating conditions. This improvement in experimental fretting-wear technology was used to perform a comprehensive study of the effect of various environment and design parameters on SG tube wear damage. This paper summarizes the results of tests performed over the past 4 yr to study the effect of temperature, water chemistry, support geometry, and tube material on fretting-wear. The results show a significant effect of temperature on tube wear damage. Therefore, fretting-wear tests must be performed at operating temperatures in order to be relevant. No significant effect of the type of water treatment on tube wear damage was observed. For predominantly impacting motion, the wear of SG tubes in contact with 410 stainless steel is similar regardless of whether Alloy 690 or Alloy 800 is used as tubing material or whether lattice bars or broached hole supports are used. Based on results presented in this paper, an average wear coefficient value is recommended that is used for the prediction of SG tube wear depth versus time

  5. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-01-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant. (paper)

  6. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  7. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum

    Science.gov (United States)

    Wang, Qihua; Zheng, Fei; Wang, Tingmei

    2016-04-01

    The effects of temperature, sliding speed and load on the tribological properties of polyimide (PI), polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK) at cryogenic temperature in vacuum were investigated using a ball-on-disk tribometer. At cryogenic temperature, polymers show higher hardness which results in decreasing contact area between the friction pairs. Moreover, the real surface area in contact between steel ball and polymer disk determines the friction coefficient instead of the formation and adhesion of the transfer film. Thus, the friction coefficients at cryogenic temperatures are lower than at room temperature. On the other hand, wear rates of the three polymers decrease as temperature decreases since molecular mobility and migration are limited at cryogenic temperatures. For the visco-elasticity of PI, PTFE and PEEK, the friction coefficients fall as the load increases.

  8. Wear and friction behaviour of duplex-treated AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Centre of Tribology and Technical Diagnostics; Waenstrand, O.; Larsson, M.; Hogmark, S. [The Aangstroem Laboratory, Uppsala University, Box 534, SE-75121, Uppsala (Sweden)

    1999-11-01

    In this study samples of AISI 4140 steel were pretreated by plasma nitriding and coated with two different physical vapour deposited coatings (TiN and TiAlN). A hardened AISI 4140 sample and a coated sample were also included in the investigation. To examine the influence of the nitrided zone on the performance of the coating-substrate composite, two different nitriding conditions - a conventional 25% N{sub 2} and an N{sub 2}-poor gas mixture - were used. The specimens were investigated with respect to their microhardness, surface roughness, scratch adhesion and dry sliding wear resistance. Wear tests in which the duplex-treated pins were mated to hardened ball bearing steel discs were performed in a pin-on-disc machine under dry sliding conditions. Metallography, scanning electron microscopy and profilometry were used to analyse the worn surfaces in order to determine the dominant friction and wear characteristics of the samples investigated. The results show improved wear properties of the plasma-nitrided hard-coated specimens compared with uncoated and pre-hardened ones. Although previous investigations showed a negative effect of the compound layer, it was found that a precisely controlled plasma nitriding process can lead to a dense, uniform and highly adherent compound layer with a positive effect on the wear properties of pre-nitrided and hard-coated AISI 4140 steel. (orig.)

  9. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  10. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  11. Wear behaviour and morphology of stir cast aluminium/SiC nanocomposites

    Science.gov (United States)

    Tanwir Alam, Md; Arif, Sajjad; Husain Ansari, Akhter

    2018-04-01

    Wear and friction play a vital role in the service life of components. Aluminium matrix nanocomposites possess tremendous potential for a number of applications in addition to their present uses. It is valuable to the field of newer materials for better performance in tribological applications. In this work, dry sliding wear, friction coefficient and morphology of aluminium alloy (A356) reinforced with silicon carbide nanoparticles (SiCn) were investigated. A356/SiCn nanocomposites (AMNCs) containing 1–5 weight percentage of SiCn were prepared through two-step stir casting process via mechanical ball milling. The wear test was conducted on pin-on-disc test apparatus. Regression analysis was performed to develop mathematical functions to fit the experimental data points. Morphological studies of Al and SiCn as-received, wear debris and worn surfaces were further analysed by SEM along with EDS. The occurrence of oxide layers was observed on worn surfaces. Iron trace was identified by wear debris. It was found that the wear loss and friction coefficient were strongly influenced by mechanical milling and SiCn content. The results exhibited that the friction coefficient reduces with the addition of SiCn as well as with the increase in load. However, wear resistance increases as the reinforcement content increases because of the embedding and wettability effects.

  12. Assessing dental wear in reindeer using geometric morphometrical methods

    Directory of Open Access Journals (Sweden)

    Rolf Rødven

    2009-01-01

    Full Text Available Assessing dental wear is a useful tool for monitoring the interaction between ungulates and their food resources. However, using a univariate measurement for dental wear, like for instance height of the first molar may not capture the variation in dental wear important for the dental functional morphology. We here demonstrate a method for assessing dental wear for ungulates by using geometric morphometrical methods on 11 mandibles from nine Svalbard reindeer (Rangifer tarandus platyrhynchus. Shape measurements were obtained from a combination of fixed and sliding semi-landmarks, and dental wear was estimated using residual variation of the landmarks. The morphometric measurements obtained showed a good fit when compared to subjective scores of dental wear. We conclude that this method may give a more integrated and robust assessment of dental wear than univariate methods, and suggest it to be used as an alternative or in addition to traditional measurements of dental wear.Abstract in Norwegian / Sammendrag:Vurdering av tannslitasje hos rein ved hjelp av geometrisk morfometriske metoder Vurdering av tannslitasje er en anvendbar metode for å overvåke betydningen av miljøet for livshistorien til hovdyr. Imidlertid vil bruk av et enkelt mål, som for eksempel høyde på første molar, ikke nødvendigvis fange opp variasjonen i tannslitasje som er viktig i forhold til tennenes funksjonelle morfologi. I denne artikkelen viser vi hvordan tannslitasje kan vurderes ved å anvende geometrisk morfometriske metoder på 11 underkjever fra ni Svalbardrein (Rangifer tarandus platyrhynchus. Formen på tannrekka ble målt ved hjelp av en kombinasjon av fikserte og glidende semi-landemerker, hvor tannslitasje ble estimert ved å bruke residual variasjon av landemerkene. De morfometriske målene stemte godt overens med subjektiv vurdering av tannslitasje. Vi konkluderer at denne metoden kan gi en mer integrert og robust vurdering av tannslitasje enn univariate

  13. Experimental Investigation on Friction and Wear Properties of Different Steel Materials

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman

    2013-01-01

    Friction coefficient and wear rate of different steel materials are investigated and compared in this study. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when different types of disc materials such as stainless steel 314 (SS 314), stainless steel 202 (SS 202) and mild steel slide against stainless steel 314 (SS 314) pin. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative humidity 70%. A...

  14. Selfwelding, friction and wear behaviour of special materials in sodium under corroding conditions

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Mattes, K.; Wild, E.

    1975-11-01

    Control rod guides and fuel element duct load pads have to be fabricated from materials exhibiting optimum slide behaviour. Galling or self-welding under static conditions should not be tolerated. Given bearing clearances have to be maintained constant and loop contamination, caused by wear particles, have to be prevented. Since high friction between contacting pads may impose severe limitations on core compaction, for the duct load pads a maximum friction coefficient of 0.5 is acceptable. The effect of sodium corrosion should not impair the friction and wear behaviour of the materials applied. This report covers the work performed to optain appropriate mechanical design data. (orig.) [de

  15. Wear resistance of layers hard faced by the high-alloyed filler metal

    OpenAIRE

    Dušan Arsić; Vukić Lazić; Ruzica R. Nikolic; Milan Mutavdžić; Srbislav Aleksandrović; Milan Djordjević

    2016-01-01

    The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by ...

  16. Exploration of microstructure and wear behaviour of laser metal deposited Ti6Al4V/Cu composites

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-01-01

    Full Text Available This paper presents the explorations conducted on the evolving microstructures and the dry sliding wear of the laser deposited Ti6Al4V/Cu composites. The laser powers between 1300 W and 1600 W; scanning speeds between 0.30 and 0.72 m/min were...

  17. Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die.

    Science.gov (United States)

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    The purpose of this study is to investigate the friction and wear behaviors of CrN, TiN, CrAlN, and TiAIN coated onto SKD61 for application to Al 7000 series extrusion dies. On the wear test, the experimental parameters are the load and the counter material's temperature. The results showed that the friction coefficient increased with load but decreased with the counter material's temperature, and the friction coefficients of CrN and CrAIN were lower than the friction coefficients of TiAIN and TIN, especially at a higher temperature. The wear track with different coatings identified different wear behaviors; the wear behavior of CrAIN was found to be abrasive, but the wear behavior of TiN, CrN, and TiAIN was adhesive. Therefore, CrAIN showed the least wear loss with a lower friction coefficient and less adhesion with counter materials at the highest range of wear load and temperature. This resulted in the easy formation of aluminum oxide in the wear track and less Al adhesion; moreover during the hard second phase, AIN dispersed in the film during deposition.

  18. Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonlinear Sliding Surface

    OpenAIRE

    Yong-Kun Lu

    2015-01-01

    An adaptive fuzzy integral sliding-mode controller using nonlinear sliding surface is designed for the speed regulator of a field-oriented induction motor drive in this paper. Combining the conventional integral sliding surface with fractional-order integral, a nonlinear sliding surface is proposed for the integral sliding-mode speed control, which can overcome the windup problem and the convergence speed problem. An adaptive fuzzy control term is utilized to approximate the uncertainty. The ...

  19. Attractors near grazing–sliding bifurcations

    International Nuclear Information System (INIS)

    Glendinning, P; Kowalczyk, P; Nordmark, A B

    2012-01-01

    In this paper we prove, for the first time, that multistability can occur in three-dimensional Fillipov type flows due to grazing–sliding bifurcations. We do this by reducing the study of the dynamics of Filippov type flows around a grazing–sliding bifurcation to the study of appropriately defined one-dimensional maps. In particular, we prove the presence of three qualitatively different types of multiple attractors born in grazing–sliding bifurcations. Namely, a period-two orbit with a sliding segment may coexist with a chaotic attractor, two stable, period-two and period-three orbits with a segment of sliding each may coexist, or a non-sliding and period-three orbit with two sliding segments may coexist

  20. Rubber glove wearing device

    International Nuclear Information System (INIS)

    Nozaki, Tatsuo; Takada, Kaoru.

    1994-01-01

    Rubber groves are attached each to an upper end of a glove putting vessel having an air-sucking hole on the bottom by enlarging an opening end of the rubber glove and turning back the inside to the outside. When the sucking device is operated, air in the glove putting device is sucked and the rubber glove is expanded by an atmospheric pressure. After expansion of the rubber glove to some extent, the sucking device is stopped, and presence or absence of failures of the rubber glove is confirmed by shrinkage of the rubber glove and by an indication value of a pressure gauge for detecting the pressure change in the vessel. Then, a hand is inserted to the expanded rubber glove, and a detaching switch in the vessel is pushed by a finger tip. A detaching piece at the upper end of the vessel is protruded outwardly to enlarge the turned-back portion of the rubber glove to easily release the rubber glove from the putting vessel, and the rubber glove is put on. This enables to wear the rubber glove and conduct failure test simultaneously. Further, a user can put on the rubber glove without touching the outside of the rubber glove. (I.N.)

  1. Tactile Sliding Behavior of R2R Mass-Produced PLLA Nanosheet towards Biomedical Device in Skin Applications

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2018-03-01

    Full Text Available In this research, sliding friction was measured between the fingertip and nanosheet on a silicon substrate under two conditions: dry and wet. By using a force transducer, the tactile friction force and applied load were measured. According to the experimental results, the relationship of friction force and applied load exhibits a positive correlation under both dry and wet conditions. In addition, the nanosheets are able to reduce the friction force and coefficient of friction (COF compared to the reference sample, especially under the wet condition. Under the assumption of a full contact condition, the estimated contact area increases with larger applied loads. Furthermore, based on the wear observation, the skin sliding performance caused slight abrasions to the surface of the nanosheet samples with a mild wear track along the sliding direction. Overall, the sliding behavior between the skin and nanosheet was investigated in terms of friction force, COF, applied load, contact area, and wear. These findings can contribute to the nanosheet-related research towards biomedical devices in skin applications.

  2. Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication

    International Nuclear Information System (INIS)

    Xu Haiyan; Feng Zhizhong; Chen Jianmin; Zhou Huidi

    2006-01-01

    Carbon fiber reinforced polyphenylene sulphide (PPS) composite coatings (the mass fraction of the carbon fiber varied from 1 to 5 wt%) were prepared by flame spraying. The microstructure and physical properties of the composite coating were studied. The friction and wear characteristics of the PPS coating and carbon fiber reinforced PPS composite coating under dry- and water-lubricated sliding against stainless steel were comparatively investigated using a block-ring tester. The composite coatings showed lower friction coefficient and higher wear rate than pure PPS coatings under dry sliding. Under water-lubricated condition, the composite coatings showed better wear resistance than under dry. Under water-lubricated condition the tribological behaviors of the 3 wt% carbon fiber reinforced composite coating also were investigated under different sliding speed and load. The result showed that the sliding speed had little effect on the tribological properties, but the load affected greatly on that of the composite coatings. The morphologies of the worn surfaces of the composite coatings and the counterpart steel were analyzed by means of scanning electron microscopy (SEM), coupled with an energy-dispersive X-ray spectrometer (EDS) for compositional analysis

  3. Wear Analysis of a Ti-5Al-3V-2.5Fe Alloy Using a Factorial Design Approach and Fractal Geometry

    Directory of Open Access Journals (Sweden)

    A. W. El-Morsy

    2018-02-01

    Full Text Available This paper describes the application of the full factorial experimental design technique to confirm the significance of the factors affecting the wear behavior of a recycled Ti-5Al-3V-2.5Fe alloy with a minimum number of experiments. The fractal theory has been used to describe the worn surface state and to investigate the relationship between the fractal dimensions and the surface morphology. The experiments of the sliding wear have been performed under stresses in the range of 1-5 MPa and within sliding velocities range of 0.2–2.0 m/s. Morphology of the worn surfaces investigations has been undertaken using a scanning electron microscope. From the analysis of variance and the nonlinear regression model, the results show that the applied stress has a higher contribution to the wear rate than the sliding velocity.

  4. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    Science.gov (United States)

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. © IMechE 2015.

  5. Erosive tooth wear in children

    NARCIS (Netherlands)

    Carvalho, T.S.; Lussi, A.; Jaeggi, T.; Gambon, D.L.; Lussi, A.; Ganss, C.

    2014-01-01

    Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are

  6. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  7. An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces

    Science.gov (United States)

    Liang, Guoxing; Schmauder, Siegfried; Lyu, Ming; Schneider, Yanling; Zhang, Cheng; Han, Yang

    2018-01-01

    Friction and wear tests were performed on AISI 1045 steel specimens with different initial roughness parameters, machined by a creep-feed dry grinding process, to study the friction and wear behavior on a pin-on-disc tester in dry sliding conditions. Average surface roughness (Ra), root mean square (Rq), skewness (Rsk) and kurtosis (Rku) were involved in order to analyse the influence of the friction and wear behavior. The observations reveal that a surface with initial roughness parameters of higher Ra, Rq and Rku will lead to a longer initial-steady transition period in the sliding tests. The plastic deformation mainly concentrates in the depth of 20–50 μm under the worn surface and the critical plastic deformation is generated on the rough surface. For surfaces with large Ra, Rq, low Rsk and high Rku values, it is easy to lose the C element in, the reciprocating extrusion. PMID:29401703

  8. Wear mechanisms of coated hardmetals

    International Nuclear Information System (INIS)

    Richter, V.

    2001-01-01

    In the paper several aspects of the wear mechanisms of coated hardmetals, ceramics and super-hard materials (CBN) in machining cast iron are discussed, with particular attention being given to high-speed machining of different cast iron grades. The influence of machining parameters, microstructure, composition and mechanical and chemical properties of the cutting tool and the work-piece material on wear are considered. (author)

  9. Gear Tooth Wear Detection Algorithm

    Science.gov (United States)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  10. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  11. Applications of sliding mode control

    CERN Document Server

    Ghommam, Jawhar; Zhu, Quanmin

    2017-01-01

    This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry. .

  12. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  13. Linking Tribofilm Nanomechanics to the Origin of Low Friction and Wear

    Science.gov (United States)

    2013-08-08

    coating failure during transportation [6]. There have been a number of recent efforts to design ‘ adaptable ’ MoS2-based solid lubricants to combat...friction and severe wear. The MoS2 surface immediately responds to the applied stress and adapts to promote interfacial sliding through unclear...pp. 41-&. [8] Voevodin, A. A., Fitz, T. A., Hu, J. J., and Zabinski, J. S., 2002, "Nanocomposite tribological coatings with " chameleon " surface

  14. Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN

    Science.gov (United States)

    Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar

    2013-05-01

    Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.

  15. Wear performance of garnet aluminium composites at high contact pressure

    Science.gov (United States)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  16. Vibration and wear prediction for steam generator tubes: Final report

    International Nuclear Information System (INIS)

    Rao, M.S.M.; Gupta, G.D.; Eisinger, F.L.

    1988-06-01

    As part of the overall EPRI program to develop a mechanistic model for tube fretting and wear prediction, Foster Wheeler Development Corporation undertook the responsibility of developing analytical models to predict structural response and wear in a multispan tube. The project objective was to develop the analytical capability to simulate the time-dependent motion of a multispan steam generator tube in the presence of the clearance gaps at each tube baffle or support. The models developed were to simulate nonlinear tube-to-tube support interaction by determining the impact force, the sliding distance, and the resultant tube wear. Other objectives of the project included: validate the models by comparing the analytical results with the EPRI tests done at Combustion Engineering (C-E) on single multispan tubes; test the models for simulating the U-bend region of the steam generator tube, including the antivibration bars; and develop simplified methods to treat the nonlinear dynamic problem of a multispan tube so that computing costs could be minimized. 15 refs., 53 figs., 27 tabs

  17. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  18. Ultrastrong Carbon Thin Films from Diamond to Graphene under Extreme Conditions: Probing Atomic Scale Interfacial Mechanisms to Achieve Ultralow Friction and Wear

    Science.gov (United States)

    2016-12-08

    tribological behavior of hard carbon materials during initial sliding contact, in order to understand what controls and enables the transition from high to...publication. Our goal is to characterize and understand the atomic-scale mechanisms governing the tribological behavior (friction and wear) of hard carbon...affecting the sliding behavior of these materials, including: rehybridization from sp3 to sp2-bonding of the C atoms20, formation of bonds across the

  19. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  20. Fretting wear characteristic tests of X2-GEN midgrid for SMART under a FIV rod trace

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Lee, Kang Hee; Kim, Jae Yong; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The KEPCO Nuclear Fuel Co. requested the fretting wear characteristic tests of a X2-GEN midgrid under a FIV rod trace at room temperature air. The following results were obtained for the fretting wear test. {center_dot} Fretting wear tests under a FIV rod trace Based on the result of the fretting wear tests of the X2-GEN and 17ACE7 1x1 mid-grid under a FIV rod trace, X2-GEN mid-grid showed a slightly severe wear volume rather than 17ACE7 spring. But, maximum wear depth shows an opposite behavior. This is due to spring shape effect. The fretting wear mechanisms at each mid-grid were influenced by each spring shape, that are depended on the different impacting behavior under a FIV rod motion. Up to 5x105 cycles, wear characteristics of each mid-grid shows a relatively similar wear rate. Consequently, it is necessary to further study for examining exact fretting wear behavior under a FIV rod tra